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A B S T R A C T

The relative roles of ecological niche conservatism versus niche divergence in promoting montane speciation
remains an important topic in biogeography. Here, our aim was to test whether lineage diversification in a
species complex of trapdoor spiders corresponds with riverine barriers or with an ecological gradient associated
with elevational tiering. Aliatypus janus was sampled from throughout its range, with emphasis on populations in
the southern Sierra Nevada Mountains of California. We collected multi-locus genetic data to generate a species
tree for A. janus and its close relatives. Coalescent based hypothesis tests were conducted to determine if genetic
breaks within A. janus conform to riverine barriers. Ecological niche models (ENM) under current and Last
Glacial Maximum (LGM) conditions were generated and hypothesis tests of niche conservatism and divergence
were performed. Coalescent analyses reveal deeply divergent genetic lineages within A. janus, likely corre-
sponding to cryptic species. Two primary lineages meet along an elevational gradient on the western slopes of
the southern Sierra Nevada Mountains. ENMs under both current and LGM conditions indicate that these groups
occupy largely non-overlapping niches. ENM hypothesis testing rejected niche identity between the two groups,
and supported a sharp ecological gradient occurring where the groups meet. However, the niche similarity test
indicated that the two groups may not inhabit different background niches. The Sierra Nevada Mountains
provide a natural laboratory for simultaneously testing ecological niche divergence and conservatism and their
role in speciation across a diverse range of taxa. Aliatypus janus represents a species complex with cryptic
lineages that may have diverged due to parapatric speciation along an ecological gradient, or been maintained
by the evolution of ecological niche differences following allopatric speciation.

1. Introduction

Mountainous regions are hotspots for population divergence, spe-
ciation, and high species richness (e.g., Moritz et al., 2000; Garrick,
2011; Fjeldså et al., 2012). Although many mechanisms of montane
divergence are possible, two contrasting models predominate in both
the theoretical and empirical literature (Hua and Wiens, 2013). One
model invokes niche conservatism, where taxa adapted to mountainous
habitats are unable to exist in lowland habitats. These low elevation
habitats thus represent dispersal barriers, which combined with mon-
tane ecological niche conservatism across time and space, promotes
divergence and speciation (Moritz et al., 2000; Wiens, 2004). Under an
alternative niche divergence model, elevational gradients implicit with
montane habitats give rise to differences in abiotic and biotic selective
pressures, with disruptive selection along these selective gradients

driving in situ parapatric or ecological speciation (Endler, 1977; Doebeli
and Dieckmann, 2003). Many empirical studies have contrasted these
different mechanisms either in a single lineage (Patton and Smith,
1992; Hall, 2005; Schmitz et al., 2008; Guarnizo et al., 2009; Kozak and
Wiens, 2010; Leaché et al., 2010; McCormack et al., 2010; Fuchs et al.,
2011), or for multiple taxa living in different geographic regions (Kozak
and Wiens, 2007; Hua and Wiens, 2010; Cadena et al., 2012).

The California Sierra Nevada (SN) mountain range includes the
highest elevations (to 4421 m), and is one of the longest geographically
contiguous ranges in the continental United States. Uplift has resulted
in very steep elevational gradients on the eastern edge of the range,
with more gentle grades on western slopes (see Moritz et al., 2008;
Leaché et al., 2010). The largest rivers in the region flow from eastern
high elevations to the western Central Valley; southern SN examples
include the San Joaquin, Kings, and Kaweah Rivers, all with deeply
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incised canyons. For low elevation taxa, higher elevations that separate
drainage basins might represent barriers, while for high elevation taxa
the canyons themselves potentially represent repeated north – south
barriers. Many modern (explicitly phylogenetic) biogeographic studies
have been conducted in the SN, and lineage divergence associated with
riverine barriers has been found in several taxa, particularly in the
southern SN (Matocq, 2002; Kuchta and Tan, 2006; Rovito, 2010;
Schoville and Roderick, 2010; Schoville et al., 2012). Leaché et al.
(2010) explicitly tested a niche divergence model in southern SN Sce-
loporus lizards, and found support for both riverine barriers and eleva-
tional selection.

The spider genus Aliatypus includes fourteen described species
(Coyle, 1974; Hedin and Carlson, 2011; Satler et al., 2013), twelve of
which are restricted to California. Aliatypus are stocky, medium-sized
(6–20 mm) subterranean spiders that cover silk-lined burrows with a
wafer-like trapdoor. These spiders are generally highly dispersal-lim-
ited with strong preferences for cool, moist microhabitats (e.g., north-
facing ravines, shaded roadcuts), and prior genetic studies have re-
vealed geographically localized population genetic structuring and
evidence for cryptic speciation (Hedin and Carlson, 2011; Satler et al.,
2011, 2013). This study focuses on Aliatypus janus, which is phylo-
genetically allied with members of the A. californicus group, a clade also
including A. californicus, A. gnomus and A. isolatus (Coyle, 1974; Satler
et al., 2011). While most Aliatypus species occupy mid-elevation upland
habitats and have relatively small geographic distributions (Coyle,
1974; Coyle and Icenogle, 1994), A. janus has an atypically large geo-
graphic distribution – populations occur in Coast Range xeric canyons
(e.g., western edge of the Central Valley), to upper montane forests near
the crest of the southern SN (above 2400 m), to lower xeric habitats in
eastern California and western Nevada (Fig. 1). The molecular phylo-
genetic research of Satler et al. (2011) revealed multiple deeply di-
vergent genetic lineages within A. janus, and hinted that this taxon
might represent a species complex.

The A. janus complex represents an intriguing system in which to
study the relative roles of niche conservatism versus niche divergence.
Climatic zonation speciation depends upon a balance between selection
and gene flow, and might be more common in dispersal-limited taxa
(Cadena et al., 2012); available data suggest that gene flow is highly
restricted in A. janus (Satler et al., 2011). The species range spans se-
vere elevational gradients on both sides of the SN, although specimens
are sparse and challenging to collect east of the range crest. In the
western foothills of the southern SN specimens are readily collected,
and both low and high elevation populations occupy most of the region
(Fig. 1). These paired populations are separated by multiple large rivers
(see above), setting up a natural design where the contrasting roles of
niche divergence and conservatism can be studied (similar to Leaché
et al., 2010). As in any natural system, potentially important variables
are not perfectly isolated – there are expected south to north selective
differences, and some east to west dispersal barriers are possible.
However, most prior regional studies emphasize selective gradients on
an elevational (longitudinal) axis, and dispersal barriers on a latitudinal
axis (Moritz et al., 2008; Leaché et al., 2010).

Despite the apparent selective gradient encountered by A. janus,
finding ecologically-mediated divergence in this taxon would be sur-
prising. Most Aliatypus species occupy exclusive allopatric geographic
distributions, and all taxa show a general preference for similar mi-
crohabitats. Species syntopy is restricted to distant phylogenetic re-
latives (Coyle and Icenogle, 1994; Satler et al., 2011), consistent with a
non-adaptive radiation dominated by geographic isolation and ecolo-
gical niche conservatism. Also, because these spiders live underground,
above-ground environmental differences across habitats might be buf-
fered (Bond and Stockman, 2008). Although most other studies of
mygalomorph trapdoor spiders support a “niche conservatism plus vi-
cariance” model (Bond et al., 2001; Hedin et al., 2013, Hedin et al.,
2015; Leavitt et al., 2015; Harvey et al., 2015), some studies have ex-
plicitly tested for ecological divergence in mygalomorphs (Bond and

Stockman, 2008; Beavis et al., 2011).
Here we reconstruct the phylogeographic history of the A. janus

complex (plus close outgroups) using a mitochondrial COI and nuclear
28S sample of over 170 specimens from 102 geographic locations.
Based on congruent recovery of multiple geographic clades for these
gene regions, we gathered DNA sequences for six additional nuclear
genes for a subsample of specimens, placing emphasis on paired low
versus high elevation populations from the western slopes of the
southern SN. Using this multigenic nuclear dataset we conduct multi-
species coalescent analyses to explicitly test alternative riverine versus
elevational gradient divergence hypotheses. Our results support an
elevational gradient hypothesis, which is further supported by ecolo-
gical niche modeling and various tests for niche overlap and similarity.
Overall, this research is novel in providing evidence for cryptic, eco-
logically-mediated divergence in the southern SN, in a taxonomic group
otherwise dominated by divergence via niche conservatism.

2. Materials and methods

2.1. Specimen and genetic sampling

We sampled all members of the A. californicus group (defined
above), with an emphasis on A. janus (Fig. 1, Appendix A in supple-
mentary materials). Both leg tissues (preserved in 100% EtOH) and
voucher specimens (in 80% EtOH) are housed in the San Diego State
Terrestrial Arthropod Collection. Genomic DNA was extracted from leg
tissue using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA)
following the manufacturer’s protocol. Sequence data were obtained
from 1–2 individuals from most localities for mitochondrial gene cy-
tochrome c oxidase subunit I (COI) and nuclear ribosomal 28S. PCR
conditions are detailed in Appendix B in supplementary materials. Six
custom nuclear genes (Table 1) were sequenced for a subsample of 46
specimens. Primers for nuclear genes were designed based on com-
parative Aliatypus transcriptomics (Appendix B).

PCR products were purified using Montage columns or filter plates
(Millipore) and sequenced in both directions by the University of
California, Riverside IIGB Facility or Macrogen USA using amplification
primers. Sequences were edited in Sequencher (Gene Codes Corp.) or
Geneious Pro 6 (Kearse et al., 2012) and aligned using MAFFT (Katoh
and Standley, 2013). For 28S, Gblocks (Castresana, 2000) was run
under default conditions in Mesquite v3.04 (Maddison and Maddison,
2015) to remove ambiguously aligned regions. For heterozygous nu-
clear sequences, SeqPHASE (Flot, 2010) and PHASE v2.1.1 (Stephens
et al., 2001; Stephens and Scheet, 2005) were used to bioinformatically
infer alleles.

2.2. Gene trees and species trees

Individual gene trees were reconstructed with BEAST v1.8.1
(Drummond et al., 2012). Analyses were run with a lognormal relaxed
molecular clock, a birth-death incomplete sampling tree prior, and se-
quence models determined by jModelTest 2 (Guindon and Gascuel,
2003; Darriba et al., 2012). The COI dataset was partitioned by codon
position, while the less-variable nuclear datasets were not partitioned.
Analyses were run for 100,000,000 generations with data stored every
10,000 generations. Log files were visualized in Tracer v1.6 (Rambaut
et al., 2014). Initial analyses run with GTR sequence models failed to
reach stationarity, and thus HKY models were applied with the other
model parameters as determined by jModelTest 2. Maximum clade
credibility trees were produced with TreeAnnotator v2.3.1 (Bouckaert
et al., 2014) using mean heights for nodes and 10% burnin. Mean K2P
distances were calculated for each unphased locus in Molecular Evo-
lutionary Genetic Analysis (MEGA) v7.0 (Kumar et al., 2016).

A species tree was generated with ∗BEAST v1.8.1 with the
individuals from the reduced nuclear gene sample (six custom +
28S data) treated as OTUs. Analyses were run with a lognormal
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Fig. 1. Geographic distribution of sampled populations. Site acronyms correspond to those in Appendix A. Colors and clade names follow phylogenetic results (e.g., Figs. 2 and 3). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Genetic sampling and matrix information. Gene names are based on top BLAST hit. COI is partitioned by codon position (pos).

Gene name Ixodes scapularis homolog Matrix % complete Aligned length Model of evolution

39S ribosomal protein L44, putative ISCW001813 96 786 HKY+I+G
Ribonuclease P/MRP protein subunit POP5, putative ISCW006802 100 471 GTR+G
Tartan protein, putative ISCW021508 83 673 GTR
Sdccag1 protein, putative ISCW000677 98 951 HKY+G
Sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1,

putative
ISCW006800 87 544 K80+G

Ribosome biogenesis protein, putative ISCW013536 100 1035 HKY+I+G
28S ribosomal rRNA – 969 GTR+I+G
COI pos 1 – 957 GTR+I+G
COI pos 2 – GTR+I
COI pos 3 – GTR+I+G
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relaxed molecular clock with the rate for 39S ribosomal protein
L44 gene set to 1 and all others estimated. Priors for species tree
and population size were set to birth-death and piecewise linear
and constant root, respectively. The lognormal prior was used
for species.popMean, species.birthDeath.meanGrowthRate, and
species.birthDeath.relativeDeathRate. Sequence models followed in-
dividual gene tree analyses. Analyses were run for 250,000,000 gen-
erations with data stored every 25,000 generations. Analyses were run
twice and log and tree files were combined in LogCombiner v2.3.1
(Bouckaert et al., 2014) with 10% burnin. Maximum clade credibility
trees were produced with TreeAnnotator.

2.3. Riverine barrier hypothesis testing

Bayes Factor Delimitation (BFD, Grummer et al., 2014) was used to
distinguish between alternative elevational zonation versus riverine
barriers models, focusing specifically on patterns of species tree diver-
gence in the southern SN. Here we contrasted an “unconstrained” null
hypothesis (all individuals treated as OTUs) to an alternative hypothesis
in which southern SN A. janus individuals were assigned to lineages
following major river boundaries (see Results 3.3). Analyses were
conducted using the reduced nuclear dataset, with ∗BEAST parameter
settings as above. The Marginal Likelihood Estimate (MLE) was gen-
erated based on path sampling (Lartillot and Philippe, 2006) and
stepping stone (Xie et al., 2011) methods with a chain length of
100,000 generations and pathSteps set at 100. The average MLEs from
repeated analyses were used to calculate BFs. BF was determined by 2 ∗
(-lnHypA − -lnHypB), with values greater than 10 indicating decisive
support for a hypothesis (Kass and Raftery, 1995).

2.4. Ecological niche modeling

Ecological niche modeling (ENM) was performed to predict current
and historical distribution limits. For prediction of current distribution
limits, climate data from the years 1950–2000 for 19 bioclimatic vari-
ables at 30 arc-second resolution were obtained for tiles 11 and 12 from
WorldClim v1.4 (Hijmans et al., 2005; http://www.worldclim.org/tiles.
php). Climate data from the tiles were combined into layers and con-
verted to a raster stack using the ‘rgdal’ (Bivand et al., 2015) and ‘raster’
(Hijmans, 2015) packages in R v3.2.3 (R Core Team, 2015). The raster
stack was cropped to the relevant area (northern border of CA to the
southeastern border of AZ). To predict distributions during the Last
Glacial Maximum (LGM; approx. 21,000 years ago), bioclimatic vari-
ables were obtained from the Community Climate System Model 4
(CCSM4; http://www.worldclim.org/paleo-climate) at 2.5 arc-minutes
resolution.

The software ENMTools v1.3 (Warren et al., 2010) was used to find
correlations among current climate data variables. Highly correlated
variables (r > 0.9) were removed following Jezkova et al. (2011),
resulting in ten variables used in generating current and LGM ENMs
(BIO1-4, 8, 9, 12, 15, 17, 18). ENMs were estimated using Maxent
v3.3.3k (Phillips et al., 2006) with 25% of samples randomly selected
for testing, ten replicates with subsampling, and otherwise default
settings, for two well-supported groups identified in species tree ana-
lyses (Western and Eastern, see Results). The mean and standard de-
viation for the area under receiver operating curve (AUC) for testing
and training datasets were compared to assess model quality. In-
dividuals not sampled in the species tree analyses were assigned to the
two groups based on their placement in the COI and 28S gene trees. The
ENM was not estimated for the ‘Yosemite’ clade due to small sample
size (three localities) and the uncertain phylogenetic placement of this
group. Occurrence records were based on GPS coordinates from prior
publications (Coyle, 1974; Hendrixson and Bond, 2005; Satler et al.,
2011), and this study (using a hand-held GPS or from Google Earth ©).

Maxent ASCII results were converted to binary presence/absence
maps through ArcGIS Desktop v10.3 (ESRI) using the 10% minimum

training logistic threshold. Regions of overlap were estimated by adding
binary maps together (Western versus Eastern for current and LGM
predictions; Current versus LGM for both Western and Eastern) using
the Raster Calculator in the Spatial Analyst toolbox.

2.5. Ecological niche hypothesis tests

For statistical comparison of Western and Eastern group predicted
ENMs, we conducted analyses of niche overlap, niche identity, niche
similarity, and linear and blob range-breaking tests in ENMTools
(Warren et al., 2008, 2010; Glor and Warren, 2011). Niche overlap was
determined by comparing habitat suitability values for each grid cell
estimated from the Maxent ENMs (Warren et al., 2008, 2010). Values
for two measurements of overlap were calculated, Schoener’s D
(Schoener, 1968) and I (Warren et al., 2008), which range from 0 (no
overlap) to 1 (complete overlap).

To test if Eastern and Western groups exhibit niche conservatism,
we conducted the niche identity test (Warren et al., 2008, 2010). One
hundred pseudoreplicates were used to generate a null distribution of
niche overlap, compared to the observed overlap value using a one-
tailed test. Because the niche identity test represents a very strict
comparison for assessing ecological conservatism (Warren et al., 2008),
we also performed the niche similarity (i.e., background) test. The test
distributions for each group were generated based on minimum area
polygons from occurrence points in ArcMap (ESRI), and occurrence
points were tested against random points from within the distribution
of the other group. Because both groups have distributions interrupted
by large regions of inhospitable habitat (San Joaquin Valley for Wes-
tern, Mojave and Sonoran deserts for Eastern; Fig. 1), multiple polygons
were generated for each group to exclude these regions. For the Wes-
tern group, polygons were generated for the Coast Range and Sierran
foothill localities, and 200 random data points per occurrence point
were obtained from each polygon (10,200 total random points). For the
Eastern group, random data points were obtained from four polygons in
proportion to the number of occurrence points used to make the poly-
gons (200 random points/occurrence for 5200 total random points).
The four polygons consisted of a minimum area polygon from occur-
rence points in the SN, and three polygons based on single pixel buffers
surrounding Arizona sky island localities for A. isolatus. One hundred
pseudoreplicates were used to generate null distributions of niche si-
milarity, compared to the observed overlap value using a two-tailed
test. An observed niche overlap value greater or less than the null
distributions indicate niche conservation or divergence, respectively
(Warren et al., 2008; McCormack et al., 2010).

We tested for an abrupt environmental gradient between Western
and Eastern groups using the linear and blob range-break tests (Glor
and Warren, 2011). For each test, one hundred pseudoreplicates were
used to generate a null distribution. Identical partitions were removed
to avoid non-independence, and the reduced null distribution was
compared to the observed overlap value using a one-tailed test. Histo-
grams for all hypothesis tests were generated using the ‘ggplot2’ v2.1.0
(Wickham, 2009) package in R.

3. Results

3.1. Data availability

The full genetic sample consisted of 171 specimens from 102 dis-
tinct geographic locations, including a sample of 129 A. janus speci-
mens (Fig. 1, Appendix A). Original COI and 28S data were generated
for most specimens, with some published COI and 28S data (Hendrixson
and Bond, 2005; Satler et al., 2011) downloaded from GenBank. Se-
quence data for six custom nuclear genes was generated for 46 speci-
mens. Unphased DNA sequences have been submitted to GenBank
(Appendix A); phased matrices are available in the Dryad Digital Re-
pository: http://dx.doi.org/10.5061/dryad.dq28j.

J. Starrett et al. Molecular Phylogenetics and Evolution 118 (2018) 403–413

406

http://www.worldclim.org/tiles.php
http://www.worldclim.org/tiles.php
http://www.worldclim.org/paleo-climate
http://dx.doi.org/10.5061/dryad.dq28j


3.2. Gene trees and species trees

The 28S gene tree, rooted using BEAST relaxed clock model, reveals
several well-supported geographic lineages (Fig. 2). In addition to a
distinct A. californicus + A. gnomus lineage, multiple 28S lineages are

found within A. janus, including Yosemite, non-exclusive SN Foothills
(SNF) and Coast Range (CR) lineages, and a High Eastern (HE) lineage
that includes A. isolatus (Figs. 1 and 2). The HE lineage in particular
occupies higher elevations than other lineages, although there is some
overlap between the lowest HE populations and the highest SNF
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populations (Figs. 1 and 2). For the COI tree, root placement and
lineage interrelationships differ from the 28S tree, but major recovered
lineages are similar (Appendix C). We discovered sympatry of divergent
28S and COI lineages at two geographic locations – we found A. cali-
fornicus and SNF A. janus in sympatry in Madera County (CDVA), and
HE and SNF A. janus in near sympatry in Kern County (GREE and H155
sites within one kilometer). This sympatry is the first ever recorded
between congeners within the A. californicus species group (see Coyle
and Icenogle, 1994; Satler et al., 2011).

A nuclear-only matrix (28S + phased data for six custom genes) was
assembled for a subsample of 46 specimens. Nuclear gene character-
istics are reported in Table 1, with custom nuclear gene trees found in
Appendix C. The nuclear subsample spanned the phylogenetic diversity
discovered in our total sample (see Fig. 2), and emphasized paired SNF
versus HE A. janus populations sampled on the west slope of the
southern SN. The nuclear only ∗BEAST species tree, with individuals
treated as separate OTUs, recovers major lineages as found in individual
COI and 28S gene trees (Fig. 3). These include A. californicus + A.

gnomus, and HE, Yosemite, SNF and CR A. janus lineages. The species
tree includes an A. isolatus lineage separate from the HE A. janus lineage
(together referred to as Eastern group), and monophyletic SNF and CR
A. janus lineages (together referred to as Western group). Although
lineages within the A. janus complex are strongly-supported, relation-
ships among these lineages are relatively poorly supported. Because
some ESS values did not exceed 200 in analyses that included the ri-
bosome biogenesis gene data (the tree likelihood for this dataset failed
to reach stationarity), analyses were also run without this gene. Species
trees with and without this gene are topologically quite similar, with
increased nodal support at certain nodes for the reduced dataset
(compare Fig. 3 to Appendix C).

Mean K2P distances were calculated for all loci both within and across
the major A. janus clades (Table 2). Intra-clade distances were similar to
inter-clade distances, reflecting the deep phylogenetic breaks and high
genetic variation across sampling localities within clades, as is typical for
mygalomorph spiders (e.g., Bond et al., 2001; Bond and Stockman, 2008;
Hedin et al., 2013; Satler et al., 2013; Leavitt et al., 2015).
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Fig. 3. All nuclear data *BEAST maximum clade credibility species tree. Major lineages named and colored as in Figs. 1 and 2. Posterior probabilities shown for higher level clades. Inset:
adult female A. janus, San Luis Obispo County, Temblor Range.
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3.3. Riverine barrier hypothesis testing

The “unconstrained” (all individuals treated as OTUs) nuclear spe-
cies tree reveals a pattern of elevational tiering in the southern SN
(Figs. 3 and 4). We statistically compared this to an alternative hy-
pothesis in which southern SN A. janus individuals were assigned to
lineages following major river boundaries (North of Merced, North of
San Joaquin, North of Kings, North of Kaweah, North of Kern, South of

Kern; Fig. 4). For this alternative hypothesis, the phylogenetic position
of specimens collected from outside of the southern SN region was left
unconstrained (i.e., individuals treated as OTUs). Comparison of mar-
ginal likelihood values calculated using both path sampling and step-
ping stone methods reveals convincing support for the elevational
tiering hypothesis (Table 3). We obtained similar results from analyses
conducted with the ribosome biogenesis gene removed.

Table 2
Mean K2P percent distances for each locus across and within phylogenetic groups (Y = Yosemite, E = Eastern, and W = Western). Distances were also calculated for two geographic
groups in the Western group (CR = Coast Range, SNF = Sierra Nevada Foothills).

COI 28S 39S ribosomal Ribonuclease Tartan Sdccag Sushi Ribosome

Across
Y v E 13.1 1.7 1.5 1.1 2.0 0.6 1.4 0.9
Y v W 13.1 2.1 2.3 1.3 2.3 0.7 1.3 1.3
E v W 13.6 2.0 2.6 1.7 2.9 0.9 1.7 0.9
CR v SNF 12.8 1.9 1.8 0.6 1.9 0.8 1.6 0.9

Within
Y 7.9 0.4 0.3 0.1 0.5 0.2 0.5 0.5
E 11.5 0.9 1.4 0.9 1.0 0.7 0.9 0.5
W 11.7 1.3 1.6 0.5 1.9 0.7 1.5 0.8
CR 11.3 0.8 1.0 0.6 0.8 0.5 1.3 0.7
SNF 10.2 0.8 1.6 0.4 2.3 0.7 1.3 0.6
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Fig. 4. Graphical portrayal of riverine barrier hypothesis test. Unconstrained (all individuals as OTUs) hypothesis (top), supporting elevational tiering (topology as in Fig. 3). Colored
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3.4. Ecological niche model predictions

Mean AUC values for training and test datasets were similar under
both current and LGM conditions. Under current conditions, AUC va-
lues for training and test datasets, respectively, for the Western group
were 0.989 and 0.981 (standard deviation = 0.006), and for the

Eastern group 0.962 and 0.933 (standard deviation = 0.032). Under
LGM conditions, AUC values for training and test datasets, respectively,
for the Western group were 0.998 and 0.998 (standard devia-
tion = 0.001), and for the Eastern group 0.999 and 0.995 (standard
deviation = 0.002). Binary ENM predictions produced minimally
overlapping distributions for Western and Eastern A. janus groups under
both current and LGM bioclimatic conditions (Fig. 5). The predicted
ENM for the Western group during the LGM in the SN foothills is nearly
identical to that under current conditions, and predictions in the Coast
Ranges are largely similar, with expansion further southwest during the
LGM (Fig. 5). For the Eastern group, the ENM predicted under LGM
conditions shows greater expansion further north in the SN (Fig. 5), in
particular in the high elevation regions, as well as a greater area sur-
rounding current A. isolatus localities in Arizona (not shown).

3.5. Ecological niche hypothesis testing

Niche overlap estimates from ENM predictions under current con-
ditions are moderately low (D= 0.175; I= 0.368). ENM hypothesis

Table 3
Results of Bayes factor delimitation (BFD) analyses comparing riverine barrier and un-
constrained models. Bayes factors (BF) calculated from marginal likelihood estimates
(MLE) generated using stepping-stone (SS) and path sampling (PS) methods.

ALL nuclear loci MLE (SS) BF MLE (PS) BF

Individual OTUs −15212.93 – −15206.55 –
River groups −15640.01 854.16 −15625.62 838.14

Ribosome biogenesis excluded
Individual OTUs −12462.13 – −12456.63 –
River groups −12809.63 695.00 −12797.82 682.39

Fig. 5. ENM binary predictions, showing California Aliatypus janus. (a) based on current conditions for Western (blue) and Eastern (red) with overlap indicated by green; (b) based on
LGM conditions, with same color scheme; (c) Western group current (dark blue) versus LGM (light blue); (d) Eastern group current (dark red) versus LGM (light red). Black dots indicate
occurrence points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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tests produced the same qualitative results using D and I statistics; thus,
we only present results for I. The observed niche overlap estimation
occurred below the null distribution for the niche identity test (Fig. 6a)
rejecting niche conservatism between Western and Eastern ENMs
(p < 0.01). For the niche similarity test (Fig. 6b), observed niche
overlap fell within the null distributions for each comparison (West
versus East background, p = 0.168; East versus West background
p = 0.426). Removal of duplicated pseudoreplicates for linear and blob
range break analyses resulted in 42 and 66 data points, respectively.
Observed niche overlap occurred below the null distribution for both
tests (Fig. 6c and d), thus rejecting the null of no abrupt transition
(p < 0.05).

4. Discussion

4.1. Cryptic diversity in the Aliatypus janus species complex

Coalescent analyses of the multi-locus dataset revealed deep phy-
logenetic breaks, confirming that A. janus represents a species complex
(Satler et al., 2011), and further supporting the SN as an evolutionary
hotspot (Davis et al., 2008). Deep phylogenetic breaks consistent with
species level divergences are common in named mygalomorph species
and other dispersal limited arachnid species (e.g., Bond et al., 2001;
Graham et al., 2015; Bryson et al., 2016; Derkarabetian et al., 2016;
Hamilton et al., 2016; Opatova et al., 2016). We recovered three well-
supported groups (Fig. 3; PP ≥ 0.9) in the SN: (1) a widespread clade
distributed in the southern Coast Range and the western SN foothills,
(2) a widespread clade distributed at high elevation in the SN
(> 1300 m), montane regions in eastern CA/western NV, and montane

regions of AZ, and (3) a geographically-restricted clade with popula-
tions known only from near Yosemite and Bass Lake (Fig. 1).

Riverine barriers have played a major role in lineage diversification
in a number of SN taxa (Jockusch and Wake, 2002; Kuchta and Tan,
2006; Feldman and Spicer, 2006; Polihronakis and Caterino, 2010;
Rovito, 2010; Leaché et al., 2010; Schoville and Roderick, 2010;
Schoville et al., 2012). Coalescent based hypothesis tests did not sup-
port major lineages of A. janus conforming to current river barriers
(Table 2, Fig. 4), despite evidence of initial incision occurring in the late
Cretaceous for some southern SN canyons (House et al., 1998; Clark
et al., 2005). Riverine barriers likely contribute to genetic structuring
within the Western and Eastern A. janus lineages, but testing this
phylogeographic hypothesis will require much denser geographic
sampling and more rapidly-evolving molecular datasets.

Both Western and Eastern groups include deep phylogeographic
divisions (Fig. 3). For the Western group, coalescent analysis resulted in
reciprocally monophyletic CR and SNF groups, albeit with low PP
support. Suitable habitat was not predicted under current or LGM
conditions for most of the Central Valley, which is considered a major
barrier to gene flow for mesic adapted taxa (Calsbeek et al., 2003;
Rissler et al., 2006). However, the Central Valley has undergone periods
of suitability, allowing for so-called ‘trans-valley leaks’ in multiple
arachnids and salamanders (Kuchta et al., 2009; Satler et al., 2011;
Hedin et al., 2013; Leavitt et al., 2015; Reilly et al., 2015; Emata and
Hedin, 2016). The trans-valley pattern we observe, with a deep phy-
logenetic break between CR and SNF, is not consistent with a recent
west to east range expansion resulting in secondary contact with
Eastern A. janus. Within the Eastern group, deep intraspecific di-
vergences may reflect the complex geologic and climatic history of the

Fig. 6. Ecological niche hypothesis tests. Niche overlap values (I) from ENM predictions based on occurrence data (green arrow) and pseudoreplicates (null distributions). (a) Niche
identity, (b) niche similarity, West predicting East (blue) and vice versa (red). Range break tests (c) linear and (d) blob. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

J. Starrett et al. Molecular Phylogenetics and Evolution 118 (2018) 403–413

411



SN, which has undergone repeated glaciation events in the Pliocene and
Pleistocene (reviewed in Gillespie and Zehfuss, 2004). These glaciation
events have contributed to genetic divergences observed in other high
elevation SN taxa (Rovito, 2010; Schoville and Roderick, 2010;
Schoville et al., 2012; Rubidge et al., 2014).

4.2. Ecological divergence associated with elevational tiering

We found evidence that ecological niche divergence may play a
prominent role in the maintenance of cryptic species in the A. janus
species complex. No obvious physical barrier to gene flow occurs be-
tween Western and Eastern A. janus groups, and range break tests in-
dicate that these groups meet along an abrupt environmental gradient
in the western SN. The predicted distributions of the Western and
Eastern groups appear to have remained largely stable and with
minimal overlap since the LGM, indicating that contact between the
two groups is not a recent phenomenon.

The minimal overlap of ENMs, abrupt environmental gradient, and
lack of evidence of recent secondary contact between Western and
Eastern groups could be evidence of parapatric speciation. However,
phylogenetic analyses did not recover multiple high elevation groups
derived from low elevation groups, which would represent an expected
pattern consistent with repeated parapatric speciation events (Patton
and Smith, 1992; Moritz et al., 2000). The deep divergence and phy-
logenetic uncertainty among the three major A. janus lineages limits our
ability to infer whether ecological divergence drove speciation, or if
such divergence acts to maintain species boundaries after secondary
contact following allopatric speciation.

While niche identity, in the strict sense, was rejected, Western and
Eastern A. janus groups do not occupy more conserved (or divergent)
niches than those available to each other. It is perhaps surprising that
conservatism was not detected considering the divergent ecological
backgrounds that the two groups occupy, and the substantial evidence
for niche conservatism in mygalomorphs and other dispersal limited
arachnids (Bond et al., 2001; Keith and Hedin, 2012; Bryson et al.,
2016; Derkarabetian et al., 2016; but see Beavis et al., 2011). Failure to
reject the null may be due to insufficient sample size or a result of
ambiguity in the ranges of the two groups (Warren et al., 2008). In-
creased sampling, particularly for the Eastern group, could provide
greater power for niche similarity analysis. An alternative explanation
is that Western and Eastern A. janus inhabit conserved or divergent
niches, but the level of resolution currently available for ENM does not
account for specific and specialized microhabitats (e.g., north-facing
slopes, shaded ravines, soil types; e.g., Anacker and Strauss, 2014;
Massatti and Knowles, 2014; Varner and Dearling, 2014).

The relative roles of ecological niche divergence and conservatism
in species formation remains an important topic in biogeographic re-
search. Ecological niche divergence associated with the evolution of
cryptic A. janus lineages highlights the need for further investigation
into the role of elevational tiering in SN taxa. Study of short range
endemic arachnids (and other invertebrates) may be particularly in-
sightful for revealing patterns of evolutionary divergence along eleva-
tional gradients (Garrick, 2011). These studies will take on greater
importance given the potential impacts of climate change on montane
restricted taxa (Rubidge et al., 2012).
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