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Abstract— Human behavior prediction is critical in under-
standing and addressing large scale health and social issues in
online communities. Specifically, predicting when in the future
a user will engage in a behavior as opposed to whether a user
will behave at a particular time is a less studied subproblem
of behavior prediction. Further lacking is exploration of how
social context affects personal behavior and the exploitation of
network structure information in behavior and time prediction.
To address these problems we propose a novel semi-supervised
deep learning model for prediction of return time to personal
behavior. A carefully designed objective function ensures the
model learns good social context embeddings and historical
behavior embeddings in order to capture the effects of social
influence on personal behavior. Our model is validated on a
unique health social network dataset by predicting when users
will engage in physical activities. We show our model outperforms
relevant time prediction baselines.

1. INTRODUCTION

Social media is strongly influencing human social interac-
tion [1] and has been shown to have a considerable impact on
user behavior both online and in the real world [2]. Effectively
predicting future behaviors of users on online social media
platforms has attracted interest from research communities
and industry alike. It is an important step in personalized
intervention regiments for patients with mental illness, or it can
be used by services looking to improve customer satisfaction
and retention.

However there should be a distinction between predicting
how a user will behave at a specified time and when a user
will engage in a behavior again. Return time to an activity is
a significant metric towards understanding barriers to personal
engagement as it provides insight into the psychological states
dictating behavior. It may therefore be more useful to predict
not whether a user will engage in a behavior at a particular
time but when the user will engage in such a behavior again.
We call the problem of predicting how a user will behave
at specified time behavior prediction and the problem of
predicting when a user will perform a behavior again time-
sensitive behavior prediction.

Time-sensitive behavior prediction becomes a challenging
problem as social networks grow more intertwined in our daily
lives. Modern social networks integrate information across
multiple dimensions (Figure 1) such as social structure, online
behavior, real world behavior, etc. All features play important
roles in determining how and when people engage in activities.
It is therefore necessary to consider how these dimensions
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Fig. 1. Model Framework

interact as the underpinnings of behavioral influence in modern
social networks.

The problem of behavior prediction has been well stud-
ied, especially within the context of health informatics [3],
[4]. Early works in behavior prediction rely on information
cascade models [S] which struggle when networks grow and
evolve quickly. More recent works introduce deep learning
approaches for behavior prediction in high dimensional net-
works in order to learn implicit social influence features from
user attributes [3], but these methods measure pairwise user
similarity as a function of attribute vectors, capturing first-
order proximity in the network [6]. However, because many
legitimate links may be missing from the network, first-order
proximity can be a weak notion of user similarity. Higher
order measures and embeddings can better capture latent
social structures within the network topology that are useful
for social network analysis tasks. Furthermore, state-of-the-
art human behavior prediction models are not optimized for
predicting the return time to a behavior.

Problems similar to time-sensitive behavior prediction have
been studied within the context of recommender systems [7]
and web service user retention [8]. In these contexts, the major
goal is to learn low-rank representations that capture an affinity
between a user and web service [7]. Matrix factorization based
collaborative filtering methods have had great success on this
task but are typically suited for static user-item rankings and
do not handle the temporal dynamics of user behavior well. To



that end there has been a flurry of recent work in modeling
how user interest in online activities evolves over time [9],
[10]. However, these works only consider how a user interacts
with an online service or a set of online services, effectively
treating a user’s social context as independent of their online
behaviors.

We are interested in how to predict return time to personal
behavior by effectively integrating multiple dimensions of data
from complex and rich social networks. In this work we
present a semi-supervised deep learning model to solve our
time-sensitive behavior prediction problem by jointly learning
embeddings for two dimensions of a complex social network:
users’ historical behaviors and their social contexts. We name
our model the Context Aware Behavior Embedding Model
(CABE). We employ a combination of both recurrent and
autoencoder neural network architectures to accomplish this
task. Unlike previous works we carefully design an objective
function which ensures that our model is able to learn good
social embeddings by considering global network structure and
user-user interaction dynamics. Furthermore, we are able to
learn the nonlinear hidden correlations between social context
and user behavior.

We validate our model on a complex health social network
which integrates online social behaviors, physical activity
records, and physical attributes like BMI and blood pressure
measurements. In fact, utilizing mobile sensor technologies,
our recent study was conducted in 2010-2011 as a collabora-
tion between several laboratories, Telecom Corporations, and
Universities to record daily physical activities, social activities
(i.e., text messages, social games, events, competitions, etc.),
biomarkers, and biometric measures (i.e., cholesterol, BMI,
etc.) for a group of 500 individuals. Physical activities were
reported via a mobile device carried by each user. All users
enrolled an online social network allowing them to make
friends and communicate with each other. Users’ biomarkers
and biometric measures were recorded via monthly medical
tests performed at our laboratories. Specifically, we show that
latent community features in the social network structure play
a role in behavioral outcomes, and we perform time-sensitive
behavior prediction, showing our model outperforms relevant
baselines in our health social network.

The rest of the article is organized as follows. In Section
2 we review related work on human behavior prediction
and time-sensitive recommendation. Section 3 provides back-
ground on semi-supervised embedding techniques. In Section
4 we describe our time-sensitive behavior prediction model.
Section 5 gives an experimental comparison between our
model and existing approaches, and Section 6 concludes.

II. RELATED WORK

Behavior Prediction. In earlier work on behavior prediction
for high-dimensional social networks, Shen et al [4] extend the
Gaussian Process Model to capture latent social correlations
in social networks. Termed the Socialized Gaussian Process
(SGP), their model shows improved performance on physical
activity prediction. Recent work by [3] present deep learning
based behavior prediction models which are able to learn hid-
den features for social influence. Amimeur et al. [11] propose

a graph embedding method based on user-user interaction data
for explicitly capturing social influence and show their model
improves accuracy on a behavior prediction task. However
these models are not designed to predict when in the future a
user will engage in a behavior.

Time Prediction. The first work on time prediction for
recommendation was [7], a tensor based extension of previous
work on matrix factorization for collaborative filtering. This
work was extended in [9] to provide context-aware recommen-
dations while considering temporal dynamics. Context in [9] is
defined as user-specific attributes like gender, age, etc and not
social context. Recently, Du et al. [10] treat user engagement
as a temporal point process. Doing so, however, assumes
a particular parameterization of the distribution of behavior
events over time. This led to a recent paper by the same group
[12] proposing an RNN based temporal point process which
does not encode any prior knowledge about the underlying
generative process of user-item interaction dynamics. Wang et
al. [13] extend [10] to model the coevolution of user latent
features and item latent features. The most relevant work to
ours, by Dai et al. [14], is an extension of [13] and [12] which
proposes a recurrent feature embedding process to learn the
correlation between user latent feature evolution and item la-
tent feature evolution for time-sensitive item recommendation.
Kapoor et al. [15] fit a hidden markov model (STIC) to the
gaps in time between events of interest. Our work improves
upon these time prediction methods by considering how social
influence plays a role in user behavior.

III. SEMI-SUPERVISED EMBEDDING

The modularity of deep neural networks and the flexibility
of unsupervised objectives make semi-supervised deep embed-
ding a natural framework for modeling the various components
of social networks and their highly nonlinear dependencies.
Semi-supervised embedding via deep learning [16] is a set of
latent feature learning techniques which take advantage of a
small amount of labeled in a large dataset under the premise of
the smoothness assumption, that data points near one another
likely share a label. Most methods optimize two objectives,
a supervised objective and an unsupervised regularization.
There are a number of ways to introduce an unsupervised
regularization constraint into a deep neural network, and
below, the two most common approaches are described.

Transductive semi-supervised learning is a classic formu-
lation that cannot generalize to unobserved data instances,
though for the purposes of our social network application that
is irrelevant. The goal in this formulation is to regularize the
supervised loss function at the output layer.

The loss function for transductive learning can be defined
as follows.
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The first term of the loss function of the class label predic-
tion, the supervised task, with x; the input to the model and y;
the instance label. f(x; is the model output for input x; with
L(f(xi),f(x;),W;;) being an unsupervised loss function. The



second interesting mode for semi-supervised deep learning is
one which regularizes one or more individual hidden layers
within the overall model architecture.

This sort of mode would have the following loss function.
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Here /*(x;) denotes the output of the k-th layer of a DNN
with input x;.

The formulations above fit quite nicely with problems
like behavior prediction, and its variants, given increasingly
complex and high dimensional networked datasets. One can
train a model to perform a behavior prediction (supervised)
task using features from a variety of social and behavioral
dimensions while preserving important properties of those
features through unsupervised regularizations.

IV. CONTEXT AWARE BEHAVIOR EMBEDDING MODEL
A. Overview

In this section we present our semi-supervised model for
jointly learning embeddings for users in a social network G =
(U,E,B), where U is the set of all users in the network, E the
set of all friend connections, and B the set of behaviors of all
users over all time. The model, shown in Figure 2, consists
of two modules, an autoencoder tasked with reconstructing
the weighted adjacency matrix of G and a recurrent neural
network tasked with predicting behavior return time.
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Fig. 2. Model Framework

B. Historical Behavior Embedding

We begin our model discussion by detailing our method
for embedding user specific historical behaviors. Recurrent
neural networks (RNN) offer a nice framework to capture
historical dependencies between sequence events. We employ
a particular variant of the RNN, the LSTM, which handles the
vanishing/exploding gradient problem associated with vanilla
RNNS.

An LSTM unit contains an input gate, a memory cell, an
output gate, and a forget gate. The input gate controls how
the input to the unit affects the state of the memory cell while
the output gate controls how the cell state of the unit affects
other LSTM down the chain. The forget gate controls the self-
recurrent connection of the memory cell. These behaviors are

Recurrent Layer lJ

summarized by the gate and cell activation equations below.
g;" ; denotes the output of the input gate, g{ ; the output of the
forget gate, C; the cell state at time 7, o; ; the output of the
output gate, and /; the new hidden state of the LSTM unit.
W; and U; are weight matrices and b; is a bias.

g = a(Wt,Uihi—1,b%) 3)
gl =aW/t,Uln_1v)) 4)
C=g;xC+gl;xCy (5)
or,j = a(Wt,Uh,_1,b]) (6)

hy = o0, j(tanh(C;)) (7)

For a given event (#;,u;) € B with timing vector #; corre-
sponding to a behavior by user u;, the model aims to learn an
embedding /; unique to u; given a past embedding /;_; and ;.
The timing vector contains all timing features associated with
event (¢;,u;). Features may for example include the day, month,
time of day, an indicator for weekday or weekend, inter-event
duration, etc. Following the LSTM gate formulations above,
we define our model as follows.

g.j = (Wit +Ujhy—1 +b) )
gl = oW+ Ulh 1 +b)) )
C=glxC+gl; xC (10)
0,; =(Wti+Uh_y + b)) (11)
hy = oy j(tanh(C;)) (12)

We tend to unroll our recurrent network for only short
sequences for more efficient optimization given that behavioral
sequences typically favor short term dependencies.

C. Deep Autoencoder

We now discuss our method for embedding community and
social influences in social networks. Deep autoencoders have
been effectively applied towards a number of various tasks
from object recognition and image segmentation [17] to word
embedding and machine translation [18].

A stacked autoencoder is an unsupervised deep neural
network configuration which learns a parameterization of a
composite of nonlinear transformations in order to embed
and reconstruct a feature vector. Stacked autoencoders are
particularly interesting because they tend to capture a part-
whole grouping of input features, a property which is nice
when trying to learn hidden social and community structures.
Network embeddings can be learned by treating the adjacency
list of a node as the input x; to an autoencoder. However, it



is unusual for all relationships within a network to be equally
influential. As noted in [11], it is beneficial to consider user-
user interactions when learning network embeddings, so we
choose to weigh the adjacency list according to the frequency
of interactions between friends in the network.

The loss function of our autoencoder is a distance between
the weighted adjacency list x; and its reconstruction X;. We
choose euclidean error as our distance function resulting in
the following loss.

i
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D. Model Objective

Consider the unsupervised regularization task of our model.
Our objective function for learning social context embeddings
is shown below.

n
L= Y [%—xi]? (14)
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Our second task of course is to predict the return time

of a user to a behavior. We treat this as an epoch based
classification problem where we predict the next epoch of
time during which a behavior may be performed. This offers
a bit of flexibility with respect to the granularity of our time
prediction. Du et al. [12] offer a way of predicting the exact
time, although in most applications an exact time prediction is
unnecessary. Nevertheless, it is easy to use our hidden features
in their conditional intensity formulation for an exact time
prediction. Our softmax output layer predicts the probability of
a behavioral event occurring during an epoch of time given the
joint hidden representation of the social context and historical
behavior of a user.

eSi
yi=— (15)
l ZCEEpoch e’
where
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Here, hg holds the social context embeddings and #; the
behavioral embeddings corresponding to input i. Epoch cor-
responds to the set of dates from which the model predicts the
next activity will occur. The appropriate loss function for the
prediction task is the cross-entropy error shown below.

Ly=—Y Yi(yi—log) e")
i 7

This brings us to our final objective which is to jointly
minimize the semi-supervised loss function shown below.
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n
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y; is the label of the next epoch during which activity occurs
and y; the softmax output.

The historical behavioral embeddings and social context
embeddings can be learned via backpropagation through time
and regular backpropagation of the error gradient, respectively.
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Fig. 3. Visualization of clustered context embeddings

V. EXPERIMENTS

A. Social and Physical Activity Dataset

Our dataset was collected via a study which aimed to
record the effects of online social behavior with real world
physical activity in order to learn how best to stage digital
interventions to promote favorable health outcomes. The study
was a collaboration among several health laboratories and
universities to help people maintain active lifestyles and lose
weight. The dataset collected records from 254 users stratified
into four dimensions: personal information, social network
activities, biometric and biomarker measurements, and their
daily physical activities over ten months. The entire dataset
can be considered an extremely rich social network, capturing
a number of dimensions of varying complexity. Overall, it is
a interface between online social interaction and real world
behavior and physical attributes, making for a unique dataset
from which actionable insights can be mined.

The study created a private health social network serving as
a platform to encourage study participants to engage with one
another with regard to their physical performance. Forms of
social interaction include peer-to-peer private messages, public
board postings, and online competitions through which subsets
of users could share physical activity performance with one
another.

The initial physical activity data, collected from each user
via special wearable electronic equipment, records information
such as the number of walking and running steps. Each entry
corresponding to an activity event has a date and start time
as well as a distance parameter and a speed parameter which
we can use to define a threshold for intense physical activity
to more effectively filter low effort activity that could be
considered noise in our context. After preprocessing, there are
approximately 50,000 activity events across 120 users over the
nine month duration of the study. Note that, given a week if
a user does exercise more than the previous week, he/she is
considered increasing exercise in that week. Otherwise, the
user will be considered decreasing exercise.



B. Community Effects on Physical Activity

One the driving claims in this work is that hidden commu-
nity and social structures play a significant role in behavioral
outcomes of users in social networks, be they real world be-
haviors or online behaviors. It is therefore useful to investigate
how well our model can capture latent social structures from
networked data and explore how users within communities
behave over time. We do this by clustering users using the
set of social embeddings learned by our model and looking at
variational patterns of return time to physical activity as users
interact with their community and global network members.

Similar to spectral clustering based methodologies, we can
apply standard clustering algorithms to detect communities
from high order social embeddings. In this application, the
number of communities is not known a priori so DBSCAN
is chosen to perform community detection. Figure 3 shows
the color-coded clustering results and network embeddings in
two dimensions. Euclidean distance is the measure of social
similarity.

The thirty-eight week study is broken down into windows
of three weeks. For each cluster, we calculate the standard
deviation of the users’ average return time to moderate or
strenuous physical activity (in days) within every three week
window of the study. We define moderate physical activity
as at least a light jog, active at a pace four miles per hour
or greater. The results are shown in Figure 4. In general,
among users within a cluster, variance among return times to
physical activity is much lower compared to the control group
consisting of users who were physically active but were not
active in the social network, i.e. they did not send a message
to anyone. Furthermore, there is a slight but noticeable trend
among active users. The standard deviation within clusters
trended downwards throughout the study. This suggests that
those who interact within the network frequently tend to
behave more similarly over time and that there is a correlation
between behaviors within a social context, showing that it is
important to account for community dynamics when predicting
how and when social network users will behave.
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Fig. 4. Community effects on behavior homogeneity over time

C. Time Sensitive Behavior Prediction

Problem Definition. Given the social network G and indi-
viduals’ past behaviors until day #, X , = (X} , X7 ,,....XN ),
where X , = (x',x},...x1) with x/ being the timestamp of a
physical activity event. N is the number of users in the social
network. The time-sensitive behavior prediction problem is to
predict the time of the individual’s next behavior xf 1 i.e.,
Xit1.

Dataset and Experiment Configurations. We only con-
sider users who interact with others in the network (i.e., users
must send (resp., receive) messages to (resp., from) other
users). We have 123 users with 2,766 inbox messages for our
experiments.

We consider only users who interact in the network because
they are most likely to influence users or be influenced by other
users to be physically active. This also gives us the ability to
weigh the transition matrix serving as input to our model by
incorporating the frequency of interactions between users and
to include additional temporal information into our model.

To validate our time prediction model, we predict the next
epoch during which a user will be physically active. This, for
example, may be the next date within a window of time that
physical activity takes place. In total, the dataset spans thirty-
eight weeks of activity. We choose to predict the next date
users will be physically active within a three week window.
We choose this window size because all users that are socially
active in the network perform moderate physical activity at
least once every three weeks. We unroll the recurrent layer of
the network by three steps. That is, we consider the duration
between the last three physical activity events to predict the
time of the next physical activity event.

Competitive Prediction Models. We compare our behavior
embeddings with the embeddings learned with the Recurrent
Marked Temporal Point Process Model which we consider
state of the art for deep learning based time sensitive prediction
models. The RMTPP model learns embeddings of historical
behavior via a vanilla recurrent neural network which are used
to parameterize a point process for time prediction. In our
health social network application, there is no marker input to
the RMTPP so we elect to train without that portion of the
model.

Our second competitive baseline is the STIC model [15]
which aims to model two psychological latent states with
respect to behavioral streams, bored and engaged. The model
fits a hidden semi-Markov model for the gaps between user
behavioral events.

Experimental Results. We report the performance of our
model (CABE) versus the RMTPP and STIC models. We show
results for our model in three different modes corresponding
to different values of the parameter A controlling the weight of
the reconstruction regularization versus other components in
the model’s loss function. Values of 0.5, 1, 2, and 5 are chosen
to demonstrate model performance given relative importance
of social context embedding.

Results are shown for eight separate windows of three weeks
of physical activity. Accuracy is used as the evaluation metric.
For each window beginning at week N all weeks of activity are
leveraged for prediction between weeks N through N +2. That



TABLE I
PREDICTION ACCURACY COMPARISON WITH DIFFERENT MODELS(T15-T38)

Weeks STIC RMTPP | CABEA=0.5 | CABEAL=1 | CABEA=2 | CABEA=5
T15-T17 | 0.1243 0.1534 0.1491 0.1521 0.1529 0.1518
T18-T20 | 0.1256 0.1492 0.1523 0.1579 0.1567 0.1571
T21-T23 | 0.1275 0.1559 0.1578 0.1634 0.1669 0.1653
T24-T26 | 0.1348 0.1553 0.1683 0.1779 0.1794 0.1784
T27-T29 | 0.1362 0.1586 0.1648 0.1752 0.1735 0.1742
T30-T32 | 0.1378 0.1685 0.1723 0.1851 0.1896 0.1782
T33-T35 | 0.1457 0.1883 0.1837 01848 0.1887 0.1835
T36-T38 | 0.1472 0.1861 0.1855 0.1905 0.1926 0.1892

is, the softmax output of our model produces a distribution
across the twenty one days within each window, predicting the
next date during which the user will perform physical activity.
The results in Table 1 show that our model with values of
1 and 2 for A outperform both the RMTPP and STIC models
during every time window while accuracy suffers with too low
and too high of values for A. It is important to consider the
results of our community effects experiment above together
with the time prediction experiment in order to see why our
model outperforms the RMTPP and STIC baselines. The subtle
correlations between social context and frequency of physical
activity can be learned by our model and are therefore useful
for time sensitive behavior prediction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel time-sensitive
behavior prediction model which can integrate multiple dimen-
sions of complex social networks via a semi-supervised deep
learning framework in order to perform the time prediction
task. An experiment conducted on a health social network
showed the effects of latent community structures on the
frequency of behavior of users in social networks, and we
showed our model outperforms relevant baselines on a time
prediction task. In future works, we can extend our model to
capture coevolving historical behaviors more explicitly while
still remaining aware of social context. We also plan on
exploring how to effectively incorporate physical attributes,
like height, weight, and blood pressure, into our problem, for
example to predict when a user may reach a particular weight
goal.
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