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Human behavior modeling is a key component in application domains such as healthcare
and social behavior research. In addition to accurate prediction, having the capacity to un-
derstand the roles of human behavior determinants and to provide explanations for the
predicted behaviors is also important. Having this capacity increases trust in the systems
and the likelihood that the systems actually will be adopted, thus driving engagement and
loyalty. However, most prediction models do not provide explanations for the behaviors
they predict.

In this paper, we study the research problem, human behavior prediction with expla-
nations, for healthcare intervention systems in health social networks. We propose an
ontology-based deep learning model (ORBM™) for human behavior prediction over undi-
rected and nodes-attributed graphs. We first propose a bottom-up algorithm to learn the
user representation from health ontologies. Then the user representation is utilized to in-
corporate self-motivation, social influences, and environmental events together in a human
behavior prediction model, which extends a well-known deep learning method, the Re-
stricted Boltzmann Machine. ORBM* not only predicts human behaviors accurately, but
also, it generates explanations for each predicted behavior. Experiments conducted on both
real and synthetic health social networks have shown the tremendous effectiveness of our
approach compared with conventional methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Being overweight or obese is a major risk factor for a number of chronic diseases, including diabetes, cardiovascular dis-
eases, and cancers. Once considered a problem only in high-income countries, overweight and obesity are now dramatically
on the rise in low- and middle-income countries. Recent studies have shown that obesity can spread over the social net-
work [5], bearing similarity to the diffusion of innovation [7] and word-of-mouth effects in marketing [12]. To reduce the
risk of obesity-related diseases, regular exercise is strongly recommended, i.e., at least 30 min of moderate-intensity physical
activity on 5 or more days a week [21]. However, there have been few scientific and quantitative studies to elucidate how
social relationships and personal factors may contribute to macro-level human behaviors, such as physical exercise.
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The Internet is identified as an important source of health information and may thus be an appropriate delivery vector
for health behavior interventions [19]. In addition, mobile devices can track and record the distance and intensity of an in-
dividual’s walking, jogging, and running. We utilized these technologies in our recent study, named YesiWell [24], conducted
in 2010-2011 as a collaboration between PeaceHealth Laboratories, SK Telecom Americas, and the University of Oregon to
record daily physical activities, social activities (i.e., text messages, social games, events, competitions, etc.), biomarkers, and
biometric measures (i.e., cholesterol, triglycerides, BMI, etc.) for a group of 254 individuals. Physical activities were reported
via a mobile device carried by each user. All users enrolled in an online social network, allowing them to befriend and
to communicate with each other. Users’ biomarkers and biometric measures were recorded via monthly medical tests per-
formed at our laboratories. The fundamental problems this study seeks to answer, which are also the key in understanding
the determinants of human behaviors, are as follows:

« How could social communities affect individual behaviors?

» Could we illuminate the roles of social communities and personal factors in shaping individual behaviors?
« How could we leverage personal factors and social communities to help predict an individual’s behaviors?
 Could domain knowledge, e.g., ontologies, help us predict an individual’s behaviors? If yes, then how?

It is nontrivial to determine how much impact social influences could have on someone’s behavior. Our starting ob-
servation is that human behavior is the outcome of interacting determinants such as self-motivation, social influences, and
environmental events. This observation is rooted in sociology and psychology, where it is referred to as human agency in
social cognitive theory [1]. An individual’s self-motivation can be captured by learning correlations between his or her histor-
ical and current characteristics. In addition, users’ behaviors can be influenced by their friends on social networks through
what are known as social influences. The effect of environmental events is composed of unobserved social relationships,
unacquainted users, and the changing of social contexts [4].

Based on this observation we propose an ontology-based deep learning model, named ORBM™, for human behavior pre-
diction with explanations. Providing explanations for predicted human behaviors has the benefit to increase the trust in the
intervention. It targets the intervention approaches to specific and truthful problems, to keep the users maintaining or im-
proving their health status, and thus to increase the successful adaptation rate. Our model extends a well-used deep learning
method, Restricted Boltzmann Machines (RBMs) [28], with domain ontologies [8]. The reason we utilize the ontologies is
that they can help us generate better user representations, which is particularly important for human behavior prediction in
health social networks. Another crucial reason is that common deep learning architectures, such as the RBMs [28], Convolu-
tional Neural Networks (CNNs) [15], and Sum-Product Networks (SPNs) [25], take a flat representation of characteristics as
an input, that might not reflect the domain knowledge of their differences. The characteristics are commonly in structural
designs such as ontologies in the biomedical and health domain. Therefore, it would be better if a model could have the
ability to learn the representations of individuals in health social networks from ontologies.

In ORBM™ model, we first propose a bottom-up algorithm to learn the representation of users based on the ontologies
of personal characteristics in the health domain. The key idea of our algorithm is that a representation of a concept will
be learned by its own properties, the properties of its related concepts, and the representations of its sub-concepts. Our
algorithm will learn a structure of representation that replicates the original structure of personal characteristics. This rep-
resentation structure is further used to predict model human behaviors by modeling human behavior determinants in our
health social network. Self-motivation can be captured by learning correlations between an individual’s historical and cur-
rent features. The effect of the implicit social influences on an individual is estimated by an aggregation function of the
past of the social network. We further define a statistical and temporal smoothing function to capture social influences on
individuals from their neighboring users. The environmental events such as competitions, are integrated into the model as
observed variables that will directly affect the user behaviors. The effect of environmental events can be captured by learn-
ing the influences of unacquainted users and the evolving of the social network’s parameters. To generate explanations for
predicted behaviors, we adapt the Minimum Description Length (MDL) principle [26] to extract the key characteristics or
components that cause users to do some specific behaviors. An explanation can be defined as a list of characteristics which
maximize the likelihood of a behavior of a user.

Our main contributions are as follows:

We study the research problem of human behavior prediction with explanations in health social networks, which is moti-
vated by real-world healthcare intervention systems.

We introduce ORBM™, a novel ontology-based deep learning model, which can accurately predict and explain human
behaviors.

We propose a bottom-up algorithm to learn the individual representation, given structural designs of personal charac-
teristics with ontologies. To our best knowledge, our algorithm is the first work to formally combine deep learning with
ontologies in health informatics. It can be applied to other biomedical and health domains with ontologies available.

An extensive experiment, conducted on real-world and synthetic health social networks, confirms the high prediction
accuracy of our model and quality of explanations it generates.

In Section 2, we introduce the RBM and related works. We then introduce our YesiWell health social networks and the
developed SMASH ontology in Section 3. We present our ontology-based deep learning algorithm for user representations
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in Section 4 and our human behavior prediction model in Section 5. The details of experimental evaluation are described in
Section 6, and our work is concluded in Section 7.

2. The RBMs and related works

The Restricted Boltzmann Machine (RBM) [28] is a deep learning structure that has a layer of visible units fully con-
nected to a layer of hidden units but no connections within a layer (Fig. 1). Typically, RBMs use stochastic binary units for
both visible and hidden variables. The stochastic binary units of RBMs can be generalized to any distribution that falls in
the exponential family [34]. To model real-valued data, a modified RBM with binary logistic hidden units and real-valued
Gaussian visible units can be used. In Fig. 1, v; and h; are respectively used to denote the states of visible unit i and hidden
unit j. a; and b; are used to distinguish biases on the visible and hidden units. The RBM assigns a probability to any joint
setting of the visible units, v and hidden units, h:

exp(—E(v,h))

p(v.h) = T (1)
where E(v, h) is an energy function,
v — a;)? v;
E(v.h) = 27( 12521) —behj—zghjwu )
i i j ij 2!

where &; is the standard deviation of the Gaussian noise for visible unit i. In practice, fixing &; at 1 makes the learning
work well. Z is a partition function which is intractable as it involves a sum over the exponential number of possible joint
configurations: Z = )"\, v E(V', I'). The conditional distributions (with & = 1) are:

p(hj=1|V)=U bj+2vi‘/vij (3)
i

p(ilh) = N<ai +) hwi, 1 (4)
J

where o(.) is a logistic function, and A/ (i, V) is a Gaussian.
Given a training set of state vectors, the weights and biases in an RBM can be learned following the gradient of contrastive
divergence. The learning rules are:
AW;j = (vihj)q — (vihj)r
Abj = (hj)q — (hj)r (5)
where the first expectation (.); is based on the data distribution and the second expectation (.) is based on the distribution
of “reconstructed” data.

To incorporate temporal dependencies into the RBM, the CRBM [30] adds autoregressive connections from the visible
and hidden variables of an individual to his/her historical variables. The CRBM simulates well human motion in the single
agent scenario. However, it cannot capture the social influences on individual behaviors in the multiple agent scenario. Li
et al. [17] proposed the ctRBM model for link prediction in dynamic networks. The ctRBM simulates the social influences by
adding the prediction expectations of local neighbors on an individual into a dynamic bias. However, the visible layer of the
ctRBMs does not take individual attributes as input. Thus, the ctRBM cannot directly predict human behaviors.

Meanwhile, social behavior has been studied recently, such as analysis of user interactions in Facebook [33], activity
recommendation [16], and user activity level prediction [37]. In [37], the authors focus on predicting users who have a
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Table 1
Personal attributes.
Behaviors #joining competitions #exercising days #goals set
#goals achieved Y (distances) avg(speeds)
#meet-up #social games
Encouragement Fitness Followup
Social Communications (the Competition Games Personal
number of inbox messages) Study protocol Progress report Technique
Social network Meetups Goal
Wellness meter Feedback Heckling
Explanation Invitation Notice
Technical fitness Physical
Biomarkers Wellness Score BMI BMI slope

Wellness Score slope

tendency to lower their activity levels. This problem is known as churn prediction. Churn prediction aims to find users
who will leave a network or a service. By finding such users, service providers could analyze the reasons for the intended
attrition and could determine strategies to maintain such users in different applications, including online social games [13],
QA forums [35], etc. Our goal is not only to predict, but also to understand the roles of human behavior determinants, and
to give explanations for predicted behaviors. In [2], the authors provide the WTFW model, which generates explanations for
user-to-user links, but not for human behaviors.

This paper is an extension of our conference paper published in ACM BCB 2015 [23]. The major extensions we have
engaged are: (1) We have improved our previous ORBM model, not only so that it more accurately predicts human behavior,
but also, so that it can generate explanations for each predicted behavior. We introduce a new temporal-smoothing social
influence function to better capture the evolving of social influence over time. We further incorporate physical activity-based
social influence into our function. We also introduce a new algorithm to quantitatively estimate the effects and roles of
human behavior determinants in predicted behaviors. (2) An extensive experiment has been conducted on both real-world
and synthetic health social networks to validate the effectiveness of our model, the roles of human behavior determinants,
and the quality of generated explanations.

3. YesiWell health social network and SMASH ontology
3.1. YesiWell health social network

Our health social network dataset was collected from Oct 2010 to Aug 2011, as a collaboration between PeaceHealth
Laboratories, SK Telecom Americas, and University of Oregon, to record daily physical activities, social activities (i.e., text
messages, competitions, etc.), biomarkers, and biometric measures (i.e., cholesterol, BMI, etc.) for a group of 254 individu-
als. Physical activities, including measurements of the number of walking and running steps, were reported every 15 min
via a mobile device carried by each user. As mentioned in our Introduction, all users enrolled in an online social network,
allowing them to befriend and communicate with each other. Users’ biomarkers and biometric measures were recorded via
daily/weekly/monthly medical tests performed at home (i.e., individually) or at our laboratories. In total, we have approx-
imately over 7 million data points of physical exercise, over 21,205 biomarker and biometric measurements, 1371 friend
connections, and 2766 inbox messages. Our longitudinal study was conducted for 10 months. Albeit that such might seem a
short interval, when compared with public social networks, i.e., Twitter and Facebook, our health social network is a unique,
solid, and comprehensive multi-dimensional social network. The YesiWell network contains rich information from social ac-
tivities, physical activities, and biomarkers and biometric measures, availing us unique access to verify statements about
physical activity with recorded physical activity, and to compare statements about health with clinical measures of health.

In this paper, 33 features are taken into account (Table 1). All the features are summarized daily and weekly. The features
are designed to capture the self-motivation of each user. Some of the key measures are as follows:

Personal ability: BMI, fitness, cholesterol, etc.

Attitudes: the number of off-line events in which each user participates, individual sending and receiving messages, the
number of goals set and achieved, Wellness-score [14], etc. Wellness-score is a measure to evaluate how well a user lives
their life. Being active in social activities, setting and achieving more goals, and getting higher Wellness-score illustrate
a healthier attitude of a user.

Intentions: the number of competitions each user joins, the number of goals set, etc. We measure intent to exercise in
terms of competitions joined and goals set.

Effort: the number of exercise days, walking/running steps, the distances, and speed walked/run.

Withdrawal: an increase of BMI slope and/or a decrease of Wellness-score [14] indicates a negative sign regarding the
self-motivation. Users may give up.
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Fig. 2. Partial view of the SMASH ontology and its hidden variables.

3.2. SMASH ontology

Ontology [9,29] is the formal specification of concepts and relationships for a particular domain (e.g., genetics). Prominent
examples of biomedical ontologies include the Gene Ontology (GO [31]), Unified Medical Language System (UMLS [18]),
and more than 300 ontologies in the National Center for Biomedical Ontology (NCBO'). The encoded formal semantics in
ontologies is primarily used for effective sharing and reusing of knowledge and data. They also can assist in the new research
on systematic incorporation of domain knowledge in data mining, which is called semantic data mining [6].

We have developed an ontology for health social networks, in the SMASH (Semantic Mining of Activity, Social, and Health
data) project, based on the YesiWell study. Our general workflow of ontology development can be described as a top-down
(knowledge-driven), followed by a bottom-up (data-driven) validation and refinement approach. In the SMASH ontology, we
have focused on defining concepts that are associated with sustained weight loss, especially the ones related to continued
intervention with frequent social contacts. We first follow the traditional top-down design paradigm by identifying the core
concepts of three modules in the SMASH system: social networks, physical activity, and health informatics. We specify the
core concepts and relationships related to overweight and obesity in these modules, such as biomedical measures, trends,
online and off-line events, competitions, social community, support groups, etc. In the next step, these concepts and rela-
tionships are subsequently coded in the Web Ontology Language (OWL2) with Protégé.? In the last step, we further validate
and refine our ontology design through the data we collected from our distributed personnel devices and web-based social
network platform in YesiWell.

The three modules in our SMASH ontology, biomarker measures, physical activities, and social activities, can be described
as follows:

- Biomarkers: a collection of biomedical indicators that generally refer to biological states or conditions; in our case, specif-
ically health conditions.

- Social Activities: a set of interactions between social entities, either persons or social communities, who exchange
thoughts and ideas, communicate information, and share emotions and experiences.

- Physical Activities: any bodily activities involved in daily life. Some of the activities are conducted in order to enhance
or maintain physical fitness and overall wellness/health.

The SMASH ontology has been submitted to the NCBO BioPortal.* Fig. 2 illustrates a partial view of the SMASH ontology
and its hidden variables in the corresponding RBMs. (More details will be discussed in the next section.)

4. Ontology-based representation learning

In this section, we present our algorithm to learn user representations based on concepts and characteristics (properties)
in ontologies. The representational primitives of ontologies are typically concepts, characteristics (datatype properties), and
relationships (object properties). For instance, in Fig. 2, the main concept is Person. With this concept, we have sub-concepts,

1 http:
2 http:
3 http:
4 http:

/www.bioontology.org/.
Jwww.w3.org/TR/owl-ref/.
|protege.stanford.edu/.
/bioportal.bioontology.org/ontologies/SMASH.
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relationships, and characteristics. Each person has a related concept Biological Measure which contains a set of characteristics
such as BMI, weight, slope, wellness, etc. They are related to another concept, Social Activity, which contains sub-concepts,
such as Offline Activity and Online Activity.

Given a health social network ontology H, the first step to utilize the formal semantics in deep learning is to learn the
representation of all concepts, sub-concepts, and relationships given the characteristics. Our key hypothesis is that a concept
or a sub-concept S € H can be represented by its own characteristics, its sub-concepts, and its related concepts. In essence,
S € H is represented by a set of learnable hidden variables hg. The learning process of the hg is as follows. S is composed of
a set of characteristics Vs, a set of sub-concepts Cs, and a set of relationships Fs. Let us denote Wg = | Jr.p, Vr as the union of
all characteristics from its relationships Fs, and ©g = Jccc, e as the union of all the hidden variables from its sub-concepts
Cs. The hidden variables hg can be learned from V5, Ws, and ®g by utilizing the RBMs as a deep learning model, since it
very well fits our goals, which aim to generate a deeper analysis for human behavior prediction. By using the RBMs, the hg
is considered as a hidden layer, and all the variables v; € Vs U W5 U ®g are considered as a visible layer in a RBM (Fig. 1).
The conditional probabilities of an h; € hs and v; € Vs U W5 U Og are given by:

p(h;|Vs,Gs, Fs) = N'| b + Z UiW;j -
v;eVsUWsUBg
p(wilhs) =N ai+ Y W .
hjehs

where g; and b; are static biases, and Wj; is a parameter associated with h; and v;. By denoting vs = Vs U W5 U Og, the energy
function of the RBM for § is:

Vg hg 2 Vs,hg
v —a;)? (hj —bj) v; h;
E(vs, hgl0) = + - — —=W;
m Zaiz %: 20].2 U,Xh:] [of] O'j

By using contrastive divergence [10], we can train this RBM and learn all the parameters which are used to estimate the
hidden variables hg. In fact, hg can be considered as the representation of S. Note that we use normal distributions for the
hidden variables in hg, because they will be used to learn the representation of the parent concepts of S, denoted Ps. P
may contain real-valued characteristics (datatype properties). So the consistency in the learning process is guaranteed. The
representations of all the concepts and sub-concepts can be learned by applying the bottom-up greedy layer-wise algorithm
[11] following the structure of the ontology H. For instance, in Fig. 2, we can learn all the representations in the following
order: hy, hy, hyg, hoy, first; then hg, hp, hg, and h, finally.

Let us denote the root concept (e.g., Person) and its representation hg, which also is an individual representation. Differ-
ent applications may have different settings. The challenge becomes how we organize the training data so that individual
representation can be learned. In fact, the data of each user u will be collected in a set of time intervals T, denoted by
Dy ={K},...,K}} where K is the set of all personal characteristics at all the concepts and sub-concepts. D, will be used
to train the model. After training the model, for every t € T we can navigate the K} following the ontology structure to
estimate the representation of root concept hg which is also the representation of user u at time t. We train the model for
each user independently. Each user will have different representations at different time intervals. In the next section, we
show how to use those ontology-based user representations (i.e., RBMs) for human behavior prediction.

Our algorithm can learn the representations of individuals given different ontologies in different domain applications. In
fact, our Ontology-based Representation Learning algorithm can learn the representation of any concept in a given ontology.
Therefore, as long as we have an ontology, which represents or includes a “Person” concept, we can learn the representations
of individuals. By offering this advanced ability, our model also can represent the hierarchical concept structures among
biomedical and health domains.

5. ORBM*: human behavior prediction with explanations

In this section, we present how to conduct human behavior prediction with explanations based on user representations,
which have been learned from the SMASH ontology. Given an online social network G = {U, E} where U is a set of all users
and E is a set of edges. Every edge e, m exists in E if u and m friend each other in G; otherwise e, n does not exist. Each
user has a set of individual representation features F = {fy, ..., fu}. In essence, F is the hy which has been learned for each
user in the previous Section. The social network G grows from scratch over a set of time points T = {t1, ..., tn}. To illustrate
this, we use Ey = {E,, ..., E,} to denote the topology of the network G over time, where E; is a set of edges which have
been made until time t in the network, and Vt € T : E; € E; 4. For each user, the values of individual features in F also
change over time. We denote the values of individual features of a user u at time t as Fi. At each time point t, each user u
is associated with a binomial behavior ¥, € {0, 1}. ¥, could be “decrease/increase exercise,” or “inactive/active in exercise.”
¥4, will be clearly described in our experimental results section.
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Fig. 3. The ORBM* model.
Problem formulation: Given the health social network in M timestamps Ty, = {t - M+ 1,...,t}, we would like to pre-

dict the behavior of all the users in the next timestamp t + 1. More formally, given {F%,y%, E¢|t € Tyqeq, u € U} we aim at
predicting {yi*!|u e U}.

5.1. Self-motivation and environmental events

In order to model self-motivation of a user u, we first fully bipartite connect the hidden and visible layers via a weight
matrix W (Fig. 3). Then each visible variable v; and hidden variable h; will be connected to all the historical variables of u,
denoted by Hy, ., where f e F and k e {1,..., N}. These connections are presented by the two weight matrices A and B
(Fig. 3). Each historical variable Hp, ;_ is the state of feature f of the user u at time point t — k. Note that all the historical
variables are treated as additional observed inputs. The hidden layer can learn the correlations among the features and the
effect of historical variables to capture self-motivation. This effect can be integrated into a dynamic bias:

bje=bj+ > > BifuekHpuck (8)
ke{1,...N} feF

which includes a static bias b;, and the contribution from the past of the social network. B; is a [h| x |U] x N weight
matrix which summarizes the autoregressive parameters to the hidden variable h;. This modifies the factorial distribution

over hidden variables: b; in Eq. 3 is replaced with b ;¢ to obtain

p(h]‘,t = 1|Vt, Hf() =0 Bj,t + Zvi,t‘/vij (9)

1

where h; ; is the state of hidden variable j at time t, the weight Wj; connects v; and h;. The self-motivation has a similar
effect on the visible units. The reconstruction distribution in Eq. 4 becomes

pWiclhe, He ) = N di,t‘i‘zhj,tvvij’] (10)
J
where d; is also a dynamic bias:
Ge=a+ > > ApueiHpuek (11)
ke{1,...N} feF

The effect of environmental events is composed of unobserved social relationships, unacquainted users, and the changing
of social context [4,22]. In other words, a user can be influenced by any users via any features in health social networks. It is
hard to precisely define the influences of environmental events. It is difficult to define straightforward statistical distribution
functions, e.g., exponential function, Gaussian function, etc., to precisely present the influences of meet-up events, social
games, competitions, etc., due to unobserved/hidden factors, such as undeclared friend connections and self-motivation. In
fact, of all the actual friend relationships among participants, just a portion is observed in the YesiWell dataset, since users
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Fig. 4. A sample of cosine similarities (a) and cumulative number of friend connections (b) in our dataset.

participated in many off-line events. Inspired by the SRBM model [22], we model the flexibility of implicit social influences,
as well as self-motivation, as follows. The individual features of a user, denoted as F,, can be considered as the visible
variables in the ORBM* model (Fig. 3). Given a user u, each visible variable v; and hidden variable h; are connected to all
historical variables of all other users. It is similar to the self-motivation modeling: The influence effects of each user, and the
social context on the user u, are captured via the weight matrices A and B. These effects can be integrated into the dynamic
biases d;; and bj; in Egs. 11 and 8, as well. The dynamic biases in Eqs. 8 and 11 become:

bie=bi+ > 3 BjruriHpuer (12)

ke{1,..,N} feF ueU

Ge=ai+ Y, DY ApueiHpuek (13)

ke{1,....N} feF ueU

The quantitative environmental events, such as the number of competitions and meet-up events, are included as in-
dividual characteristics. Therefore, the effect of environmental events is better embedded into the model. Next, we will
incorporate the social influence into our ORBM™ model.

5.2. Explicit social influences

It is well-known that individuals tend to be friends with people who perform behaviors similar to theirs (homophily
principle). In addition, as shown in [24], users differentially experience and absorb physical exercise-based influences from
their friends. Therefore, the explicit social influences in health social networks can be defined as a function of the homophily
effect and physical exercise-based social influences. Let us first define user similarity as follows.

Given two neighboring users u and m, a simple way to quantify their similarity is to applying a cosine function of their
individual representations (i.e., v* and v™) and hidden features (i.e., h* and hV). The user similarity between u and m at
time t, denoted s¢(u, m), is defined as:

s¢(u, m) = cos¢(u, m|v) x cos(u, m/h) (14)
where cos:(-) is a cosine similarity function, i.e.,
p(vihy, Hi ) - p(vit i, H{)

cose (1. M) = 1 g 72 ) T p (v g, 227

p(h¢ v, #H ) - p(hit v, Hi™)
[p(h v, HE ) [ p(hP v, 1) |

cos;(u, mh) =

Fig. 4 a illustrates a sample of a user similarity spectrum of all the edges in our social network over time. We randomly
select 35 similarities of neighboring users for each day in ten months. Apparently, the distributions are not uniform, and
different time intervals present various distributions. To well qualify the similarity between individuals and their friends, it
potentially requires a cumulative distribution function (CDF). In addition, our health social network is developed from scratch.
As time goes by, each participant will have more connections to other users (Fig. 4b). Thus a temporal smoothing is needed
to better capture the explicit social influences. Eventually, we propose a statistical explicit social influence, denoted nf', of a
user u at time t as follows:

€ Y Ye(m,u) x p(se < se(u,m))

nt=ant,+(1-a)
“Ffl meFY
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Table 2
Learning rules.

Algorithm Learning rules

Contrastive divergence AW = 3, ((vichje)g — (Vichje)r)
Adi =Y, ((Wie)a = (Wiedr)s Abj =Y, ((hjo)a — (hje)r)
AAiuere =2 (VieHpue-rda — VicHpuei)r)
ABjpuie = Y ((hjeHpuei)a — (pcHpueidr)
ABi =3 ((Vicda = Wiedr) s ABj = X¢ ((hje)a — (hje)r)
B = e = Johys G2 = =¥ e - F0)

Back-propagation B2 == X ve = Jos;h;(1 = by
agf) == e — J)sih; (1 — hpW;
B2 = = X e = 90ssh; (1= hy)

ﬁf}f)k == X e = 90)sihi (1 = hpWiHpue i

O — 5 (e POsihy (1~ ) Mg

357;) == 0 - ft)sihj(] — hj)Wynt
m =-2 - }71)5,']1]'(1 —hj)nt

where F}' is a set of friends of user u, from the beginning until time t. y(m, u) is the physical exercise-based social influence
of m on u at time t, which is derived by using the CPP model [24]. s; is the similarity between two arbitrary neighboring
users in the social network at time t. p(s; < s{(u, m)) represents the probability that the similarity is less than or equal to
the instant similarity s:(u, m). « and 7 are two parameters to control the dynamics of 7.

5.3. Inference, learning, and prediction

Inference in the ORBM™ is no more difficult than in the RBM. The states of the hidden variables are determined both
by the inputs they receive from the visible variables and from the historical variables. The conditional probability of hidden
variables at time interval t can be computed, as in Eqs. 8 and 9. The combination of the implicit and explicit social influences
can be viewed as a linear adaptive bias: d;, in Eq. 11 becomes

Ge=ai+ > D) AgpuetHpuer+Bint

ke{1,....N} feF ueU

Bj,t = bj + Z Z Ziju,t—kau,t—k + ,3]‘7]#

ke{1,....N} feF ueU

where B; is a parameter which presents the ability to observe the explicit social influences n} of user u given v;.
The energy function becomes:

E(vt,ht|at<,e)=z("” G S p by - > Ty Wi+ 216 = (A.BW. B, (15)

iev jeh iev,jeh

Contrastive divergence is used to train the ORBM* model. The updates for the symmetric weights, W, the static biases, a
and b, the directed weights, A and B, are based on simple pairwise products. The gradients are summed over all the training
time intervals t € Tygin = Tygrq \ {t =M+ 1, ..., t — M+ N}. The learning rules are summarized in Table 2.

On top of our model, we put an output layer for the user behavior prediction task. Our goal is to predict whether a user
will increases or will decreases physical exercise levels. Thus the softmax layer contains a single output variable y and binary
target values: 1 for increases, and O for decreases. The output variable j is fully linked to the hidden variables by weighted
connections S, which includes |h| parameters s;. The logistic function is used as an activation function of y as follows:

V=0 C+Zhj5j
jeh

where c is a static bias. Given a user u € U, a set of training vectors X = {F{, E¢|t € T;qin}, and an output vector Y = {y;|t €
Tirain}» the probability of a binary output y; € {0, 1} given the input x; is as follows:

PYIX.0) = [] #(1 -9~ (16)

t€Ttrain
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where y; = P(y; = 1|x;,0).
A loss function to appropriately deal with the binomial problem is cross-entropy error. It is given by

CO) == Y (yeloggie+ (1 -y log(1 - 30)) (17)

t€Tirain

In the final stage of training, Back-propagation is used to fine-tune all the parameters together. The derivatives of the
objective C(#) with respect to all the parameters over all the training cases t € Ty, are summarized in Table 2. In the
prediction task, we need to predict the y}! ; without observing the FL*1. In other words, the visible and hidden variables
are not observed at the future time point t + 1. Thus we need a causal generation step to initiate these variables. Causal
generation from a learned ORBM™ model can be done just like the learning procedure. In fact, we always keep the historical
variables fixed and perform alternating Gibbs sampling to obtain a joint sample of the visible and hidden variables from
the ORBM* model. To start alternating Gibbs sampling, a good choice is to set v; = v;_q, (i.e., V;_1 is a strong prior of v;).
This picks new hidden and visible variables that are compatible with each other and with the recent historical variables.
Afterward, we aggregate the hidden variables to evaluate the output .

5.4. Explanation generation

The success of human behavior intervention does not only depend on its accuracy in inferring and exploring users’ behav-
iors, but it also relies on how the deployed interventions are perceived by the users. Explanations increase the transparency
of the intervention process and contribute to users’ satisfaction, and are facilitative in engaging users to the program.

The essence of explanations is to know the key characteristics or components that cause users to do some specific behav-
iors. In other words, an explanation can be defined as a list of characteristics which maximize the likelihood of a behavior
being engaged by a user or a set of users. Recall that the log likelihood log P(Y|X, 0) that the users will do Y is maximized
given all the characteristics X. Thus, X should be the best explanation for Y. However, X usually contains many characteristics
in high dimensional data, that significantly reduces the interpret-ability of X. We need a solution to address the trade-off
between the likelihood maximization and the complexity of X. Given a selection model f, the problem can be written as:

X* =arg)t;r/zigf(logP(Y|X’,9),X’) (18)

To address this issue, we utilize the Minimum Description Length (MDL) [26]. In the two-parts of MDL, we first use the
explanation X’ to encode the observed data Y, and we then encode the explanation itself. We denote the encoding length of
Y given X’ by L(Y, X'), and the encoding length of X" by L(X’). As in [26], L(Y, X) is the negative log-likelihood log P(Y|X’, 0)
and L(X’) is given by |X’|log(|X]). MDL minimizes the combined encoding:

MDL =L(Y,X") + L(X') = —log P(Y|X’,0) + |X'| log(|X|) (19)
The complexity of explanation generating is NP-Hard. It is given by the following lemma.
Lemma 1. Finding the optimal explanation problem and the minimal value of the selection function is NP-Hard.

Proof. Given a set of elements {1,2,...,m} (called the universe) and n sets whose union comprises the universe, the set
cover problem [20] is to identify the smallest number of sets whose union still contains all elements in the universe.

We can easily reduce the finding optimal explanation problem to the set cover problem by setting that x € X is an
item and X is the universe. x and X will be mapped into a likelihood space Y as: x :— Yy = (P(y1 |x,0), ..., P(yilx, 9)), and
X =Yy = (P(yl |X,9),...,P(yk|X,0)). Yy can be considered as a new universe, and Yy is an item in that universe. The
problem now becomes finding the smallest number of items Yy whose union still covers the universe Yy. That means we
must have Vi: P(y;|X’,0) = P(y;|X, 6) where Yy, is the smallest union of items. In doing so, finding the optimal explanation
is as hard as solving the corresponding instance of the set cover problem. This proves the NP-Hardness property of the given
problem. O

Since the finding optimal explanation problem is NP-Hard, we apply a heuristic greedy algorithm, which will add a new
characteristic into the existing explanation so that the selection model MDL is minimized. Afterward, we are able to select
the optimal explanation with a minimal MDL score.

6. Experimental results

We have carried out a series of experiments in a real health social network to validate our proposed ORBM* model
(source codes and data®). We first elaborate about the experiment configurations, evaluation metrics, and baseline ap-
proaches. Then, we introduce the experimental results.

Experiment configurations. In our study, we take into account 33 personal attributes (Table 1). The personal social com-
munications include 2766 inbox messages, which are categorized into 20 different types. Fig. 5 illustrates the distributions

5 https://www.dropbox.com/s/vo8z6uxlylwcqmz/HuBex.rar?dl=0
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Fig. 5. Some distributions in our dataset.

of friend connections, and #received messages in our data. They clearly follow the Power Law distribution. Note that, given
a week, if a user exercises more than she did in the previous week, she is considered to be increasing exercise; otherwise,
she will be considered to be decreasing exercise. The number of hidden units, and the number of previous time intervals
N, respectively are set to 200 and 3. In the individual representation learning, the number of hidden units at all the con-
cepts and sub-concepts in the ontology will double the number of visible units. The weights are randomly initialized from a
zero-mean Gaussian with a standard deviation of 0.01. All the learning rates are set to 10-3. A contrastive divergence CD,
is used to maximize likelihood learning. We train the model for each user independently.

Evaluation metrics. In the experiment, we leverage the previous 10 weeks’ records to predict the behaviors of all the
users (i.e., increase or decrease exercises) in the next week. The prediction quality metric, i.e., accuracy, is as follows:

Yict 16 =9)
U]

where y; is the true user activity of the user u;, and ; denotes the predicted value, and I is the indication function.

Competitive prediction models. We compare the ORBM* model with the conventional methods reported in [27]. The
competitive methods are divided into two categories: personalized behavior prediction methods and socialized behavior
prediction methods. Personalized methods only leverage individuals’ past behavior records for future behavior predictions.
Socialized methods use both one person’s past behavior records and his or her friends’ past behaviors for predictions. Specif-
ically, the five models reported in [27] are the Socialized Gaussian Process (SGP) model, the Socialized Logistical Autore-
gression (SLAR) model, the Personalized Gaussian Process (PGP) model, the Logistical Autoregression (LAR) model, and the
Behavior Pattern Search (BPS) model.

We also consider the RBM related extensions, i.e., the CRBM [30] and ctRBM [17], as competitive models. The CRBM
can be directly applied to our problem by ignoring the implicit and explicit influences in our SRBM* model. Since the
ctRBM cannot directly incorporate individual attributes with social influences to model human behaviors, we only can apply
its social influence function into our model. In fact, we replace our statistical explicit social influence function with the
ctRBM'’s social influence function. We call this version of ctRBM a Socialized ctRBM (SctRBM). We also compare the ORBM*
model with our previous works, SRBM in [22] and ORBM in [23].

accuracy =

6.1. Validation of the ORBM+ model for prediction

Our task of validation focuses on two key issues: (1) Which configurations of the parameters « and 7 produce the best-
fit social influence distribution? and (2) Is the ORBM™ model better than the competitive models, in terms of prediction
accuracy? We carry out the validation through two approaches. One is to conduct human behavior prediction with various
settings of o and 7. By this we look for an optimal configuration for the statistical explicit social influence function. The
second validation is to compare our ORBM* model with the competitive models in terms of prediction accuracy.

Fig. 6a illustrates the surface of the prediction accuracy of the ORBM™ model, with variations of the two parameters «
and T on our health social network. We observed that the smaller values of 7 tend to have higher prediction accuracies.
This is quite reasonable, since the more recent behaviors have stronger influences. The temporal smoothing parameter T has
similar effects to a time decay function [37]. Meanwhile, the middle range values of « offer better prediction accuracies.
Clearly, the optimal setting values of & and 7 are 0.5 and 1 respectively.

To examine the efficiency, we compare the proposed ORBM*™ model with the competitive models, in terms of human
behavior prediction. Fig. 6¢ shows the accuracy comparison over 37 weeks in our health social network. It is clear that the
ORBM™ outperforms the other models. The accuracies of the competitive models tend to drop in the middle period of the
study. All the behavior determinants and their interactions potentially become stronger, since all the users improve their
activities, such as walking and running, participating in more competitions, etc. (Fig. 7) in the middle weeks. Absent or
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Fig. 7. The distributions of users’ activities.

insufficient modeling of one of the determinants, or of one of their interactions, results in a low and unstable prediction
performance. Therefore, competitive models do not well capture the social influences and environmental events. Meanwhile,
the ORBM* model comprehensively models all the determinants. So, the correlation between the personal attributes and
the implicit social influences can be detected by the hidden variables. Thus, much information has been leveraged to predict
individual behaviors. In addition, our prediction accuracy stably increases over time. That means our model well captures the
growing of our health social network (Fig. 4b). Consequently our model achieves higher prediction accuracy and a more stable
performance. The ORBM* model outperforms our previous ORBM model because of the new temporal-smoothing social
influence function, which better captures the explicit social influences in our health social network. Overall, the ORBM*
model achieves the best prediction accuracy in average as 0.9332.

6.2. The effectiveness of user representation learning

In Fig. 6b, the ORBM™ outperforms the SRBM, which does not learn user representation from the SMASH ontology, by
4.94% (0.8941 vs. 0.9435). This is because ontology-based user representation provides better features, which encode se-
mantics of the data structure from domain knowledge to the ORBM™ model. Even when we stack another hidden layer
on the SRBM, the accuracy and the cross-entropy error are not (or are not much) improved, compared with the effect of
ontology-based user representation. Consequently, we can conclude that: (1) The SMASH ontology helps us to organize data
features in a suitable way; (2) Our algorithm can learn meaningful user representations from ontologies; and (3) Meaningful
user representations can further improve accuracies of deep learning approaches for human behavior prediction.

6.3. Synthetic health social network

To illustrate that the ORBM™ model can be generally applied on different datasets, we perform further experiments on
a synthetic health social network. To generate the synthetic data, we use the software Pajek® to generate graphs under the

6 http://vlado.fmf.uni-lj.si/pub/networks/pajek/.
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Table 3

Dynamic biases of human behavior determinants.

Determinants (output variable) ~ Dynamic biases

Self-motivation Bie = bj + Yh1 Xyer Bisur kHpurk

(Pes1.self) Gie = 0+ by X per AifuctHsuek

Implicit social influence b =b;+ YN, Sfer Zmiu Bjfme M fmek
m##u

(Ves1.im) Gie= 0+ Y0 Yper ngﬁ AimekHme-k

Explicit social influence bje = b;+ Bjnt

(Fest.ex) dic = a; + Bint

Environmental events only use #competitions,#meet-up events,

Fest.env) and #social games in the ORBM* model

Scale-Free/Power Law Model, which is a network model whose node degrees follow the Power Law distribution, or at least
do asymptotically. However the vertices in the current synthetic graph do not have individual features similar to the real-
word YesiWell data. An appropriate solution to this problem is to apply a graph-matching algorithm to map pairwise vertices
between the synthetic and real social networks. In order to do so, we first generate a graph with 254 nodes, in which the
average node degree is 5.4 (i.e., similar to the real YesiWell data). Then, we apply PATH [36], which is a very well-known
and efficient graph-matching algorithm, to find a correspondence between vertices of the synthetic network and vertices of
the YesiWell network. The source code of the PATH algorithm is available in the graph-matching package, GraphM.” Then,
we can assign all the individual features and behaviors of real users to corresponding vertices in the synthetic network.
Consequently, we have a synthetic health social network that imitates our real-world dataset. Fig. 8 shows the accuracies of
the conventional models, SRBM model, the ORBM model, and the ORBM* model on the synthetic data. We can see that the
ORBM™ model still outperforms the other models in terms of the prediction accuracy.

6.4. Validation of behavior determinants and explanations

6.4.1. Reliability of behavior determinants

One of our main goals is to validate the reliability of the human behavior determinants that are learned in our model.
We illustrate this in a comparative experiment, which is to say: each determinant is independently used in the ORBM™
model to predict behaviors of the users. The ORBM* model provides a natural way to address this. The effects of human
behavior determinants are reflected via the ways we formulate the dynamic biases. To evaluate the effect of self-motivation
on predicted behaviors, we compute the output variable y;,1 by using the dynamic biases Bj,t and d;,;, which are in the
forms of Eqgs. (8) and (11). This means we only use the self-motivation effect to predict the behaviors of the users. Similarly,
we can evaluate the effects of implicit social influences, explicit social influences, and environmental events. The corresponding
dynamic biases for each human behavior determinant are summarized in Table 3. We use J;.1 seif» Jt41,im» Jet1,ex. and
Ve11.eny to denote the output variable y; given corresponding determinants. With regard to the effect of environmental events,
we use the number of joined competitions, meet-up events, and social games to evaluate the output variable J; 1 ¢py-
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Fig. 9 illustrates the cross-entropy errors in Eq. 16 of four determinants over 37 weeks of our data. We observed that
self-motivation is more reliable than other determinants in terms of motivating users to increase their exercises in the first
10 weeks. This is because it achieves the best cross-entropy errors. Meanwhile, the implicit social influence is not effective
in this period, since the users have not developed enough implicit relationships (i.e., highest cross-entropy errors). However,
from the 24th week, the implicit social influence becomes one of the most reliable determinants, since it achieves the
lowest cross-entropy errors. This phenomenon shows the important role of the implicit social influences in health social
networks. In the meantime, the explicit social influences and environmental events behave as connecting factors, which not
only influence the behaviors of users, but also associate the self-motivation and the implicit social influences together. In
addition, the evolution of the determinants suggests a strong interaction among them, since there are no either absolutely
reliable nor absolutely unreliable determinants.

In obvious, we discover three meaningful observations: (1) The ORBM™ model enables the modeling of expressive corre-
lations between determinants; (2) The self-motivation is especially important at the beginning; and (3) The implicit social
influence will become one of the most reliable determinants, if the users have enough time to develop their relationships.

6.4.2. Human behavior explanations

We have shown that the ORBM* model not only achieves a significantly higher prediction accuracy, compared with the
conventional models, but it also offers a deep understanding of the human behavior determinants. That is a breakthrough in
human behavior modeling in health social networks. In this section, we focus on giving explanations for human behaviors.
The concerned questions are: “which are the key characteristics leading to the increasing or decreasing exercises of the
users in the next week?” and “do these key characteristics offer a higher prediction accuracy with more interpretable results
compared with the original personal characteristics?”

For instance, given the 9th week, the users will be classified into two groups which are predicted as increase exercise
users and predicted as decrease exercise users in the next week. We then extract the key characteristics for each group by
applying our algorithm based on MDL (Section 5.4). Fig. 10a illustrates the scores of MDL the users who are predicted as
increase exercises in the next week. We achieve the minimal value of the MDL given the list of characteristics® {1, 0, 4,
11, 19} which is equivalent to {#exercise days, #competitions, Wellness-score, #competition messages, #progress reports}.
Meanwhile, for the users for whom the model predicted a decrease in exercise, we obtain the minimal value of the MDL
given the list of characteristics {4, 3, 22, 20, 16} which is equivalent to {Wellness-score, BMI slope, #invitations, #heckling
messages, #goal messages} (Fig. 10b).

To validate the interpret-ability of key characteristics extracted by our algorithms and models, we compare the decision
trees extracted by interpretable classifiers from original personal characteristics and human behavior determinants in terms
of classification and prediction accuracies. The interpretable classification models we used are: (1) Decision trees (DT) [3],
which is a classical interpretable classifier; and (2) Ism_td [32], which is the state-of-the-art tree-based interpretable classi-
fication model. Table 4 illustrates the accuracies of the classification on predicted behaviors and the prediction, given actual
behaviors of the users. The tree’s depth is the maximal number of layers from the root of decision trees, which are gener-
ated by the DT and Ism_td algorithms. We can consider that, given the same prediction accuracy, the smaller the depth of
the tree, the more interpretable the tree is. It is also true that, given the same depth, more accurate the tree in terms of

7 http://cbio.ensmp.fr/graphm/.
8 https://www.dropbox.com/s/nodra74cku06oeo/IndexCharac.txt?dI=0.


http://cbio.ensmp.fr/graphm/
https://www.dropbox.com/s/nodra74cku06oeo/IndexCharac.txt?dl=0

312 N. Phan et al./Information Sciences 384 (2017) 298-313

(=18 [=2
< <
o o
™ @
o o
3 8
P are)
SN -l
[a) o
=3 =
2| =
© A T T T T T T T T T T T T T T © T T T, T u T T T T T T T T T
1 0 4 11 19 12 21 5 & 6 15 3 17 7 16 4 3 22 20 16 17 18 12 14 6 21 5 15 9 13
Index of Characteristics Index of Characteristics
(a) MDL score for “increase” (b) MDL score for “decrease”

Fig. 10. The scores of the MDL for predicted behaviors of the users at the 9th week.

Table 4

Classification and prediction accuracies of interpretable classifiers in the whole dataset.
Tree’s depth 5 10 15 20
Classifier DT Ism_td DT Ism_td DT Ism_td DT Ism_td
Personal Classification ~ 0.554  0.607 0.604  0.657 0.617 0.685 0.625  0.707
Characteristics Prediction 0494  0.558 0.569 0.57 0.587 0.605 0.593 0.631
Key Classification  0.684  0.881 0.756  0.907 0.777  0.925 0.778  0.936
Characteristics Prediction 0.635 0.801 0.728  0.838 0.748  0.886 0.751 0.860

Bold numbers indicate better accuracies.

classification and prediction, the more interpretable the tree is. In Table 4, we can see that by applying the DT and Ism_td
algorithms on key characteristics, they achieve significantly better classification and prediction accuracies, given different
values of tree’s depth. In this point of view, the key characteristics extracted by our algorithm can be used to generate bet-
ter interpretable decision-trees compared with the original personal characteristics. An example of generated decision trees
from the Ism_td model is made available here.’

7. Conclusions

This paper introduces ORBM™*, a novel ontology-based deep learning model for human behavior prediction and expla-
nation in health social networks. By incorporating all human behavior determinants - self-motivation, implicit and explicit
social influences, and environmental events - our model predicts the future activity levels of users more accurately and sta-
bly than conventional methods. We contribute novel techniques to deal with structural domain knowledge (i.e., ontologies)
and human behavior modeling. Our experiments in real-world and synthetic health social networks discover several mean-
ingful insights: (1) User representations based on ontologies can further improve accuracies of deep learning approaches
for human behavior prediction; (2) The ORBM™ model expressively represents all the determinants and their correlations;
and (3) Personal key characteristics which are extracted by our model are reliable, and they can be used to generate better
explanations compared with original personal characteristics for human behaviors.
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