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Abstract—"

As an important non-volatile memory technology, STT-
MRAM is widely considered as a universal memory solution
in current processors. Employing STT-MRAM as the main
memory offers a wide variety of benefits, but also results
in unique design challenges. In particular, read disturbance
characterizes accidental data corruption in STT-MRAM after
it is read, leading to a need of restoring data back to memory
after each read operation. These extra restores greatly change
the timing scenarios that conventional designs are optimized
for. As a result, directly adopting conventional, restore-agnostic
memory management techniques may lead to suboptimal de-
signs for STT-MRAM. In this work, we propose Restore-Aware
Policy Selection (RAPS), a dynamic and hybrid row buffer
management scheme that factors in the inevitable data restores
in STT-MRAM-based main memory. RAPS monitors the row
buffer hit rate at run time, dynamically switching between
the open- and close-page policies. By factoring in restores,
RAPS accurately captures the optimal design points, achieving
optimal policy selections at run time. Our experimental results
show that RAPS significantly improves system performance
and energy efficiency compared to the conventional page-
closure policies.

Keywords-STT-MRAM; read disturbance; page-closure pol-
icy; restore-aware memory management;

I. INTRODUCTION

The main memory is a fundamental bottleneck in both
performance and energy efficiency in different comput-
ing systems. Current important applications, e.g., machine
learning, are increasingly data intensive, requiring real-time
manipulation of large amounts of data. These applications
run very slowly on today’s high performance computing
platforms, leading to a high demand for memory capacity
and bandwidth. Furthermore, the main memory consumes
a significant fraction of the power and energy consumption
of the entire system. Consequently, the resulting “memory
wall” problem states that the main memory is a key limiter
in system performance and energy efficiency.

Conventional DRAM-based memories have difficulty in
scaling to large capacities, especially in small feature
sizes [11]. This scalability challenge is primarily due to
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refresh, a necessary operation in DRAM to maintain data.
Hence, computer architects have turned to emerging non-
volatile memory technologies, seeking a replacement for
DRAM. Spin Transfer Torque Magnetoresistive RAM (STT-
MRAM) [7] is widely considered as a universal memory
solution in the processor’s memory hierarchy. Replacing
DRAM with STT-MRAM results in a variety of benefits,
including the removal of refreshes, nearly zero idle power,
almost infinite data retention times, etc.

However, employing STT-MRAM as the main memory
also leads to unique design challenges. Orthogonal to prior
studies such as high write overhead [12] and incompatible
sense amplifiers [24], this paper focuses on a unique reliabil-
ity challenge named read disturbance [25]. Read disturbance
refers to the accidental data corruption that occurs after a
read operation to STT-MRAM cells. As a result, a read
operation must be followed by a write operation of the
same data (called a restore) to preserve data integrity under
read disturbance. Despite various efforts performed to reduce
restores [21] [25] [10], a significant amount of them are
still required in the memory controller for data correctness,
degrading system performance and energy efficiency.

This work is motivated by the fact that the inevitable
data restores significantly change the timing scenarios that
conventional memory management techniques are optimized
for. Conventional memory controllers are merely optimized
for DRAM, thus being restore-agnostic. Directly adopting
such designs for STT-MRAM may lead to suboptimal de-
sign decisions. Therefore, we propose Restore-Aware Policy
Selection (RAPS), a dynamic and hybrid row buffer manage-
ment scheme that factors in data restores. RAPS monitors
the row buffer hit rate at run time, dynamically switching be-
tween two static page-closure policies (open-page and close-
page). By factoring in restores, RAPS accurately captures the
optimal design points, achieving optimal policy selections at
run time.

The main contributions of this paper include:

o We show that the extra memory restores greatly affect

the optimal design choices. We perform a motivational
study to quantitatively show that conventional, restore-
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agnostic row buffer management schemes are ineffec-
tive in capturing this change.

« We propose RAPS, a restore-aware page-closure policy
to dynamically select open- or close-page policy based
on a row buffer hit rate threshold calculated at design
time. RAPS is shown to accurately capture the new
timing scenarios, and capable of making optimal policy
selections at run time.

« We conduct extensive experiments to evaluate our pro-
posed design. Compared to the static open-page base-
line, RAPS improves performance by 16% and energy
efficiency by 14% over a large set of benchmarks.

II. BACKGROUND
A. STT-MRAM as The Main Memory

STT-MRAM is an emerging and increasingly popular
non-volatile memory technology [7]. A STT-MRAM cell
contains one access transistor and one Magnetic Tunnel
Junction (MTJ). As opposed to DRAM using electrical
charge in capacitors to store data, STT-MRAM relies on the
MT] resistance for data storage. Figure 1 shows the STT-
MRAM cell structure with one access transistor and one
MTJ (IT-1MTJ). Two ferromagnetic layers are contained
within the MTJ and separated by an oxide barrier layer. The
magnetization direction is fixed in the reference layer, but
can vary in the free layer. Hence, as depicted in the figure,
the magnetic fields of the two layers can be parallel or anti-
parallel, thus representing the two values of a bit.

STT-MRAM has been widely considered as a uni-
versal solution for the entire cache and memory hi-
erarchy in current processors [7]. Prior work has ex-
tensively discussed using STT-MRAM as a replacement
for SRAM [16] [15] [23] [28] [26] and, more recently,
DRAM [12] [24] [14] [4]. A wide variety of benefits can
be obtained in the STT-MRAM-based main memory. First,
due to the cells being non-volatile, STT-MRAM has almost
zero idle power. For the same reason, periodic refreshes,
which consume a significant portion of power in DRAM, are
completely removed in STT-MRAM. Second, as opposed to
DRAM reads being destructive, STT-MRAM enables non-
destructive reads that can lead to various memory optimiza-
tions. For instance, it is not needed to write clean data back
to memory arrays upon row buffer conflicts in a memory
controller. Moreover, STT-MRAM has almost infinite data
retention times, and can thereby boot a computer system
faster than DRAM.

B. STT-MRAM Challenges

Employing STT-MRAM as the main memory also re-
sults in new design challenges, such as high write over-
heads [5] [12] and LPDDR-incompatible sense ampli-
fiers [24]. Orthogonal to these existing studies, this paper
investigates a critical data reliability challenge, namely read
disturbance [25]. Read disturbance refers to the accidental
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data corruption that occurs after a read operation to STT-
MRAM cells. The read and write operations in a STT-
MRAM cell are very similar, both generating a current
flowing through the cell. The read current has a small
amplitude, and is used to sense the cell resistance and the
data stored in it. In contrast, the write current has a much
larger amplitude, thereby changing the magnetic resistance
of the cell to write the data. However, with technology
scaling, the write current in a STT-MRAM cell fast decreases
since it scales with the cell size, whereas the read current
remains at a constant value with the same sense amplifier
design. The read/write current scaling trends are illustrated
in Figure 2 [25] [10]. As can be seen, these two currents
have become too close to each other at 32nm and below.
As a result, a read operation to a STT-MRAM cell may
accidentally be recognized as a write and change the data
stored in it. This is referred to as read disturbance, which
has been shown to be inevitable in future deep sub-micron
STT-MRAM-based memories [25].

The read disturbance rate P can be expressed as [25] [19]:

P =1 cap(~Lempl-Bo(1 1)

T (1)

where I denotes the read current; ¢ indicates the read
pulse width; 7 is the inverse of the attempt frequency;
Aq is the thermal stability factor; and I,y represents the
critical switching (write) current at zero temperature. Both
Ag and Iy are proportional to the MTJ area, so with
technology scaling they tend to become smaller and increase
the probability; a larger read current I also increases read
disturbance. At 32nm, the above probability for a single bit
using a conventional sense amplifier with 20 A read current
is calculated to 3.38 ' —7 [25]. Since LPDDR3 STT-MRAM
has a page size of 512 bits [24], the page error rate turns
out to be 1.73E — 4. Even with a Four Errors Correctable
Five Errors Detectable (4ESD) BCH ECC, the page error
rate is still much higher than an acceptable page level main
memory error rate of 1 — 6 [18].

Consequently, read disturbance results in an error rate
higher than that can be recovered using the state-of-the-



art ECC schemes. Besides, not all memories (especially
those in the LPDDR domain) are protected by ECC. In
order to preserve data integrity in STT-MRAM under read
disturbance, a simple read-and-restore scheme [22] has
been used. It basically writes data back to the same memory
location immediately after reading the data from it. Since
the introduced data restores significantly degrade system
performance and energy efficiency, studies have been carried
out to reduce the amount of restores in different cases,
including delaying restores to merge with writes [25], dis-
abling restores based on compiler guidelines [21], and issu-
ing a low-current memory read scheme to disable restores
when memory banks are busy [10]. Nevertheless, read-and-
restore is still necessary for the majority of reads due to the
intolerable read disturbance rate. Our work is orthogonal to
these restore reduction efforts, focusing on factoring in the
inevitable restores in the memory controller design.

C. Memory Controller Basics

Memory controllers are usually located on the same chip
as CPUs, sending memory access commands and data via
buses (i.e., the so-called DQ pins) to memory chips that are
organized as ranks and banks. A typical memory controller
design is illustrated in Figure 4 (except the highlighted
components for the newly proposed RAPS scheme described
in Section III-B). Memory requests from CPUs are first
inserted into a transaction queue. Address mapping trans-
lates a transaction’s physical address into the corresponding
memory location in terms of rank/bank/row/column IDs. A
transaction is converted into one or more controller-level
commands that are placed in a command queue correspond-
ing to the destination bank. Existing memory commands
include:

e precharge: precharges the bit lines to close an open row
and prepare to open a new row.
activate: enables access to a row and connects it with
the sense amplifiers.
read | write: reads or writes a block of data over DQ
pins in multiple beats.
refresh: this is not needed in STT-MRAM.
restore: this is newly incorporated in STT-MRAM for
mitigating read disturbance. It is used to write a whole
row or a line of data back to memory.
Once a command is selected for execution, it goes through
the row and column decoders to reach the requested data. A
whole row (i.e., a page) of data is kept open in the row buffer
to enable read/write accesses to it. If the requested data is
located in the row buffer, this results in a row buffer hit
and can be accommodated quickly; otherwise, it results in a
row buffer conflict that needs multiple memory commands
to switch the row buffer to a new row.

In a conventional memory controller design [9], the row
buffer management policy (i.e., the page-closure policy) can
be open-page or close-page. The open-page policy keeps a
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row open in the row buffer for all ready accesses targeting
this row. If a row buffer conflict occurs, it needs to perform
a precharge and an activate before it can read/write the new
row. In contrast, the close-page policy opens a row for each
read/write operation, and automatically closes it afterwards.
It only needs an activate when opening a row, but needs it
for every read/write access. The proposed work in this paper
dynamically combines these two policies in a restore-aware
manner.

III. MOTIVATION AND DESIGN
A. Motivation

The motivation of this work lies in the observation that
the introduced data restores in STT-MRAM significantly
change the scenarios that conventional memory controllers
were originally optimized for. Since the existing memory
management schemes only target DRAM and are thereby
restore-agnostic, directly applying them to STT-MRAM
may result in suboptimal designs. Our motivational study
compares three existing page-closure policies: static open-
page, static close-page, and a hybrid policy based on two-bit
saturating counters [6].

The static open-page and close-page policies have been
described in Section II-C. In general, the open-page pol-
icy is favored by memory requests with high spatial and
temporal locality; and the close-page policy is favored by
accesses to random locations. To achieve the benefits of both,
hybrid policies have been proposed to dynamically switch
between the two static policies. The two-bit counter hybrid
policy [6] uses two-bit saturating counters to characterize
the memory access pattern: a row buffer hit/conflict decre-
ments/increments the counter at run time; the counter value
is used to predict what policy to follow, with values of 0
and 1 indicating open-page and values of 2 and 3 indicating
close-page. Figure 3 compares the performance (execution
time) of these three policies. In each benchmark, the left
three bars are results when restores are disabled, and they are
normalized to the static open-page (the first bar); similarly,
the right three bars are results when restores are present, and
normalized to the static open-page with restores (the fourth
bar). Detailed simulator setup and workload information can
be found in Section IV-A.

Interesting observations can be made from this study.
First, the open-page policy performs much better than the
close-page policy when restores are not present; when re-
stores are present, the close-page policy becomes better.
This is because the open-page policy is penalized more by
restoring the whole page compared to the close-page policy
restoring only a cache line of data. (details can be referred to
in the following sections). Consequently, the timing scenar-
ios are completely changed when restores are enabled. Since
traditional designs are only optimized for the scenarios with
no restores, they may not achieve the optimal design points
when restores are present. Second, the two-bit counter hybrid
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policy shows similar performance as the close-page policy;
it does not achieve the desired policy selections between the
two static policies. The fundamental reason is because the
two-bit counter hybrid policy is restore-agnostic, selecting
the two static policies in a blindly uniform manner. As
demonstrated in Section IV-C, a uniform selection between
the static policies turns out to be a suboptimal design point,
thus making the existing hybrid policy not effective at run
time. Therefore, we need a more realistic, restore-aware
page-closure policy that can better capture the dynamic
memory access behavior.

B. RAPS: Restore-Aware Policy Selection

In this work, we propose Restore-Aware Policy Selection
(RAPS), a dynamic and hybrid row buffer management
scheme that factors in the inevitable data restores in STT-
MRAM suffering from read disturbance. RAPS keeps track
of the row buffer hit rate over a configurable program phase
length, determining the desired page-closure policy (i.e.,
open-page or close-page) upon entering a new phase based
on the dynamically observed row buffer hit rate. RAPS relies
on an analytical model to determine the row buffer hit rate
threshold that distinguishes the two static policies.

As described earlier, the open-page policy keeps a row
of data active in the row buffer for ready accesses. If a
subsequent access is to the same row, it only incurs the
minimal column data access time. Otherwise, the memory
controller has to close the current row (using precharge),
and open a new one (using activate). Hence, the average
read latency under the open-page policy can be expressed
as:

Latencyl = z - tC AS+

(1 —z) - (tRestorePage + tRP + tRCD + tCAS) (2)

where z is the row buffer hit rate; tC' AS is the time to
access column data; tRP is the precharge time to close

no restores with restores
\

M static close (no restores)

static close (with restores)
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Execution time comparison of three existing page-closure policies when restores are not present (left three bars) and present (right three bars).

the current row; tRCD is the time to activate a new
row; and tRestorePage is the time to restore the whole
row buffer (page). A row buffer hit only incurs tC'AS;
whereas a row buffer conflict involves restoring the current
row (tRestorePage), precharging the bit lines to close the
current row (tRP), activating the new row (tRC D), and the
column access delay for the requested data (tC AS).

In contrast, the close-page policy treats all requests in a
uniform manner. For each read/write request, it opens the
target row (using activate), serves the request, and closes
the row immediately (using auto-precharge that is not on
the critical timing path). Therefore, the latency of a read
request under the close-page policy can be expressed as:

Latency2 = tRCD + tC'AS + tRestoreLine  (3)

where tRCD is the time to activate a row; tCAS 1is the
time to access column data; and tRestoreLine is the time
to restore a cache line of data (equivalent to the data size
of a memory request). This equation reflects the fact that
the close-page policy opens a row for every memory access
request independent of row buffer hits/conflicts.
If we compare Latencyl and Latency2 and solve for =z,
we have:
_ LRP + tRestorePage — t RestoreLine

tRP + tRCD + tRestorePage

where th is the minimal row buffer hit rate for the open-
page policy to perform better than the close-page policy.
Therefore, to dynamically optimize performance, we should
choose the open-page policy if the current row buffer hit
rate is higher than th, and the close-page policy if the
hit rate is lower than th. This threshold value can be pre-
calculated at design time using the design parameters shown
in Equation 4.

Figure 4 depicts the proposed RAPS design implemented
in a conventional memory controller [9]. A generic descrip-
tion of the memory controller can be found in Section II-C.
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Figure 4. A memory controller design that implements RAPS.

The highlighted components added in this design are used
to implement RAPS. The row buffer hit rate monitor dy-
namically calculates the row buffer hit rate for the current
program phase using two counters: the number of hits and
the number of requests. If the monitored hit rate exceeds
the pre-computed threshold th, the open-page policy is
chosen for the next phase; otherwise, the close-page policy
is chosen. This selection is dynamically performed during
program run time, adapting to the time-varying behavior of
the running application. Depending on the design, the hit rate
monitoring can be performed at the per-rank level or per-
bank level. Consequently, compared to the existing hybrid
page-closure policies such as the two-bit counter hybrid
policy, RAPS achieves two advantages:

o RAPS relies on a more fine-grained metric (row buffer
hit rate) for the dynamic policy selection, using a simple
but realistic model to accurately reach the optimal
design points.

« RAPS is restore-aware, taking into account the varying
design parameters to adapt to the new timing scenarios
and different design configurations.

C. Timing and Overhead Analyses

Figure 5 shows a timing diagram example when RAPS is
in use. When the open-page policy is in use, a row buffer
conflict (e.g., from Rowl to Row2) results in closing the
old row (precharge or PRE) and activating the new row
(activate or AC) before any read (RD) and write (WR) can
be performed. To mitigate read disturbance, restoring the
entire row (ReP) needs to be done before closing a row.
When the close-page policy is in use (Row3 and Row4), it
activates a row when fulfilling every read or write request,
and immediately closes it after usage (using auto-precharge).
For a read operation, this policy restores the requested cache
line of data (ReL) before closing the row. Since restoring a
page takes a much longer time than restoring a line, the
open-page policy is penalized more with restores enabled.
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Figure 5. A timing diagram example when RAPS is in use.

Table I
THE SIMULATED MACHINE CONFIGURATION.

CPUs 2GHz, private L1 I/D caches with 32KB/core and

64B lines, 8MB shared L2 with 64B lines.

Memory Con-
troller

64-entry unified transaction queue, 8-entry command
queue for each bank, FR-FCFS scheduling.

STT-MRAM- one channel with 4GB capacity, one rank-per-
Based Main channel, 8 banks-per-rank. 1KB row buffer size.
Memory

Besides, with the close-page policy, restoring-line (ReL) and
auto-precharge immediately follow a read; as a result, they
are normally not on the critical timing path. Therefore, the
close-page policy shows better performance than open-page
when restores are present (see Figure 3).

To implement RAPS, two counters (highlighted in Fig-
ure 4) are needed for calculating the row buffer hit rate: one
for counting the number of memory requests, and the other
for counting the number of row buffer hits. Even if the close-
page policy is in use, RAPS can still easily tell whether
the current request targets the same row as the previous
request (i.e., a row buffer hit). With a typical phase length
of 100K cycles, 32-bit counters are more than enough. In a
typical memory controller with a 64-entry transaction queue
and eight 8-entry command queues, implementing RAPS
incurs only (4% 2%8)/(128 x64) = 0.8% storage overhead,
assuming that each transaction size is 64-byte and the hit
rate is calculated for each memory bank.

IV. EXPERIMENTS AND ANALYSES
A. Experimental Setup

To evaluate our proposed memory controller design, we
use gemS5 [3] to collect memory traces via running various
benchmarks, and input the traces to DRAMSim2 [17] to
simulate a detailed memory model. Our simulated ma-
chine configuration is shown in Table 1. We adopt the
timing constraints and current parameters listed in prior
work [24] to simulate a reasonable LPDDR3 STT-MRAM-
based main memory. The key timing parameters used are



Table II
THE KEY TIMING PARAMETERS USED FOR STT-MRAM.

Parameter Value (cycles) | Notes

tCAS 6 Column access strobe delay.

BL 8 Burst length.

WL 6 Latency for writing a cache line.

tWR 14 Write recovery time.

tRP 7 Row precharge latency.

tRCD 13 Row activation latency.

tRestoreLine 20 Latency for restoring a line, equivalent
to: tWR+WL.

tRestorePage 110 Latency for restoring a page, equivalent
to: tWR+16%WL.

tRTP 2 Read to precharge delay.

tWTR 4 Write to read delay.

tRRD 6 Row activate to activate delay.

tCCD 4 Column to column delay.

tRTRS 1 Rank to rank switching time.

tCMD 1 Command transport duration.

tRAS 27 Row active time.

tRC 34 Row cycle time, equivalent to:
tRAS+tRP.

listed in Table II. In particular, the line restoring latency
(tRestoreLine) takes into account the write recovery time
(tWR=14) and the write latency of one cache line (WL=6).
Since a page of 1KB is 16 times larger than a line of
64B, the page restoring latency (tRestorePage) is calculated
to be tWR + 16 x WL = 110 for sequential restoring.
In Section IV-D, tRestorePage will be reduced to evaluate
restoring with different degrees of parallelism.

To factor in memory restores due to read distur-
bance, our implementation models a simple read-and-restore
scheme [22] that generates a restore to the same address after
each read operation. We evaluate a number of page-closure
policies, including the static open-page policy, the static
close-page policy, the two-bit counter hybrid policy [6], and
our proposed RAPS policy. Our evaluation uses a mixed set
of benchmarks from SPEC CPU2006 [20], Bio-Bench [1],
and STREAM [13]. For those in these suites but not included
in our results, we were not able to generate memory traces
for them in gem5.

B. Performance and Energy

Figure 6 and Figure 7 compare the performance (exe-
cution time) and energy consumption of the different page-
closure policies that we implement. Note that both metrics
favor lower values. In addition to the three existing policies,
we evaluate two versions of RAPS: RAPS per-rank only
calculates the row buffer hit rate for the entire rank, where
all banks make the same policy selection at all times; RAPS
per-bank monitors the row buffer hit rate and makes policy
selection separately for each bank. All results are normalized
to the static open-page policy, which is used as our baseline.
As can be seen, the two-bit counter hybrid policy cannot
accurately capture the varying memory access behavior, thus
performing similarly to the static close-page policy. In con-
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trast, RAPS makes dynamic open- and close-page selection
based on the calculated row buffer hit rate threshold (Equa-
tion 4). On average, RAPS improves performance by 16%
compared to the static-open page policy; it also achieves a
relative 12% improvement than the two-bit counter hybrid
policy. The per-bank RAPS performs slightly better than the
per-rank RAPS. Furthermore, RAPS consistently achieves
the best performance across the existing schemes, due to its
dynamic nature in making the optimal selections at run time.

Figure 7 breaks down energy consumption into three
components (from bottom to top): the background energy is
the static energy; the burst energy is the dynamic energy due
to read/write operations; and the precharge/activate energy is
the dynamic energy due to precharge and activate operations.
Despite a shorter execution time, the total energy of the
close-page policy is 9% higher than the open-page policy.
This is because close-page has a lot more precharge and ac-
tivate operations. As shown, RAPS still achieves significant
energy reduction (14% on average) than the baseline.

C. Comparing RAPS With Other Policies

Based on Equation 4 and the timing parameters listed in
Table II, the row buffer hit rate threshold that RAPS uses is
calculated to be: (7+ 110 —20)/(7+ 13+ 110) = 0.75. To
show that RAPS indeed makes the optimal policy selection,
Figure 8 demonstrates the performance improvements when
different threshold values are used in RAPS. As can be
seen, RAPS’s threshold choice of 0.75 achieves the highest
performance improvement. If the monitored row buffer hit
rate falls below the threshold, the close-page policy is
favored; otherwise, the open-page policy is favored.

We further use the figure to compare RAPS with the other
policies. First, the static open-page and close-page policies
are independent of the RAPS thresholds. The close-page
policy performs slightly better than the open-page policy
based on our results shown in Figure 6. Second, the two-bit
counter hybrid policy treats the two static policies uniformly,
effectively picking the mid-point between the two static
policies. As shown in the figure, this achieves the static
close-page policy, and is far from the optimal design point.
This also validates our previous observation that the two-
bit counter hybrid policy performs similarly to the close-
page policy (as shown in Figure 3 and Figure 6). Third,
for comparison we also show the corresponding trend when
restores are disabled (normalized to static open with no
restores). Between the cases that restores are disabled and
enabled, the optimal policy selection point shifts from a low
value (about 0.1) to a high value (about 0.8). As a result, the
row buffer hit rate range for choosing close-page is much
widened; this also validates our previous observation that
close-page is more favored when restores are present.
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RAPS assumes a sequential restoring scheme that restores
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Figure 9. The threshold trends of RAPS with different degrees of restoring
parallelism.

a page in a line-by-line manner. Hence, the page restoring
latency tRestorePage has been calculated to be 110 cycles in
Table II. We further evaluate the effectiveness of RAPS when
the restoring scheme is parallelized to different degrees.
The resulting threshold trends are presented in Figure 9.



The “2-wide” trend is obtained with two streams of lines
being restored simultaneously, resulting in a tRestorePage
of tWR+ 8« WL = 62 cycles. Similarly, the 4-wide/8-
wide/fully parallel trends have tRestorePage of 38/26/20
cycles, respectively. As expected, with a higher degree of
restoring parallelism, the benefit of RAPS is reduced and
the optimal policy selection point shifts from high to low
thresholds. Nevertheless, a higher degree of restoring par-
allelism requires an exponentially larger number of charge
pumps/write drivers. The resulting hardware overhead be-
comes increasingly expensive and even unrealistic. Our de-
fault assumption of low restoring parallelism is reasonable.

V. RELATED WORK

Prior work related to STT-MRAM-based main mem-
ory [14] [12] [24] and read disturbance [25] [21] [10] have
been discussed in Section II. Here, we focus on hybrid
row buffer management policies. Huan et al. [8] propose
a dynamic page policy guided by the processor. Xu et
al. [27] propose a two-level predictor that uses the historical
row buffer hit/miss information to index a table of two-bit
saturating counters for prediction. Awasthi et al. [2] use the
past number of accesses to determine how long a row will
be kept open. Ghasempour et al. [6] implement the two-bit
counter hybrid policy (discussed in Section III-A). However,
all these existing hybrid policies are merely optimized for
DRAM, thus being restore-agnostic. In contrast, RAPS is
restore-aware, using phase-based row buffer hit rates to
dynamically achieve optimal policy selections.

VI. CONCLUSIONS

Replacing DRAM with STT-MRAM in the main memory
provides various benefits, but also results in a reliability
challenge, i.e., read disturbance. Restoring data back to
memory greatly changes the timing scenarios that traditional
memory controllers are optimized for. Therefore, we propose
a restore-aware page-closure policy selection scheme called
RAPS to dynamically select open- or close-page policy
based on the row buffer hit rate. RAPS analytically deter-
mines the optimal design point, achieving optimal policy
selections at run time. Experimental results show significant
improvements in performance and energy efficiency when
comparing RAPS to static policies and a conventional hybrid
policy.
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