
472 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

Improving the SSD Performance by Exploiting

Request Characteristics and Internal Parallelism
Bo Mao, Member, IEEE, Suzhen Wu, Member, IEEE, and Lide Duan, Member, IEEE

Abstract—With the explosive growth in the data volume, the
I/O bottleneck has become an increasingly daunting challenge
for big data analytics. It is urgent and important to introduce
high-performance flash-based solid state drives (SSDs) into the
storage systems. However, since the existing systems are pri-
marily designed for conventional magnetic hard disk drives,
directly incorporating SSDs in the existing systems cannot fully
exploit SSDs’ performance advantages. In this paper, we pro-
pose a new I/O scheduler for SSDs, namely Amphibian, that
exploits the high-level request characteristics and low-level par-
allelism of flash chips to improve the performance of SSD-based
storage systems. Amphibian includes two performance enhance-
ment schemes: 1) size-based request ordering, which prioritizes
requests with small sizes in processing and 2) garbage collec-
tion (GC)-aware request dispatching that delays issuing requests
to flash chips that are in the GC state. These two schemes
employed in Amphibian significantly reduce the average wait-
ing times of the requests from the host. Our extensive evaluation
results derived from three types of SSDs show that, compared
with the existing I/O schedulers, Amphibian greatly improves
both throughput and average response times for SSD-based
storage systems, thus improving the I/O performance of the
systems.

Index Terms—Garbage collection (GC)-aware, I/O sched-
uler, internal parallelism, request characteristics, solid state
drive (SSD).

I. INTRODUCTION

H
ARD disk drives (HDDs) have become the performance

wall of storage systems due to the slowness of their

mechanical positioning nature. Recently, flash-based solid

state drives (SSDs) have become an attractive alternative to

HDDs, drawing a great deal of attention in both academia

and industry [1]–[3]. In addition to being employed in mobile

Manuscript received December 13, 2016; revised March 3, 2017; accepted
April 14, 2017. Date of publication April 25, 2017; date of current version
January 19, 2018. This work was supported in part by the National Natural
Science Foundation of China under Grant 61472336 and 61402385, in part
by the Key Laboratory of Information Storage System, Ministry of Education
of China, in part by the Huawei Innovation Research Program, and in part by
the National Science Foundation Computing and Communication Foundations
under Grant 1566158. This paper was recommended by Associate Editor
Z. Shao. (Corresponding author: Suzhen Wu.)

B. Mao is with the Software School, Xiamen University, Xiamen 361005,
China (e-mail: maobo@xmu.edu.cn).

S. Wu is with the Computer Science Department, Xiamen University,
Xiamen 361005, China (e-mail: suzhen@xmu.edu.cn).

L. Duan is with the Department of Electrical and Computer Engineering,
University of Texas at San Antonio, San Antonio, TX 78249 USA (e-mail:
lide.duan@utsa.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2697961

devices and desktop/laptop computers, SSDs are also increas-

ingly applied in high performance computing and enterprise

environments. However, with the existing systems primar-

ily designed for magnetic HDDs, directly replacing HDDs

with SSDs in the existing systems cannot fully exploit the

performance advantages of high-performance SSDs.

Among the different I/O layers in a storage system, the

I/O scheduler is highly critical to the performance of the

system. The I/O scheduling algorithm used in the I/O sched-

uler directly affects the working efficiency of HDDs and SSDs.

Traditional I/O scheduling algorithms are merely designed for

HDDs: they are address-based, and try to sort the requests

in a way that minimizes the head seeking distances. Since

HDDs are mechanical devices accessing data through the

head movement, their response times are closely related to

the addresses of incoming access requests [4], [5]. Sequential

accessing can effectively reduce the cost of the head tracking

movement, and is thereby favored by HDDs. For example,

in the SCAN (elevator) disk-scheduling algorithm, the disk

head moves in one direction until it reaches the edge of the

disk when servicing requests, thus avoiding frequent head

movements and the unnecessary seeking time [5].

Different from HDDs, SSDs are based on semiconductor

chips and have no mechanical parts. In SSDs, data signals

are transmitted completely through circuits without using any

mechanical heads. Therefore, traditional I/O scheduling algo-

rithms designed for HDDs may be suboptimal for SSDs.

Compared with HDDs, SSDs provide a large variety of ben-

efits, including low power consumption, high robustness to

vibrations and temperature, and, most importantly, high small-

random-read performance. However, SSDs also have a number

of disadvantages, such as high cost, low small-random-write

performance, and limited lifetime [1]. Apart from the asym-

metric performance of reads and writes in flash-based SSDs,

our evaluation, together with some previous studies, also show

that the response time of a certain request is linear to the

request size in SSDs [4]. Moreover, the inherent garbage

collection (GC) operations in SSDs also significantly affect

the user I/O performance [6]–[8]. Therefore, without deep

design considerations specifically for SSDs, the performance

advantages of flash-based SSDs cannot be fully exploited.

Based on the above observations, we propose a novel

I/O scheduler for flash-based SSDs, called Amphibian, to

improve the I/O performance for SSD-based storage systems

by exploiting both high-level request characteristics and low-

level internal parallelism of flash chips. At the high-level,

Amphibian utilizes the asymmetric read and write performance

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



MAO et al.: IMPROVING SSD PERFORMANCE BY EXPLOITING REQUEST CHARACTERISTICS AND INTERNAL PARALLELISM 473

characteristics of flash-based SSDs, prioritizing read requests

over write requests to improve the overall performance.

Furthermore, it processes the requests with smaller data sizes

ahead of those with larger sizes in the I/O waiting queue to

reduce the average waiting time of the requests. At the low-

level, by identifying which flash chips are in the GC state,

Amphibian employs a GC-aware request dispatching scheme

to delay issuing requests to flash chips that are in the GC state,

thus fully exploiting the internal parallelism of SSD chips. The

evaluation results conducted on three types of SSDs show that,

compared with the state-of-the-arts, Amphibian improves both

throughput and average request response times significantly.

Consequently, the I/O performance of the SSD-based storage

systems is improved.

To the best of our knowledge, Amphibian is the first

I/O scheduler that exploits both request characteristics and

internal parallelism of SSDs. This paper achieves the following

contributions.

1) We quantitatively demonstrate that the average response

time of flash-based SSDs approximately grows linearly

with the data size of the request. Thus, we propose a

size-based request ordering scheme for flash-based SSDs

to reduce the queuing times of the requests.

2) We propose a GC-aware request dispatching scheme

that exploits the internal parallelism of flash-based

SSD chips. The proposed scheme reduces the conflicts

between the user requests and the internal GC-induced

I/O traffic.

3) We conduct extensive evaluations with both benchmark

and trace-driven experiments to show the effective-

ness of Amphibian. The evaluation results show that

Amphibian can achieve up to 28.3% improvement in

system throughput, and 18.0% improvement in request

response time on average.

The rest of this paper is organized as follows. Background

and motivation are presented in Section II. We describe the

design details of Amphibian in Section III. Performance eval-

uation is presented in Section IV, and the related work is

discussed in Section V. We finally conclude this paper in

Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we present two key characteristics of flash-

based SSDs in contrast to those of magnetic HDDs based on

our experiments and analysis. These observations motivate our

proposed new I/O scheduler for flash-based SSDs.

A. SSD Basics

Unlike mechanical HDDs, flash-based SSDs are made of

semiconductor chips and do not have moving parts (i.e.,

mechanical positioning parts) [9]. In addition to high energy-

efficiency and high random-read performance, flash-based

SSDs have the following unique characteristics different from

HDDs [1], [9].

First, the read performance and write performance of

flash-based SSDs are asymmetric. To better describe the

TABLE I
READ/PROGRAM/ERASE TIMES FOR SLC/MLC/TLC FLASH CHIPS [10]

performance of NAND flash chips, Table I compares the ran-

dom read, program (write), and erase times for three types

of SSD cells: 1) SLC, which stores a single bit of data per

cell; 2) MLC, which stores two bits per cell; and 3) TLC,

which stores three bits per cell. In other words, MLC can store

twice the amount of data compared to SLC. However, the read

performance of MLC is much slower than that of SLC; and

the program performance of MLC is also much slower than

that of SLC [10], [11]. Among the three, TLC chips have the

lowest read/program/erase performance [10]. As can be seen,

the read operation is the fastest, while the erase operation is

two orders of magnitude slower than the read. Although the

write operation is faster than the erase operation, it is still

10–20 times slower than the read operation.

Second, flash-based SSDs exhibit a unique characteristic

known as “erase-before-write” that requires a whole flash

block (consisting of multiple pages) be erased before any part

of it can be rewritten. As a result, for a write operation to any

part of a block, all other valid data in the block need to be read

out first and then stored, together with the new written data, to

another free block. Due to the sheer size of a block, an erase

operation typically takes a time in the range of milliseconds,

which is one or two orders of magnitude slower than the read

operation [12], [13]. Consequently, SSDs demonstrate poor

performance when servicing small random-write requests.

Third, GC operations in SSD significantly affect the user I/O

performance [7], [8], [14]. GC eliminates the need to erase the

whole block prior to a write operation. Instead, it marks the

block that needs to be erased as “garbage,” and performs whole

block erase as space reclamation before the block becomes free

and can be rewritten. GC accumulates data blocks previously

marked for deletion, performs a whole block erasure on each

garbage block, and returns the reclaimed space for reuse. In

practice, when the number of free blocks in an SSD is smaller

than the preset threshold, the valid pages in the victim blocks

(i.e., to be erased) must be copied to a different free block

and the victim blocks are erased to be new free blocks. The

GC process increases the queueing times of the user requests,

thus significantly degrading both read and write performance.

B. Response Time Versus Request Size

In order to understand the relation between the response

time and the user request size for HDDs and SSDs, we use the

IOmeter tool [15] to measure the average response times of an

HDD (WDC WD1600AAJS) and an SSD (Intel X25-E 64 GB)

under different request sizes. Fig. 1 shows the normalized

results.

The experimental results show that, for the HDD, the

response time increases very slowly with the increasing user

request size. As shown in Fig. 1(a), when the request size



474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

(a) (b) (c)

Fig. 1. Response times driven by random accesses of different request sizes for (a) HDD and (b) and (c) SSD.

Fig. 2. Overview of the internal parallelism for a typical SSD consisting of
multiple flash chips.

increases from 1 to 128 KB, the average response time of the

HDD almost remains unchanged. This is because, for random

accesses in HDDs, the data seek time and rotational latency

are much larger than the data transfer time, dominating the

response time to the request [16]. For the same reason, most

of the I/O schedulers designed for HDDs sort the user requests

by their physical addresses in order to utilize the data locality.

In contrast, from Fig. 1(b) and (c), we can see that the aver-

age response time of the SSD grows nearly linearly with the

increased request size. Since SSDs are not mechanical devices,

the read and write operations transmit the signal completely

through circuits. Neither disk head seeking nor rotational spin-

ning is performed. Thus, the data transfer time, which is

directly related to the request size, is the main part of the

user response time.

C. Internal Parallelism of SSDs

To increase the storage capacity, multiple flash chips are

integrated into an SSD. Fig. 2 depicts an schematic overview

of a typical SSD architecture. Each of the n independent chan-

nels is shared by multiple flash chips. SSDs are an inherently

highly parallelized architecture [17]. It comprises multiple

units, including pages, blocks, planes, channels and packages.

Different constituent operational units can operate in parallel,

thus providing the potential to achieve better performance.

Existing research on the SSD parallelism include dis-

cussing internal design alternatives [1] and issuing concurrent

requests to SSDs to exploit their inherent parallelism for better

performance [3], [18]–[20]. Our goal in this paper is to exploit

the internal parallelism to avoid issuing requests to the flash

chips that are in the GC state. Issuing requests to the flash

chips that are in the GC state not only increases the waiting

time of the requests, but also worsens the contention between

the user I/O requests and the background GC operations.

When deploying SSDs in high performance computing and

enterprise storage systems, the existing I/O system software

cannot fully utilize the performance advantages of the flash-

based SSDs [21], [22]. In addition to the asymmetric read and

write performance of SSDs, our evaluation results have shown

that, for flash-based SSDs, the response times of the requests

with the same request type are linear with the request sizes.

Moreover, the inherent GC operations in SSDs significantly

affect the user I/O performance. Therefore, it is necessary to

redesign the system software to take into consideration SSD-

specific characteristics, including the asymmetric read–write

performance, the size-latency relationship, and the GC-induced

performance degradation. However, existing I/O schedulers for

SSDs only consider the request fairness [18], [23], [24] or the

parallelism characteristics [25]–[28]. They are unaware of the

high-level request sizes and the low-level GC operations.

Based on the above observations and analysis, we propose

Amphibian, a new I/O scheduler for flash-based SSDs, to

improve the I/O performance of SSD-based storage systems.

Amphibian exploits both high-level request characteristics and

low-level internal parallelism to improve the I/O performance.

On the one hand, it preferentially processes the small requests

in the I/O waiting queue to reduce the average waiting times

of the requests. On the other hand, it utilizes the asymmet-

ric read/write performance feature and the internal parallelism

characteristics of the flash-based SSDs to avoid issuing the

user requests to the flash chips that are in the GC state, thus

alleviating the contention between the user requests and the

GC operations to improve the overall system performance.

III. AMPHIBIAN

In this section, we first outline the main principles guiding

the design of Amphibian. Then we present a system overview

of Amphibian, followed by a description of the request type-

based queueing, request size-based ordering, and GC-aware

request dispatching in Amphibian.

A. Design Principles

The design of Amphibian aims to achieve high performance,

high applicability, and high portability, as explained below.

1) High Performance: Amphibian strives to reduce the

user average response times by exploiting both request

characteristics and internal parallelism in the I/O sched-

uler algorithm for flash-based SSDs, thus reducing the

waiting time in the I/O queue for the user I/O requests.



MAO et al.: IMPROVING SSD PERFORMANCE BY EXPLOITING REQUEST CHARACTERISTICS AND INTERNAL PARALLELISM 475

Fig. 3. System overview of Amphibian on the I/O path.

2) High Applicability: Amphibian exploits the external

request characteristics and the internal parallelism, both

of which are common features for commercial SSDs.

Therefore, Amphibian is applicable to all SSDs, includ-

ing SATA SSDs and PCI-e SSDs. Our evaluations also

validate the applicability of Amphibian.

3) High Portability: The asymmetric read–write

performance, the size-latency relation and the GC

operations are common for most commercial SSDs.

Amphibian can be easily extended to any existing

SSD-based I/O schedulers, such as FIOS [29] and

ParDispatcher [28], to further improve the system

performance. Moreover, Amphibian can also be ported

to the SSD-based disk arrays to improve the system

efficiency.

B. System Overview of Amphibian

Fig. 3 shows a system overview of our proposed Amphibian

on the I/O path of the SSD-based system. Amphibian, which is

located between the block device layer and the device driver

layer, determines the request service order according to the

request characteristics. As shown in Fig. 3, on the top level of

Amphibian, user requests are enqueued into the I/O scheduling

module, based on the types and sizes of the requests. On the

bottom level of Amphibian, the scheduling strategy selects a

request to be serviced next. The Amphibian scheduling algo-

rithm not only improves the throughput of the SSD-based

storage system, but also reduces the average response time.

The main goal of Amphibian is to reduce the average user

response times of the SSD-based storage system. It consists

of three functional modules: 1) type-based queueing; 2) size-

based ordering; and 3) the GC-aware request dispatcher. The

type-based queueing module separates the read and write

requests into different queues. The size-based ordering mod-

ule is responsible for sorting requests in both read and write

request queues based on the request sizes, prioritizing requests

with small sizes. The GC-aware request dispatcher module

issues the requests to the corresponding flash chips while

avoiding issuing the requests to the flash chips that are in the

Fig. 4. Request type-based queueing in Amphibian.

GC state. The first two modules exploit the high-level request

characteristics, i.e., request types and sizes, while the third

module exploits the internal parallelism of SSDs. By fully

exploiting both high-level request characteristics and internal

parallelism, the incoming requests can execute much more

efficiently.

C. Request Type-Based Queueing

The read performance and write performance of flash-based

SSDs are asymmetric. The read performance is much better

than the write performance [30]. In addition, read operations

are synchronous in the application layer. Upon pending read

requests, user applications will be blocked until the requested

data is returned to the applications. On the other hand, write

operations are usually asynchronous and do not block the user

applications. If a read request needs to wait for the completion

of a write request, the critical read latency is unnecessarily

increased. Motivated by this observation, Amphibian pri-

oritizes read requests over write requests, preventing read

requests from being blocked by write requests and thereby

reducing the average waiting time of read requests in the I/O

queue. Consequently, this type-based queueing module inserts

an incoming request to the read request queue or the write

request queue based on the request’s type.

Fig. 4 shows the request type-based queueing in Amphibian.

If the read request queue is not empty, Amphibian processes

read requests first. Only when there are no read requests,

Amphibian will process the write requests in the write request

queue. This method ensures that read requests are never

blocked by write requests. However, it may cause a write

request wait too long. In order to prevent such write star-

vation from occurring, Amphibian sets a threshold value as

the longest waiting time for write requests. When a write

request’s waiting time reaches the threshold, the write request

cannot be blocked by read requests anymore and will be

immediately processed by Amphibian. The threshold scheme

is also used in the deadline I/O scheduler for HDDs [5]. It

is worth noting that request type-based queueing has been



476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

(a)

(b)

Fig. 5. Example of request size-based ordering. (a) Noop. (b) Amphibian.

used before [25], [29], [31] for SSD-based I/O schedulers. We

utilize it here to facilitate the other modules in Amphibian.

D. Request Size-Based Ordering

The request size-based ordering is inspired by the shortest-

job-first scheduling policy [5]. In conventional HDD-based

I/O schedulers, the shortest jobs are not determined by the

request sizes, but the physical addresses of user requests. This

is because HDDs are mechanical devices whose response times

are determined by the seek times and the rotational delays.

In contrast, the response time of SSDs is nearly linear with

the request size, as elaborated in Section II-B. A smaller

request size indicates a shorter response time. Hence, pro-

cessing requests with larger sizes first will make the other

requests wait a longer time. Therefore, giving higher priori-

ties to requests with small sizes will significantly reduce the

waiting time of the small requests in the request queues. It

must be noted that if a request arrives with a high priority tag,

the request will be processed immediately.

The size-based ordering module sorts user requests in each

of the two request queues according to the request sizes. The

request dispatcher issues the requests to the back-end SSDs

according to the sorted request order from the correspond-

ing request queue. The request size-based ordering module

in Amphibian can effectively reduce the waiting time of the

requests in the request queues, thus reducing the average

response time of SSD-based storage systems. Fig. 5 gives a

comparison of the request processing order between Noop

and Amphibian. There are one 16-KB request (i.e., R1),

which takes 200 us to complete, and three 4-KB requests

(i.e., R2–R4), each taking 50 us to complete. These four

requests arrive at nearly the same time with R1 being slightly

earlier. In accordance with the first come first served policy

that Noop uses, the request service order is R1–R4. As shown

in Fig. 5(a), the total service time is 1100 us and the average

response time of Noop is 275 us. With the request size-based

ordering scheme, Amphibian sorts the requests based on the

request sizes, resulting in a request service order of R2, R3, R4,

and R1. As a result, the total service time is 750 us and

the average response time is 150 us, as shown in Fig. 5(b).

Thus, Amphibian reduces the average response time by 45.5%,

compared with the Noop-based storage system.

Prioritizing requests with small sizes reduces the average

response time of the SSD-based storage system. However, sim-

ilar to write starvation, Amphibian may cause requests with

large sizes wait too long. In order to avoid the starvation

of large requests, Amphibian sets different timeout thresh-

olds for the read and write requests, respectively. When the

waiting time of the requests in a queue reaches the preset

timeout threshold, Amphibian processes the corresponding

request immediately. By default, the threshold is 5000 ms

for write requests and 500 ms for read requests which is

similar to that in the deadline I/O scheduler. In determining

which queue to be processed first, Amphibian also follows

the read priority strategy to process the requests from the read

queue first.

E. Garbage Collection-Aware Dispatcher

A flash chip in an SSD can be in either the normal state or

the GC state. Apart from read and write operations, GC oper-

ations also significantly affect the SSD performance. When a

flash chip is in the GC state, requests issued to the flash chip

must wait until the GC process completes. Thus, the service

times for such requests are extremely high [7], [32]. Fig. 6

shows the microscopic analysis of the average response times

of three realistic traces on an Intel DCS3700 200-GB SSD.

The details of the three traces are described in Section IV.

Initially, the SSD is filled with the written data. It is easy

to see periodic, frequent high latencies occurring due to the

GC operations. These high latencies are orders of magnitude

higher than those in the normal state [8]. Prior studies demon-

strate similar findings [23], showing that GC can render the

SSD performance significantly and in a variable and unpre-

dictable way. The Solid State Storage Initiative of SNIA has

initiated a project named “Understanding SSD Performance

Project” [33], and has found that the response times are

increasingly dramatic due to the GC operations. All these stud-

ies have revealed that GC processing has a significantly impact

on the system performance.

In order to avoid issuing GC-conflicted requests, the GC-

aware request dispatcher module in Amphibian monitors and

identifies flash chips within the SSD that are in the GC state.

To observe the significant performance degradation due to

GC operations, the GC-aware request dispatcher continuously

monitors the response times of each flash chip. When the

response time of a flash chip is abnormally increased, the

GC-aware request dispatcher temporarily blocks the user I/O

requests to that flash chip. Then, the GC-aware request dis-

patcher module issues three new read requests to that flash

chip. Based on the response times of the three new read

requests, the GC-aware request dispatcher module can identify

whether the flash chip is in the GC state.



MAO et al.: IMPROVING SSD PERFORMANCE BY EXPLOITING REQUEST CHARACTERISTICS AND INTERNAL PARALLELISM 477

(a) (b) (c)

Fig. 6. Microscopic analysis of the average response times driven by the realistic traces. (a) Financial1. (b) Prn_0. (c) Prxy_0.

For new generation SSDs, GC operations are explicitly

exposed to upper file systems via ioctl APIs, such as the TRIM

command. TRIM is beneficial to all SSDs regardless of what

kind of GC is used [34]. The TRIM command enables an

operating system to notify SSD which pages no longer con-

tain valid data. It enables SSD to handle GC operations more

efficiently. For a file delete operation, the operating system

marks the file’s data pages as invalid pages, and then sends

a TRIM command to the SSD to perform the GC operations

on these invalid pages to release free space for subsequent

write data.

Moreover, because flash controllers always act like a black

box to host systems, a host controlled GC scheme is proposed

for flash-based SSDs, such as open channel SSDs [35]. As a

result, our proposed GC-aware request dispatcher can explic-

itly utilize these commands to identify flash chips processing

GC operations. In our current implementation, Amphibian

identifies GC operations based on request response times of a

chip. Moreover, similar to ParDispatcher [28], Amphibian uses

the space zone to mark the GC area since the internal map-

ping is unknown to the host system. Based on the request’s

address, the corresponding space zone is marked as GC-active

state. If the LBAs of the requests fall within the space zone,

these I/O requests will be affected. Moreover, retry operations

are performed to check whether the marked GC area is still in

GC state. The interval time between the retry operations is 1 s.

If the requested data in the retry operations can be returned

normally, the space zone is marked as normal state.

After identifying a flash chip or space zone within the SSD

in the GC state, the GC-aware request dispatcher will keep

all the requests targeting the identified flash chip or space

zone in awaiting queue. In the meantime, Amphibian still dis-

patches requests to other flash chips that are in the normal

state. These requests are processed in parallel on different

flash chips or space zones, utilizing the saved issue bandwidth

from delaying GC-conflicted requests. Consequently, they can

be completed more quickly, and the throughput of the whole

system is improved. Moreover, since the requests targeting

the GC-active flash chips or space zones are queued in a host

waiting queue, the SSD outstanding I/O feature is not affected

by these pending requests. As an illustrative example, Fig. 7

shows an SSD device with an issue bandwidth of four for

outstanding IO requests. Without the GC-aware request dis-

patcher module, the actual issue bandwidth will be reduced to

two due to the other two requests (shown in grey) targeting a

Fig. 7. Example of GC-aware request dispatching workflow in Amphibian.

flash chip in the GC state and thus being blocked. However,

with the assistance from our proposed module, the I/O sched-

uler can identify that the target flash chip is in the GC state.

Hence, the I/O scheduler can keep the two blocked requests

in the waiting queue, and issue two other requests that target

flash chips in normal state. In this way, the outstanding and

parallel features of the SSDs are fully exploited to improve

system performance and efficiency.

IV. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup and

evaluation methodology. Then we evaluate the performance of

Amphibian through both benchmark and trace-driven experi-

ments.

A. Experimental Setup and Methodology

We have implemented an Amphibian prototype as an inde-

pendent module on top of the Linux I/O scheduler framework.

The performance evaluation is conducted on a Dell PowerEdge

T320 server with an Intel Xeon E5-2407 processor and

8-GB DDR memory. In order to examine the efficiency of

Amphibian, three different types of SSDs, including two enter-

prise SATA SSDs and a high end PCI-e-based SSD, are

evaluated in our experiments. The first one is an Intel X25-E

Extreme SATA SSD 64 GB (for short, Intel X25-E SSD).

The second one is an Intel DC S3700 SSD 400GB (for short,

Intel DC S3700 SSD). These two SATA SSDs are connected

to the PERC H710 SATA controller, representing SSDs used

in the enterprise and datacenter environments. The third SSD

device is an Intel 750 Series 400 GB PCI-e add-in card driver



478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

TABLE II
EXPERIMENTAL SETUP

TABLE III
WORKLOAD CHARACTERISTICS

(for short, Intel 750S PCI-e SSD) that is directly attached in

the PCIe Gen3 slot. A separate hard disk is used to house the

operating system (Linux kernel 2.6.38) and other software.

The experimental setup is outlined in Table II.

Two trace-replay methods are generally used for

performance evaluations: 1) open-loop and 2) closed-

loop [37], [38]. The former has the potential to overestimate

the user response time since the I/O arrival rate is indepen-

dent of the underlying system and can therefore cause the

request queue (and also the queueing delays) to grow rapidly

when the system load is high. The opposite is true for the

closed-loop method as the I/O arrival rate is dictated by the

processing speed of the underlying system and the request

queue is generally limited in length (i.e., equal to the number

of the independent request threads).

To have a fair comparison, we use both an open-loop

model (i.e., trace replay with RAIDmeter [9]) and a closed-

loop model (i.e., Postmark benchmark [36]) to evaluate the

performance of Amphibian [37], [38]. RAIDmeter [9] is a

block-level trace replay software, capable of replaying traces

and evaluating the I/O response time of storage devices.

The traces used in our experiments are obtained from the

Storage Performance Council [39] and Microsoft Research

Cambridge [40]. Among them, two financial traces (Fin1 and

Fin2) were collected from OLTP applications running at a

large financial institution; three Web traces (Web1, Web2, and

Web3) were collected from a machine running a Web search

engine; and three enterprise traces (Proj_2, Prxy_1, and Usr_1)

were collected from storage volumes in an enterprise data cen-

ter by Microsoft Research Cambridge. These traces represent

different access patterns in terms of read/write ratios, IOPS,

and average request sizes. The workload parameters of these

traces are summarized in Table III. Since these traces are col-

lected from HDD-based storage systems, the I/O intensity is

not enough to generate long I/O queue on flash-based stor-

age systems. All the traces are scaled up by ten times and we

replayed them the same for all the evaluated schemes.

Fig. 8. Throughput results of the postmark benchmarks on the three Intel
SSDs, normalized to that of the Noop scheme with the throughput values
marked in the column.

In this paper, we compare the performance of Amphibian

with three I/O schedulers employed by the Linux operating

systems, i.e., Noop, deadline and CFQ, and the ParDispatcher

scheduler [28], which leverages the parallelism by dispatch-

ing the requests to different logical space regions in an

SSD. The I/O scheduler selection is configured by the

command “echo SCHEDULER-NAME > /sys/block/DEVICE-

NAME/queue/scheduler” where SCHEDULER-NAME is the

I/O scheduler and DEVICE-NAME is the SSD device. In

order to make a fair comparison among different schemes,

the SSDs are filled with data before each experiment. In this

way, the initial state of SSDs could be nearly the same for all

the schemes.

B. Benchmark-Driven Evaluations

The first experiment is conducted using the Postmark bench-

mark [36]. It is designed to portray the performance of desktop

applications, such as electronic mail, netnews, and Web-based

commerce. We use the Postmark benchmark to generate an ini-

tial pool of random text files and image files ranging from a

lower bound of 1 KB to an upper bound of 4 MB, then perform

100 000 transactions that include file read, file write, create

and delete operations. The evaluation results of the Postmark

benchmark are presented in Fig. 8. The x-axis refers to the dif-

ferent types of SSDs, and the y-axis is the throughput results

normalized to the Noop scheme. The default queue length is

set to 16.

First, we can see that the Noop scheduler achieves the best

throughput among the three default Linux I/O schedulers. The

reason is that the CFQ and deadline schedulers are designed

specially for HDDs, and they are not suitable for SSDs with

device characteristics different than HDDs. Therefore, the

extra optimizations of the CFQ and deadline schedulers over

the Noop scheduler will degrades system performance for

SSDs. The results further validate that the HDD-optimized

I/O schedulers are not suitable for SSDs. Second, Amphibian

improves the throughput by 28.2%, 27.9%, and 11.6% over

the Noop scheme, and by 23.8%, 17.5%, and 9.0% over the

ParDispatcher scheme for the three Intel SSDs in analysis,

respectively. This is because Amphibian is an SSD-optimized

I/O scheduler taking both workload and SSD device char-

acteristics into design consideration. Amphibian adopts the

size-based ordering design, which is much more effective



MAO et al.: IMPROVING SSD PERFORMANCE BY EXPLOITING REQUEST CHARACTERISTICS AND INTERNAL PARALLELISM 479

(a) (b) (c)

Fig. 9. Throughput results for postmark on the three Intel SSDs with respect to different queue lengths. (a) Intel X25-E SSD. (b) Intel DC S3700 SSD.
(c) Intel 750S PCI-e SSD.

than the ParDispatcher and Noop schedulers, to prioritize

requests with small sizes and thereby reduce the average ser-

vice time. Moreover, Amphibian monitors the internal GC

activities within flash chips, and avoids issuing user requests

conflicting with the GC operations. Third, we can see that

Amphibian consistently works well across different types of

SSDs. It achieves the highest throughput in all the three SSDs

examined. The Amphibian design takes into account the exter-

nal requests characteristics and internal device parallelism, and

is applicable to all types of flash-based SSDs. The performance

results further validate the applicability design objective of

Amphibian.

To further understand the reasoning behind the improve-

ment of Amphibian, we conduct a sensitivity study on different

request queue lengths for the Postmark benchmark among the

Noop, ParDispatcher, and Amphibian schemes. Fig. 9 shows

the comparison results on the three SSDs. In this figure, we

can see that with short queue lengths, such as 1 and 2, the three

schemes perform almost the same. The potential performance

benefit that can be achieved by exploiting the internal paral-

lelism within flash chips is limited in short request queues.

Similarly, the performance benefit of the GC-aware dispatcher

is also limited because of infrequent GC operations in short

queues. However, flash-based SSDs are usually deployed in

enterprise and high-end computing environments where I/O

accesses are intensive [41], [42]. We can see from Fig. 9 that,

as the queue length increases, the improvement of Amphibian

becomes more significant. A longer request queue can hold

more user requests, leading to more room for the size-based

ordering and also more frequent GC operations. Consequently,

the performance benefit of Amphibian is more obvious with

the increasing request queue length. When the queue length

is 64, Amphibian improves the throughput by up to 35.9%,

33.1%, and 11.6%, compared to the Noop scheme on the

three SSDs. Furthermore, this performance improvement trend

can be seen in all three Intel SSDs, again validating the high

portability of Amphibian.

C. Trace-Driven Evaluations

In addition to the benchmark-driven evaluations, we also

conduct trace-driven evaluations on the three types of SSDs

that have different performance characteristics. In the trace-

driven evaluations, we collect the average response time as

the performance metric for different I/O schedulers. Fig. 10

shows the average response times of different traces on

the Intel X25-E SATA SSD; all results are normalized

to that of the Noop scheme. We can see that, compared

with the Noop scheme, Amphibian reduces the average

response time by 12.4%, 6.4%, 23.5%, 28.2%, 25.0%, 33.3%,

28.2%, and 31.6% for the Fin1, Fin2, Web1, Web2, Web3,

Proj_2, Prxy_1, and Usr_1 traces, respectively. On average,

Amphibian outperforms the Noop scheme with an improve-

ment of 22.9%. Compared to the ParDispatcher scheme,

Amphibian reduces the average response times by 6.3%, 7.8%,

22.1%, 23.5%, 23.8%, 15.7%, 19.6%, and 10.6% for the eval-

uated traces, respectively. On average, Amphibian outperforms

the ParDispatcher scheme by 16.4%.

Different traces have different read/write ratios and I/O

intensity. Among these eight traces, Fin1, Fin2, Proj_2,

Prxy_1, and Usr_1 are read/write mixed applications where

the number of write requests is comparable with or larger

than the number of read requests. Since processing write

requests and internal GC operations takes longer than pro-

cessing read requests, the read requests in these five traces

need to wait a relatively longer time. In such cases, employ-

ing Amphibian reduces the waiting time of the read requests

by giving them higher priorities and avoiding issuing requests

to the flash chips in the GC state. Moreover, in both request

queues, Amphibian processes small requests prior to large

requests. Thus, it can further reduce the average response

times by reducing the waiting time in the request queues. For

read-intensive workloads, such as Web1, Web2, and Web3,

Amphibian reduces the request response times using the size-

based ordering scheme, thus reducing the queueing times of

the small requests. Therefore, Amphibian is effective in reduc-

ing the request response times for both read-intensive and

mixed read/write applications, thus being applicable to various

applications.

The three types of SSDs we used have different

performance characteristics, thus the performance improve-

ments of Amphibian conducted on the three SSDs are also

different. Fig. 11 shows the average response times results on

the Intel DC S3700 SATA SSD driven by the different traces,

normalized to that of the Noop scheme. Compared with the

Noop scheme, Amphibian reduces the request response times

by 17.6%, 8.7%, 16.3%, 13.6%, 19.0%, 35.1%, 17.6%, and

38.9% for the Fin1, Fin2, Web1, Web2, Web3, Proj_2, Prxy_1,

and Usr_1 traces, respectively. On average, Amphibian out-

performs the Noop scheme with an improvement of 20.1%.



480 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

Fig. 10. Normalized average response times on the Intel X25-E SATA SSD driven by the different traces.

Fig. 11. Normalized average response times on the Intel DC S3700 SATA SSD driven by the different traces.

Fig. 12. Normalized average response times on the Intel 750S PCI-e SSD driven by the different traces.

Compared with the ParDispatcher scheme, Amphibian reduces

the request response times by 16.7%, 13.2%, 18.9%, 19.3%,

20.1%, 19.6%, 12.4%, and 24.2% for the Fin1, Fin2, Web1,

Web2, Web3, Proj_2, Prxy_1, and Usr_1 traces, respectively.

On average, Amphibian outperforms the ParDispatcher scheme

with an improvement of 18.0%.

Fig. 12 shows the average response times results on the

Intel 750S PCI-e SSD driven by the different traces, normal-

ized to that of the Noop scheme. Compared with the Noop

scheme, Amphibian reduces the request response times by

8.7%, 13.4%, 8.7%, 7.5%, 6.4%, 19.0%, 12.4%, and 13.6% for

the Fin1, Fin2, Web1, Web2, Web3, Proj_2, Prxy_1, and Usr_1

traces, respectively. On average, Amphibian outperforms the

Noop scheme with an improvement of 11.1%. Compared with

the ParDispatcher scheme, Amphibian reduces the request

response times by 9.8%, 15.2%, 10.7%, 10.6%, 8.7%, 6.7%,

12.7%, and 10.2% for the Fin1, Fin2, Web1, Web2, Web3,

Proj_2, Prxy_1, and Usr_1 traces, respectively. On average,

Amphibian outperforms the ParDispatcher scheme with an

improvement of 10.6%.

From Figs. 10–12, we can see that for all the three types

of SSDs, Amphibian largely outperforms the Noop scheme



MAO et al.: IMPROVING SSD PERFORMANCE BY EXPLOITING REQUEST CHARACTERISTICS AND INTERNAL PARALLELISM 481

Fig. 13. Response time distributions for the Intel X25-E SATA SSD: the x-axis shows the request response times and the y-axis shows the fraction of requests
with response times lower than some values in x-axis. (a) Fin1. (b) Fin2. (c) Web1. (d) Web2. (e) Web3. (f) Proj_2. (g) Prxy_1. (h) Usr_1.

Fig. 14. Response time distributions for the Intel DC S3700 SATA SSD: the x-axis shows the request response times and the y-axis shows the fraction of
requests with response times lower than some values in x-axis. (a) Fin1. (b) Fin2. (c) Web1. (d) Web2. (e) Web3. (f) Proj_2. (g) Prxy_1. (h) Usr_1.

in user response times. The evaluation results further validate

high portability of Amphibian for both enterprise SSDs and

high-end PCI-e SSDs. All of these SSDs are made of flash

chips, sharing similar device properties, such as asymmet-

ric read–write performance, request size-based responsiveness,

and GC-influenced performance degradation. In addition, we

see that the performance improvement of Amphibian on the

750S PCI-e SSD is lower than that on the other two SATA

SSDs. This is because high-end PCI-e SSDs have a large on-

board buffer cache that can hide some performance issues

of the flash chips [18], [43]. More specifically, we observe

that, on the Intel 750S PCI-e SSD, the random-read and

random-write performance are almost the same during the

early stage of a program, but the random-write performance

degrades significantly later on after the on-board buffer cache

is filled up.

From the results of the trace-driven evaluations, we can

also see that the HDD-based I/O schedulers, such as CFQ

and deadline, are not suitable for flash-based SSDs. The aver-

age response times of the CFQ and deadline schemes are much

larger than that of the Noop scheme. The results are consistent

with the results of the benchmark-driven evaluations, further

validating that the HDD-optimized I/O schedulers are not

suitable for flash-based SSDs. With flash-based SSDs being

popular and widely deployed in I/O-intensive servers, such

as enterprise and HPC environments, the software stack of

the storage systems should be redesigned from optimizing the

performance of HDDs to optimizing the performance of flash-

based SSDs. Hence, the performance optimizations adopted in

Amphibian is highly critical to exploit the performance advan-

tages of flash-based SSDs, as opposed to the traditional I/O

schedulers.

To further investigate the performance improvement of

Amphibian in the examined traces, we plot the distributions of

the request response times in Figs. 13–15 for the three SSDs,

respectively. From these figures, we can see that Amphibian



482 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

Fig. 15. Response time distributions for Intel 750S PCI-e SSD: the x-axis shows the request response times, and the y-axis shows the fraction of requests
with response times lower than some values in x-axis. (a) Fin1. (b) Fin2. (c) Web1. (d) Web2. (e) Web3. (f) Proj_2. (g) Prxy_1. (h) Usr_1.

can process over 90% of the user requests in less than 1 ms

in the two SATA SSDs and can process nearly 99% of the

user requests in less than 0.2 ms for the two financial and

three Web traces in the 750S PCI-e SSD. It is apparent that

Amphibian performs much better than conventional schedules

designed for HDD-based storage systems. The reason is that

flash-based SSDs are made of flash chips and do not have

mechanical parts, thus providing better responsiveness than

HDDs. The response times on the PCI-e SSD are much lower

than the SATA SSDs because the high-end PCI-e SSD has a

large internal on-board buffer cache and some reserved flash

space.

For all the three types of SSDs, a higher percentage of user

requests are processed in Amphibian with low response times

than the other two schemes. This also validates our observa-

tion that Amphibian achieves lower average response times

than the Noop and ParDispatcher schemes in these traces.

The reasons are threefold. First, by prioritizing read requests

with small sizes, the average request waiting time in the I/O

queue is reduced. Second, by processing small requests prior

to large requests, the small requests can be processed much

more effectively, thus further reducing the long waiting times

of the small requests. Third, since Amphibian avoids issu-

ing the user requests to the flash chips that are in the GC state,

the user requests can be processed without the contention with

the GC-induced internal requests. In this way, the user requests

can be processed much more efficiently. Therefore, the request

response times achieved by Amphibian are significantly lower

than that achieved by the Noop and ParDispatcher schemes.

V. RELATED WORK

Many studies have been conducted on I/O scheduling

for HDD-based storage systems. HDD-based I/O sched-

ulers, such as NOOP, deadline, and CFQ, have become

standards in Linux kernels. However, none of them can work

efficiently with SSDs, as validated by the previous stud-

ies [24], [28], [29], [31], [44] and our performance evaluations.

To address the problem, some studies have been con-

ducted to improve the efficiency of I/O schedulers for SSDs.

These studies can be classified into two categories. The first

category is fairness-oriented I/O schedulers. For instance,

Shen and Park [24], [29] proposed the FIOS and FlashFQ algo-

rithms that take the fairness of the resource usage in SSDs into

account. FIOS [29] schedules requests with the awareness of

the read and write interference of SSDs, while FlashFQ [24]

schedules requests with the awareness of the internal paral-

lelism for different applications. FlashFQ relies on the request

size to predict the response time, thus arranging the start-

time fair queueing efficiently to improve the fairness among

multiple concurrent tasks. In their evaluations, they only con-

sidered fixed request sizes, such as 4 or 128 KB; in contrast,

real applications used mix of different request sizes and types.

Moreover, FlashFQ exploits the internal parallelism to issue

multiple concurrent I/O requests and avoids the unfairness

resulting from the interference of the concurrent dispatched

requests.

In contrast, the objective of Amphibian is high performance

as opposed to fairness in FlashFQ. The different design objec-

tives also lead to different design considerations. Different

from FlashFQ, Amphibian exploits both request size and

internal parallelism characteristics for the SSD I/O scheduler.

Amphibian reorders the I/O requests based on the request sizes

to reduce the long waiting times for the small-size requests,

thus improving the overall system responsiveness. Moreover,

Amphibian exploits the internal parallelism for the purpose

of avoiding issuing the GC-conflicted requests on the flash

chips that are in the GC-state. By reducing such GC-conflicted

requests on the I/O queue, the overall system performance is

improved.

The second category is performance-oriented I/O sched-

ulers that aim at finding the maximized possibility of using

the internal characteristics of SSDs in the block layer. For

example, Wang et al. [28] proposed ParDispatcher that takes

advantage of the internal parallelism of SSD. However,

ParDispatcher only considers the logical space region, and



MAO et al.: IMPROVING SSD PERFORMANCE BY EXPLOITING REQUEST CHARACTERISTICS AND INTERNAL PARALLELISM 483

TABLE IV
COMPARISONS BETWEEN AMPHIBIAN AND THE STATE-OF-THE-ART

cannot fully exploit the parallelism of flash-based SSDs that

use the out-of-place update scheme. Thus, its performance

improvement is limited, as shown in our performance evalua-

tions. Gao et al. [25] proposed PIQ to minimize the access

conflicts among the I/O requests in one batch by exploit-

ing the rich parallelism of SSDs. Besides the above studies,

Dunn and Reddy [44] proposed a new scheduler to avoid

the penalty that is created during the new block writing.

Kim et al. [31] proposed IRBW-FIFO and IRBW-FIFO-RP,

which arrange the write-request into a logical block size

bundle to improve the write performance.

However, none of these works are proposed to solve the

request size ordering and internal GC conflict problems, as

shown in Table IV. Our proposed Amphibian exploits the two

key characteristics, i.e., the request size and the internal paral-

lelism, to improve the I/O performance of the SSD-based stor-

age system. Moreover, the fairness and performance objectives

are orthogonal to each other in the design of the I/O sched-

uler for SSDs. In a concurrent system with multiple tasks,

the fairness-oriented I/O schedulers, such as FlashFQ, achieve

the fairness among tasks. In each task, the performance-

oriented I/O schedulers, such as Amphibian, reduce the wait-

ing times and response times of the I/O requests. Thus, the

size-based ordering and GC-aware dispatching schemes in

Amphibian are applicable to the I/O requests in each task

in the FlashFQ scheme. Thus, Amphibian is orthogonal to

and can be easily incorporated into any existing I/O scheduler

algorithms.

On the other hand, the internal parallelism in SSDs is one

of the important characteristics and is different from HDDs. A

lot of studies have been conducted to exploit the internal paral-

lelism for performance improvement [1], [3], [18], [19], [25],

[28], [45]. Chen et al. [18] first conducted extensive experi-

ments to show that the parallelism of SSDs is very important

for the performance improvement. By exploiting the internal

parallelism, their evaluation results show that the performance

of the write operations has no relationship with their access

patterns and is better than that of read operations. Hu et al. [19]

studied the four level parallelism in SSDs and found that

these four levels have different priorities in the exploration

of the access latency and the system throughput. Compared

with these studies, Amphibian exploits the internal parallelism

by avoiding issuing the GC-conflicted requests to the flash

chips in the GC state, thus reducing the long waiting times to

improve the system performance.

VI. CONCLUSION

As the processor and memory speeds have increased over

the HDDs, the I/O access latency has become a bottleneck

of the system performance. Flash-based SSDs are promising

in reducing the access latency in high performance comput-

ing environments and data centers. In this paper, we propose

a new I/O scheduler for SSDs, called Amphibian, to exploit

both high-level request characteristics and low-level internal

feature of the flash chips and improve the performance of SSD-

based storage systems. In our proposed Amphibian scheme,

the size-based request ordering gives higher priorities to

requests with small sizes; and the GC-aware request dis-

patching avoids issuing requests to the flash chips that are

in the GC state. As a result, the average waiting times of

the requests are reduced significantly. The extensive evaluation

results show that Amphibian greatly outperforms the existing

I/O schedulers in both throughput and request response times.

Consequently, the I/O performance of SSD-based storage

systems is improved.

We plan to explore several directions for the future work.

First, we will take the fairness metric into account in the

Amphibian design and conduct experiments to compare the

efficiency of Amphibian and fairness-oriented I/O schedulers,

such as FIOS and FlashFQ. Second, we will extend Amphibian

and evaluate its efficiency on SSD-based disk arrays [46]. By

treating an SSD in an SSD-based disk array as a flash chip in

an SSD, the performance variability problem due to the GC

operations remains the same.

ACKNOWLEDGMENT

The authors would like to thank all the ASTL members for

their continues discussion and support on this paper.

REFERENCES

[1] N. Agrawal et al., “Design tradeoffs for SSD performance,” in Proc.
USENIX Annu. Tech. Conf. (USENIX ATC), Boston, MA, USA,
Jun. 2008, pp. 57–70.

[2] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrin-
sic characteristics and system implications of flash memory based
solid state drives,” in Proc. Joint Int. Conf. Meas. Model. Comput.
Syst. (SIGMETRICS/Performance), Seattle, WA, USA, Jun. 2009,
pp. 181–192.

[3] C. Dirik and B. Jacob, “The performance of PC solid-state disks (SSDs)
as a function of bandwidth, concurrency, device architecture, and system
organization,” in Proc. 36th Int. Symp. Comput. Archit. (ISCA), Austin,
TX, USA, Jun. 2009, pp. 279–289.

[4] B. Mao and S. Wu, “Exploiting request characteristics and internal par-
allelism to improve SSD performance,” in Proc. 33rd IEEE Int. Conf.
Comput. Design (ICCD), New York, NY, USA, Oct. 2015, pp. 447–450.

[5] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,”
IEEE Comput., vol. 27, no. 3, pp. 17–28, Mar. 1994.

[6] M. Jung, R. Prabhakar, and M. T. Kandemir, “Taking garbage collection
overheads off the critical path in SSDs,” in Proc. ACM/IFIP/USENIX
13th Int. Conf. Middleware (Middleware), Montreal, QC, Canada,
Dec. 2012, pp. 164–186.

[7] G. Wu and X. He, “Reducing SSD read latency via NAND flash pro-
gram and erase suspension,” in Proc. 10th USENIX Conf. File Storage
Technol. (FAST), San Jose, CA, USA, Feb. 2012, pp. 117–124.

[8] S. Wu, Y. Lin, B. Mao, and H. Jiang, “GCaR: Garbage collection aware
cache management with improved performance for flash-based SSDs,”
in Proc. 30th Int. Conf. Supercomput. (ICS), Istanbul, Turkey, Jun. 2016,
pp. 1–12.

[9] B. Mao et al., “HPDA: A hybrid parity-based disk array for enhanced
performance and reliability,” ACM Trans. Storage, vol. 8, no. 1,
pp. 1–22, 2012.

[10] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of
NAND flash memory,” in Proc. 10th USENIX Conf. File Storage
Technol. (FAST), San Jose, CA, USA, Feb. 2012, pp. 17–24.

[11] L. M. Grupp, J. D. Davis, and S. Swanson, “The Harey tortoise:
Managing heterogeneous write performance in SSDs,” in Proc. USENIX
Annu. Tech. Conf. (USENIX ATC), San Jose, CA, USA, Jun. 2013,
pp. 79–90.



484 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

[12] C. Min, K. Kim, H. Cho, S. Lee, and Y. Eom, “SFS: Random write con-
sidered harmful in solid state drives,” in Proc. 10th USENIX Conf. File
Storage Technol. (FAST), San Jose, CA, USA, Feb. 2012, pp. 139–154.

[13] X. Zhang, J. Li, H. Wang, K. Zhao, and T. Zhang, “Reducing solid-state
storage device write stress through opportunistic in-place delta com-
pression,” in Proc. 14th USENIX Conf. File Storage Technol. (FAST),
Santa Clara, CA, USA, Feb. 2016, pp. 111–124.

[14] J. Lee, Y. Kim, G. M. Shipman, S. Oral, and J. Kim, “Preemptible
I/O scheduling of garbage collection for solid state drives,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 2, pp. 247–260,
Feb. 2013.

[15] (2013). IOmeter Project. [Online]. Available: http://www.iometer.org/
[16] S. Wu, B. Mao, X. Chen, and H. Jiang, “LDM: Log disk mirroring with

improved performance and reliability for SSD-based disk arrays,” ACM
Trans. Storage, vol. 12, no. 4, pp. 1–21, 2016.

[17] A. R. Abdurrab, T. Xie, and W. Wang, “DLOOP: A flash transla-
tion layer exploiting plane-level parallelism,” in Proc. 27th IEEE Int.
Parallel Distrib. Process. Symp. (IPDPS), Boston, MA, USA, May 2013,
pp. 908–918.

[18] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed
data processing,” in Proc. 17th Int. Conf. High-Perform. Comput.
Archit. (HPCA), San Antonio, TX, USA, Feb. 2011, pp. 266–277.

[19] Y. Hu et al., “Performance impact and interplay of SSD parallelism
through advanced commands, allocation strategy and data granular-
ity,” in Proc. 25th Int. Conf. Supercomput. (ICS), Tucson, AZ, USA,
Jun. 2011, pp. 96–107.

[20] M. Jung and M. T. Kandemir, “Sprinkler: Maximizing resource uti-
lization in many-chip solid state disks,” in Proc. 20th IEEE Int. Symp.
High Perform. Comput. Archit. (HPCA), Orlando, FL, USA, Feb. 2014,
pp. 524–535.

[21] M. Jung and M. Kandemir, “Revisiting widely held SSD expec-
tations and rethinking system-level implications,” in Proc. ACM
SIGMETRICS/Int. Conf. Meas. Model. Comput. Syst. (SIGMETRICS),
Pittsburgh, PA, USA, Jun. 2013, pp. 203–216.

[22] Y. Lu, J. Shu, and W. Wang, “ReconFS: A reconstructable file system on
flash storage,” in Proc. 12th USENIX Conf. File Storage Technol. (FAST),
Santa Clara, CA, USA, Feb. 2014, pp. 75–88.

[23] J. Lee et al., “A semi-preemptive garbage collector for solid state drives,”
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Austin,
TX, USA, Apr. 2011, pp. 12–21.

[24] K. Shen and S. Park, “FlashFQ: A fair queueing I/O scheduler for
flash-based SSDs,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC),
San Jose, CA, USA, Jun. 2013, pp. 67–78.

[25] C. Gao et al., “Exploiting parallelism in I/O Scheduling for access con-
flict minimization in flash-based solid state drives,” in Proc. 30th Int.
Conf. Massive Storage Syst. Technol. (MSST), Santa Clara, CA, USA,
Jun. 2014, pp. 1–11.

[26] M. Jung, W. Choi, S. Srikantaiah, J. Yoo, and M. T. Kandemir,
“HIOS: A host interface I/O scheduler for solid state disks,” in Proc.
ACM/IEEE 41st Int. Symp. Comput. Archit. (ISCA), Minneapolis, MN,
USA, Jun. 2014, pp. 289–300.

[27] S.-Y. Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee, “Exploiting internal
parallelism of flash-based SSDs,” IEEE Comput. Archit. Lett., vol. 9,
no. 1, pp. 9–12, Jan. 2010.

[28] H. Wang et al., “A novel I/O scheduler for SSD with improved
performance and lifetime,” in Proc. 29th IEEE Symp. Massive Storage
Syst. Technol. (MSST), Long Beach, CA, USA, May 2013, pp. 1–5.

[29] S. Park and K. Shen, “FIOS: A fair, efficient flash I/O scheduler,” in
Proc. 10th USENIX Conf. File Storage Technol. (FAST), San Jose, CA,
USA, Feb. 2012, pp. 155–170.

[30] Q. Li et al., “Access characteristic guided read and write cost regulation
for performance improvement on flash memory,” in Proc. 14th USENIX
Conf. File Storage Technol. (FAST), Santa Clara, CA, USA, Feb. 2016,
pp. 125–132.

[31] J. Kim et al., “Disk schedulers for solid state drivers,” in Proc.
Int. Conf. Embedded Softw. (EMSOFT), Grenoble, France, Oct. 2009,
pp. 295–304.

[32] S. Yan et al., “Tiny-tail flash: Near-perfect elimination of garbage col-
lection tail latencies in NAND SSDs,” in Proc. 15th USENIX Conf. File
Storage Technol. (FAST), Nantes, France, Feb. 2017, pp. 15–28.

[33] (Apr. 2017). Understanding SSD Performance Project of SNIA. [Online].
Available: http://www.snia.org/forums/sssi/pts

[34] H. Yeom, “From black box to grey box: Is it feasible for flash?” in
Proc. Oper. Syst. Support Next Gener. Large Scale NVRAM (NVRAMOS),
Jeju-do, South Korea, Oct. 2014, pp. 1–10.

[35] M. Bjørling, J. Gonzalez, and P. Bonnet, “LightNVM: The linux open-
channel SSD subsystem,” in Proc. 15th USENIX Conf. File Storage
Technol. (FAST), Santa Clara, CA, USA, Feb. 2017, pp. 359–373.

[36] (Apr. 2017). Filesystem Benchmarking With Postmark From NetApp.
[Online]. Available: http://www.shub-internet.org/brad/FreeBSD/
postmark.html

[37] M. P. Mesnier et al., “//TRACE: Parallel trace replay with approximate
causal events,” in Proc. 5th USENIX Conf. File Storage Technol. (FAST),
San Francisco, CA, USA, Feb. 2007, pp. 153–167.

[38] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:
A cautionary tale,” in Proc. 3rd USENIX Symp. Netw. Syst. Design
Implement. (NSDI), San Jose, CA, USA, Apr. 2006, pp. 239–252.

[39] (2010). OLTP Trace From UMass Trace Repository. [Online]. Available:
http://traces.cs.umass.edu

[40] (2008). MSR Cambridge Traces. [Online]. Available:
http://iotta.snia.org/tracetypes/3

[41] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the best use of
solid state drives in high performance storage systems,” in Proc. 25th
Int. Conf. Supercomput. (ICS), Tucson, AZ, USA, Jun. 2011, pp. 22–32.

[42] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating server storage to SSDs: Analysis of tradeoffs,” in Proc. 4th
Eur. Conf. Comput. Syst. (EuroSys), Nuremberg, Germany, Mar. 2009,
pp. 145–158.

[43] M. Jung, W. Choi, J. Shalf, and M. T. Kandemir, “Triple-A: A non-
SSD based autonomic all-flash array for high performance storage
systems,” in Proc. 19th Int. Conf. Archit. Support Program. Lang. Oper.
Syst. (ASPLOS), Salt Lake City, UT, USA, Mar. 2014, pp. 441–454.

[44] M. Dunn and A. Reddy, “A new I/O scheduler for solid state devices,”
M.S. thesis, Comput. Eng., Texas A&M Univ., College Station, TX,
USA, 2009.

[45] W. Wang and T. Xie, “PCFTL: A plane-centric flash translation layer uti-
lizing copy-back operations,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 12, pp. 3420–3432, Dec. 2015.

[46] Y. Kim et al., “Coordinating garbage collection for arrays of solid-state
drives,” IEEE Trans. Comput., vol. 63, no. 4, pp. 888–901, Apr. 2014.

Bo Mao (S’08–M’10) received the B.E. degree in
computer science and technology from Northeast
University, Shenyang, China, in 2005, and the Ph.D.
degree in computer architecture from the Huazhong
University of Science and Technology, Wuhan,
China, in 2010.

He is an Associate Professor with the Software
School, Xiamen University, Xiamen, China. He has
over 40 publications in international journals and
conferences. His current research interests include
storage system, cloud computing, and big data.

Suzhen Wu (S’09–M’10) received the B.E. and
Ph.D. degrees in computer science and technol-
ogy and computer architecture from the Huazhong
University of Science and Technology, Wuhan,
China, in 2005 and 2010, respectively.

She has been an Associate Professor with the
Computer Science Department, Xiamen University,
Xiamen, China, since 2014. She has over 40 publica-
tions in international journals and conferences. Her
current research interests include computer architec-
ture and storage system.

Lide Duan (S’09–M’14) received the bachelor’s
degree in computer science from Shanghai Jiao Tong
University, Shanghai, China, in 2006, and the Ph.D.
degree in computer engineering from Louisiana State
University, Baton Rouge, LA, USA, in 2011.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
University of Texas at San Antonio (UTSA),
San Antonio, TX, USA. Prior to joining UTSA in
2014, he was a Senior Design Engineer with AMD,
Sunnyvale, CA, USA, researching on future x86-

based high performance and low power CPU microarchitecture design and
performance modeling. In addition, he had an internship with Lawrence
Livermore National Laboratory, Livermore, CA, USA, in 2011. His cur-
rent research interests include computer architecture with a current focus
on nonvolatile memory systems and energy efficiency of emerging computer
architectures.


