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1 ABSTRACT (INTRODUCTION)

As an important non-volatile memory technology, STT-MRAM is
widely considered as a universal memory solution in current pro-
cessors. Employing STT-MRAM as the main memory offers a wide
variety of benefits, but also results in unique design challenges. In
particular, read disturbance characterizes accidental data corrup-
tion in STT-MRAM after it is read, leading to a need of restoring
data back to memory after each read operation. These extra restores
significantly degrade system performance and energy efficiency,
greatly changing the timing scenarios that conventional designs
were optimized for. As a result, directly adopting conventional,
restore-agnostic memory management techniques may lead to sub-
optimal designs for STT-MRAM.

In this work, we propose Restore-Aware Policy Selection (RAPS),
a dynamic and hybrid row buffer management scheme that factors
in the inevitable data restores in STT-MRAM-based main memory.
RAPS monitors the row buffer hit rate at run time, dynamically
switching between the open- and close-page policies. By factoring
in restores, RAPS accurately captures the optimal design points,
achieving optimal policy selections at run time. Our experimental
results show that RAPS significantly improves system performance
and energy efficiency compared to the conventional policies.
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Figure 1: Execution time comparison of three existing page-
closure policies when restores are not present (left three
bars) and present (right three bars).
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2 BACKGROUND

A wide variety of benefits can be obtained in STT-MRAM-based
main memories, including the removal of refreshes, nearly zero idle
power, almost infinite data retention times, etc. However, employing
STT-MRAM as the main memory also results in unique design chal-
lenges, such as high write overhead [3] and LPDDR-incompatible
sense amplifiers [5]. This paper investigates a critical data reliabil-
ity challenge, namely read disturbance [6] [2], that accidentally
corrupts memory data after a read operation to STT-MRAM cells.
In order to preserve data integrity under read disturbance, a simple
read-and-restore scheme [4] has been used.

The conventional row buffer management policy (or page-closure
policy) can be open-page or close-page. The open-page policy
keeps a row open in the row buffer for all ready accesses target-
ing this row. If a row buffer conflict occurs, it needs to perform a
precharge and an activate before it can read/write the new row. The
close-page policy opens a row for each read/write operation, and
automatically closes it afterwards. It only needs an activate when
opening a row, but has to do that for every read/write access.

3 MOTIVATION

This work is motivated by the observation that the added data
restores in STT-MRAM may significantly change the scenarios
that conventional memory controllers were originally optimized
for. Since the existing memory management schemes only target
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DRAM and are thereby restore-agnostic, directly applying them
to STT-MRAM may result in suboptimal designs. Figure 1 com-
pares three existing page-closure policies: static open-page, static
close-page, and a hybrid policy based on two-bit saturating coun-
ters [1]. The two-bit counter hybrid policy uses two-bit saturating
counters to characterize the memory access pattern: a row buffer
hit/conflict decrements/increments the counter at run time; the
counter value is used to predict what policy to use, with values of 0
and 1 indicating open-page and 2 and 3 indicating close-page. First,
the open-page policy performs much better than the close-page
policy when restores are disabled; when restores are present, the
close-page policy becomes much better. This is because the open-
page policy is penalized more by restoring the whole row compared
to the close-page policy restoring only a cache line of data. Sec-
ond, the two-bit counter hybrid policy is not effective in making
the desired policy selections. This is because it is restore-agnostic,
treating the two static policies in a uniform manner, which may
not be the optimal choice at run time. Consequently, we need a
more realistic, restore-aware page-closure policy that can better
capture the dynamic memory behavior.

4 DESIGN

In this work, we propose Restore-Aware Policy Selection (RAPS),
a dynamic and hybrid row buffer management scheme that fac-
tors in the inevitable data restores in STT-MRAM. RAPS keeps
track of the row buffer hit rate over a configurable program phase
length, determining the desired page-closure policy (open-page or
close-page) upon entering a new phase based on the dynamically
observed row buffer hit rate.

RAPS relies on an analytical model to determine the row buffer
hit rate threshold that distinguishes the two static policies. In open-
page, the average read latency can be expressed as:

Latencyl = x - tCAS+
(1 —x) - (tRestorePage + tRP + tRCD + tCAS) (1)

where x is the row buffer hit rate; tCAS is the time to access column
data; tRP is the precharge time to close the current row; tRCD is the
time to activate a new row; and tRestorePage is the time to restore
the whole row buffer (page). In open-page, a row buffer hit only
incurs tCAS; whereas a row buffer conflict involves restoring the
current row (tRestorePage), precharging the bitlines to close the
current row (¢RP), activating the new row (tRCD), and the column
access delay for the requested data (tCAS). In close-page, the latency
of a read request can be expressed as:

Latency2 = tRCD + tCAS + tRestoreLine (2)

where tRCD is the time to activate a row; tCAS is the time to access
column data; and tRestoreLine is the time to restore a cache line of
data. The close-page policy opens a row for every memory access
request regardless of row buffer hits/conflicts.

If we compare Latencyl and Latency2 and solve for x, we have:

_ tRP + tRestorePage — tRestoreLine
- tRP + tRCD + tRestorePage
where th is the minimal row buffer hit rate for the open-page

policy to perform better than the close-page policy. Therefore, to
dynamically achieve better performance, we should choose the
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Figure 2: Energy consumption of different schemes.

open-page policy if the current row buffer hit rate is higher than
th, and the close-page policy if the hit rate is lower than th. This
threshold value can be pre-calculated at design time using the
design parameters shown in Equation 3.

5 PRELIMINARY EXPERIMENTS

Due to space, we only show the energy results of different policies
in Figure 2. All results are normalized to the static open-page policy.
RAPS per-rank calculates the row buffer hit rate for the entire rank;
RAPS per-bank monitors the row buffer hit rate and makes policy
selection separately for each bank. On average, RAPS achieves a
15% energy reduction compared to the baseline.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a restore-aware page-closure policy selec-
tion scheme called RAPS to dynamically select open- or close-page
policy based on the row buffer hit rate. Our future work include: (1).
validating the benefits of RAPS by evaluating its threshold varia-
tion trends and more design configurations; (2). extending RAPS to
multiprogrammed and multithreaded workloads; and (3). extending
RAPS to time-based page-closure policies.
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