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SUMMARY

Dopamine (DA) loss in Parkinson’s disease (PD) al-
ters the function of striatal projection neurons
(SPNs) and causes motor deficits, but DA replace-
ment can induce further abnormalities. A key patho-
logical change in animal models and patients is
SPN hyperactivity; however, the role of glutamate in
altered DA responses remains elusive. We tested
the effect of locally applied AMPAR or NMDAR
antagonists on glutamatergic signaling in SPNs of
parkinsonian primates. Following a reduction in
basal hyperactivity by antagonists at either receptor,
DA inputs induced SPN firing changes that were
stable during the entire motor response, in clear
contrast with the typically unstable effects. The
SPN activity reduction over an extended putamenal
area controlled the release of involuntary movements
in the “on” state and therefore improved motor re-
sponses to DA replacement. These results demon-
strate the pathophysiological role of upregulated
SPN activity and support strategies to reduce striatal
glutamate signaling for PD therapy.

INTRODUCTION

Motor failure in Parkinson’s disease (PD) is caused primarily by
progressive neurodegeneration of the substantia nigra pars
compacta. The loss of nigral dopamine (DA) cells has usually
reached a considerable level by the time motor deficits develop
(Lang and Lozano, 1998). The central role of DA is also demon-
strated by the effectiveness of DA replacement to improve motor
symptoms in all stages of the disease. However, our understand-
ing of the pathophysiology of motor control in PD is far from
clear, particularly with respect to the response to DA replace-
ment. Adding DA to the system does not restore normal move-
ment but rather induces a partial and short recovery that is
further complicated by involuntary movements called dyskine-
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sias (Obeso et al., 2000). Indeed, in experiments that are
controlled for pharmacological variables, the effective DA stimu-
lation is not yet followed by the expected restitution of normal
function (Bravi et al., 1994; Nutt et al., 2000).

DA modulates the excitability of striatal projection neurons
(SPNs), which express DA D4 receptors (D4R) or DA D, receptors
(D2R), forming the direct and indirect striatal output pathways,
respectively (Gerfen and Surmeier, 2011). Direct SPNs (dSPNs)
and indirect SPNs (iSPNs) undergo multiple functional and
morphological changes following nigrostriatal denervation that
may be involved in altered responses to dopaminergic stimula-
tion (Surmeier et al., 2014). One of the salient changes is the
increased spontaneous SPN activity that has been found across
animal models and patients. From activity levels usually below
2 Hz in the normal condition, the average firing frequency in-
creases variably in rodent models to 5-12 Hz under anesthesia
(Tseng et al., 2001) and to more than 20 Hz in alert, advanced
parkinsonian primates and patients with PD (Liang et al., 2008;
Singh etal., 2016). These large SPN activity increases in primates
and humans were not yet identified in cells segregated into spe-
cific output pathways. In line with classic views of the functional
model of PD, the use of optogenetics in transgenic mouse models
has suggested that iISPNs are most likely the upregulated units af-
ter DA denervation (Kravitz et al., 2010). However, further studies
disputed the classic views of the model, demonstrating the coop-
erative activity of both striatal pathways for basal ganglia outputs
and movement initiation (Cui et al., 2013; Freeze et al., 2013). In
addition, the primate studies show few low-activity units and
opposite responses to DA among the recorded SPNs. These ob-
servations are difficult to reconcile with the idea of recordings
limited to one SPN subpopulation in the primate and thereby
call into question previous assumptions on the distribution of hy-
peractive SPNs (Beck et al., 2017). Yet crude single-cell record-
ings in primates and patients critically show that there
are large firing increases in the active SPNs in the absence of
DA. Such a state of high basal activity likely may interfere with
the strength of DA signaling to modulate SPN excitability.
Congruent with this premise, dopaminergic stimulation induces
unstable changes in SPN firing frequency that are associated
with dyskinesias in primates with advanced parkinsonism (Liang

941

OPEN

ACCESS
CellPress




OPEN

ACCESS
CellP’ress

etal., 2008; Singh et al., 2015). Thus, SPN hyperactivity may play
a primary role in the altered responses to DA replacement.

Glutamate inputs from cortical and thalamic terminals provide
the excitatory drive of the SPN and likely contribute to the hyper-
activity developed in PD. The cumulative evidence supports up-
regulation of corticostriatal signals (Gubellini et al., 2002; Ingham
et al., 1998), but recent data also show changes in the strength of
thalamostriatal synapses after DA loss (Parker et al., 2016). Glu-
tamatergic synaptic contacts undergo significant reorganization
due to morphological changes of the SPN dendritic arborization
(Day et al., 2006; Villalba and Smith, 2017). Notably, spine loss
and dendrite changes are differentially developed in dSPNs and
iSPNs, indicating that various adaptations may remodel glutama-
tergic synapses. In the same line, ex vivo recordings following DA
depletion demonstrate increased excitability and loss of long-
term potentiation and depression at corticostriatal synapses (Ba-
getta et al., 2011; Shen et al., 2008). Although some of these
changes can be reversed by DA replacement, corticostriatal syn-
aptic connectivity, strength, and plasticity remain altered (Fieblin-
ger et al., 2014; Picconi et al., 2003). At the level of glutamate
receptors, both DA loss and replacement are associated with
changes in the expression, subunit composition, and ratio of
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid recep-
tor (AMPAR) to N-methyl-D-aspartate receptor (NMDAR) (Ba-
getta et al., 2012; Mellone et al., 2015). Altogether these data
suggest that an intervention to regulate the glutamate signals tun-
ing SPN activity may enable more effective DA modulation.

Here, we used the primate model of advanced PD to study the
SPN firing changes related to the motor response induced by
dopaminergic stimulation under the control of effective gluta-
mate inputs on the recorded SPN by applying selective NMDAR
or AMPAR antagonists. Prior to these tests in the primate, we
determined (1) the selectivity of the drug at the concentration
applied locally using patch-clamp recordings in cultured cells,
(2) the expected concentration of the drug reached in vivo using
in silico prediction of diffusion following intraparenchymal injec-
tion, and (3) the corresponding doses of the NMDAR and AMPAR
antagonists for an equivalent effect reducing high SPN activity
in vivo. We also tested the motor effects of glutamate-controlled
SPN activity over the primate putamen. Our data show that a
decrease of either AMPAR or NMDAR signaling that substantially
reduced the basal SPN firing rate results in effective stabilization
of the neuronal response to DA during the whole period of
reversal of parkinsonian symptoms, referred to as the “on” state.
This effect at the single-cell level translated into motor behavioral
effects following the NMDAR antagonist infusion over an
extended striatal area. The drug-induced reduction of activity
across SPNs markedly decreased the dyskinesias caused by
L-DOPA. These data support a pivotal role of striatal glutamater-
gic excitation and SPN hyperactivity in the response to DA
replacement in PD.

RESULTS
Selectivity of NMDAR and AMPAR Antagonists for In Vivo
Microinjection Assays

The impact of reduced glutamatergic signaling on the dysregu-
lated SPN activity in parkinsonian monkeys was determined
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with single-cell recordings after intrastriatal injection of high
concentrations of selective NMDAR and AMPAR antagonists.
Because the rapid dilution and diffusion of antagonists in vivo
can be determined quantitatively, we experimentally confirmed
the antagonist selectivity in vitro by establishing the concentra-
tion-effect relationship for inhibition by each antagonist on
currents mediated by recombinant isoforms of NMDAR and
AMPAR found in the SPN. We evoked these currents using
rapid glutamate applications in order to mimic the time course
of the glutamate concentration profile in the synaptic cleft dur-
ing synaptic transmission (Clements et al., 1992). Pre-applica-
tion of the NMDAR-selective antagonist LY235959 for 1 s
antagonized AMPAR currents only at concentrations much
higher than those predicted to be reached with intraparenchy-
mal injection following diffusion and dilution (see below). Spe-
cifically, the NMDAR-selective antagonist LY235959 inhibited
recombinant AMPAR (GluA1/stargazin) currents by 80% + 2%
at 9 mM and 50% =+ 6% at 900 pM but only 13% + 7% at
90 pM; the half maximal inhibitory concentration (ICsp) of
LY235959 was 1.1 mM. By contrast, the ICsq of NMDAR antag-
onist LY235959 at GluN1/GIuN2A NMDARs activated by 1 mM
glutamate was 12 uM (Figure 1A), indicating that LY235959 is at
least 100-fold selective for NMDARs over AMPARs activated by
concentrations of glutamate reached in the synaptic cleft. We
also evaluated the selectivity of the AMPAR competitive antag-
onist NBQX by determining non-selective inhibition of recombi-
nant GIuN1/GIluN2A NMDAR currents. NBQX inhibited NMDAR
current responses to 1 mM glutamate by 50% + 0.3% at 1 mM
and 36% + 0.7% at 300 uM but only 14% =+ 0.6% at 100 pM;
the fitted 1C5o for NBQX non-selective inhibition of GIuN1/
GIuN2A NMDARs was 0.9 mM. By contrast, the 1Csq for
NBQX inhibition of GluA1/stargazin AMPARs activated by rapid
application of 1 mM glutamate was 2.7 uM (Figure 1B). Thus,
NBQX is 300-fold selective for AMPAR over NMDAR activated
by synaptic-like rapid exposure to glutamate. We expect both
competitive antagonists to be even more potent at blocking
their target receptors when these are activated by brief gluta-
mate pulses in the synaptic cleft, which are less likely to
displace any pre-bound antagonist molecules.

The striatum of a rhesus macaque is approximately 1,000 mm?
(Yin et al., 2009), which is equivalent to 1 mL in volume. Thus, in-
jection of 1 puL of antagonist into this brain area, at steady state,
would lead to an approximate 1,000-fold dilution. The time
dependence of diffusion is governed by Fick’s laws and depends
on the complex geometry of cell processes forming barriers and
hindering diffusion in the brain tissue. We estimated the peak
concentration of AMPAR and NMDAR antagonists at different
distances and at different time intervals after being injected
into brain parenchyma (Figure 1C). Briefly, we described their
space-time concentration profile from an instantaneous point
source using the classic solution of diffusion from a point source
in an isotropic medium, with parameters that describe the diffu-
sion properties of small molecules in the brain neuropil (Savtch-
enko and Rusakov, 2005; Zheng et al., 2008). The diffusion anal-
ysis showed that a more than 1,000-fold dilution of LY235959 or
NBQX occurs within less than 1 min from the injection (Figures
1D and 1E). These data suggest that injection of millimolar con-
centrations of antagonists will rapidly produce sub-micromolar
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Figure 1. In Vitro Assessment of Drug Con-
centration-Effect Relationship, Prediction
of Brain Dilution, and Recording Timeline
(A) The effects of increasing concentrations of
LY235959 on responses to rapid application of
1 mM glutamate from GluA1/stargazin receptors
expressed in HEK cells measured using patch-
clamp recordings (black symbols; five HEK cells per
concentration). The effects of LY235959 on GIuN1/
GIuN2A receptor responses activated by 1 mM
- glutamate and 10 uM glycine expressed in oocytes
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- — 1 min (solid lines)

01 1 10 held under two-electrode voltage clamp (red sym-
bols; five oocytes). Error bars indicate SEM.

(B) Concentration-response data for NBQX inhibi-
tion of GIuN1/GIuN2A responses to 1 mM gluta-
mate and 10 uM glycine for receptors expressed in
Xenopus oocytes measured using two-electrode
voltage clamp (black symbols; four oocytes).
NBQX concentration response data for GluA1/
stargazin receptors activated by 1 mM glutamate
obtained using patch-clamp recordings (red sym-

[LY235959] (M)

.. 10 min (dashed lines)

bols; four HEK cells). Error bars indicate SEM.
(C) Schematic representation of the injectrode
used to apply aSCF, LY235959, or NBQX to the
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putamen of primates.

(D) Peak LY235959 concentration (y axis) reached
at various distances from the injection site (x axis)
1, 10, and 30 min following injections. The color-
coded traces refer to data obtained when injecting
1, 3, or 9 mM LY235959. The gray shaded area
between 100 and 200 um represents the location
from which the SPN activity was recorded.

(E) As in (D) for 0.5, 1, or 3 MM NBQX.

(F) Schematic drawing of the injection site de-
picting the injectrode with recording electrode in
the putamen (left) and a coronal brain section
with a small scar at the site of guide cannula
penetration. The dashed blue line represents the

1 min (solid lines)
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concentrations in the brain tissue surrounding the injection site.
These simulations, together with voltage-clamp recordings of
the non-equilibrium receptor response to the rapid application
of glutamate at concentrations that approach those in the syn-
apse, suggest that our in vitro estimation of diffusion and po-
tency can be used to predict in vivo properties and that the

0 100 200 300 400

injectrode trajectory (right).

(G) Timeline of the continuous single-cell
recording showing data storage before (“pre,”
black box) and after the local injection (L.Il.) of
antagonist or vehicle (“post,” red box), and again
after transitioning to the “on” state and the
dyskinesia state (blue boxes) following the s.c.
L-DOPA injection.

antagonists reached concentrations in
brain parenchyma that were selective
following microinjection.

Dose Selection of NMDAR and

AMPAR Antagonists

On the basis of the results of antagonists’

specificity in vitro and on available esti-

mates of drug dilution in brain tissue,
we performed repeated striatal microinjections of 1-9 mM
LY235959 and 0.5-3 mM NBQX in the parkinsonian primate
to select doses that are equally effective in reducing cell
activity for application in subsequent experiments of L-DOPA
administration. A dose-dependent decrease in spontaneous
SPN firing frequency was observed with each antagonist
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Figure 2. NMDAR Antagonist Injection at the Site of SPN Recording Reduced the Basal Activity and Stabilized DA Responses in the
Parkinsonian Primate
(A-D) Control tests. Firing frequency changes of each SPN at baseline (pre), after local injection of aCSF (post), and after transitioning to “on” (on) and dyskinesias
states (dys) following s.c. injection of L-DOPA. In each panel, each colored curve (top graph) represents an individual SPN grouped according to the type of DA
response (increase, A and B, or decrease, C and D, in the “on” state followed by stable, A and C, or unstable, B and D, response in the dyskinesia state), and the
averaged firing frequency change for the group is shown as percentage (bottom graph). In each SPN, differences between post and on are significant at p < 0.01
(A-D). Responses were classified as unstable by significant changes in the dyskinesia state (p < 0.01). Total SPNs, 29; units with activity increase, 14; units with
activity decrease, 15.

(legend continued on next page)
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(Figures S1 and S2; a total of 69 SPNs, 8-10 SPNs per antagonist
dose). In order to avoid reaching the extremes of the concentra-
tion-response relationship (variable subtle effects and firing
silence), the antagonist dose that reduced activity by approxi-
mately 50% (45%-55% of the baseline firing rate) was the
selected dose. On average, microinjection of 9 mM LY235959
and 1 mM NBQX produced 44% (10 SPNs; p < 0.001) and
47% (10 SPNs; p < 0.01) reductions in firing frequency, respec-
tively. Therefore, these doses had equivalent inhibitory actions
on SPN activity and were injected at the site of recording in all
subsequent single-cell recording experiments to analyze
changes in the SPN response to DA input.

Effect of Reduced NMDAR and AMPAR Signaling on the
SPN Response to DA in Parkinsonian Primates
The SPN activity in parkinsonian primates (n = 5; Table S1) was
recorded continuously throughout the local application of artifi-
cial cerebrospinal fluid (@CSF) (control tests), LY235959, or
NBQX, and s.c. L-DOPA injection that induced motor changes
(Figures 1F and 1G). Recordings started in the “off” state from
before to after local injection and continued through the
L-DOPA-induced “on” and dyskinesia states. Thus, neuronal ac-
tivity data were stored for offline analysis at the following time
points: (1) before local injection (“pre”), (2) after local injection
(“post”), (3) “on” state (onset of reversal of parkinsonism induced
by L-DOPA; “on”), and (4) dyskinesias (L-DOPA-induced dyski-
nesias at the peak-dose effect; “dys”). Following local aCSF
application (control test) that had no effect or produced very brief
changes of SPN activity (pre to post), L-DOPA induced the typical
responses of increased or decreased firing frequency (post to on;
Figures 2A-2D) (Singh et al., 2015). Inthese control tests, SPN ac-
tivity increased in 14 units and decreased in the other 15 units,
and these firing changes correlated with the behavioral changes
indicating that the animal had transitioned to the “on” state. Also,
aCSF application had no effect on the magnitude of responses.
The firing frequency in the “on” state increased by 106% and
decreased by 36% (average changes in SPNs grouped by their
response to DA), comparable with previously reported data. At
the peak of L-DOPA effect, the firing rate changes were main-
tained or continued to develop (stable responses) in 41% of
SPNs (on to dys; Figures 2A and 2C). In contrast, at the peak ef-
fect responses reversed in 59% of SPNs producing the inverted
firing rate changes during the “on” state that correlate with the
appearance of peak-dose dyskinesias in advanced parkinsonian
primates (Figures 2B, 2D, 2I, and 2J) (Liang et al., 2008).
Following reduction of the baseline (“off” state) SPN activity
by LY235959 application, L-DOPA administration produced
changes in SPN firing associated with the “on” state that were

similar to those found in control experiments (i.e., activity in-
crease or decrease from post to on). However, the firing fre-
quency changes during the “on” state were stable in the large
majority of SPNs (Figures 2E-2H, 2K, and 2L). As dyskinesias
remain the same with the limited effect of local microinjection
of LY235959, the stabilized SPN activity in response to DA was
caused by the NMDAR antagonist. Similar effects were obtained
with NBQX application (Figure 3). Thus, both NMDAR and
AMPAR antagonists at selective doses that induced nearly
50% reduction of SPN activity equally prevented the inversion
of frequency changes at the peak of the L-DOPA response
(concomitant with dyskinesias), contrasting with the control ex-
periments with application of aCSF alone that resulted in a large
number of inverted (unstable) responses. The stability of
changes during the “on” state in experiments of local application
of NMDAR or AMPAR antagonist was found regardless of the
type of response to L-DOPA (i.e., increase or decrease of the
firing rate during the “on” state). Following LY235959 applica-
tion, 39 of 43 SPNs had stable responses to L-DOPA, and
following NBQX application, 43 of 45 SPNs also had stable re-
sponses, reaching a total of 93% of the recorded SPNs with sta-
ble responses (Figures 4 and S3). Therefore, the blockade of
NMDAR or AMPAR transmission that effectively reduced the
SPN hyperactivity of the parkinsonian state restored full, stable
responsiveness to DA signaling.

To further determine the relationship between the DA response
and the activity reduction induced by the NMDAR or AMPAR
antagonist, we analyzed the correlation of firing changes in each
SPN. The lowered firing frequency after LY235959 or NBQX appli-
cation at the recording site (post/pre) was a predictor of the
amount of increased activity in response to L-DOPA at the initial
behavioral change (on/post), or at the peak-dose effect (dys/
post), accounting for 35%-50% of the change (see R? values in
Figures 5A and 5B; p < 0.01). In this subset of SPNs (units with
DA-induced activity increase), the response to DA was thus highly
dependent on the level of reduced basal activity. In contrast, in the
SPN subset with DA-induced activity decrease, the amount of
activity reduction inthe “on” or dyskinesia state was not predicted
by the level of reduced basal activity (Figures 5C and 5D; p > 0.05).
In this subset of SPNs, DA-induced changes stabilized, but the
strength of the response was independent of the reduced baseline
activity. Therefore, data indicate different DA regulation across the
distinguished SPN subsets.

Effect of Reduced Striatal NMDAR Signaling on Motor
Responses to L-DOPA in Parkinsonian Primates

Motor responses to L-DOPA in primates with advanced parkin-
sonism are consistently complicated by dyskinesias that are

(E-H) NMDAR antagonist tests. The firing frequency changes of each SPN as described above for control tests are shown in (E) and (G) after local injection of
LY235959. In each SPN, differences between pre and post and between post and on are significant at p < 0.01. Differences between on and dys were non-
significant (see also Figure S3). SPN stable responses after LY235959 are compared with control tests in (F) and (H). Total SPNs, 39; units with activity increase
in the “on” state, 24; units with activity decrease, 15. In each group analysis, "p < 0.01 versus baseline, *p < 0.01 versus post aCSF or LY235959 injection, and
*p < 0.01 versus the “on” state (ANOVAs for repeated-measure followed by Bonferroni correction). In (F) and (H), *p < 0.05 between LY235959 and aCSF unstable
response (one way ANOVAs). Error bars indicate SEM (n = 5 primates; see Table S1).

(I-L) Examples of SPN unstable responses in aCSF tests (I and J) or stable responses in LY235959 tests (K and L). Short (5 s) spike trains and spectrograms for the
segment duration (180 s) are shown for each segment (pre, post, on, and dys). The unit activity is colored after spike sorting as the corresponding curve in the

frequency graphs (B), (D), (E), and (G).
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Figure 3. AMPAR Antagonist Injection at the Site of SPN Recording Reduced the Basal Activity and Stabilized DA Responses in the
Parkinsonian Primate

(A-D) The same control data as presented in Figures 2A-2D, respectively, for comparison with results obtained with the AMPAR antagonist. See Figure 2 for
details.

(E-H) AMPAR antagonist tests. Firing frequency changes of each SPN as described for control tests are shown in (E) and (G) after local injection of NBQX. In each
SPN, differences between Pre and Post, and between Post and On are significant at p < 0.01. Differences between On and Dys were non-significant (see also
Figure S3). SPN stable responses after NBQX are compared to control tests in (F) and (H). Total SPNs, 43; units with activity increase in the “on” state, 26; units
with activity decrease, 17.

(legend continued on next page)
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Figure 4. DA Responses after Local NMDAR or AMPAR Blockade
Are Stable across SPNs

The proportion of SPNs with stable DA responses is compared after local in-
jection of aCSF, LY235959, or NBQX. More than 90% of SPNs with LY235959
or NBQX injection exhibited stable DA responses (activity increase or
decrease), but fewer than 50% of SPNs with aCSF injection. Total SPNs, 117;
stable responses, 39 of 43 in LY235959 tests, 43 of 45 in NBQX tests, and
12 of 29 in aCSF tests (see complementary data on unstable DA responses in
Figure S3).

associated with inversion of the SPN firing rate changes during
the “on” state. To test whether the reduced glutamatergic trans-
mission that stabilized the SPN response to L-DOPA had the
expected behavioral correlate, LY235959 (9 mM) or aCSF was
infused unilaterally into the putamen of primates (n = 3; Table
S1) before the s.c. injection of L-DOPA. The infusion volume
(10 pL) was intended to cover only the most posterolateral region
corresponding to the sensorimotor territory (Sanftner et al.,
2005). The preselected individual dose of L-DOPA induced
reproducible monophasic peak-dose dyskinesias in the tested
animals. Striatal infusion of the NMDAR antagonist reduced the
global dyskinesia scores (Figures 6A and 6C) because of 71%
lower scores in the hemibody contralateral to the infusion side af-
ter L-DOPA injection (p < 0.05; Figures 6B and 6D; Movies S1
and S2). LY235959 infusion did not affect the antiparkinsonian
action of L-DOPA (unchanged motor disability scores [MDS], p
> 0.05; Figure 6E). Therefore, LY235959 infusion into the puta-
men showed that the extended stabilization of DA responses
across SPNs translates into motor changes with significantly
reduced dyskinesias. This demonstrates that decreasing gluta-
matergic excitation in the striatum induces beneficial motor ef-
fects in the parkinsonian primate.

The motor effects of systemic administration of LY235959 and
NBQX were also tested in a group of parkinsonian primates
(n=5; Table S1) that included three of the animals used in striatal
application of the antagonists. Both LY235959 (3 mg/kg s.c.)

and NBQX (2 mg/kg s.c.) significantly reduced dyskinesias
(p < 0.05; Figures S4 and S5) without compromising the antipar-
kinsonian action of L-DOPA (Léschmann et al., 1991; Papa
and Chase, 1996). The similarity of these effects (including ani-
mals used for SPN recordings) to those obtained with striatal
infusion suggests that the reduction of glutamate signals on
SPNs may be responsible for the effects induced by systemic
administration.

DISCUSSION

The selective reduction of either NMDAR or AMPAR signals in
SPNs tested here in parkinsonian primates supports our hypoth-
esis that altered SPN responses to DA and their associated
abnormal movements can be reversed by controlling the dysre-
gulated glutamatergic drive. Because the animals used in these
single-cell recordings had developed significant SPN hyperac-
tivity, the impact of antagonist application on the spontaneous
firing of these neurons was fully assessed. The most important
finding from this study was that the reduced excitatory glutamate
signals resulted in stable responses to DA in 93% of the recorded
SPNs, and these effects were found across single recordings of
SPNs regardless of their response to DA (i.e., units with activity
increase or decrease). In addition, both the NMDAR and AMPAR
antagonists equally stabilized DA responses in the large majority
of neurons, and effects of the NMDAR antagonist on an
extended putamenal area reduced dyskinesias improving the
L-DOPA response.

The interpretation of the recorded SPN activity is limited
by lack of specific cell-type identification with optogenetics,
because transgenic modeling could not be applied to these pri-
mate studies. More important to this end, DA stimulation evokes
pathological “unstable” responses that are widely distributed
across neurons, with an increase or decrease of activity in the
“on” state. Indeed, as L-DOPA reaches its peak effect, a high
proportion of units do not maintain the DA-induced firing in-
crease or decrease, which contrasts markedly with stable
changes in other units and thereby creates a large imbalance
of discharges. On the basis of evidence that the cooperative ac-
tivity of both striatal pathways mediates normal movement
execution (Cui et al., 2013), imbalance of discharges between
and within the output pathways may lead to abnormal motor re-
sponses, releasing involuntary movements or causing motor
fluctuations (Singh et al., 2015; Tecuapetla et al., 2014). In sup-
port of this view, the instability of DA-induced firing changes
that causes discharge imbalance is associated with dyskinesias
in the primate. Here, DA-induced responses were consistently
stabilized across SPNs after glutamate inputs were blocked
and the high baseline firing frequency was decreased, indicating
that hyperactivity across SPNs is a key mechanism in the
pathophysiology of PD “off” and “on” states. These data are

In each group analysis, "p < 0.01 versus baseline, “p < 0.01 versus Post aCSF or NBQX injection, and +p < 0.01 versus the “on” state (ANOVAs for repeated
measure followed by Bonferroni’s correction). In (F) and (H), *p < 0.05 between NBQX and aCSF unstable response (one way ANOVAs). Error bars indicate SEM

(n = 5 primates; see Table S1).

(I-L) Examples of SPN unstable responses in aCSF tests ([l and J], same examples as in Figures 21 and 2J for comparison) or stable responses in NBQX tests
(K 'and L). Short (5 s) spike trains and spectrograms for the segment duration (180 s) are shown for each segment, Pre, Post, On, and Dys. The unit activity is
colored after spike sorting as the corresponding curve in the frequency graphs B, D, E and G.
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Figure 5. Relationship between the Effect of NMDAR or AMPAR
Antagonist and the Magnitude of the SPN Response to DA

(A-D) Significant (blue) and non-significant (red) correlations between the
activity reduction induced by LY235959 (A and C) or NBQX (B and D) and the
DA response analyzed in the “on” state or dyskinesia state (top and bottom
graphs, respectively in each panel).

Firing frequency reduction post LY235959 or NBQX: ratio of post-antagonist
injection to baseline frequencies. Firing frequency increase or decrease in
“on” or dyskinesia state: ratio of motor state to post-antagonist injection
frequencies. SPNs included in all regression analyses had stable responses
to DA (total SPNs, 82; in LY235959 tests, 24 SPNs with activity increase in
response to DA and 15 with activity decrease; in NBQX tests, 26 SPNs with
activity increase in response to DA and 17 with activity decrease).

consistent with findings in patch recordings of iISPNs (Fieblinger
et al., 2014) showing that DA denervation induces marked ho-
meostatic plasticity (reduced excitability and spine loss and
pruning of corticostriatal synapses), but the corticostriatal syn-
aptic strength increased as opposed to the expected scaling
(Turrigiano, 2008). However, these patch recording data are
not aligned with hyperactivity also present in dSPNs, should
that be the case. Some distinctions when comparing data from
largely different models may be relevant, even in the same spe-
cies (Beck et al., 2017; Deffains et al., 2016). Among the most
important are the lesion type and its time course, which may in-
fluence the development of adaptive and aberrant changes,
such as spine remodeling (Villalba and Smith, 2017). Unlike uni-
lateral and acute lesions, the primates used here had a bilateral
and “slowly” induced parkinsonism that was classified as
advanced with long-standing chronicity (Potts et al., 2014).
Thus, it is plausible that extensive SPN hyperactivity does
not fully develop in commonly used rodent and primate models.
Of note, gene regulation after DA loss leads to changes in
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voltage-gated potassium and calcium (VDCC) channels in
dSPNs that can increase excitability (Borgkvist et al., 2015; Cal-
abresi et al., 2014; Meurers et al., 2009). Whether present in
SPNs expressing DR or D4R, our results indicate that exagger-
ated upregulation of firing plays a primary role in the activity
changes of the “on” state, likely interfering with DA-modulated
excitability, which then can only result in transient (short) firing
changes. The application of glutamate antagonists that reduced
SPN activity by half restored sustained (stable) firing increases or
decreases in response to DA. Interestingly, the strength of the
DA response correlated with the level of basal activity reduction
by the antagonist only in SPNs with DA-induced firing increase.
These data support differential DA modulation across SPNs after
denervation that is congruent with the imbalance of responses to
L-DOPA and the associated abnormal motor effects.

Reducing neurotransmission at NMDAR or AMPAR had the
same effect on the firing frequency of SPNs and similarly stabi-
lized their DA responses. It is important to note that the present
data do not exclude the potential effects of manipulating other
signals, such as gamma-aminobutyric acid (GABA). However,
the activity of fast spiking interneurons, which provide most
GABA inhibition of SPNs, is not affected by DA loss (Mallet
et al.,, 2006). Instead, the reported changes in cortical and
thalamic inputs after DA loss indicate a key role of glutamate
signaling in SPN hyperactivity. Our findings indicate that both
NMDAR and AMPAR signaling can contribute to SPN dysfunc-
tion and that controlling glutamate signaling has a significant ef-
fect. Perhaps the most parsimonious explanation of these results
is that the SPN AMPARs and NMDARs are co-localized on the
same postsynaptic site and act as canonical coincidence detec-
tors. Robust NMDAR-mediated depolarization requires the
prior release of a voltage-dependent block via the activation of
AMPARSs (Huganir and Nicoll, 2013). Therefore, in the presence
of NBQX, block is not released, and the excitatory synapse is
silenced. Conversely, in the presence of LY235959, AMPARs
are fully activated, but too briefly to mediate a robust and pro-
longed depolarization. Therefore, block of either AMPARs or
NMDARs is sufficient to attenuate activity at excitatory synapses
and reduce firing rate. In addition, the impact may be more sig-
nificant on receptors with slow deactivation kinetics, such as the
SPN NMDARs (Logan et al., 2007), particularly after DA loss. Dif-
ferences in glutamatergic signaling after DA lesion have been
linked to changes in the expression, composition, trafficking,
and localization of ionotropic receptors. Furthermore, some re-
ceptor changes are related to lesion extent, such as increased
NMDAR/AMPAR ratio (Paillé et al., 2010), and some to chronic
DA replacement and dyskinesia development, such as increased
GIuN2A/GIuN2B ratio (Hallett et al., 2005; Mellone et al., 2015).
Reorganization of NMDAR subunits following DA denervation
leads not only to reduction of GIuN2B but also to a newly devel-
oped contribution of GIUN2D in functional receptors of SPNs
(Zhang and Chergui, 2015). Changes in NMDAR distribution
between synaptic and extrasynaptic location can also result
in increased gain of transmission (Fieblinger et al., 2014). In
addition, the AMPAR subunit composition plays a key role
in synaptic strength. Notable changes in models of DA loss are
the hyperphosphorylation of GIuR1 and the expression of
Ca?*-permeable GluR2-lacking AMPAR (Bagetta et al., 2012).
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Changes in Ca®* kinetics are consistent with the pathological
basal activity of SPNs and potentially their “unstable” response
to DA. The NMDAR- and AMPAR-selective competitive antago-
nists (LY235959 and NBQX) used here were not subunit selec-
tive, and thus each effectively blocked most receptor subtypes
within the targeted families, reducing the “off”’-state hyperactiv-
ity to a similar extent as intended for comparison. Therefore, the
ability of both NMDAR and AMPAR blocks to induce the same
stabilization of DA responses supports the contribution of pre-
synaptic (increased input) and postsynaptic (hyperexcitability)
mechanisms in the SPN dysfunction.

The consistent glutamate antagonist effect on single neu-
rons suggested that extended effects across SPNs would pre-
vent the imbalance of discharges, and possibly improve the
behavioral response to DA. Our tests support this idea. The
infusion of the same concentration of the NMDAR antagonist
over an extended area of the putamen reduced dyskinesias
in the parkinsonian primate. Because the infusion into the pu-
tamen was unilateral and centered on the posterolateral motor
territory using a discrete volume to avoid overflow to surround-

LY235959 (mM)

Figure 6. Infusion of NMDAR Antagonist
over the Putamen Reduced Contralateral
Dyskinesias Induced by L-DOPA in Parkin-
sonian Primates

(A and B) Time course of global (A) and contralat-
eral (CL) (B) dyskinesias induced by s.c. injection of
a suboptimal dose of L-DOPA after unilateral
infusion of LY235959 into the posterolateral puta-
men. Reduced global scores by LY235959 infusion
(red) (9 mM) compared with the control vehicle
infusion (black) reflect differences in scores on the
contralateral side of the body (see also Movies S1
and S2). Time 0, before L-DOPA injection (“off”
state before infusion). Scores after L-DOPA injec-
tion: 30 min post-injection and thereafter every
20 min interval until dyskinesias disappear and the
mobility was returning to the “off” state. *p < 0.01,
two-way ANOVAs for repeated-measures followed
by Fisher’s PLSD test.

(C and D) Total and peak scores of global (C) and
contralateral (D) L-DOPA-induced dyskinesias af-
ter infusion of LY235959 (red) and aCSF (black).
Scales are adjusted for the contralateral side (D).
AUC, area under the curve. Peak values, 50 min
interval scores. *p < 0.01, paired t tests.

(E) Motor disability scores (MDS) showing no
changes in the antiparkinsonian effects of L-DOPA
after LY235959 infusion in comparison with aCSF
infusion.

Each animal (n = 3; see details in Table S1)
received one infusion of each dose (LY235959
0 and 9 mM). Error bars indicate SEM.

I

Peak CL Dyskinesias
o N

0 9

ing extrastriatal areas, most likely the
covered area did not extend to the
whole target region, but nevertheless,
dyskinesias were reduced by 71%. In
line with our results, the only drug in clin-
ical use to treat dyskinesias is amanta-
dine, an agent with actions at multiple
sites, including the NMDAR (Oertel et al., 2017). On the basis
of the effects of selective agents, the antidyskinetic effect of
amantadine is likely mediated by NMDAR block. Regarding
further effects of NMDAR antagonists on L-DOPA responses,
it is possible that chronically reduced SPN activity also results
in reduction of motor fluctuations and improved “on” state. In
addition to chronic block, the antagonist intrinsic effect on
parkinsonism remains to be tested, because in the present
tests the infusion timeline was designed to assess L-DOPA-
induced dyskinesias. Importantly, the present results provide
proof of concept for the significance of reduced glutamatergic
tone and stabilization of DA-induced firing changes in SPNs.
Because the current therapy for patients with PD remains
symptomatic and based on dopaminergic stimulation for relief
of motor disability, the present results have significant clinical
implications. Treatment efficacy depends on consistently recov-
ering mobility with responses free of dyskinesias, but most
patients between mid- and late-stage disease suffer from
disabling motor complications. Critically, the primates used in
these experiments reproduced the phenotype of patients in
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that category, and SPN recordings in these patients have shown
the same level of SPN hyperactivity as in the parkinsonian pri-
mate. Likewise, glutamate-driven SPN hyperactivity plays a cen-
tral role in the abnormal DA responses developed in patients
with PD. Strategies targeting specifically the striatal glutamate
overactivity may thus help improve the efficacy of DA replace-
ment. Of particular interest are the mechanisms regulating pro-
tein composition and posttranslational changes in AMPARs/
NMDARSs, including molecular changes that increase AMPAR
activity or channel conductance (Hosokawa et al., 2015; Jenkins
et al., 2014; Kristensen et al., 2011) and thereby upregulate SPN
activity.

EXPERIMENTAL PROCEDURES

In Vitro NMDAR and AMPAR Blockade and Simulated Antagonist
Diffusion

The experiments in vitro and simulations of drug diffusion in brain tissue were
designed to determine whether LY235959 and NBQX would yield concentra-
tions that selectively blocked NMDAR or AMPAR, respectively, using the spe-
cific space and time parameters of the microinjection used for recording
experiments. Details are provided in Supplemental Experimental Procedures.

Non-human Primate Model of PD

Nine adult male and female macaques (Macaca mulatta and Macaca fascicu-
laris; 5-11 kg body weight) were used in the studies (see Table S1). All proced-
ures followed guidelines of the NIH Guide for the Care and Use of Laboratory
Animals and were approved by the Institutional Animal Care and Use Commit-
tee of Emory University. A model of “chronic and advanced” parkinsonism was
produced in all animals by systemic administration of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), and behavioral assessment using a stan-
dardized motor disability scale for primates. In these parkinsonian primates,
the daily maintenance L-DOPA treatment led to the development of
L-DOPA-induced dyskinesias. In each animal, the effective subcutaneous
(s.c.) dose of L-DOPA methyl ester plus benserazide (Sigma-Aldrich) for use
in recording experiments was determined as the dose eliciting a clear “on
state with peak-dose dyskinesias. A complete description is provided in the
Supplemental Information.

Continuous Single-Cell Recording with Striatal NMDAR or AMPAR
Blockade and L-DOPA-Induced Motor States

Five animals were surgically implanted with recording chambers and head-re-
straining devices, and striatal regions were identified with electrophysiological
mapping of basal ganglia. Standard techniques were used for single-cell
recordings with withdrawal of the oral maintenance L-DOPA treatment the
day of recording. NMDAR or AMPAR antagonist was delivered at the site
of recording, using “injectrodes” connected to a microinjection pump. The
antagonist solution (or the same volume of aCSF alone as control test) was in-
jected in a volume of 200 nL at a rate of 1 uL/min. LY235959 was dissolved in
aCSF and NBQX in aCSF/water. The tip of the electrode was placed at a fixed
distance from the tip of the cannula (400 um; Figure 1C). The antagonist con-
centration (within the limits set from in vitro tests and simulations to maintain
selective doses at the synapses) that effectively reduced activity of the re-
corded cell by ~50% was assessed using different drug concentrations and
analyzing a total of 69 SPNs. After dose selection, complete experiments
started by local application of antagonist followed by s.c. L-DOPA injection
at the predetermined dose with data storage (>3 min) according to the time-
line (Figure 1G). If the baseline activity was held throughout the total duration of
the experiment, the offline analysis yielded one or occasionally two units per
experiment. A total of 117 SPNs were analyzed in complete experiments of
DA responses, 88 SPNs for antagonists, and 29 SPNs for vehicle control tests.
The animal’s behavior was monitored using a video camera. Details of exper-
iments, including online unit isolation, behavioral changes during recordings
indicative of motor states and histological verification of recording sites are
included in the Supplemental Information.
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Electrophysiology Data Analysis and Statistics

All data were analyzed offline using spike sorting and standard methods
for differentiation and classification of SPNs (Figure S6). Significant activity
changes in the “on” state (p < 0.05, ANOVAs for repeated-measures
followed by post hoc Bonferroni test) separated units with increase or
decrease response. Also, significant frequency changes in dyskinesia
state determined whether the increased or decreased firing rate in the
“on” state was stable or not. Activity changes in the “on” and dyskinesia
states were analyzed for their relationship to the reduced firing frequency
after the local application of LY235959 or NBQX using the regression
equation

F D . F .
opamine Antagonist
T bopamine _ o "Antagonist |

F, Antagonist Fi Baseline

where Fpopamine IS frequency after L-DOPA injection in either “on” or dyskinesia
state, Fantagonist is frequency after the local antagonist injection, and Faaseiine IS
frequency before antagonist injection. All analyses are described in details in
the Supplemental Information.

Striatal Infusion of Antagonist

LY235959 (9 mM) was dissolved in aCSF, and 10 uL of the solution distrib-
uted among five sites (2 plL/site) was infused unilaterally into the posterolat-
eral putamen in three animals (see the criteria for selection of infusion param-
eters in the Supplemental Information). Ten minutes following the completion
of infusion, the animal received s.c. injection of L-DOPA at the selected
suboptimal dose. Because of the invasiveness of the procedure, each animal
could receive only two infusions, one infusion of LY235959 and another infu-
sion of vehicle alone (aCSF10 pL) as control. Movies S1 and S2 are accom-
panied by movie legends provided in the Supplemental Information. All
details of the procedure and the behavioral assessment after brain infusion
or systemic administration of antagonist are provided in the Supplemental
Information.

Statistical Analysis of Behavioral Data

Behavioral responses were graded within wide ranges, and values included
no integers, so data formed quantitative variables, which were analyzed
using ANOVAs for repeated-measures (p < 0.05) followed by post hoc
Fisher’s protected least significant difference (PLSD) tests. In all analyses,
data distribution and variance homogeneity were examined, and appro-
priate corrections applied. Further details are provided in the Supplemental
Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
six figures, one table, and two movies and can be found with this article online
at https://doi.org/10.1016/j.celrep.2017.12.095.
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