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A communal catalogue reveals Earth’s
multiscale microbial diversity
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Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited
understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols
and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences
about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds
of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use
of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene
sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale.
The result is both a reference database giving global context to DNA sequence data and a framework for incorporating
data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity.

A primary aim of microbial ecology is to determine patterns and
drivers of community distribution, interaction, and assembly amidst
complexity and uncertainty. Microbial community composition has
been shown to change across gradients of environment, geographic
distance, salinity, temperature, oxygen, nutrients, pH, day length,
and biotic factors' ™. These patterns have been identified mostly by
focusing on one sample type and region at a time, with insights extra-
polated across environments and geography to produce generalized
principles. To assess how microbes are distributed across environments
globally—or whether microbial community dynamics follow funda-
mental ecological laws’ at a planetary scale—requires either a massive
monolithic cross-environment survey or a practical methodology for
coordinating many independent surveys. New studies of microbial
environments are rapidly accumulating; however, our ability to extract
meaningful information from across datasets is outstripped by the rate
of data generation. Previous meta-analyses have suggested robust gen-
eral trends in community composition, including the importance of
salinity! and animal association®. These findings, although derived
from relatively small and uncontrolled sample sets, support the util-

ity of meta-analysis to reveal basic patterns of microbial diversity and
suggest that a scalable and accessible analytical framework is needed.
The Earth Microbiome Project (EMP, http://www.earthmicrobiome.
org) was founded in 2010 to sample the Earth’s microbial communities
at an unprecedented scale in order to advance our understanding of the
organizing biogeographic principles that govern microbial commu-
nity structure”®. We recognized that open and collaborative science,
including scientific crowdsourcing and standardized methods®, would
help to reduce technical variation among individual studies, which
can overwhelm biological variation and make general trends difficult
to detect®. Comprising around 100 studies, over half of which have
yielded peer-reviewed publications (Supplementary Table 1), the EMP
has now dwarfed by 100-fold the sampling and sequencing depth of
earlier meta-analysis efforts"?; concurrently, powerful analysis tools
have been developed, opening a new and larger window into the distri-
bution of microbial diversity on Earth. In establishing a scalable frame-
work to catalogue microbiota globally, we provide both a resource for
the exploration of myriad questions and a starting point for the guided
acquisition of new data to answer them. As an example of using this
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Figure 1 | Environment type and provenance of samples. a, The EMP
ontology (EMPO) classifies microbial environments (level 3) as free-living
or host-associated (level 1) and saline or non-saline (if free-living) or
animal or plant (if host-associated) (level 2). The number out of 23,828
samples in the QC-filtered subset in each environment is provided. EMPO

tool, we present a meta-analysis of the EMP archive, tracking individual
sequences across diverse samples and studies with standardized envi-
ronmental descriptors, investigating large-scale ecological patterns,
and exploring key hypotheses in ecological theory to serve as seeds
for future research.

A standardized and scalable approach

The EMP solicited the global scientific community for environmen-
tal samples and associated metadata spanning diverse environments
and capturing spatial, temporal, and/or physicochemical covariation.
The first 27,751 samples from 97 independent studies (Supplementary
Table 1) represent diverse environment types (Fig. 1a), geographies
(Fig. 1b), and chemistries (Extended Data Fig. 1). The EMP encom-
passes studies of bacterial, archaeal, and eukaryotic microbial diversity.
The analysis here focuses exclusively on the bacterial and archaeal
components of the overall database (for concision, use of ‘microbial’
will hereafter refer to bacteria and archaea only). Associated meta-
data included environment type, location information, host taxonomy
(if relevant), and physicochemical measurements (Supplementary
Table 2). Physicochemical measurements were made in situ at the time
of sampling. Investigators were encouraged to measure temperature
and pH at minimum. Salinity, oxygen, and inorganic nutrients were
measured when possible, and investigators collected additional meta-
data pertinent to their particular investigations.

Metadata were required to conform to the Genomic Standards
Consortium’s MIxS and Environment Ontology (ENVO) standards'®!!.
We also used a light-weight application ontology built on top of ENVO:
the EMP Ontology (EMPO) of microbial environments. EMPO was
tailored to capture two major environmental axes along which micro-
bial beta-diversity has been shown to orient: host association and
salinity". We indexed the classes in this application ontology (Fig. 1a)
as levels of a structured categorical variable to classify EMP samples as
host-associated or free-living (level 1). Samples were categorized within
those classes as animal-associated versus plant-associated or saline
versus non-saline, respectively (level 2). A finer level (level 3) was then
assigned that satistied the degree of environment granularity sought
for this meta-analysis (for example, sediment (saline), plant rhizos-
phere, or animal distal gut). We expect EMPO to evolve as new studies
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is described with examples at http://www.earthmicrobiome.org/protocols-
and-standards/empo. b, Global scope of sample provenance: samples come
from 7 continents, 43 countries, 21 biomes (ENVQ), 92 environmental
features (ENVO), and 17 environments (EMPO).

and sample types are added to the EMP and as additional patterns of
beta-diversity are revealed.

We surveyed bacterial and archaeal diversity using amplicon
sequencing of the 16S rRNA gene, a common taxonomic marker for
bacteria and archaea'? that remains a valuable tool for microbial ecology
despite the introduction of whole-genome methods (for example,
shotgun metagenomics) that capture gene-level functional diversity'.
DNA was extracted from samples using the MO BIO PowerSoil DNA
extraction kit, PCR-amplified, and sequenced on the Illumina platform.
Standardized DNA extraction was chosen to minimize the potential
bias introduced by different extraction methodologies; however, extrac-
tion efficiency may also be subject to interactions between sample
type and cell type, and thus extraction effects should be considered
as a possible confounding factor in interpreting results. We amplified
the 16S rRNA gene (V4 region) using primers'* shown to recover
sequences from most bacterial taxa and many archaea'”. We note that
these primers may miss newly discovered phyla with alternative riboso-
mal gene structures'®, and subsequent modifications not used here have
shown improved efficiency with certain clades of Alphaproteobacteria
and Archaea!’~!%. We generated sequence reads of 90-151 base pairs
(bp) (Extended Data Fig. 2a, Supplementary Table 1), totaling 2.2
billion sequences, an average of 80,000 sequences per sample.

Sequence analysis and taxonomic profiling were done initially using
the common approach of assigning sequences to operational taxonomic
units (OTUs) clustered by sequence similarity to existing rRNA data-
bases!*?. While this approach was useful for certain analyses, for many
sample types, especially plant-associated and free-living communities,
one-third of reads or more could not be mapped to existing rRNA
databases (Extended Data Fig. 2b). We therefore used a reference-free
method, Deblur?!, to remove suspected error sequences and provide
single-nucleotide resolution ‘sub-OTUs) also known as ‘amplicon
sequence variants2, here called ‘tag sequences’ or simply ‘sequences.
Because Deblur tag sequences for a given meta-analysis must be the
same length in each sample, and some of the EMP studies have read
lengths of 90 bp, we trimmed all sequences to 90 bp for this meta-
analysis. We verified that the patterns presented here were not adversely
affected by trimming the sequences (Extended Data Fig. 3). As we show,
90-bp sequences were sufficiently long to reveal detailed patterns of
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community structure. Because exact sequences are stable identifiers,
unlike OTUs, they can be compared to any 165 rRNA or genomic data-
base now and in the future, thereby promoting reusability?2.

Microbial ecology without OTU clustering

While earlier large-scale 165 rRNA amplicon studies adopted OTU
clustering approaches in part out of concern that erroneous reads would
dominate diversity assessments®?, patterns of prevalence (presence-
absence) in our results suggest that Deblur error removal produced
ecologically informative sequences without clustering. After rarefying
to 5,000 sequences per sample, a total of 307,572 unique sequences
were contained in the 96 studies and 23,828 samples of the ‘QC-filtered’
Deblur 90-bp observation table. Among studies, more than half (57%)
of all obtained sequences were observed in two or more studies, but
only 5% were observed in more than ten studies; the most prevalent
sequence was found in 88 of 96 studies (Extended Data Fig. 4a). Among
samples, although most sequences (86%) were observed in two or more
samples, only 7% were observed in more than 100 samples (Extended
Data Fig. 4b). As expected, the most prevalent sequences were also the
most abundant (Extended Data Fig. 4c).

Our analyses were carried out using a modest sequencing depth of
5,000 observations per sample after Deblur and rarefaction. To inves-
tigate how prevalence estimates were affected by sequencing depth,
we focused on four major environment types for which we had the
greatest number of samples with more than 50,000 observations (soil,
saltwater, freshwater, and animal distal gut). The relationship between
average tag sequence prevalence and sequencing depth differed among
these environments (Extended Data Fig. 4d) but was generally positive,
suggesting that our global analysis underestimated true prevalence.
Animal-associated microbiomes were a notable exception, with an
upper bound on prevalence apparently imposed by host specificity
when all host species were considered (Extended Data Fig. 4e); this
bound disappeared when considering only human-derived samples
(Extended Data Fig. 4f). Although contamination remains an issue in
microbiome studies?*, most of the very highly abundant and prevalent
sequences here had higher mean relative abundances among samples
than among no-template controls (Supplementary Table 3), suggesting
that they did not originate from reagents.

Matches between our sequences and existing 165 rRNA gene
reference databases highlight the novelty captured by the EMP. Exact
matches to 46% of Greengenes”® and 45% of SILVA”® rRNA gene
databases were found in our dataset, indicating that we ‘recaptured’
nearly half of the reference sequence diversity with just under 100
environmental surveys. These matches accounted for 10% and 139%,
respectively, of the tag sequences in our dataset, indicating that large
swathes of microbial community diversity are not yet captured in full-
length sequence databases. The failure of many sequences to be mapped
in reference-based alignments to Greengenes and SILVA 97% identity
OTUs (Extended Data Fig. 2b) supports this observation.

Patterns of diversity reflect environment

We used a structured categorical variable of microbial environments,
EMPO, to analyse diversity in the EMP catalogue in the context of
lessons from previous investigations!?. We observed environment-
dependent patterns in the number of observed tag sequences (alpha-
diversity), turnover and nestedness of taxa (beta-diversity), and
predicted genome properties (ecological strategy). Derived from a
more standardized methodology, our dataset confirms the previous
finding? that host association is a fundamental environmental factor
that differentiates microbial communities (Fig. 2c, Extended Data
Fig. 2d). We build on this pattern by showing that there is less rich-
ness in host-associated communities than in free-living communi-
ties (Fig. 2a), with the noted exception of plant rhizosphere samples,
which resemble free-living soil communities in both richness (Fig. 2a)
and composition (Fig. 2c). Our findings also confirm the major com-
positional distinction between saline and non-saline communities!
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(Fig. 2c). The effect sizes of environmental factors on alpha- and
beta-diversity generally showed large contributions of environment
type and (for host-associated samples) host species to both types of
diversity (Extended Data Fig. 5a, b).

The ability to identify sample provenance using only a microbial
community profile has applications ranging from criminal forensics
to mistaken sample identification; these applications will require
large curated datasets, such as the EMP. Supervised machine learning
demonstrated that samples could be distinguished as being animal-
associated, plant-associated, saline free-living, or non-saline free-living
with 919% accuracy based solely on community composition, and to
fine-scale environment with 84% accuracy (Extended Data Fig. 5c—e).
The most commonly misclassified samples were soil, non-saline surface
and aerosol, and animal secretion. In many of these cases, misclassi-
fication can be attributed to the limitations of EMPO. As additional
samples are classified, classification can be improved by iteratively and
empirically redefining categories using machine learning. Conversely,
with continuous factors, such as salinity, categorical definitions cannot
perfectly capture intermediate values. High classification success
to environment type was supported by source-tracking analyses
(Extended Data Fig. 5f, g), with the exception of plant rhizosphere
samples, owing to their similarity to soil samples.

Predicted average community copy number (ACN) of the 165 rRNA
gene was another metric found to differentiate microbial communities
in both host-associated and free-living communities (Fig. 2d). ACN
can be predicted from 16S rRNA amplicon data®’; this method has
been used, for example, to link the taxonomic groups associated with
copiotrophic and oligotrophic behaviours in soils to high and low rRNA
gene copy numbers, respectively?8. Approximately half the dataset
centred on an ACN of 2.2 (free-living and plant-associated samples) and
the other half on an ACN of 3.4 (animal-associated samples) (Fig. 2d).
Greater per-genome rRNA operon copy number has been found to be
associated with rapid maximum growth rates”, which may provide a
selective advantage when resources are abundant, such as in animal
hosts. While ACN is an estimate rather than a measurement of average
rRNA copy number and is subject to potential biases in the underlying
reference database, the distributions we observed are consistent with
16S rRNA copy number reflecting differences in ecological strategies
among environments.

A resource for theoretical ecology

The coordinated accumulation of data across studies allows investiga-
tions of patterns within (alpha-diversity) and among (beta-diversity)
microbial communities at scales that vastly exceed what could be
measured in any individual study. Patterns of alpha-diversity in
meta-analyses have revealed global trends that have been key to the
development of major ideas in macroecological theory, but fundamental
patterns have been more difficult to discern in microbial ecology. For
example, a nearly ubiquitous tendency towards greater diversity in the
tropics is evident in macroecology®, but there is substantial variation
among studies examining latitudinal trends of microbial diversity®!=.
The large EMP dataset analysed here reveals a weak but significant
trend towards increasing diversity at lower latitudes in non-host-
associated environments (Extended Data Fig. 5h). An effect of latitude
was apparent both within and across studies, consistent with global
trends in latitudinal microbial diversity being an emergent function of
locally selective environmental heterogeneity>*. However, substantial
study-to-study variation in richness highlights the caveats inherent in
meta-analysis; more coordination of sample collections from similar
environments across larger gradients is necessary to better address this
question.

The EMP has the potential to link global patterns of microbial
diversity with physicochemical parameters—if appropriate metadata
are provided by researchers. Microbial community richness has been
found to correlate with environmental factors, including pH and
temperature®**3>%_ For example, richness has been shown to increase
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Figure 2 | Alpha-diversity, beta-diversity, and predicted average 16S
rRNA gene copy number. a, Within-community (alpha) diversity,
measured as number of observed 90-bp tag sequences (richness), in

n= 23,828 biologically independent samples as a function of environment
(per-environment n shown in Fig. 1a), with boxplots showing median,
interquartile range (IQR), and 1.5 x IQR (with outliers). Tag sequence
counts were subsampled to 5,000 observations. Yellow line indicates the
median number of observed tag sequences for all samples in that set of
boxplots. Free-living communities of most types exhibited greater richness
than host-associated communities. b, Tag sequence richness (as in a)
versus pH and temperature in n = 3,986 (pH) and n = 6,976 (temperature)
biologically independent samples. Black points are the 99th percentiles
for richness across binned values of pH and temperature. Laplace (two-
sided exponential) curves captured apparent upper bounds on microbial
richness and their peaked distributions better than Gaussian curves.

up to neutral pH3® and often to decrease above neutral pH>"* in soil
communities. Richness has been shown to increase with tempera-
ture up to a limit and then to decrease beyond that limit in seawater
(maximum at about 19°C)* and to increase with temperature in soil
(up to at least around 26 °C)*. However, general relationships of rich-
ness to temperature and pH remain unresolved*’. Here, across samples
from non-host-associated environments where pH or temperature were
measured (mostly freshwater and soil environments), richness was
greatest near neutral pH (around 7) and relatively cool temperatures
(about 10°C) (Fig. 2b). We observed apparent upper bounds on richness
with both temperature and pH that were best fit by two-sided exponen-
tial (Laplace) curves. Thus, the present dataset suggests that maximum
microbial richness occurs within a relatively narrow range of interme-
diate pH and temperature values. These patterns, while robust in the
context of the EMP dataset, necessarily reflect only the subset of sam-
ple types for which variables were measured (Supplementary Table 2);
they should therefore be interpreted with caution. Understanding
universal relationships between richness and environmental factors
will require information from more studies with detailed and carefully
collected physicochemical metadata.

Beyond measured physical covariates, the breadth of environments
in the EMP catalogue allows a detailed exploration of how microbial
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that corresponded to modes of the Laplace curves. Maximum richness
exponentially decreased away from these apparent optima. ¢, Between-
community (beta) diversity among in n = 23,828 biologically independent
samples: principal coordinates analysis (PCoA) of unweighted UniFrac
distance, PC1 versus PC2 and PC1 versus PC3, coloured by EMPO levels 2
and 3. Clustering of samples could be explained largely by environment.

d, 16S rRNA gene average copy number (ACN, abundance-weighted)

of EMP communities in n= 23,228 biologically independent samples,
coloured by environment. EMPO level 2 (left): animal-associated
communities had a higher ACN distribution than plant-associated

and free-living (both saline and non-saline) communities. Right: soil
communities had the lowest ACN distribution, while animal gut and saliva
communities had the highest ACN distribution.

diversity is distributed across environments. Diversity among commu-
nities (beta-diversity) is driven by turnover (replacement of taxa) and
nestedness (gain or loss of taxa resulting in differences in richness)*®. If
turnover dominates, then disparate communities will harbour unique
taxa. If nestedness dominates, then communities with fewer taxa will
be subsets of communities with more taxa. We tested for nestedness
using a 2,000-sample subset with even representation across environ-
ments and studies. Given the contrasting environments and geographic
separation among the many studies in the EMP, we expected different
environments to contain unique sets of taxa and to show little nest-
edness. However, we found that communities across environments
were significantly nested (Fig. 3a, b; P < 0.05) in comparison to null
models (Fig. 3c), accounting for the observed patterns of richness. At
coarse taxonomic levels, an average of 84% of phyla, 73% of classes, and
58% of orders that occurred in less diverse samples also occurred in
more diverse samples. Nestedness was observed even when the most
prevalent taxa were removed and was robust across randomly chosen
subsets of samples (Extended Data Fig. 6). These patterns could have
resulted from several mechanisms, including ordered extinctions®
and the filtering of complex communities over time®’, differential
dispersal abilities*! and cascading source-sink colonization processes
that assemble nested subsets from more complex communities, or by
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the tendency of larger habitat patches to support more rare taxa with
lower prevalence*2. Notably, finer taxonomic groupings showed less
nestedness (Fig. 3c), indicating that the processes that underlie nested
patterns of turnover are likely to reflect conserved aspects of micro-
bial biology, and not to result from the interplay of diversification and
dispersal on short timescales.

These global ecological patterns offer a glimpse of what is possible
with coordinated and cumulative sampling—in addition to the specific
questions addressed by individual studies, context is built and easily
queried across studies. They also necessarily highlight the inherent
limitations to decentralized studies, especially regarding the collection
of comparable environmental data. Future studies will be able to use
the current EMP data as a starting point for more explicit tests of broad
ecological principles, both to identify gaps in current knowledge and
to more confidently plan large directed studies with sufficient power
to fill them.

A more precise and scalable catalogue

An advantage of using exact sequences is that they enable us to observe
and analyse microbial distribution patterns at finer resolution than is
possible with traditional OTUs. As an example, we applied a Shannon
entropy analysis to tag sequences and higher taxonomic groups
to measure biases in the distribution of taxa. Taxa that are equally
likely to be found in any environment will have high entropy and low
specificity, whereas taxa found only in a single environment will have
low entropy and high specificity (note that we use ‘specificity” solely to
denote distributional patterns, not to imply adaptation or causality).
Tag sequences exhibited high specificity for environment, with
distributions skewed towards one or a few environments (low Shannon
entropy); by contrast, higher taxonomic levels tended to be more evenly
distributed across environments (high Shannon entropy, low speci-
ficity) (Fig. 4a). Entropy distributions across all tag sequences at each
taxonomic level show that this pattern is general (Fig. 4b). Seeking a
more precise measure of the divergence at which a taxon is specific for
environments, we next investigated how entropy changes as a function
of phylogenetic distance. We calculated entropy for each node of the

300 400 500
Non-saline samples (sorted by richness)

phylogeny and visualized it as a function of maximum tip-to-tip branch
length (Fig. 4c). While entropy decreased gradually at finer phyloge-
netic resolution, it dropped sharply at the tips of the tree. We conclude
that environment specificity is best captured by individual 16S rRNA
sequences, below the typical threshold defining microbial species (97%
identity of the 16S rRINA gene).

The EMP dataset provides the ability to track individual sequences
across the Earth’s microbial communities. Using a representative subset
of the EMP (Extended Data Fig. 7a), we produced a table of sequence
counts and distributions, including among environments (EMPO) and
along environmental gradients (pH, temperature, salinity, and oxygen).
From this we generated ‘EMP Trading Cards, which promote explora-
tion of the dataset and here highlight the distribution patterns of three
prevalent or environment-correlated tag sequences (Extended Data
Fig. 7b, Supplementary Table 3). The entire EMP catalogue can be que-
ried using the Redbiom software, with command-line (https://github.
com/biocore/redbiom) and web-based (https://giita.microbio.me)
interfaces to find samples based on sequences, taxa, or sample meta-
data, and to export selected sample data and metadata (instructions at
https://github.com/biocore/emp). User data generated from the EMP
protocols can be readily incorporated into this framework: because
Deblur operates independently on each sample?!, additional tag
sequences can be added to this dataset from new studies without repro-
cessing existing samples. Future combinations of datasets targeting the
same genomic region but sequenced using different methods may be
admissible but would require considerations to account for methodo-
logical biases.

The growing EMP catalogue is expected to have applications for
research and industry, with tag sequences used as environmental
indicators and representing targets for cultivation, genome sequencing,
and laboratory study. In addition, these tools and approaches, although
developed for bacteria and archaea, could be expanded to all domains
of life®3. To achieve greater utility for the EMP and similar projects,
we must continually improve metadata collection and curation,
ontologies, support for multi-omics data, and access to computational
resources.
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a Distribution of genera

Relative occurrence frequency

Figure 4 | Specificity of sequences and higher taxonomic groups for
environment. a, Environment distribution in all genera and 400 randomly
chosen tag sequences, drawn from n = 2,000 biologically independent
samples with even representation across environments (EMPO level 3)
and studies. Each bar depicts the distribution of environments for a

taxon (not relative abundance of taxa): bars composed mostly of one
colour (environment) are specific for that environment, as seen with tag
sequences; bars composed of many colours are more cosmopolitan, as
seen with genera. Tag sequences were more specific for environment than
were genera and higher taxonomic levels. b, Shannon entropy within

each taxonomic group (minimum 20 tag sequences per group) and for the
same set of samples with permuted taxonomy labels. Box plots show

Conclusions and future directions

Here we have used crowdsourced sample collection and standardized
microbiome sequencing and metadata curation to perform a global
meta-analysis of bacterial and archaeal communities. Using exact
sequences in place of OTUs and a learned structure of microbial envi-
ronments, we have shown that agglomerative sampling can reveal
basic biogeographic patterns of microbial ecology, with resolution
and scope rivaling data compilations currently available for ‘macrobial’
ecology***. Our results point to key organizing principles of micro-
bial communities, with less-rich communities nested within richer
communities at higher taxonomic levels, and environment specificity
becoming much more evident at the level of individual 16S rRNA
sequences.

The EMP framework and global synthesis presented here represent
value added to the scientific community beyond the substantial contri-
butions of the constituent studies (Supplementary Table 1). However,
as with any meta-analysis in which data are gathered primarily in
service of separate questions rather than a single theme*é, conclusions
should be viewed with caution and form starting points for future
hypothesis-directed investigations. There is a need to span gradients
of geography (for example, latitude and elevation) and chemistry (for
example, temperature, pH, and salinity) more evenly—assisted by tools
for more comprehensive collection and curation of metadata—and to
track environments over time. In addition, biotic factors (for example,
animals, fungi, plants, viruses, and eukaryotic microbes) not meas-
ured in this study have important roles in determining community
structure*®. The scalable framework introduced here can be expanded
to address these needs: new studies to fill gaps in physicochemical space,
amplicon data for microbial eukaryotes and viruses, and whole-genome
and whole-metabolome profiling. At a time when both academic and
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median, IQR, and 1.5 x IQR (with outliers) for each taxonomic level.

A violin plot shows the entropy of tag sequences (minimum 10 samples
per tag sequence). Specificity for environment occurred predominantly
below the genus level. ¢, Shannon entropy within phylogenetic subtrees
of tag sequences (minimum 20 tips per subtree) defined by maximal
tip-to-tip branch length (substitutions per site) and for the same samples
with permuted phylogenetic tree tips. Mean and 20th/80th percentile

for a sliding window average of branch length is shown. Violin plot for
tag sequences as in b. Dotted lines show average tip-to-tip branch length
corresponding to 97% sequence identity and taxonomic levels displayed in
b. The greatest decrease in entropy was between the lowest branch length
subtree tested and tag sequences.

governmental agencies mcreasm%‘l@y recognize the value of communal
biodiversity monitoring efforts**%, the EMP provides one example of
alogistically feasible standardmatlon framework to maximize inter-
operability across diverse and independent studies, in particular
using stable identifiers (exact sequences) to enable enduring utility
of environmental sequence data. Given current global sequencing
efforts, the use of coordinated protocols and submission to this and
other public databases should allow rapid accumulation of new data,
providing an ever more diverse reference catalogue of microbes and
microbiomes on Earth.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.

Received 13 March; accepted 10 October 2017.
Published online 1 November 2017.

1. Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Nat/
Acad. Sci. USA 104, 11436-11440 (2007).

2. Ley, R.E, Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. |. Worlds within
worlds: evolution of the vertebrate gut microbiota. Nat Rev. Microbial. 6,
776-788 (2008).

3. Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial
communities. Proc. Natl Acad. Sci. USA 103, 626-631 (2006).

4. Steele, ). A. et al Marine bacterial, archaeal and protistan association networks
reveal ecological linkages. ISME J. 5, 1414-1425 (2011).

5. Philippot, L, Raaijmakers, J. M., Lemanceau, P. & van der Putten, W. H. Going
back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol.
11, 789-799 (2013).

6. Lima-Mendez, G. et al Ocean plankton. Determinants of community structure
in the global plankton interactome. Science 348, 1262073 (2015).

7. Gilbert, J. A et al. Meeting report: the terabase metagenomics workshop and
the vision of an Earth microbiome project. Stand. Genomic Sci. 3, 243-248
(2010).

© 2017 Macmillan Publishers Limited, part of Springer Mature. All rights reserved.


http://www.nature.com/doifinder/10.1038/nature24621

10.

11.

12.

13.
14,

15.

16.
17.

18.

19.

20.
21.
22.

23.

24,
25.

26.
27.
28.
29.

30.
3L
32.
33.
34,
35.

36.
37.

38.

39.

Gilbert, J. A, Jansson, J. K. & Knight, R. The Earth Microbiome project:
successes and aspirations. BMC Biol. 12, 69 (2014).

Shade, A., Caporaso, J. G., Handelsman, J., Knight, R. & Fierer, N. A meta-
analysis of changes in bacterial and archaeal communities with time. ISME J.
7, 1493-1506 (2013).

Yilmaz, P. et al. Minimum information about a marker gene sequence
(MIMARKS) and minimum information about any (x) sequence (MIxS)
specifications. Nat Biotechnol. 29, 415-420(2011).

Buttigieg, F. L, Morrison, N., Smith, B., Mungall, C. J. & Lewis, 5. E The
environment ontology: contextualising biological and biomedical entities.

J Biomed. Semantics 4, 43 (2013).

Qlsen, G. J,, Lane, D. J., Giovannoni, S. J., Pace, M. R. & Stahl, D. A. Microbial
ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40,
337-365 (1986).

Goodwin, K. D. et al DNA sequencing as a tool to monitor marine ecological
status. Front Mar. Sci. https://doi.org/10.3389/fmars.2017.00107 (2017).
Caporaso, J. G. et al. Global patterns of 165 rRNA diversity at a depth of
millions of sequences per sample. Proc. Natl Acad. Sci. USA 108 (Suppl. 1),
4516-4522 (2011).

Eloe-Fadrosh, E. A, Ilvanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics
uncovers gaps in amplicon-based detection of microbial diversity. Nat
Microbiol. 1, 15032 (2016).

Hug, L. A. et al. A new view of the tree of life. Nat Microbiol. 1, 16048 (2016).
Apprill, A, McNally, 5., Parsons, R. & Weber, L. Minor revision to V4 region SSU
rRNA BOER gene primer greatly increases detection of SAR11
bacterioplankton. Aquat Microb. Ecol 75, 129-137 (2015).

Parada, A. E, Needham, D. M. & Fuhrman, J. A. Every base matters: assessing
small subunit rRNA primers for marine microbiomes with mock communities,
time series and global field samples. Environ. Microbiol. 18, 1403-1414 (2016).
Walters, W. et al. Improved bacterial 165 rENA gene (V4 and V4-5) and fungal
internal transcribed spacer marker gene primers for microbial community
surveys. mSystems 1, e00009-15 (2016).

Sogin, M. L et al. Microbial diversity in the deep sea and the underexplored
“rare biosphere”. Proc. Natf Acad. Sci. USA 103, 12115-12120 (2006).

Amir, A. et al Deblur rapidly resolves single-nucleotide community sequence
patterns. mSystems 2, e00191-16 (2017).

Callahan, B. J., McMurdie, P. J. & Holmes, 5. P. Exact sequence variants should
replace operational taxonomic units in marker-gene data analysis. ISME J.
http://dx.doi.org/10.1038/ismej.2017.119 (2017).

Huse, 5. M., Welch, D. M., Morrison, H. G. & Sogin, M. L. Ironing out the wrinkles
in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12,
1889-1898 (2010).

Salter, S. J. et al Reagent and laboratory contamination can critically impact
sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for
ecological and evolutionary analyses of bacteria and archaea. ISME J. 6,
610-618 (2012).

Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data
processing and web-based tools. Nucleic Acids Res. 41, D590-D596 (2013).
MNemergut, D. R. et al. Decreases in average bacterial community rRNA operon
copy number during succession. ISME J. 10, 1147-1156 (2016).

Gibbons, S. M. et al. Invasive plants rapidly reshape soil properties in a
grassland ecosystem. mSystems 2, e00178-16 (2017).

Klappenbach, J. A, Dunbar, J. M. & Schmidt, T. M. rRNA operon copy number
reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66,
1328-1333 (2000).

Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat.
163, 192-211 (2004).

Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine
bacteria. Proc. Natl Acad. Sci. USA 105, 7774-7778 (2008).

Ladau, J. et al Global marine bacterial diversity peaks at high latitudes in
winter. ISME J. 7, 1669-1677 (2013).

Milici, M. et al Low diversity of planktonic bacteria in the tropical ocean.

Sci. Rep. 6, 19054 (2016).

Chu, H. et al. Soil bacterial diversity in the Arctic is not fundamentally different
from that found in other biomes. Environ. Microbiol. 12, 2998-3006 (2010).
Wu, Y, Zeng, J., Zhu, Q., Zhang, Z. & Lin, X. pH is the primary determinant of the
bacterial community structure in agricultural soils impacted by polycyclic
aromatic hydrocarbon pollution. Sci. Rep. 7, srep40093 (2017).

Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in
forest soils. Nat Commun. 7, 12083 (2016).

Hendershot, J. N., Read, Q. D., Henning, J. A,, Sanders, N. J. & Classen,A. T.
Consistently inconsistent drivers of microbial diversity and abundance at
macroecological scales. Ecology 98, 1757-1763 (2017).

Carvalho, J. C., Cardoso, P, Borges, P. & Schmera, D. Measuring fractions of
beta diversity and their relationships to nestedness: a theoretical and
empirical comparison of novel approaches. Oikos 122, 825-834 (2013).
Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota
compound over generations. Nature 529, 212-215 (2016).

. Atmar, W. & Patterson, B. D. The measure of order and disorder in the

distribution of species in fragmented habitat. Oecologia 96, 373-382 (1993).

ARTICLE

41. Lomolino, M. V. Investigating causality of nestedness of insular communities:
selective immigrations or extinctions? J. Biogeogr. 23, 699-703 (1996).

42. Gaston, K. & Blackburn, T. Pattern and Process in Macroecology (Wiley-Blachkwell,
2000).

43. Pointing, S. B, Fierer, N., Smith, G. J. D., Steinberg, P. D. & Wiedmann, M.
Quantifying human impact on Earth's microbiome. Nat Microbiol. 1, 16145
(2016).

44. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not
systematic loss. Science 344, 296-299 (2014).

45. Amano, T, Lamming, J. D. L & Sutherland, W. J. Spatial gaps in global
biodiversity information and the role of citizen science. Bioscience 66,
393-400 (2016).

46. loannidis, J. P. A. The mass production of redundant, misleading, and conflicted
systematic reviews and meta-analyses. Milbank (. 94, 485-514 (2016).

47. Davies, N. et al The founding charter of the Genomic Observatories Network
Gigascience 3, 2 (2014).

48, Alivisatos, A. P. et al. MICROBIOME. A unified initiative to harness Earth's
microbiomes. Science 350, 507-508 (2015).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank J. DeReus for management of information
systems; J. Huntley and K. Jepsen for management of sequencing facilities;

B. Erickson for administrative assistance; J. Lennon for discussions about
macroecological theory; S. Peddada for assistance with effect size calculations;
F. L. Buttigieg, C. Mungall, and D. Siegele for assistance with ontologies; A. Rose,
A-5. Roy, A. Bearguiver, B. Cohen, C. Tischer, C. Feh, D. Winkler, E. Jones,

E. Angert, F. Blackwolf, G. Martin, H. Schunck, K. Hallinger, L. R. McGuinness,

M. Miihling, M. Lombardo, R. Madsen, 5. Bowatte, 5. Romac, S. Garcia-Houchins,
V. Harriman, and W. James for assistance with sample and/or metadata
collection; and the following individuals for supporting the project’s founding:
A. Scyzrba, A. McHardy, A. Teske, A. Wilke, C. T. Brown, C. Brown, D. Huson,

D. Field, D. Evers, D. Wendel, E. Glass, E. Kolke, F. Sun, F. O. Gléckner,

G. Kowalchuk, H.-P. Klenk, J. Tiedje, J. Gordon, J. Raes, J. Knight, J. Kostka,

J. Heidelberg, J. Eisen, K. E. Wommack, K. Docherty, K. Keegan, K. Konstantindis,
M. Bailey, M. Sullivan, N. Desai, N. Kyprides, N. Pace, P. Balaji, R. Gallery,

R. Mackelprang, R. 0'Dor, R. Ley, T. Vogel, T. Chen, and W. Feng. This work was
supported by the John Templeton Foundation (grant 1D 44000, Convergent
Evolution of the Vertebrate Microbiome), the W. M. Keck Foundation
(DT061413), Argonne National Laboratory (US Department of Energy contract
DE-AC02-06CH11357), the Australian Research Council, the Tula Foundation,
the Samuel Lawrence Foundation, and the Extreme Science and Engineering
Discovery Environment (XSEDE, project number BIO150043), which is
supported by National Science Foundation grant number ACI-1053575.
Funding for LR.T. was provided in part by NOAA's Atlantic Oceanographic and
Meteorological Laboratory (AOML) and the Mississippi State University/NOAA
Morthern Gulf Institute. We thank MO BIO Laboratories, Luca Technologies,
Eppendorf, Boreal Genomics, lllumina, Roche, and Integrated DNA Technologies
for in-kind support at various phases of the project.

Author Contributions JA.G., J.K.J, and R.K. conceived the idea for the
project. LR.T. coordinated the meta-analysis, performed analysis, and wrote
the manuscript. D.M. developed tools, performed analysis, and wrote the
manuscript. LGS, J.La, KJL,RJP,SMG,AA AT, ZZX,, NAB, and AS.
performed analysis and wrote the manuscript. YV-B., J.TM,, and 5.M. developed
tools and performed analysis. A.G. managed the project and performed
analysis. JAN-M, SJS,EK,MFH, TK,SJ,LJ,CJB, Jle,QZ, JK, and
K.5.P. performed analysis. G.H. and G.A. managed the project. S.M.0., JH.-M.,
and D.B.-L. managed the project and coordinated DNA sequencing. K.D.G.,
R.LS, A.C, JAF, and V.M. wrote the manuscript. N.F, J.K.J,, JA.G, and R.K.
managed the project and wrote the manuscript.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial
interests. Readers are welcome to comment on the online version of the paper.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations. Correspondence and
requests for materials should be addressed to J.K.). (janet,jansson@pnnl.gov),
JAG. (gilbertjack@gmail.com) or R.K. (robknight@ucsd.edu).

Reviewer Information Nature thanks 5. Tringe and the other anonymous
reviewer(s) for their contribution to the peer review of this work.

This work is licensed under a Creative Commons Attribution 4.0
BY International (CC BY 4.0) licence. The images or other third party
material in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in the credit line; if the material is not included
under the Creative Commons licence, users will need to obtain permission from
the licence holder to reproduce the material. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

00 MONTH 2017 | VOL 000 | NATURE | 7

© 2017 Macmillan Publishers Limited, part of Springer Mature. All rights reserved.


https://doi.org/10.3389/fmars.2017.00107
http://dx.doi.org/10.1038/ismej.2017.119
http://www.nature.com/doifinder/10.1038/nature24621
http://www.nature.com/reprints
http://www.nature.com/doifinder/10.1038/nature24621
mailto:janet.jansson@pnnl.gov
mailto:gilbertjack@gmail.com
mailto:robknight@ucsd.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

ARTICLE

Jose L. Agosto Riveral, Lisa Al-Moosawi?, John Alverdy?, Katherine R. Amato®,
Jason Andras®, Largus T. Angenent57, Dionysios A. Antonopoulos?,

Amy Apprill®, David Armitagel%11, Kate Ballantine®, Jifi Bartal?,

Julia K. Baum'3, Allison Berry'#, Ashish Bhatnagar'®, Monica Bhatnagar'®,
Jennifer F. Biddle!®, Lucie Bittnerl?, Bazartseren Boldgiv!E,

Eric Bottos!9, Donal M. Boyer29, Josephine Braun2!, William Brazelton?2,
Francis Q. Brearley®>, Alexandra H. Campbell?*, J. Gregory Caporaso®>,
Cesar Cardona?, JoLynn Carroll2®, S. Craig Cary?’, Brenda B. Casper2,
Trevor C. Charles2®, Haiyan Chu3?, Danielle C. Claar!3, Robert G. Clark3!,
Jonathan B. Clayton®?%3, Jose C. Clemente®*, Alyssa Cochran®®,

Maureen L. Coleman?, Gavin Collins?, Rita R. Colwell??, Ménica Contreras3®,
Benjamin B. Crary®®, Simon Creer®®, Daniel A. Cristol*!, Byron C. Crump®2,
Duoying Cui*3, Sarah E. Daly**, Liliana Davalos*®, Russell

D. Dawson?®, Jennifer Defazio3, Frédéric Delsuc?’, Hebe M. Dionisi®®,

Maria Gloria Dominguez-Bello*®, Robin Dowell®®, Eric A. Dubinsky!%°1,

Peter 0. Dunn®2, Danilo Ercolini®3, Robert E. Espinoza®, Vanessa Ezenwa®®,
Nathalie Fenner®?, Helen S. Flndlazoz, Irma D. Fleming®®, Vincenzo Fogliano®3,
Anna Forsman®, Chris Freeman®?, Elliot S. Friedman®28, Giancarlo Galindo®!,
Liza Garcial, Maria Alexandra Garcia-Amado38, David Garshelis®,

Robin B. Gasser®®£0, Gunnar Gerdts®!, Molly K. Gibson®2, Isaac Gifford!?,
Ryan T. Gill®°, Tugrul Giray', Antje Gittel®35, Peter Golyshin®®, Donglai Gong®®,
Hans-Peter Grossart®667 Kristina Guyton?, Sarah-Jane Haig®®, Vanessa Hale®,
Ross Stephen Hall%, Steven J. Hallam797!, Kim M. Handley’2,

Nur A. Hasan®’, Shane R. Haydon’3, Jonathan E. Hickman’?, Glida Hidalgo“,
Kirsten S. Hofmocke!!#78, Jeff Hooker’?, Stefan Hulth’®, Jenni Hultman’?,
Embriette H%g e8%, Juan Diego Ibafiez-Alamo®!, Julie D. Jastrow®,

Aaron R. Jex®#2, L. Scott Johnson®, Eric R. Johnston®*, Stephen Joseph?*,
Stephanie D. Jurburg®®, Diogo Jurelevicius®, Anders Karlsson®7,

Roger Karlsson®, Seth Kauppinen!?, Colleen T. E. Kellogg®,

Suzanne J. Kennedy®, Lee J. Kerkhof®®, Gary M. King®°, George W. Kling®,
Anson V. Koehler®2, Monika Krezalek3, Jordan Kueneman?3921]

Regina Lamendella®2, Emily M. Landon3, Kelly Lane-deGraaf®3,

Julie LaRoche®®, Peter Larsen®, Bonnie Laverock®, Simon Lax?,

Miguel Lentino?, Iris 1. Levin®?, Pierre Liancourt’ %", Wenju Liang®é,
Alexandra M. Linz3®?, David A. Lipson®?, Yonggin Liul%, Manuel E. Lladser®?,
Mariana Lozada*®, Catherine M. Spirito®, Walter P. MacCormack!°%102,
Aurora MacRae-Crerar?8, Magda Magris’®, Antonio M. Martin-Platerol92,
Manuel Martin-Vivaldil®3, L. Margarita Martinez®, Manuel Martinez-Bueno!93,
Ezequiel M. Marzinelli®*, Olivia U. Mason!%%, Gregog D. Mayer!'03,

Jamie M. McDevitt-Irwin!319€, James E. McDonald*?, Krista L. McGuirel97,
Katherine D. McMahon32, Ryan McMinds*2, Ménica Medinal?8,

Joseph R. Mendelson 11341%% Jessica L. Metcalf*®, Folker Meyer>®,

Fabian Michelangeli®8, Kim Miller!1?, David A. Mills!#, Jeremiah Minich2?,
Stefano Mocalilll, Lucas Moitinho-Silva2*, Anni Moore!12,

Rachael M. Morgan-Kiss!!3, Paul Munroe??, David Myrold*?,

Josh D. Neufeld?®, Yingying Ni*?, Graeme W. Nicol!14, Shaun Nielsen24,
Jozef |. Nissimov®, Kefeng Niu!>116, Matthew J. Nolan®®, Karen Noyce®®,
Sarah L. 0'Brien® Noriko Okamoto’®, Ludovic Orlando!!7118,

Yadira Ortiz Castellano!, Olayinka Osuolale!1?, Wyatt Oswald12?,

Jacob Parnell'@!, Juan M. Peralta-Sanchez193, Peter Petraitis?®,

Catherine Pfister®, Elizabeth Pilon-Smits®%, Paola Piombino®?,

Stephen B. Pointing!22, F. Joseph Pollock!%8, Caitlin Potter0,

Bharath Prithiviraj', Christopher Quince?*, Asha Rani'?%,

Ravi Ranjan!25, Subramanya Rao!2%126 Andrew P. Rees?,

Miles Richardson3, Ulf Riebesell!Z, Carol Robinson!28, Karl J. Rocknel25,
Selena Marie Rodriguez!'?®, Forest Rohwer®®, Wayne Roundstone!??,
Rebecca J. Safran%, Naseer Sangwan?, Virginia Sanz€, Matthew Schrenk!3?,
Mark D. Schrenzel!3!, Nicole M. Scott132, Rita L Seger!33,

Andaine Seguin-Orlando’®*, Lucy Seldin®®, Lauren M. Seyler'*®,

Baddr Shakhsheer®2, Gabriela M. Sheets!3%, Congcong Shen39,

Yu Shi®?, Hakdong Shin!36, Benjamin D. Shogan?, Dave Shutler!37,

Jeffrey Siegel'®®, Steve Simmons!3?, Sara Sjoling'*’, Daniel P. Smith!#!,
Juan J. Soler!#2, Martin Sperling!?’, Peter D. Steinberg?®, Brent Stephens!43,
Melita A. Stevens’3, Safiyh Taghavil®4, Vera Tail45, Karen Tait2,

Chia L Tan'#®, Neslihan Tas®!, D. Lee Taylor'¥’, Torsten Thomas®*,

Ina Timling!#8, Benjamin L. Turner®!, Tim Urich14?, Luke K. Ursell132,

Daniel van der Lelie!*4, William Van Treuren®?, Lukas van Zwieten24,

Daniela Vargas-Robles!, Rebecca Vega Thurber®?, Paola Vitaglione®?,

Donald A. Walker!48, William A. Walters!59, Shi Wang®!, Tao Wang®®,

Tom Weaver3?, Nicole S. Webster!®!, Beck Wehrle!%2, Pamela Weisenhorng,
Sophie Weiss®?, Jeﬁre;é J. Werner®153, Kristin West!>*, Andrew Whitehead'*,
Susan R. Whitehead!®°, Linda A. Whittingham®2, Eske Willerslev134,

Allison E. Williams®®, Stephen A. Wood !5, Douglas C. Woodhams!®7,

Yeqin Yang!®?, Jesse Zaneveld!®?, Iratxe Zarraonaindia'®’, Qikun Zhang'®! &
Hongxia Zhao16!

'University of Puerto Rico, San Juan, Puerto Rico, USA. 2Plymouth Marine Laboratory,
Plymouth, England, UK. *University of Chicago, Chicago, lllinois, USA. *Northwestern University,
Evanston, lllinois, USA. *Mount Holyoke College, South Hadley, Massachusetts, USA. SCornell
University, lthaca, New York, USA. 7 University of Tiibingen, Tiibingen, Germany. ®Argonne
Mational Laboratory, Argonne, lllinois, USA. *Woods Hole Oceanographic Institution, Woods
Hole, Massachusetts, USA. 1%University of California Berkeley, Berkeley, California, USA.
"University of Notre Dame, South Bend, Indiana, USA. 2University of South Bohemia, Ceské
Budgjovice, Czech Republic. '*University of Victoria, Victoria, British Columbia, Canada.

4 niversity of California Davis, Davis, California, USA. 15Maharshi Dayanand Saraswati

University, Ajmer, India. '®University of Delaware, Newark, Delaware, USA. 7 Université Pierre et
Marie Curie, Evolution Paris Seine, Paris, France. 18National University of Mongolia, Ulaanbaatar,
Mongolia. **Pacific Northwest National Laboratory, Richland, Washington, USA. 2°Wildlife
Conservation Society and Bronx Zoo, New York, New York, USA. 2!San Diego Zoo Institute for
Conservation Research, Escondido, California, USA. 2University of Utah, Salt Lake City, Utah,
USA. 23Manchester Metropolitan University, Manchester, UK. 2*University of New South Wales,
Sydney, New South Wales, Australia. Northern Arizona University, Flagstaff, Arizona, USA.
28JiT-The Arctic University of Norway, Tromse, Norway. Z University of Waikato, Hamilton,

Mew Zealand. 2University of Pennsylvania, Philadelphia, Pennsylvania, USA. 2University of
Waterloo, Waterloo, Ontario, Canada. *Institute of Soil Science, Chinese Academy of Sciences,
Nanjing, China. *'Environment and Climate Change Canada, Saskatoon, Canada. *?University of
Minnesota, Saint Paul, Minnesota, USA. 33GreenViet Biodiversity Conservation Center, Da Nang,
Viet Nam. **Icahn School of Medicine at Mount Sinai, New York, New York, USA. *Colorado
State University, Fort Collins, Colorado, USA. *National University of Ireland, Galway, Ireland.
FUniversity of Maryland, College Park, Maryland, USA. #Instituto Venezolano de
Investigaciones Cientificas (IVIC), Venezuela. 3¥University of Wisconsin, Madison, Wisconsin,
USA. **Bangor University, Bangor, Gwynedd, UK. *!College of William and Mary, Williamsburg,
Virginia, USA. **Qregon State University, Corvallis, Oregon, USA. **Beijing Zoo, Beijing, China.
44pyrdue University, West Lafayette, Indiana, USA. #35tony Brook University, Stony Brook,

New York, USA. *University of Northern British Columbia, Prince George, British Columbia,
Canada. *Université de Montpellier, CNRS, Montpellier, France. *3Centro para el Estudio de
Sisternas Marinos (CESIMAR-CONICET), CCT CENPAT, Puerto Madryn, Chubut, Argentina.
“INew York University, New York, New York, USA. ®University of Colorado, Boulder, Colorado,
USA. ®!Lawrence Berkeley National Laboratory, Berkeley, California, USA. *2University of
Wisconsin, Milwaukee, Wisconsin, USA. 33University of Naples Federico Il, Naples, ltaly.
California State University, Northridge, California, USA. University of Georgia, Athens,
Georgia, USA. *Vanderbilt University, Nashville, Tennessee, USA. ¥University of Central Florida,
Orlando, Florida, USA. ®Minnesota Department of Natural Resources, St. Paul, Minnesota, USA.
BUniversity of Melbourne, Melbourne, Victoria, Australia. °Huazhong Agricultural University,
Wuhan, Hubei, China. ®'Alfred Wegener Institute, Bremerhaven, Germany. %Washington
University, St. Louis, Missouri, USA. 8*Aarhus University, Aarhus, Denmark. ®*University of
Bergen, Bergen, Norway. 5%Virginia Institute of Marine Science, Gloucester Point, Virginia, USA.
8| eibniz Institute for Freshwater Ecology and Inland Fisheries, Stechlin, Germany. $’Potsdam
University, Potsdam, Germany. 58University of Michigan, Ann Arbor, Michigan, USA. The Ohio
State University College of Veterinary Medicine, Columbus, Ohio, USA. "®University of British
Columbia, Vancouver, British Columbia, Canada. 7XECOSCOPE Training Program, Vancouver,
British Columbia, Canada. "?University of Auckland, Auckland, New Zealand. "*Melbourne
Water Corporation, Melbourne, Victoria, Australia. "*Columbia University, New York, New York,
USA. 7SAmazonic Center for Research and Contral of Tropical Diseases (CAICET), Puerto
Ayacucho, Amazonas, Venezuela. "Slowa State University, Ames, lowa, USA. 7 Chief Dull Knife
College, Lame Deer, Montana, USA. "®University of Gothenburg, Gothenburg, Sweden.
T9University of Helsinki, Helsinki, Finland. 8University of California San Diego, La Jolla,
California, USA. #!University of Groningen, Groningen, The Netherlands. ®2The Walter and Eliza
Hall Institute of Medical Research, Parkville, Victoria, Australia. **Towson University, Towson,
Maryland, USA. 34Georgia Institute of Technology, Atlanta, Georgia, USA. 3Wageningen
University and Research, Wageningen, Netherlands. *Universidade Federal do Rio de Janeiro,
Rio de Janeiro, Brazil. ¥ Nanoxis Consulting AB, Gothenburg, Sweden. #Bio-Path Holdings, Inc.,
Bellaire, Texas, USA. 3°Rutgers University, New Brunswick, New Jersey, USA. ®Louisiana State
University, Baton Rouge, Louisiana, USA. 31Smithsonian Tropical Research Institute, Balboa,
Ancon, Panama. ®Juniata College, Huntingdon, Pennsylvania, USA. **Fontbonne University,

St. Louis, Missouri, USA. **Dalhousie University, Halifax, Nova Scotia, Canada. **University of
Technology, Sydney, New South Wales, Australia. *Coleccién Ornitologica W. H. Phelps,
Caracas, Venezuela. ” Institute of Botany, Czech Academy of Sciences, Dukelska, Trebon, Czech
Republic. ®*Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.

%San Diego State University, San Diego, California, USA. 1®@Institute of Tibetan Plateau
Research, Chinese Academy of Sciences, Beijing, China. °'Universidad de Buenos Aires,
Ciudad Auténoma de Buenos Aires, Argentina. 1%|nstituto Antartico Argentino, Buenos Aires,
Argentina. 193University of Granada, Granada, Spain. !®Florida State University, Tallahasses,
Florida, USA. 1%%Texas Tech University, Lubbock, Texas, USA. 1965tanford University, Stanford,
California, USA. ' University of Oregon, Eugene, Oregon, USA. '%®Pennsylvania State University,
State College, Pennsylvania, USA. 1®Zoo Atlanta, Atlanta, Georgia, USA. 11%0hio University,
Athens, Ohio, USA. 11ICREA - Centro Agricoltura e Ambiente (CREA-AA), Florence, Italy.
2Morningside College, Sioux City, lowa, USA. 1*Miami University, Oxford, Ohio, USA.

14 niversité de Lyon, Lyon, France. '*Fanjingshan National Nature Reserve Administration,
Tongren, China. 1'8University of Turin, Turin, Italy. 117 Natural History Museum of Denmark,
Copenhagen, Denmark. ®8Université de Toulouse, Université Paul Sabatier, Toulouse, France.
113Ejizade University, llara-Mokin, Ondo State, Nigeria. *>®Emerson College, Boston,
Massachusetts, USA. 121Novozymes North America Inc., Raleigh-Durham, North Carolina, USA.
122puckland University of Technology, Auckland, New Zealand. 123City University of New York,
New York, New York, USA. **University of Warwick, Coventry, UK. 125University of lllinois,
Chicago, lllincis, USA. '26The Hong Kong Polytechnic University, Hong Kong, China. 2’GEOMAR
Helmholtz Center for Ocean Research Kiel, Kiel, Germany. 122University of East Anglia, Norwich,
UK. 1 Department of Environmental Protection and Natural Resources, Northern Cheyenne
Tribe, Lame Deer, Montana, USA. *°Michigan State University, East Lansing, Michigan, USA.
131Hyhla Valley Veterinary Hospital, Alexandria, Virginia, USA. 132Biota Technology Inc., San
Diego, California, USA. **University of Maine, Orono, Maine, USA. ***University of Copenhagen,
Copenhagen, Denmark. '**Emory University, Atlanta, Georgia, USA. 1%Sejong University, Seoul,
South Korea. 137 Acadia University, Wolfville, Nova Scotia, Canada. 1*#University of Toronto,
Toronto, Ontario, Canada. 1*%ndependent Ornithologist, Merced, California, USA. 140Sadertérn
University, Huddinge, Sweden. '*!Baylor College of Medicine, Houston, Texas, USA. 1Estacién
Experimental de Zonas Aridas (EEZA-CSIC), Almeria, Spain. “lllinois Institute of Technology,

© 2017 Macmillan Publishers Limited, part of Springer Mature. All rights reserved.



Chicago, lllincis, USA. 1*Gusto Global LLC, Charlotte, North Carolina, USA. 1*"Western
University, London, Ontario, Canada. 1#6LVDI International, San Marcos, California, USA.

47 niversity of New Mexico, Albuguerque, New Mexico, USA. 1*#University of Alaska, Fairbanks,
Alaska, USA. **University of Vienna, Vienna, Austria. 1®*Max Planck Institute for Developmental
Biology, Tiibingen, Germany. 15!Australian Institute of Marine Science, Townsville, Queensland,
Australia. 1*University of California Irvine, Irvine, California, USA. 153State University of

ARTICLE

MNew York, Cortland, New York, USA. 154DOCS Global, Research Triangle Park, North Carclina,
USA. 15%irginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.

1%8Yale University, New Haven, Connecticut, USA. 1 University of Massachusetts Boston,
Boston, Massachusetts, USA. **Tongren University, Tongren, Guizhou, China. **University of
Washington Bothell, Bothell, Washington, USA. '%niversity of the Basque Country (UPV/EHL),
Leioa, Spain. '6!Zhejiang Institute of Microbiology, Hangzhou, Zhejiang, China.

© 2017 Macmillan Publishers Limited, part of Springer Mature. All rights reserved.



ARTICLE

METHODS

Study design. This effort was possible because of a unified standard workflow
that leveraged existing sample and data reporting standards to allow biomass and
metadata collection across diverse environments on Earth. After sample collection,
all samples were processed following the same protocols. A standard DNA
extraction protocol (http://www.earthmicrobiome.org/protocols-and-standards/
dna-extraction-protocol) was implemented to ensure that trends observed were
due either to the biological system or to biases in extraction potential for organisms
from different environmental matrices, and not due to inherent biases in the
extraction protocol. To avoid known issues that arise when multiple amplicon
strategies are combined*’, we also standardized PCR primers, amplification
strategy, and sequencing®’. More recent studies not included in this meta-analysis
adopted additional primer modifications to allow recovery of key taxa in marine
and soil samples'’-'%. Data reporting standards, including the MIxS (minimal
information about any sequence) metadata standard developed by the Genomic
standards Consortium'’ and the Environment Ontology (ENVO)'"*!, enabled
interoperability, data analysis, and interpretation between samples from disparate
environments, collected using many different techniques through unconnected
programs of investigation.

To transfer our knowledge of microbial environments to the broader community,
we engaged with the developers of ENVO to ensure that the basic, salient features
of microbial environments (host-associated or free-living, and respectively within
those, animal- or plant-associated, and saline or non-saline materials) were rep-
resented either in this ontology or in those with which it interoperates. For ease
of application, we gathered these contributions into an application ontology, the
EMP Ontology (EMPO) (Fig. 1a). The EMP community will continue to work
with ontology engineers to shape ENVO and other ontologies around the EMPO
application ontology. EMPO will be maintained as a logical subset of ENVO and
integrated into the ENVO release cycle to maximize interoperation.

Metadata curation was automated using Pandas (http://pandas.pydata.org). The
size of the dataset also required extensive software development to support analysis
at this scale, leading to tools including the data and analysis portal Qiita (https://
giita.microbio.me), the BIOM format*2, new ‘OTU picking’ methods Deblur?!
and a subsampled open-reference procedure™, a scalability improvement of Fast
UniFrac phylogenetic inference software™, speed improvements to sequence-
insertion tree method SEPP**, and speed and feature improvements to Emperor
ordination visualization software® (http://biocore.github.io/emperor).

Sample collection. The global community of microbial ecologists was invited to
submit samples for microbiome analysis, and samples were accepted for DNA
extraction and sequencing provided that scientific justification and high-quality
sample metadata were provided before sample submission. Standardized sampling
procedures for each sample type were used by contributing investigators. Samples
were collected fresh and, where possible, immediately frozen in liquid nitrogen
and stored at —80 °C. Detailed sampling protocols are described in publications
of the individual studies (Supplementary Table 1). Bulk samples (for example,
soil, sediment, faeces) and fractionated bulk samples (for example, sponge coral
surface tissue, centrifuged turbid water) were taken using microcentrifuge
tubes. Swabs (BD SWUBE dual cotton swabs or similar) were used for biofilm
or surface samples. Filters (Sterivex cartridges, 0.2 pm, Millipore) were used for
water samples. Samples were sent to laboratories in the United States for DNA
extraction and sequencing: water samples to Argonne National Laboratory, soil
samples to Lawrence Berkeley National Laboratory (pre-2014) or Pacific Northwest
National Laboratory (2014 onward), and faecal and other samples to the University
of Colorado Boulder (pre-2015) or the University of California San Diego (2015
onward).

Metadata curation and EMP ontology. Metadata were collected in compliance
with MIMARKS!'?, EBI (https://www.ebiac.uk/ena), and Qiita (https://giita.
microbio.me) standards, as described in the EMP Metadata Guide (http://www.
earthmicrobiome.org/ protocols-and-standards/metadata-guide). QIIME mapping
files (metadata) were downloaded from Qiita, merged, and refined using Python
with Pandas, generating quality-controlled mapping files. Mapping file columns
are described in Supplementary Table 2. Mapping files for the full EMP dataset and
subsets (see below) are available at ftp://ftp.microbio.me/emp/releasel/mapping
files/. The EMP Ontology (EMPO) for microbial environments was devised to
facilitate the present analysis while preserving interoperability. Coordinated by
the ENVO team, annotations from ENVO'"*!, UBERON (metazoan anatomy)“,
PO (plant ontology)*®, FAO (fungal anatomy ontology, http://purl.obolibrary.org/
obo/fao.owl), and OMP (ontology of microbial phenotypes)* were mapped to
our EMPO levels 2 and 3 (empo_2 and empo_3). Additionally, the free-living or
host-associated lifestyles were captured in level 1 categories (empo_1). Descriptions
of empo_3 categories are provided at http://www.earthmicrobiome.org/protocols-
and-standards/empo. The W3C Web Ontology Language (OWL) document is
available at http://purl.obolibrary.org/obo/envo/subsets/envoEmpo.owl. Map data

were derived from the open-source project MatPlotLib package Basemap, which
distributes map data from Generic Mapping Tools data (http://gmt.soest. hawaii.
edu) released under the GNU Lesser General Public License v3.

DNA extraction, amplicon PCR, sequencing, and sequence pre-processing.
DNA extraction and 165 rRNA amplicon sequencing was done using EMP standard
protocols (http://www.earthmicrobiome.org/protocols-and-standards/16s) 4.
In brief, DNA was extracted using the MO BIO PowerSoil DNA extraction kit
(Carlsbad, CA), chosen because of its versatility with diverse sample types (rather
than high yields with any given sample type). Amplicon PCR was performed on
the V4 region of the 165 rRNA gene using the primer pair 515f-806r> with Golay
error-correcting barcodes on the reverse primer. Although any primer-based
method necessarily under-samples diversity, a recent analysis of 165 rRNA genes
captured in shotgun metagenomic sequences indicates that this primer pair is
among the best available for sampling both bacteria and non-eukaryotic archaea'®.
Amplicons were barcoded and pooled in equal concentrations for sequencing.
The amplicon pool was purified with the MoBio UltraClean PCR Clean-up kit
and sequenced on the Illumina HiSeq or MiSeq sequencing platform; the same
sequencing primers were used with both platforms, and previous work has shown
that conclusions drawn from 16S rRNA amplicon data are not dependent on which
of these sequencing platforms is used*’. Sequence data were demultiplexed and
minimally quality filtered using the QIIME 1.9.1 script split_libraries_fastq.py*’
with Phred quality threshold of 3 and default parameters to generate per-study
FASTA sequence files.

Tag sequence and OTU picking and subsets. Sequence data were error-filtered
and trimmed to the length of the shortest sequencing run (90 bp) using the Deblur
software”!; the resulting 90-bp Deblur BIOM table was used for all analyses unless
otherwise noted. Deblur tables trimmed to 100 bp and 150 bp were also generated
and provided, which contain greater sequence resolution but fewer samples.
Deblur observation tables were filtered to keep only tag sequences with at least 25
reads total over all samples. For comparison to existing OTU tables, traditional
closed-reference OTU picking was done against 16S rRNA databases Greengenes
13.8% and SILVA 123 using SortMeRNA®!, and subsampled open-reference
OTU picking™ was done against Greengenes 13.8. These unfiltered tables and the
filtered and subset tables described below are available at ftp://ftp.microbio.me/
emp/releasel/otu_tables.

A total of 97 studies and 27,742 samples are included in the present study and in
the unfiltered BIOM tables. The QC-filtered subset used in core diversity analyses
(Fig. 2) contains 96 studies and 23,828 samples, and it was subset further for some
analyses. In the provided BIOM tables (ftp://ftp.microbio.me/emp/releasel/otu_
tables/ and https://zenodo.org/record/890000), the ‘releasel’ set contains all sam-
ples in the 97 studies that have at least one sequence per sample; this set includes
controls (blanks and mock communities). The ‘qc_filtered” set, from which the
subsets are drawn, has samples with > 1,000 observations in each of four observa-
tion tables: closed-reference Greengenes, closed-reference SILVA, open-reference
Greengenes, and Deblur 90-bp; controls (empo_1 == ‘Control’) are excluded.
Subsets were then generated which give equal (as possible) representation across
environments (EMPO level 3) and across studies within those environments. The
subsets contain 10,000, 5,000, and 2,000 samples (nested subsets). In each subset
the samples must have > 5,000 observations in the Deblur 90-bp observation table
and = 10,000 observations in each of the closed-reference Greengenes, closed-
reference SILVA, and open-reference Greengenes observation tables. Note that
Deblur removes approximately one-third to one-half of sequences owing to sus-
pected errors, which is consistent with a sequence length of ~~90-150 bp and an
average error rate of 0.006 per position®2.

Comparison against reference databases. To compare the unique sequence
diversity in this study to that in existing databases, sequences from the complete
Deblur 90-bp observation table were compared to the set of unique full-length
sequences from Greengenes 13.8 and the non-eukaryotic fraction of Silva 128 data-
bases using the open-source sequence search tool VSEARCH®? in global alignment
search mode, requiring 100% similarity across the query sequence and allowing
multiple 100% reference matches.

Prevalence as a function of sequencing depth. The QC-filtered Deblur 90-bp
observation table was additionally filtered to samples that had at least 50,000
sequences (observations). We chose to focus on four environment types (EMPO
level 3) where there were many hundreds of samples with more than 50,000
sequences: soil (n=2,279), saltwater (n=478), freshwater (n=1,508), and animal
distal gut (n=695) environments. For each environment, the observation tables
were randomly subsampled to 50, 500, 5,000, and 50,000 sequences per sample. The
prevalence of each tag sequence was determined as the number of non-zero occur-
rences across samples divided by the total number of samples. We then plotted a
histogram of tag sequence prevalence at each sampling depth. In order to control
for potential study bias, we ran the same analysis on a subset of the observation
tables where 30 samples were randomly sampled from each study (studies with
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fewer than 30 samples with > 50,000 sequences were discarded). To investigate
how mean tag sequence prevalence changes with increasing sequencing depth
across environments, we calculated the average mean tag sequence prevalence
across three replicate rarefactions. We plotted the average and standard deviation
in mean prevalence across replicate subsamples over a subsampling gradient (that
is, 50, 100, 500, 1,000, 5,000, 10,000 and 50,000 sequences per sample).
Greengenes insertion tree. Deblur tag sequences were inserted into the
Greengenes reference tree using SEPP*°, which uses a divide-and-conquer
technique to enable phylogenetic placement on very large reference trees. The
SEPP method uses HMMER® internally for aligning each Deblurred sequence to
areference Greengenes alignment (gg 13_5_ssu_align_99_pfiltered.fasta) with
99% threshold for clustering (resulting in 203,452 tag sequences) and dividing
the reference alignment to subsets with a thousand sequences each. It then uses
pplacer® to insert the sequences into the reference Greengenes tree (99_otus.tree),
dividing it into subsets of size 5,000. The branch lengths on the Greengenes tree
were recomputed using RAXML® under the GTRCAT model before the placement.
The pipeline used, including the reference trees and alignments can be found at
ftp://ftp.microbio.me/emp/releasel/otu_info/greengenes_sepp_pipeline, and the
bash script is available at https://github.com/biocore/emp/blob/master/code/03-
otu-picking-trees/deblur/run_sepp.sh.

Fast UniFrac. Unweighted and weighted UniFrac were computed using the
Cythonized®” implementation of Fast UniFrac™ in scikit-bio%. Fast UniFrac by
itself was not scalable for the EMP dataset owing to an intermediary data structure
required by the algorithm, which scales in space by O(NM), where N is the number
of nodes in the phylogeny and M is the number of samples. A workaround was
designed and implemented in scikit-bio (skbio.diversity.block_beta_diversity)
which computes partial distance matrices as opposed to all samples pairwise,
enabling large reductions within the intermediary data structure by shrinking
M and, in tandem, shrinking N to only the relevant nodes of the phylogeny.
This decomposition also allows a classic map-reduce parallel approach with
low per-process space requirements. Further space and time reductions were
obtained through the implementation and use of a balanced-parentheses tree
representation®? (https://pypi.python.org/pypi/iow).

Core diversity analyses: alpha- and beta-diversity. Alpha-rarefaction was
computed using single_rarefaction.py in QIIME 1.9.1%° using as input the Deblur
90-bp BIOM table and rarefaction depths of 1,000, 5,000, 10,000, 30,000, and
100,000. Alpha-diversity was computed using scikit-bio 0.5.0 with the input Deblur
90-bp BIOM table rarefied to 5,000 observations per sample, and alpha-diversity
indices were observed_otus (number of unique tag sequences), shannon (Shannon
diversity index”"), chaol (Chao 1 index’"), and faith_pd (Faith’s phylogenetic
diversity’?, using the Greengenes insertion tree). Fast UniFrac** was run on the
Deblur 90-bp table using the aforementioned approach and the corresponding
insertion tree. Principal coordinates were computed using QIIME 1.9.1.

Effect size calculations of alpha- and beta-diversity. A version of the mapping
file (metadata) was compiled containing the predictors to be tested: study_id,
host_scientific_name (a proxy for host taxonomy), latitude_deg, longitude_deg,
envo_biome_3 (a proxy for biome or environment), empo_3 (a proxy for sample
type or environment generally), temperature_deg_c, ph, salinity_psu, and nitrate_
umol_per_l (a proxy for nutrient levels generally). Predictors chosen were those
expected to be less redundant with other predictors not chosen, with the excep-
tion that there was substantial overlap between study ID and many of the other
predictors—because independent studies typically focused on limited sample
types from constrained geographic ranges, it is expected that study ID serves
as a proxy for a wide range of other measured and unmeasured environmental
variables (see Extended Data Fig. 5b). Categories for each predictor were chosen
as follows: numerical data were first converted to categories using quartiles; then
each category was required to be found in at least 0.3% of all samples (corre-
sponding to 75 samples); categories that were less common than this were ignored.
Note that some predictors in our data have complex nonlinear relationships that
multivariate statistical analyses using quartiles may miss, such as the unimodal
upper-constraint-based richness relationships of temperature and pH. We then
tested the effect size of each predictor versus the number of observed tag sequences
(alpha-diversity) and weighted and unweighted UniFrac distances (beta-diversity).
Effect size was calculated using a Python implementation of the mixed-directional
false discovery rate (mdFDR)”*"%. mdFDR reduces the false discovery rates by
penalizing the multiple pairwise comparisons within each metadata category
and the multiple metadata category comparisons. mdFDR has four steps. First,
it performs a pairwise comparison (Mann-Whitney U for alpha-diversity, and
PERMANOVA for beta-diversity) of each group within each category. Second, for
each category we calculate a pooled P value based on the P values of all pairwise
comparisons for any given category. Third, we apply the Benjamini-Hochberg
procedure to the pooled P values and remove non-significant metadata categories.
Finally, we estimate the effect size of those categories found to be significant in
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step 3 and that have a pairwise comparison P value greater than (R/m x q;) x a,
where R is the number of categories that were found significant, m is the number of
categories that are being compared (the original number of categories in the input
mapping file), g, is the number of pairwise comparisons in each given category,
and « is the control level for FDR. The effect size for a given metadata column
is calculated as the difference of means of each pairwise comparison divided by
pooled standard deviation. To further assess the combined effect size of predictors
with non-redundant explanatory power on alpha- and beta-diversity, the non-
redundant predictors were selected by forward stepwise redundancy analysis with
the R package vegan’® ordiR2step function. This analysis provides an estimate of
the relative contribution of each non-redundant predictor to the combined effect
size and their independent fraction to the community variation.

Average community 16S rRNA gene copy number. The closed-reference obser-
vation table (Greengenes 13.8) was run through the PICRUSt 1.1.0 command
normalize_by_copy_number.py script’®, which divides the abundance of each
OTU by its inferred 165 rRNA gene copy number (that is, copy number is inferred
from the closest genome representative for a Greengenes 16S rRNA gene reference
sequence). Samples with more than 10,000 sequence reads were summed (that is,
OTU abundances were summed within each sample) in both the copy-number
normalized and original observation tables. The weighted average community 165
TRNA gene copy number (ACN) for each sample was calculated as the raw sample
sum divided by the normalized sample sum.

Covariation of richness with latitude, pH, and temperature. Measurements of
alpha-diversity were compared to absolute latitude using a linear mixed-effects
model incorporating study ID as a random variable and the interaction of envi-
ronment and latitude as fixed effects; this was performed on a dataset filtered
to include only studies comprising samples that spanned at least 10° of absolute
latitude. Correlation of richness with pH and temperature were fitted with a Laplace
distribution. The Laplace distribution is a continuous probability distribution that
simultaneously captures exponential increase and exponential decrease around
a modal value (g). This distribution is also referred to as the double exponential
or two-sided exponential because it represents two symmetrical exponential
distributions back-to-back. The Laplace is particularly useful for testing the
biological hypothesis that a system is under strong selection to take a particular
value (p) and that small deviations from g produce an exponential decrease, for
example, in diversity. We tested this hypothesis with regards to how tag sequence
richness (S) relates to pH and temperature. We used the upper 99th percentile of
tag sequence richness across narrow ranges of pH (100 bins) and temperature
(120 bins), meaning that our question pertained to the relationship of maximum
tag sequence richness (Sp,,,) to pH and temperature. We compared our expecta-
tions of exponential decrease in maximum S against the fit to a Gaussian curve,
which can also predict a steep symmetrical decrease with small deviations from ge.
Random forest classification of samples. Random forest classification models
were trained on the 2,000-sample subset of the Deblur 90-bp observation table
to test classification success of samples into the environmental categories from
which they came. The R packages caret”” and randomForest”® were used. Five
repeats of tenfold cross-validation were used to evaluate the classification accuracy.
Confusion matrices were computed to measure the agreement between prediction
and true observation. The models were then used to classify the other remaining
samples in the full QC-filtered subset.

SourceTracker analyses. SourceTracker’® uses a Bayesian classification model
together with Gibbs sampling to predict the proportion of tag sequences from
a given set of source environments that contribute to sink environments. We
applied SourceTracker 2.0.1 (http://github.com/biota/sourcetracker2) to define
the degree to which tag sequences are shared among environmental samples, using
the 2,000-sample subset of the Deblur 90-bp observation table (~20% of each
sample type) as source samples to train the model, and the remainder as sink
samples to test the model. Additionally, we used leave-one-out cross-validation to
predict the sample type of each source sample when that sample type is excluded
from the model, in order to evaluate the homogeneity of source samples and
independence of each source type. Source and sink samples were rarefied to 1,000
sequences per sample before feature selection and testing.

Nestedness of taxonomic composition. Nestedness captures the degree to which
elements of a large set are contained within progressively smaller sets. We used
the NODF statistic®” to quantify nestedness of the sample-by-taxa matrix. The
rows of this matrix correspond to specific taxa grouped at particular taxonomic
levels (for example, phylum, class, etc.), while the columns correspond to particular
samples. After sorting the matrix from greatest-to-least according to row and
column sums, we quantified two aspects of the NODF statistic. The firstisa ‘row’
version of NODF that quantifies the degree to which ranges of less prevalent taxa
are subsets of the ranges of more prevalent taxa. The second is a ‘column’ version
of NODF that quantifies the degree to which less diverse communities are subsets
of more diverse communities. We employed two null models to better interpret the
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observed values of the NODF statistic. The first is based on a random shuffling of
occurrences within each row, holding row sums constant (fixed rows, equiprobable
columns), while the second is based on a random shuffling of occurrences within
each column, holding column sums constant (equiprobable rows, fixed columns)®!.
The results from both of these null models were qualitatively consistent, so we only
report findings using the equiprobable rows, fixed columns model, as it is more
consistent with rarefaction of the observation tables. We considered null models
at each taxonomic level (phylum, class, order, family, genus), and for all of the
samples and each subset of the samples at EMPO level 2. To compute standardized
effect scores (SES), we used analytical results based on the hypergeometric
distribution to find the expectation and variance of the NODF statistic under both
models. SES values were generally very large (>2); we used Wald tests to compute
approximate P values.

Environment distribution of taxa and Shannon entropy. For each Deblur tag
sequence B, sample s in the set of all EMP samples S, and sample type (EMPO level 3)
category E, define

[seS:BeSASEE]

Wi(B) =
s(B) [s€S:Bes|

(n

as the fraction of total appearances of tag sequence B in sample type category E
(with N possible values). For a given cluster of tag sequences T (phylogenetic
subtree or taxonomic group, for example, Firmicutes), we then calculate cluster
distribution vector as

W(T)= (Wg(T), ..., Wen(T)) @
where W combined for all tag sequences in the sequence cluster is given by
Wi(T) = mean(W(B)) 3)
BeT

Clusters of tag sequences were defined in two ways: first, by partitioning using
the taxonomic lineage information for the tag sequences; second, by maximum
tip-to-tip branch length for nodes on the phylogenetic tree. To calculate entropy
of environment distribution as a function of taxonomic level (for example,
phylum), the mean of Shannon entropies for all taxonomic groups belonging to
that taxonomic level was calculated (weighted by the number of tag sequences in
each taxonomic group). To calculate the entropy as a function of the phylogenetic
subtree group width, cluster Shannon entropy was calculated for all subtrees, as well
as the maximum tip-to-tip distance for each subtree. To ascertain whether changes
in entropy between taxonomic and phylogenetic levels were expected given the
observed distribution of environment entropy among tag sequences, a null model
was calculated by randomly permuting the Deblur tag sequence taxonomy associa-
tions (for the entropy versus taxonomy analysis) or the phylogenetic tip placement
(for the entropy versus phylogeny analysis). To reduce the effect of discretization
on the entropy calculation in both analyses, clusters of tag sequences were included
in the analysis only if they had a minimum of 20 tag sequences. For unique tag
sequences (that is, a branch length threshold of 0.0), sequences were required to
be found in a minimum of 10 samples. To calculate the approximate branch length
corresponding to each taxonomic level, we found the lowest common ancestor
for each group and calculated the maximum tip-to-tip distance in that subtree.
EMP trading cards. We started with a BIOM table of 90-bp Deblur tag sequences
(16S rRNA gene, V4 region), rarefied to 5,000 observations per sample, containing
2,000 samples evenly distributed across environments and studies (Extended
Data Fig. 7a). From this we calculated the following: the number, fraction, and
rank of samples in which a tag sequence is found; the abundance, fraction, and
rank of observations represented by that tag sequence; the taxonomy of the tag
sequence from Greengenes; and the list of all the samples in which the tag sequence
is found. This summary is located at ftp://ftp.microbio.me/emp/releasel/otu_
distributions/. Additionally, for each tag sequence with a trading card in Extended
Data Fig. 7b or http://www.earthmicrobiome.org/trading-cards, we identified
sequences in RDP (http://rdp.cme.msu.edu)? matching 100% along the 90-bp
region of the 165 rRNA gene. Trading cards at http://www.earthmicrobiome.
org/trading-cards are those with prevalence or abundance in the top 10 of all tag
sequences or the most abundant tag sequence for each environment having a
distribution Shannon entropy < 1, a proportion of that environment > 25%, and
total observations > 1,000.

Redbiom database service. A metadata and feature search service containing the
EMP data is available through Redbiom. Redbiom is a caching layer for BIOM
table and sample metadata, where by default it allows users to interact with the
public portion of Qiita (which includes all of the EMP studies). This service allows
users to find samples on the basis of sample details (for example, all soil samples
with pH < 7), to find samples on the basis of features they contain (for example,
all samples in which Greengenes ID 131337 exists), to find features on the basis of

taxonomy (for example, all samples in which genus Pyrobaculum exists), to extract
sample data into BIOM tables, and to extract sample metadata. Installation of the
command-line client and usage instructions are available at https://pypi.python.
org/pypi/redbiom; examples of command-line queries are provided at https://
github.com/biocore/redbiom. A graphical user interface for Redbiom is available
at https://giita.microbio.me.

Code availability. Code for reproducing sequence processing, data analysis, and
figure generation is provided at https://github.com/biocore/emp and is archived at
https://zenodo.org with DOT 10.5281/zenodo.1009693. Redbiom code is available
at https://github.com/biocore/redbiom and is archived at https://zenodo.org with
DOI 10.5281/zenodo.1009150.

Data availability. Per-study sequence files and sample metadata are available from
EBI (http://www.ebi.ac.uk/ena) with accession numbers in Supplementary Table 1.
Per-study sequence files, sample metadata, and observation tables and informa-
tion are available from Qiita (https://qiita.microbio.me) using the study IDs in
Supplementary Table 1. EMP-wide sample metadata, observation tables and infor-
mation (trees and taxonomies), alpha- and beta-diversity results, and observation
summaries for trading cards are available at ftp://ftp.microbio.me/emp/releasel;
these files plus the Redbiom database at time of publication are archived at https://
zenodo.org with DOI 10.5281/zenodo.890000.
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Extended Data Figure 1 | Physicochemical properties of the EMP
samples. Pairwise scatter plots of available physicochemical metadata
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nitrate, and ammonium. Histograms for each factor are also shown; the
number (n) of samples having data for each factor is provided at the
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Extended Data Figure 2 | Sequence length, database effects, and
beta-diversity patterns. a, Median sequence length per study after
quality trimming. Original EMP studies used 90-bp reads, which were
replaced by 100-bp reads for the majority of studies, and have since

been replaced by 150-151-bp reads. For most analyses presented in this
manuscript, we used the Deblur algorithm and trimmed tag sequences

to 90 bp. This allowed inclusion of older studies with shorter read

lengths. b, Comparison of Greengenes and SILVA rRNA databases for
reference-based OTU picking. Fraction of reads in n = 23,828 biologically
independent samples—separated by environment (per-environment n
shown in Fig. 1a)—mapping to Greengenes 13.8 and SILVA 123 (97%
identity OTUs) with closed-reference OTU picking. Boxplots show
median, IQR, and 1.5 x IQR (with outliers). The fraction of reads mapping
was similar between Greengenes and SILVA in each environment but
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slightly higher with SILVA for every environment. ¢, Alpha-diversity in
closed-reference OTUs picked against Greengenes 13.8 and SILVA 123,
with sequences rarefied to 100,000, 30,000, 10,000, and 1,000 sequences
per sample, displayed as boxplots showing median, IQR, and 1.5 x IQR
(with outliers). The sample set for all calculations contained n= 4,667
biologically independent samples having at least 100,000 observations in
both Greengenes and SILVA OTU tables. Alpha-diversity metrics were
higher with SILVA closed-reference OTU picking than with Greengenes.
d, Beta-diversity among all EMP samples using principal coordinates
analysis (PCA) of weighted UniFrac distance. Principal coordinates PC1
versus PC2 and PC1 versus PC3 are shown coloured by EMPO levels

2 and 3. As with unweighted UniFrac distance (Fig. 2c), clustering of
samples using weighted UniFrac distance could be explained largely by
environment.
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Extended Data Figure 3 | Sequence length effects on observed diversity
patterns. The effect of trimming from 150 bp (the approximate starting
length of some sequences) to 90 bp (the trimmed length of all sequences
in this meta-analysis) was investigated by comparing alpha- and beta-
diversity patterns. All samples, at each sequence length, were rarefied to
5,000 sequences per sample. a, Alpha-diversity distributions of n= 12,538
biologically independent samples displayed as histograms of observed tag
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sequences coloured by environment (EMPO level 3). Among these samples
with sequence length > 150 bp, the distributions are largely preserved
when trimming from 150 to 100 to 90 bp. b, Procrustes goodness-of-fit
between the 90-bp (grey lines) and 150-bp (black lines) Deblur principal
coordinates (unweighted UniFrac distance) for n= 200 randomly chosen
samples coloured by environment (EMPO level 2). Beta-diversity patterns
between the two sequence lengths are similar.
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Extended Data Figure 5 | Environmental effect sizes, sample
classification, and correlation patterns. a, Effect sizes of predictors

on alpha- and beta-diversity. Maximum pairwise effect size (difference
between means divided by standard deviation) between categories of
each predictor plotted for observed tag sequences (alpha-diversity) and
unweighted and weighted UniFrac distance (beta-diversity). Response
variables (alpha- and beta-diversity) were derived from the QC-filtered
subset of the 90-bp Deblur table containing n = 23,828 biologically
independent samples. Numeric predictor variables were converted to
quartiles (categorical predictors). Categories within each predictor

had a minimum of 75 samples per category. b, Cumulative variation
explained by the optimal model of stepwise redundancy analysis (RDA)
of predictors: study ID, EMPO level 3, ENVO biome level 3, latitude, and
longitude (predictors with values for less than half of samples, including
host scientific name, were excluded). Environment (EMPO level 3) and
biome (ENVO biome level 3) explained as much variation as study ID
when study ID was excluded from the RDA. ¢, Confusion matrix for
random forest classifier of samples to environment (EMPO level 3).

The classifier was trained on the 2,000-sample subset, which was then
tested on the remaining samples (QC-filtered samples minus 2,000-sample
subset). Squares are coloured relative to 100 classification attempts for
each true label. Overall success rate was 84%, with the most commonly
misclassified sample environments being Surface (non-saline), Animal
secretion, Soil (non-saline), and Aerosol (non-saline). d, Receiver

ARTICLE

operating characteristic (ROC) curve for classification of samples to
environment (EMPO level 3). The AUC (area under curve) indicates the
probability that the classifier will rank a randomly chosen sample of the
given class higher than a randomly chosen sample of other classes.

e, Classification success, using a random forest classifier, to EMPO

levels 1-3, ENVO material, ENVO feature, and ENVO biome levels 1-3.
f, Microbial source tracking: mean predicted proportion of tag sequences
from each source environment (EMPO level 3) that occurs in each sink
environment. The model was trained on a subset of samples (~20% of
each environment), and tested to predict tag sequence source composition
in all remaining samples. Aerosol (non-saline), Surface (saline), and
Hypersaline samples were not included in this analysis because there were
insufficient sample numbers. g, Microbial source tracking: which other
environments a sample type most resembles. The model was trained on
all source environments except one using a leave-one-out cross-validated
model, and then used to classify each sample included in that group.
Hence, the predicted classification proportion of environment X to
environment X is zero. h, Correlation of microbial richness with latitude.
Richness of 16S rRNA tag sequences per sample across EMPO level 2
environmental categories as a function of absolute latitude. Samples from
studies that span at least 10° latitude are highlighted in colour, with linear
fits displayed per-study as matching coloured lines. Samples from studies
with narrower latitudinal origins are shown in grey. The global fit for all
samples per category is indicated by a dashed black line.
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Extended Data Figure 6 | NODF scores of nestedness across samples
by taxonomic level. The NODF statistic represents the mean, across
pairs of samples, of the fraction of taxa occurring in less diverse samples
that also occur in more diverse samples. A raw NODF of 0.5 would

mean that for any pair of samples, on average 50% of the taxa in the

less diverse sample would occur in the more diverse sample. a, NODF
(raw) and NODF standardized effect size in the 2,000-sample subset by
taxonomic level. Results are shown first for all tag sequences and then for
tag sequences found in < 10%, < 5%, and < 1% of samples. By removing
the most prevalent tag sequences before analysis (and rarefying only after
this step), it was possible to rule out artefacts associated with potential

contamination. NODF (raw) is highest at the phylum level and decreases
at finer taxonomic levels, and this trend is observed even when the

most prevalent tag sequences are removed (removing those occurring

in > 10%, > 5%, or > 1% of samples). The decreasing trend is likely to be
partially due to finer taxonomic groups having lower prevalence (and
lower matrix fill, among other factors) than coarser taxonomic groups,
as standardized effect sizes of the NODPF statistic are essentially constant
across taxonomic levels. b, When five alternate 2,000-sample subsets are
randomly drawn (with replacement) from the full (QC-filtered) EMP
dataset, the trends in NODF (raw) and NODF standardized effect size
remain largely unchanged.
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Extended Data Figure 7 | Subsets and EMP trading cards. a, Subsets of
the EMP dataset with even distribution across samples and studies. Shown
are all EMP samples included in this manuscript (release 1), the QC-
filtered subset, and subsets of 10,000, 5,000, and 2,000 samples. The latter
three contain progressively more even representation across environments
and studies, providing a more representative view of the Earth
microbiome and a more lightweight dataset. Top, histograms of samples
per environment (EMPO level 3) for each subset. Bottom, histograms of
studies per environment (EMPO level 3) for each subset. b, EMP trading
cards: distribution of 165 rRNA tag sequences across the EMP. Trading
cards highlight the power of the EMP dataset to help define niche ranges
of individual microbial sequence types across the planet’s microbial
communities. Cards show distribution of 165 rRNA tag sequences in

a 2,000-sample subset of the EMP (rarefied to 5,000 observations per
sample) having even distribution by environment (EMPO level 3) and
study. Taxonomy is from Greengenes 13.8 and Ribosomal Database
Project (RDP), with the fraction of exact RDP matches by lineage and
species name shown in parentheses. The pie chart and point plot show the
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relative distribution of environments in which the tag sequence is found
(left points) versus the environment distribution of all 2,000 samples
(right points). The coloured scatter plots indicate tag sequence relative
abundance (normalized to the shared y axis) as a function of metadata
values (no points shown indicates that metadata were not provided for
that category). For comparison, grey curves with rug plots indicate kernel
density estimates of metadata values across all samples in the set of 2,000
(not just samples where the tag sequence was found). Three examples are
shown. Left, a prevalent sequence enriched in soil and plant rhizosphere
is from the class Acidobacteria, aptly named as this sequence is found at
highest relative abundance in low-pH samples. Middle, the sequence
most specific for animal surface (also enriched in animal secretion) is
annotated as Pasteurella multocida, a common cause of zoonotic infections
following bites or scratches by domestic animals, such as cats and dogs®.
Right, the sequence most specific for animal proximal gut belongs to
§24-7, a family highly localized to the gastrointestinal tracts of
homeothermic animals and predominantly found in herbivores and
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» Experimental design

1. Sample size

Describe how sample size was determined. Two subsets of the EMP dataset were used for analyses presented in this paper. Fo
r analysis of total diversity across the dataset (alpha- and beta-diversity in Figs.
2-3), we used the full set of 24,910 samples that passed minimal quality controls
(QC-iltered) as described in the methods. For Figs. 4-6 and supplementary
figures as noted, we used a 2000-
sample subset containing samples picked randomly and evenly across 17 habitats a
nd then evenly across studies in each sample type.
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2. Data exclusions

Describe any data exclusions. To generate the QC-filtered subset, samples were removed if they had fewer than
a predetermined number of observations in the OTU/Deblur tables (see methods).
Study no. 1799 was excluded from the QC-filtered subset because of concerns
about contamination. For the effect size calculation (ED Fig. 5), categories within
each predictor had a minimum of 75 samples per category, and predictors with
values for less than half of samples were excluded. For ED Table 3, sequences
annotated as chloroplast were excluded before statistics were computed.

3. Replication
Describe whether the experimental findings were The experimental findings were reliably reproduced. For the purposes of this meta-
reliably reproduced. analysis, having multiple samples from multiple studies for each habitat type

constituted replication. Many studies within the meta-analysis had dedicated
biological replicates. Nestedness results were reproduced using 5 additional
randomly-selected 2000-sample subsets.

4. Randomization

Describe how samples/organisms/participants were For creating subsets of samples, samples were drawn randomly, evenly across
allocated into experimental groups. habitat types and studies. Results were reproduced using 5 additional randomly-
selected 2000-sample subsets.

5. Blinding
Describe whether the investigators were blinded to Investigators were blinded; allocation to groups (subsets) was done entirely
group allocation during data collection and/or analysis. computationally and randomly.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.




6. Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the
Methods section if additional space is needed).

n/a | Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same
> sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more
complex techniques should be described in the Methods section)

X
g A description of any assumptions or corrections, such as an adjustment for multiple comparisons

<] The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

g A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars
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See the web collection on statistics for biologists for further resources and guidance.

» Software

Policy information about availability of computer code

7. Software
Describe the software used to analyze the data in this Code for reproducing sequence processing, data analysis, and figure generation is
study. provided at github.com/biocore/emp and is archived at zenodo.org with DOI

10.5281/zenodo.)XXXXXXX. Redbiom code is available at github.com/biocore/
redbiom and is archived at zenodo.org with DOI 10.5281/zenodo.XXXXXX. (Zenodo
DOIs will be provided in proof stage, as discussed with the editor.)

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for
providing algorithms and software for publication provides further information on this topic.

» Materials and reagents

Policy information about availability of materials
8. Materials availability

Indicate whether there are restrictions on availability of ~ No unique materials were used.
unique materials or if these materials are only available
for distribution by a for-profit company.

9. Antibodies

Describe the antibodies used and how they were validated No antibodies were used.
for use in the system under study (i.e. assay and species).

10. Eukaryotic cell lines
a. State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b. Describe the method of cell line authentication used.  No eukaryotic cell lines were used.

c. Report whether the cell lines were tested for No eukaryotic cell lines were used.
mycoplasma contamination.

d. If any of the cell lines used are listed in the database No commonly misidentified cell lines were used.
of commonly misidentified cell lines maintained by
ICLAC, provide a scientific rationale for their use.




» Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived Animal subjects are described in the original studies where animal-associated

materials used in the study. samples were collected. IACUC protocol numbers can be provided if necessary.

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population Human subjects are described in the original studies where human-associated
characteristics of the human research participants. samples were collected. IRB protocol numbers can be provided if necessary.
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