
RAPS: Restore-Aware Policy Selection for

STT-MRAM-Based Main Memory Under Read Disturbance

Armin Haj Aboutalebi

Department of Electrical and Computer Engineering

University of Texas at San Antonio

San Antonio, Texas 78249, USA

Email: armin.hajaboutalebi@utsa.edu

Lide Duan

Department of Electrical and Computer Engineering

University of Texas at San Antonio

San Antonio, Texas 78249, USA

Email: lide.duan@utsa.edu

Abstract—1

As an important non-volatile memory technology, STT-
MRAM is widely considered as a universal memory solution
in current processors. Employing STT-MRAM as the main
memory offers a wide variety of benefits, but also results
in unique design challenges. In particular, read disturbance
characterizes accidental data corruption in STT-MRAM after
it is read, leading to a need of restoring data back to memory
after each read operation. These extra restores greatly change
the timing scenarios that conventional designs are optimized
for. As a result, directly adopting conventional, restore-agnostic
memory management techniques may lead to suboptimal de-
signs for STT-MRAM. In this work, we propose Restore-Aware
Policy Selection (RAPS), a dynamic and hybrid row buffer
management scheme that factors in the inevitable data restores
in STT-MRAM-based main memory. RAPS monitors the row
buffer hit rate at run time, dynamically switching between
the open- and close-page policies. By factoring in restores,
RAPS accurately captures the optimal design points, achieving
optimal policy selections at run time. Our experimental results
show that RAPS significantly improves system performance
and energy efficiency compared to the conventional page-
closure policies.

Keywords-STT-MRAM; read disturbance; page-closure pol-
icy; restore-aware memory management;

I. INTRODUCTION

The main memory is a fundamental bottleneck in both

performance and energy efficiency in different comput-

ing systems. Current important applications, e.g., machine

learning, are increasingly data intensive, requiring real-time

manipulation of large amounts of data. These applications

run very slowly on today’s high performance computing

platforms, leading to a high demand for memory capacity

and bandwidth. Furthermore, the main memory consumes

a significant fraction of the power and energy consumption

of the entire system. Consequently, the resulting “memory

wall” problem states that the main memory is a key limiter

in system performance and energy efficiency.

Conventional DRAM-based memories have difficulty in

scaling to large capacities, especially in small feature

sizes [11]. This scalability challenge is primarily due to

1This work is supported in part by NSF grant CCF-1566158.

refresh, a necessary operation in DRAM to maintain data.

Hence, computer architects have turned to emerging non-

volatile memory technologies, seeking a replacement for

DRAM. Spin Transfer Torque Magnetoresistive RAM (STT-

MRAM) [7] is widely considered as a universal memory

solution in the processor’s memory hierarchy. Replacing

DRAM with STT-MRAM results in a variety of benefits,

including the removal of refreshes, nearly zero idle power,

almost infinite data retention times, etc.

However, employing STT-MRAM as the main memory

also leads to unique design challenges. Orthogonal to prior

studies such as high write overhead [12] and incompatible

sense amplifiers [24], this paper focuses on a unique reliabil-

ity challenge named read disturbance [25]. Read disturbance

refers to the accidental data corruption that occurs after a

read operation to STT-MRAM cells. As a result, a read

operation must be followed by a write operation of the

same data (called a restore) to preserve data integrity under

read disturbance. Despite various efforts performed to reduce

restores [21] [25] [10], a significant amount of them are

still required in the memory controller for data correctness,

degrading system performance and energy efficiency.

This work is motivated by the fact that the inevitable

data restores significantly change the timing scenarios that

conventional memory management techniques are optimized

for. Conventional memory controllers are merely optimized

for DRAM, thus being restore-agnostic. Directly adopting

such designs for STT-MRAM may lead to suboptimal de-

sign decisions. Therefore, we propose Restore-Aware Policy

Selection (RAPS), a dynamic and hybrid row buffer manage-

ment scheme that factors in data restores. RAPS monitors

the row buffer hit rate at run time, dynamically switching be-

tween two static page-closure policies (open-page and close-

page). By factoring in restores, RAPS accurately captures the

optimal design points, achieving optimal policy selections at

run time.

The main contributions of this paper include:

• We show that the extra memory restores greatly affect

the optimal design choices. We perform a motivational

study to quantitatively show that conventional, restore-

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.110

625

agnostic row buffer management schemes are ineffec-

tive in capturing this change.

• We propose RAPS, a restore-aware page-closure policy

to dynamically select open- or close-page policy based

on a row buffer hit rate threshold calculated at design

time. RAPS is shown to accurately capture the new

timing scenarios, and capable of making optimal policy

selections at run time.

• We conduct extensive experiments to evaluate our pro-

posed design. Compared to the static open-page base-

line, RAPS improves performance by 16% and energy

efficiency by 14% over a large set of benchmarks.

II. BACKGROUND

A. STT-MRAM as The Main Memory

STT-MRAM is an emerging and increasingly popular

non-volatile memory technology [7]. A STT-MRAM cell

contains one access transistor and one Magnetic Tunnel

Junction (MTJ). As opposed to DRAM using electrical

charge in capacitors to store data, STT-MRAM relies on the

MTJ resistance for data storage. Figure 1 shows the STT-

MRAM cell structure with one access transistor and one

MTJ (1T-1MTJ). Two ferromagnetic layers are contained

within the MTJ and separated by an oxide barrier layer. The

magnetization direction is fixed in the reference layer, but

can vary in the free layer. Hence, as depicted in the figure,

the magnetic fields of the two layers can be parallel or anti-

parallel, thus representing the two values of a bit.

STT-MRAM has been widely considered as a uni-

versal solution for the entire cache and memory hi-

erarchy in current processors [7]. Prior work has ex-

tensively discussed using STT-MRAM as a replacement

for SRAM [16] [15] [23] [28] [26] and, more recently,

DRAM [12] [24] [14] [4]. A wide variety of benefits can

be obtained in the STT-MRAM-based main memory. First,

due to the cells being non-volatile, STT-MRAM has almost

zero idle power. For the same reason, periodic refreshes,

which consume a significant portion of power in DRAM, are

completely removed in STT-MRAM. Second, as opposed to

DRAM reads being destructive, STT-MRAM enables non-

destructive reads that can lead to various memory optimiza-

tions. For instance, it is not needed to write clean data back

to memory arrays upon row buffer conflicts in a memory

controller. Moreover, STT-MRAM has almost infinite data

retention times, and can thereby boot a computer system

faster than DRAM.

B. STT-MRAM Challenges

Employing STT-MRAM as the main memory also re-

sults in new design challenges, such as high write over-

heads [5] [12] and LPDDR-incompatible sense ampli-

fiers [24]. Orthogonal to these existing studies, this paper

investigates a critical data reliability challenge, namely read

disturbance [25]. Read disturbance refers to the accidental

Figure 1. A cell of STT-
MRAM.

Figure 2. The read/write current scaling
in STT-MRAM. [25] [10]

data corruption that occurs after a read operation to STT-

MRAM cells. The read and write operations in a STT-

MRAM cell are very similar, both generating a current

flowing through the cell. The read current has a small

amplitude, and is used to sense the cell resistance and the

data stored in it. In contrast, the write current has a much

larger amplitude, thereby changing the magnetic resistance

of the cell to write the data. However, with technology

scaling, the write current in a STT-MRAM cell fast decreases

since it scales with the cell size, whereas the read current

remains at a constant value with the same sense amplifier

design. The read/write current scaling trends are illustrated

in Figure 2 [25] [10]. As can be seen, these two currents

have become too close to each other at 32nm and below.

As a result, a read operation to a STT-MRAM cell may

accidentally be recognized as a write and change the data

stored in it. This is referred to as read disturbance, which

has been shown to be inevitable in future deep sub-micron

STT-MRAM-based memories [25].

The read disturbance rate P can be expressed as [25] [19]:

P = 1− exp{−
t

τ
exp[−∆0(1−

I

Ic0
)]} (1)

where I denotes the read current; t indicates the read

pulse width; τ is the inverse of the attempt frequency;

∆0 is the thermal stability factor; and Ic0 represents the

critical switching (write) current at zero temperature. Both

∆0 and Ic0 are proportional to the MTJ area, so with

technology scaling they tend to become smaller and increase

the probability; a larger read current I also increases read

disturbance. At 32nm, the above probability for a single bit

using a conventional sense amplifier with 20µA read current

is calculated to 3.38E−7 [25]. Since LPDDR3 STT-MRAM

has a page size of 512 bits [24], the page error rate turns

out to be 1.73E − 4. Even with a Four Errors Correctable

Five Errors Detectable (4E5D) BCH ECC, the page error

rate is still much higher than an acceptable page level main

memory error rate of 1E − 6 [18].

Consequently, read disturbance results in an error rate

higher than that can be recovered using the state-of-the-

626

art ECC schemes. Besides, not all memories (especially

those in the LPDDR domain) are protected by ECC. In

order to preserve data integrity in STT-MRAM under read

disturbance, a simple read-and-restore scheme [22] has

been used. It basically writes data back to the same memory

location immediately after reading the data from it. Since

the introduced data restores significantly degrade system

performance and energy efficiency, studies have been carried

out to reduce the amount of restores in different cases,

including delaying restores to merge with writes [25], dis-

abling restores based on compiler guidelines [21], and issu-

ing a low-current memory read scheme to disable restores

when memory banks are busy [10]. Nevertheless, read-and-

restore is still necessary for the majority of reads due to the

intolerable read disturbance rate. Our work is orthogonal to

these restore reduction efforts, focusing on factoring in the

inevitable restores in the memory controller design.

C. Memory Controller Basics

Memory controllers are usually located on the same chip

as CPUs, sending memory access commands and data via

buses (i.e., the so-called DQ pins) to memory chips that are

organized as ranks and banks. A typical memory controller

design is illustrated in Figure 4 (except the highlighted

components for the newly proposed RAPS scheme described

in Section III-B). Memory requests from CPUs are first

inserted into a transaction queue. Address mapping trans-

lates a transaction’s physical address into the corresponding

memory location in terms of rank/bank/row/column IDs. A

transaction is converted into one or more controller-level

commands that are placed in a command queue correspond-

ing to the destination bank. Existing memory commands

include:

• precharge: precharges the bit lines to close an open row

and prepare to open a new row.

• activate: enables access to a row and connects it with

the sense amplifiers.

• read / write: reads or writes a block of data over DQ

pins in multiple beats.

• refresh: this is not needed in STT-MRAM.

• restore: this is newly incorporated in STT-MRAM for

mitigating read disturbance. It is used to write a whole

row or a line of data back to memory.

Once a command is selected for execution, it goes through

the row and column decoders to reach the requested data. A

whole row (i.e., a page) of data is kept open in the row buffer

to enable read/write accesses to it. If the requested data is

located in the row buffer, this results in a row buffer hit

and can be accommodated quickly; otherwise, it results in a

row buffer conflict that needs multiple memory commands

to switch the row buffer to a new row.

In a conventional memory controller design [9], the row

buffer management policy (i.e., the page-closure policy) can

be open-page or close-page. The open-page policy keeps a

row open in the row buffer for all ready accesses targeting

this row. If a row buffer conflict occurs, it needs to perform

a precharge and an activate before it can read/write the new

row. In contrast, the close-page policy opens a row for each

read/write operation, and automatically closes it afterwards.

It only needs an activate when opening a row, but needs it

for every read/write access. The proposed work in this paper

dynamically combines these two policies in a restore-aware

manner.

III. MOTIVATION AND DESIGN

A. Motivation

The motivation of this work lies in the observation that

the introduced data restores in STT-MRAM significantly

change the scenarios that conventional memory controllers

were originally optimized for. Since the existing memory

management schemes only target DRAM and are thereby

restore-agnostic, directly applying them to STT-MRAM

may result in suboptimal designs. Our motivational study

compares three existing page-closure policies: static open-

page, static close-page, and a hybrid policy based on two-bit

saturating counters [6].

The static open-page and close-page policies have been

described in Section II-C. In general, the open-page pol-

icy is favored by memory requests with high spatial and

temporal locality; and the close-page policy is favored by

accesses to random locations. To achieve the benefits of both,

hybrid policies have been proposed to dynamically switch

between the two static policies. The two-bit counter hybrid

policy [6] uses two-bit saturating counters to characterize

the memory access pattern: a row buffer hit/conflict decre-

ments/increments the counter at run time; the counter value

is used to predict what policy to follow, with values of 0

and 1 indicating open-page and values of 2 and 3 indicating

close-page. Figure 3 compares the performance (execution

time) of these three policies. In each benchmark, the left

three bars are results when restores are disabled, and they are

normalized to the static open-page (the first bar); similarly,

the right three bars are results when restores are present, and

normalized to the static open-page with restores (the fourth

bar). Detailed simulator setup and workload information can

be found in Section IV-A.

Interesting observations can be made from this study.

First, the open-page policy performs much better than the

close-page policy when restores are not present; when re-

stores are present, the close-page policy becomes better.

This is because the open-page policy is penalized more by

restoring the whole page compared to the close-page policy

restoring only a cache line of data. (details can be referred to

in the following sections). Consequently, the timing scenar-

ios are completely changed when restores are enabled. Since

traditional designs are only optimized for the scenarios with

no restores, they may not achieve the optimal design points

when restores are present. Second, the two-bit counter hybrid

627

Figure 3. Execution time comparison of three existing page-closure policies when restores are not present (left three bars) and present (right three bars).

policy shows similar performance as the close-page policy;

it does not achieve the desired policy selections between the

two static policies. The fundamental reason is because the

two-bit counter hybrid policy is restore-agnostic, selecting

the two static policies in a blindly uniform manner. As

demonstrated in Section IV-C, a uniform selection between

the static policies turns out to be a suboptimal design point,

thus making the existing hybrid policy not effective at run

time. Therefore, we need a more realistic, restore-aware

page-closure policy that can better capture the dynamic

memory access behavior.

B. RAPS: Restore-Aware Policy Selection

In this work, we propose Restore-Aware Policy Selection

(RAPS), a dynamic and hybrid row buffer management

scheme that factors in the inevitable data restores in STT-

MRAM suffering from read disturbance. RAPS keeps track

of the row buffer hit rate over a configurable program phase

length, determining the desired page-closure policy (i.e.,

open-page or close-page) upon entering a new phase based

on the dynamically observed row buffer hit rate. RAPS relies

on an analytical model to determine the row buffer hit rate

threshold that distinguishes the two static policies.

As described earlier, the open-page policy keeps a row

of data active in the row buffer for ready accesses. If a

subsequent access is to the same row, it only incurs the

minimal column data access time. Otherwise, the memory

controller has to close the current row (using precharge),

and open a new one (using activate). Hence, the average

read latency under the open-page policy can be expressed

as:

Latency1 = x · tCAS+

(1− x) · (tRestorePage+ tRP + tRCD + tCAS) (2)

where x is the row buffer hit rate; tCAS is the time to

access column data; tRP is the precharge time to close

the current row; tRCD is the time to activate a new

row; and tRestorePage is the time to restore the whole

row buffer (page). A row buffer hit only incurs tCAS;

whereas a row buffer conflict involves restoring the current

row (tRestorePage), precharging the bit lines to close the

current row (tRP), activating the new row (tRCD), and the

column access delay for the requested data (tCAS).

In contrast, the close-page policy treats all requests in a

uniform manner. For each read/write request, it opens the

target row (using activate), serves the request, and closes

the row immediately (using auto-precharge that is not on

the critical timing path). Therefore, the latency of a read

request under the close-page policy can be expressed as:

Latency2 = tRCD + tCAS + tRestoreLine (3)

where tRCD is the time to activate a row; tCAS is the

time to access column data; and tRestoreLine is the time

to restore a cache line of data (equivalent to the data size

of a memory request). This equation reflects the fact that

the close-page policy opens a row for every memory access

request independent of row buffer hits/conflicts.

If we compare Latency1 and Latency2 and solve for x,

we have:

x =
tRP + tRestorePage− tRestoreLine

tRP + tRCD + tRestorePage
= th (4)

where th is the minimal row buffer hit rate for the open-

page policy to perform better than the close-page policy.

Therefore, to dynamically optimize performance, we should

choose the open-page policy if the current row buffer hit

rate is higher than th, and the close-page policy if the

hit rate is lower than th. This threshold value can be pre-

calculated at design time using the design parameters shown

in Equation 4.

Figure 4 depicts the proposed RAPS design implemented

in a conventional memory controller [9]. A generic descrip-

tion of the memory controller can be found in Section II-C.

628

Figure 4. A memory controller design that implements RAPS.

The highlighted components added in this design are used

to implement RAPS. The row buffer hit rate monitor dy-

namically calculates the row buffer hit rate for the current

program phase using two counters: the number of hits and

the number of requests. If the monitored hit rate exceeds

the pre-computed threshold th, the open-page policy is

chosen for the next phase; otherwise, the close-page policy

is chosen. This selection is dynamically performed during

program run time, adapting to the time-varying behavior of

the running application. Depending on the design, the hit rate

monitoring can be performed at the per-rank level or per-

bank level. Consequently, compared to the existing hybrid

page-closure policies such as the two-bit counter hybrid

policy, RAPS achieves two advantages:

• RAPS relies on a more fine-grained metric (row buffer

hit rate) for the dynamic policy selection, using a simple

but realistic model to accurately reach the optimal

design points.

• RAPS is restore-aware, taking into account the varying

design parameters to adapt to the new timing scenarios

and different design configurations.

C. Timing and Overhead Analyses

Figure 5 shows a timing diagram example when RAPS is

in use. When the open-page policy is in use, a row buffer

conflict (e.g., from Row1 to Row2) results in closing the

old row (precharge or PRE) and activating the new row

(activate or AC) before any read (RD) and write (WR) can

be performed. To mitigate read disturbance, restoring the

entire row (ReP) needs to be done before closing a row.

When the close-page policy is in use (Row3 and Row4), it

activates a row when fulfilling every read or write request,

and immediately closes it after usage (using auto-precharge).

For a read operation, this policy restores the requested cache

line of data (ReL) before closing the row. Since restoring a

page takes a much longer time than restoring a line, the

open-page policy is penalized more with restores enabled.

Figure 5. A timing diagram example when RAPS is in use.

Table I
THE SIMULATED MACHINE CONFIGURATION.

CPUs 2GHz, private L1 I/D caches with 32KB/core and
64B lines, 8MB shared L2 with 64B lines.

Memory Con-
troller

64-entry unified transaction queue, 8-entry command
queue for each bank, FR-FCFS scheduling.

STT-MRAM-
Based Main
Memory

one channel with 4GB capacity, one rank-per-
channel, 8 banks-per-rank. 1KB row buffer size.

Besides, with the close-page policy, restoring-line (ReL) and

auto-precharge immediately follow a read; as a result, they

are normally not on the critical timing path. Therefore, the

close-page policy shows better performance than open-page

when restores are present (see Figure 3).

To implement RAPS, two counters (highlighted in Fig-

ure 4) are needed for calculating the row buffer hit rate: one

for counting the number of memory requests, and the other

for counting the number of row buffer hits. Even if the close-

page policy is in use, RAPS can still easily tell whether

the current request targets the same row as the previous

request (i.e., a row buffer hit). With a typical phase length

of 100K cycles, 32-bit counters are more than enough. In a

typical memory controller with a 64-entry transaction queue

and eight 8-entry command queues, implementing RAPS

incurs only (4 ∗ 2 ∗ 8)/(128 ∗ 64) = 0.8% storage overhead,

assuming that each transaction size is 64-byte and the hit

rate is calculated for each memory bank.

IV. EXPERIMENTS AND ANALYSES

A. Experimental Setup

To evaluate our proposed memory controller design, we

use gem5 [3] to collect memory traces via running various

benchmarks, and input the traces to DRAMSim2 [17] to

simulate a detailed memory model. Our simulated ma-

chine configuration is shown in Table I. We adopt the

timing constraints and current parameters listed in prior

work [24] to simulate a reasonable LPDDR3 STT-MRAM-

based main memory. The key timing parameters used are

629

Table II
THE KEY TIMING PARAMETERS USED FOR STT-MRAM.

Parameter Value (cycles) Notes

tCAS 6 Column access strobe delay.

BL 8 Burst length.

WL 6 Latency for writing a cache line.

tWR 14 Write recovery time.

tRP 7 Row precharge latency.

tRCD 13 Row activation latency.

tRestoreLine 20 Latency for restoring a line, equivalent
to: tWR+WL.

tRestorePage 110 Latency for restoring a page, equivalent
to: tWR+16*WL.

tRTP 2 Read to precharge delay.

tWTR 4 Write to read delay.

tRRD 6 Row activate to activate delay.

tCCD 4 Column to column delay.

tRTRS 1 Rank to rank switching time.

tCMD 1 Command transport duration.

tRAS 27 Row active time.

tRC 34 Row cycle time, equivalent to:
tRAS+tRP.

listed in Table II. In particular, the line restoring latency

(tRestoreLine) takes into account the write recovery time

(tWR=14) and the write latency of one cache line (WL=6).

Since a page of 1KB is 16 times larger than a line of

64B, the page restoring latency (tRestorePage) is calculated

to be tWR + 16 ∗ WL = 110 for sequential restoring.

In Section IV-D, tRestorePage will be reduced to evaluate

restoring with different degrees of parallelism.

To factor in memory restores due to read distur-

bance, our implementation models a simple read-and-restore

scheme [22] that generates a restore to the same address after

each read operation. We evaluate a number of page-closure

policies, including the static open-page policy, the static

close-page policy, the two-bit counter hybrid policy [6], and

our proposed RAPS policy. Our evaluation uses a mixed set

of benchmarks from SPEC CPU2006 [20], Bio-Bench [1],

and STREAM [13]. For those in these suites but not included

in our results, we were not able to generate memory traces

for them in gem5.

B. Performance and Energy

Figure 6 and Figure 7 compare the performance (exe-

cution time) and energy consumption of the different page-

closure policies that we implement. Note that both metrics

favor lower values. In addition to the three existing policies,

we evaluate two versions of RAPS: RAPS per-rank only

calculates the row buffer hit rate for the entire rank, where

all banks make the same policy selection at all times; RAPS

per-bank monitors the row buffer hit rate and makes policy

selection separately for each bank. All results are normalized

to the static open-page policy, which is used as our baseline.

As can be seen, the two-bit counter hybrid policy cannot

accurately capture the varying memory access behavior, thus

performing similarly to the static close-page policy. In con-

trast, RAPS makes dynamic open- and close-page selection

based on the calculated row buffer hit rate threshold (Equa-

tion 4). On average, RAPS improves performance by 16%

compared to the static-open page policy; it also achieves a

relative 12% improvement than the two-bit counter hybrid

policy. The per-bank RAPS performs slightly better than the

per-rank RAPS. Furthermore, RAPS consistently achieves

the best performance across the existing schemes, due to its

dynamic nature in making the optimal selections at run time.

Figure 7 breaks down energy consumption into three

components (from bottom to top): the background energy is

the static energy; the burst energy is the dynamic energy due

to read/write operations; and the precharge/activate energy is

the dynamic energy due to precharge and activate operations.

Despite a shorter execution time, the total energy of the

close-page policy is 9% higher than the open-page policy.

This is because close-page has a lot more precharge and ac-

tivate operations. As shown, RAPS still achieves significant

energy reduction (14% on average) than the baseline.

C. Comparing RAPS With Other Policies

Based on Equation 4 and the timing parameters listed in

Table II, the row buffer hit rate threshold that RAPS uses is

calculated to be: (7 + 110− 20)/(7 + 13+ 110) = 0.75. To

show that RAPS indeed makes the optimal policy selection,

Figure 8 demonstrates the performance improvements when

different threshold values are used in RAPS. As can be

seen, RAPS’s threshold choice of 0.75 achieves the highest

performance improvement. If the monitored row buffer hit

rate falls below the threshold, the close-page policy is

favored; otherwise, the open-page policy is favored.

We further use the figure to compare RAPS with the other

policies. First, the static open-page and close-page policies

are independent of the RAPS thresholds. The close-page

policy performs slightly better than the open-page policy

based on our results shown in Figure 6. Second, the two-bit

counter hybrid policy treats the two static policies uniformly,

effectively picking the mid-point between the two static

policies. As shown in the figure, this achieves the static

close-page policy, and is far from the optimal design point.

This also validates our previous observation that the two-

bit counter hybrid policy performs similarly to the close-

page policy (as shown in Figure 3 and Figure 6). Third,

for comparison we also show the corresponding trend when

restores are disabled (normalized to static open with no

restores). Between the cases that restores are disabled and

enabled, the optimal policy selection point shifts from a low

value (about 0.1) to a high value (about 0.8). As a result, the

row buffer hit rate range for choosing close-page is much

widened; this also validates our previous observation that

close-page is more favored when restores are present.

630

Figure 6. Performance (execution time) comparison for single-thread runs.

Figure 7. Energy consumption for single-thread runs.

Figure 8. Execution times of RAPS (normalized to static-open) on different
thresholds.

D. Sensitivity Studies

Sensitivity on the restoring parallelism. By default,

RAPS assumes a sequential restoring scheme that restores

Figure 9. The threshold trends of RAPS with different degrees of restoring
parallelism.

a page in a line-by-line manner. Hence, the page restoring

latency tRestorePage has been calculated to be 110 cycles in

Table II. We further evaluate the effectiveness of RAPS when

the restoring scheme is parallelized to different degrees.

The resulting threshold trends are presented in Figure 9.

631

The “2-wide” trend is obtained with two streams of lines

being restored simultaneously, resulting in a tRestorePage

of tWR + 8 ∗ WL = 62 cycles. Similarly, the 4-wide/8-

wide/fully parallel trends have tRestorePage of 38/26/20

cycles, respectively. As expected, with a higher degree of

restoring parallelism, the benefit of RAPS is reduced and

the optimal policy selection point shifts from high to low

thresholds. Nevertheless, a higher degree of restoring par-

allelism requires an exponentially larger number of charge

pumps/write drivers. The resulting hardware overhead be-

comes increasingly expensive and even unrealistic. Our de-

fault assumption of low restoring parallelism is reasonable.

V. RELATED WORK

Prior work related to STT-MRAM-based main mem-

ory [14] [12] [24] and read disturbance [25] [21] [10] have

been discussed in Section II. Here, we focus on hybrid

row buffer management policies. Huan et al. [8] propose

a dynamic page policy guided by the processor. Xu et

al. [27] propose a two-level predictor that uses the historical

row buffer hit/miss information to index a table of two-bit

saturating counters for prediction. Awasthi et al. [2] use the

past number of accesses to determine how long a row will

be kept open. Ghasempour et al. [6] implement the two-bit

counter hybrid policy (discussed in Section III-A). However,

all these existing hybrid policies are merely optimized for

DRAM, thus being restore-agnostic. In contrast, RAPS is

restore-aware, using phase-based row buffer hit rates to

dynamically achieve optimal policy selections.

VI. CONCLUSIONS

Replacing DRAM with STT-MRAM in the main memory

provides various benefits, but also results in a reliability

challenge, i.e., read disturbance. Restoring data back to

memory greatly changes the timing scenarios that traditional

memory controllers are optimized for. Therefore, we propose

a restore-aware page-closure policy selection scheme called

RAPS to dynamically select open- or close-page policy

based on the row buffer hit rate. RAPS analytically deter-

mines the optimal design point, achieving optimal policy

selections at run time. Experimental results show significant

improvements in performance and energy efficiency when

comparing RAPS to static policies and a conventional hybrid

policy.

REFERENCES

[1] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W.
Tseng, and D. Yeung, “Biobench: A benchmark suite of bioinformat-
ics applications,” in ISPASS, 2005.

[2] M. Awasthi, D. W. Nellans, R. Balasubramonian, and A. Davis,
“Prediction based dram row-buffer management in the many-core
era,” in PACT, 2011.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2,
2011.

[4] R. Desikan, C. R. Lefurgy, S. W. Keckler, and D. Burger, “On-chip
mram as a high-bandwidth, low-latency replacement for dram physical
memories,” in Department of Computer Science Tech Report TR-02-

47, The University of Texas at Austin, 2002.
[5] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and

microarchitecture evaluation of 3d stacking magnetic ram (mram) as
a universal memory replacement,” in DAC, 2008.

[6] M. Ghasempour, A. Jaleel, J. Garside, and M. Lujan, “Happy: Hybrid
address-based page policy in drams,” in MEMSYS, 2016.

[7] Y. Huai, “Spin-transfer torque mram (stt-mram): Challenges and
prospects,” AAPPS Bulletin, vol. 18, no. 6, 2008.

[8] D. Huan, Z. Li, W. Hu, and Z. Liu, “Processor directed dynamic page
policy,” in the 11th Asia-Pacific Conference on Advances in Computer

Systems Architecture, 2006.
[9] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems: Cache, DRAM,

Disk. Morgan Kaufmann, 2008.
[10] L. Jiang, W. Wen, D. Wang, and L. Duan, “Improving read per-

formance of stt-mram based main memories through smash read
and flexible read,” in IEEE/ACM Asia and South Pacific Design

Automation Conference (ASP-DAC), 2016.
[11] U. Kang, H. soo Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang,

and J. S. Choi, “Co-architecting controllers and dram to enhance dram
process scaling,” in The Memory Forum, 2014.

[12] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating stt-ram as an energy-efficient main memory alternative,”
in ISPASS, 2013.

[13] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high per-
formance computers,” in Technical Report at University of Virginia,
2007.

[14] J. Meza, J. Li, and O. Mutlu, “A case for small row buffers in non-
volatile main memories,” in ICCD, 2012.

[15] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. R.
Das, “Architecting on-chip interconnects for stacked 3d stt-ram caches
in cmps,” in ISCA, 2011.

[16] M. Rasquinha, D. Choudhary, S. Chatterjee, S. Mukhopadhyay, and
S. Yalamanchili, “An energy efficient cache design using spin torque
transfer (stt) ram,” in ISLPED, 2010.

[17] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” Computer Architecture Letters,
vol. 10, no. 1, 2011.

[18] N. H. Seong, S. Yeo, and H.-H. S. Lee, “Tri-level-cell phase change
memory: Toward an efficient and reliable memory system,” in ISCA,
2013.

[19] C. W. Smullen, IV, A. Nigam, S. Gurumurthi, and M. R. Stan, “The
stetsims stt-ram simulation and modeling system,” in ICCAD, 2011.

[20] C. D. Spradling, “SPEC CPU2006 Benchmark Tools,” SIGARCH

Computer Architecture News, vol. 35, March 2007.
[21] Z. Sun, H. Li, and W. Wu, “A dual-mode architecture for fast-

switching stt-ram,” in ISLPED, 2012.
[22] R. Takemura, T. Kawahara, K. Ono, K. Miura, H. Matsuoka, and

H. Ohno, “Highly-scalable disruptive reading scheme for gb-scale
spram and beyond,” in IMW, 2010.

[23] J. Wang, X. Dong, and Y. Xie, “Oap: An obstruction-aware cache
management policy for stt-ram last-level caches,” in DATE, 2013.

[24] J. Wang, X. Dong, and Y. Xie, “Enabling high-performance lpddrx-
compatible mram,” in ISLPED, 2014.

[25] R. Wang, L. Jiang, Y. Zhang, L. Wang, and J. Yang, “Selective restore:
An energy efficient read disturbance mitigation scheme for future stt-
mram,” in DAC, 2015.

[26] W. Xu, H. Sun, X. Wang, Y. Chen, and T. Zhang, “Design of last-level
on-chip cache using spin-torque transfer ram (stt ram),” Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 19,
no. 3, 2011.

[27] Y. Xu, A. S. Agarwal, and B. T. Davis, “Prediction in dynamic sdram
controller policies,” in SAMOS, 2009.

[28] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for stt-
ram using early write termination,” in ICCAD, 2009.

632

