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1 ABSTRACT (INTRODUCTION)

Apart from employing a co-processor (e.g., GPU) for neural net-
work (NN) computation, utilizing the unique characteristics of non-
volatile memories (NVM), including RRAM, phase change memory
(PCM), and STT-MRAM, to accelerate NN algorithms has been
extensively studied. In such approaches, input data and synaptic
weights are represented using word line voltages and cell resistance,
with the resulting bit line current indicating the calculation result.
However, the limited number of resistance levels in a NVM cell
largely reduces the algorithm data precision, thus significantly low-
ering the model inference accuracy. Motivated by the observation
that the conventional, uniformly generated data quantization points
are not equally important to the model, we propose a nonuni-
form data quantization scheme to better represent the model
in NVM cells and minimize the inference accuracy loss. Our experi-
mental results show that the proposed scheme can achieve highly
accurate deep learning model inference using as low as only 4 bits
for synaptic weight representation. This effectively enables a NVM
with few cell resistance levels (e.g., STT-MRAM) to perform NN
calculation, and also results in additional benefits in performance,
energy, and memory storage.
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Figure 1: The co-processor approach (left) vs. the NVM ap-
proach (right) in accelerating NN algorithms.

2 BACKGROUND

Accelerating NN algorithms in hardware is typically performed
via a co-processor [1], such as a GPU, FPGA, or ASIC device, or via
a part of the NVM [2]. Figure 1 demonstrates these two approaches.
NVM-based NN acceleration relies on the unique crossbar structure
of the memory chip and the multiple resistance levels that can be
configured in a NVM cell. Figure 1 (right part) performs a typical
NN operation b; = Z?Zl a; - wji, where j ranges from 1 to 2. The
input data a; is applied as analog input voltages on the horizontal
word lines; the synaptic weights wj; are programmed into the NVM
cell conductance (i.e., 1/ cell resistance). The resulting current I
flowing out of the vertical bit line indicates the calculation result.

3 MOTIVATION

The number of resistance levels in a NVM cell determines the bit
width (bw) of the fixed-point number it represents. Since a NVM
cell only has a limited number of resistance levels, programming a
synaptic weight into the cell conductance significantly reduces the
weight precision. For example, if only 8 resistance levels exist in
the NVM cell, the original 32-bit fixed-point weight values have to
be reduced to only 3 bits. This is shown in Figure 2, where g(x) is
the distribution of all the synaptic weights. A weight value needs
to be quantized to one of the 8 quantization points that correspond
to the 8 cell resistance levels. The static quantization [1] uses a
fixed fractional length (f1) for the whole model independent of
its weight value range, whereas the dynamic quantization [2, 3]
allows tuning the f1 to achieve the precision with lowest errors. The
difference can be seen in the figure as the weight value range (on
the x-axis) being static or dynamic. Nevertheless, both the static
and dynamic schemes have uniform quantization points.
These conventional quantization schemes are not suitable to
be used for highly complex deep learning models. Figure 3 shows
how the inference accuracy of VGG19 (a complicated CNN model)
varies with the fixed-point number bit width. As can be seen, the
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Figure 2: An example of
uniform quantization (static
and dynamic).

Figure 3: The inference accu-
racy of VGG19 varies with the
bit width using uniform quan-
tization.
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Figure 5: An illustration of the
proposed nonuniform quanti-
zation scheme.

Figure 4: An example of
nonuniform quantization.

model accuracy starts to decrease significantly when the bit width
goes below 7. A NVM cell has a typical precision of 2 to 7 bits [2].
The fundamental reason of the seen low accuracy is because the
quantization points are not equally important. When it is too
close to zero, it has minimal impact on the model inference despite
the large number of weights being quantized to it; when it is close
to the range boundary, it also shows limited impact due to the
extremely low weight quantity. In other words, the most important
quantization points are not uniformly distributed.As depicted in
Figure 4, a nonuniform quantization scheme is needed to better
represent the model and minimize the accuracy loss.

4 DESIGN

In this work, we propose a nonuniform data quantization scheme
to achieve better deep learning model accuracy using fewer weight
bits. Specifically, we construct an importance function g(x) - |x|
to approximate the importance of different quantization values to
the model accuracy. This is shown as the blue curve in Figure 4
and Figure 5. This function takes into account both the weight
value and amount, indicating that the most important quantization
points are around its peaks. To quantify these points, we evenly
partition the area between the function curve and the x-axis into
2bW+1 4 1 regions. For a bit width of 2 (not counting the sign bit),
the area is partitioned into 9 regions. For the center region around
0, its quantization point is forced to be 0; for the other regions, the
quantization point is the value that divides the region into halves
(analogous to the center of mass).

Second, we generalize the importance function to be g(x) - |x|¥
to prioritize the weight value differently by adjusting k. We test
different values of k and pick the one that gives the highest model
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Figure 6: The inference ac-
curacy of AlexNet varies
with the bit width.

Figure 7: The inference
accuracy of VGG19 varies
with the bit width.

accuracy. Figure 5 shows the nonuniform quantization points for
k=1 and two other function curves for k<1 and k>1.

5 EXPERIMENTS

Due to space, we show the model accuracy variations with reduced
fixed-point number bit width for two workloads: AlexNet (Figure 6)
and VGG19 (Figure 7). As can be seen, at a bit width of 4 or larger,
our proposed scheme (“optimal k") demonstrates negligible model
accuracy loss (< 2-3%) compared to the original model with 32-bit
numbers. Therefore, the benefits of our scheme are: (1). a memory
storage compression rate of 2 than conventional static/dynamic
schemes with almost no accuracy loss; (2). reduced computation due
to a quantization point at 0 and fewer bits to represent a number;
and (3). more importantly, this enables STT-MRAM, which is found
to have fewer cell resistance levels than ReRAM and PCM, to have
the capability of deep learning acceleration.

6 CONCLUSIONS AND FUTURE WORK

This paper proposes a nonuniform data quantization scheme to
identify the quantization points most important to deep learning
model inference accuracy. Our future work include: (1). more quan-
titatively evaluating the benefits of our scheme in performance,
energy, memory storage, etc., using a wider variety of workloads;
(2). implementing the nonuniform quantization on the input data;
and (3). developing an efficient NVM cell resistance reconfiguration
scheme to accommodate different models.
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