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Experimental Evaluation

of Structural Intensity in Two-
Dimensional Plate-Type Locally
Resonant Elastic Metamaterials

Elastic metamaterials utilize locally resonant mechanical elements to onset band gap
characteristics that are typically exploited in vibration suppression and isolation applica-
tions. The present work employs a comprehensive structural intensity analysis (SIA) to
depict the structural power distribution and variations associated with band gap fre-
quency ranges, as well as outside them along both dimensions of a two-dimensional (2D)
metamaterial. Following a brief theoretical dispersion analysis, the actual mechanics of
a finite metamaterial plate undergoing flexural loading and consisting of a square array
of 100 cells is examined experimentally using a fabricated prototype. Scanning laser
Doppler vibrometer (SLDV) tests are carried out to experimentally measure the deforma-
tions of the metamaterial in response to base excitations within a broad frequency range.
In addition to confirming the attenuation and blocked propagation of elastic waves
throughout the elastic medium via graphical visualizations of power flow maps, the SIA
reveals interesting observations, which give additional insights into energy flow and
transmission in elastic metamaterials as a result of the local resonance effects. A drastic
reduction in power flow magnitudes to the bulk regions of the plate within a band gap is
noticeably met with a large amplification of structural intensity around and in the neigh-
borhood of the excitation source as a compensatory effect. Finally, the theoretical and
experimentally measured streamlines of power flow are presented as an alternative tool
to predict the structural power patterns and track vortices as well as confined regions of

energy concentrations. [DOI: 10.1115/1.4039042]
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1 Introduction

Elastic metamaterials are a class of subwavelength structures
that house an array of locally resonating subcomponents, which
contribute to the rise of intriguing mechanical and elastodynamic
characteristics such as a negative effective mass and mechanically
tunable frequency band gaps [1-4]. The interplay between the
host structure and counter inertial forces in the internal resonators
has been shown to onset unique vibration absorption capabilities
over extended frequency ranges in addition to enhanced damping
properties in dissipative realizations of such systems [5]. As a
result, they have recently become widely appealing for a wide
range of vibroacoustic mitigation applications. Over the past dec-
ade, considerable effort has been devoted to studying different
types of locally resonant metamaterials including, but not limited
to, elastic bars [6], flexural beams [7,8], torsional structures [9], as
well as two-dimensional (2D) membranes and plates [10-12].
Since the bulk macroscopic of elastic metamaterials predomi-
nantly rely on the local resonance effects, a large body of work
has also recently focused on active and controllable elastic meta-
materials via piezoelectric shunting [13], electric actuation [14],
and for energy harvesting applications [15].

Elastic metamaterials typically consist of a self-repeated unit
cell that contains a base structure and one or more internal
mechanical resonators. Owing to their periodic configuration,
wave propagation and dispersion characteristics are often pre-
dicted using a simplified analysis of an individual cell. The com-
monly adopted mathematical techniques include the Bloch-wave
solution and the transfer matrix method [16,17]. However, by
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definition, wave dispersion and band gap characteristics obtained
from such methods predict the behavior of infinitely long realiza-
tions of the unit cell [18]. As a result, the response of actual meta-
materials often deviates from the theoretical unit cell-based
models, motivating deeper investigations into the behavior of
finite metamaterials [19-21]. Among these is the use of structural
intensity as a tool to track and quantify mechanical power flow, as
opposed to elastic wave propagation, associated with such struc-
tures within and outside band gap ranges. A comprehensive math-
ematical framework for structural intensity analysis (SIA) has
been derived for plain, stepped, and stiffened plates [22-24],
plates with welded connections and varying thickness [25,26], and
in damage detection and health monitoring of laminated compos-
ite plates [27,28]. More recently, the SIA has been applied in the
context of locally resonant elastic metamaterials and shown to be
a robust approach in evaluating the existence of, or absence
thereof, a band gap [29]. Further, the SIA has been also utilized to
predict the influence of material and viscoelastic damping on the
emerging band gaps in phononic (periodic) structures for different
damping amounts rendering it a valuable tool in the performance
prediction of dissipative metamaterials [30].

In this work, we extend the developed SIA approach to 2D
metamaterial systems (namely locally resonant plate-type struc-
tures) and, furthermore, provide a detailed account of the experi-
mental measurements of the different structural intensity
representations. In addition to comparing the experimentally
measured power flow patterns with the mathematical output, the
mechanical energy amplitude is utilized to locate the metamaterial
plate’s band gap frequency ranges, which are validated against the
dispersion curve predictions. The experimental SIA evaluation is
carried out using scanning laser Doppler vibrometry (SLDV)
measurements of the metamaterial’s response to base excitations
imposed by an electrodynamic shaker. Postprocessing of the dis-
placement fields is then carried out to obtain the mechanical
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power flow and energy streamline maps. This paper is organized
in four sections. Following the introduction, the elastic and geo-
metric parameters of the metamaterial prototype are outlined fol-
lowed by a mathematical overview of both the dispersion and the
structural intensity analysis and governing equations. Next, the
different results from the experimental and numerical investiga-
tions are presented followed by a brief summary and conclusions.

2 The Metamaterial Plate

The metamaterial plate considered comprises locally resonant
unit cells, which consist of a square metallic ring that is connected
to an internal plate via a thin elastic beam (neck). The configura-
tion used is a single-material design that is inspired from literature
[31]. The combination of the neck and the connected plate pro-
vides the internal spring-mass type system needed to onset the
local resonance effects culminating in the band gap characteris-
tics. The plate consists of 100 cells of 24 mm x 24 mm size as
shown in Fig. 1. The plate specimen is machined from a solid
plate of aluminum alloy with a total length of 270 mm, a width of
243 mm and a thickness ¢ =2.54 mm with an elastic modulus and
density of 70 GPa and 2700 kg/m?, respectively. The internal mass
is a 15mm x 15 mm plate suspended by a 3 mm wide beam. The
motion of interest in this study is the out-of-plane transverse
(bending) deflection. As such, the analysis is based on the
Kirchhoff-Love theory for thin plates that captures the deflections
depending on the transverse deformation w and its derivatives in
space, i.e., 0, and 0,.

2.1 Unit Cell Dispersion Analysis. The dispersion relations
of the metamaterial plate are developed based on the finite ele-
ment method, which is discussed here in brief [32]. The unit cell
is discretized into square four-node elements of a
1.5mm x 1.5 mm. After appropriately deriving the mass and stiff-
ness matrices of the unit cell, the dynamics of the unit cell is
described as

MX+Kx=0 )]
where M, and K, are the cell mass and stiffness matrices, respec-
tively. The element stiffness and mass matrices are obtained via a
displacement shape function from which the strain equations can
be generated. Once the strain matrix is derived, the elasticity
matrix E is used to obtain the potential energy, and consequently
the element stiffness matrix
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where Lk and A are the shape function’s second derivative matrix
and the shape function’s evaluations at the element nodes. Simi-
larly, from the kinetic energy, the element mass matrix can be
obtained as

M, = gA’TJ J L HLydxdyA ™! 3)

where g is the material density and Ly is a matrix of the utilized
shape function and its first derivatives while

B P }
12 12

A more detailed description of computing K, and M, can be
found in Refs. [8] and [12]. The matrices M, and K, are reduced
by applying the Bloch—Floquet boundary conditions that require

the degrees-of-freedom, given by the nodal deflection vector x, to
be divided into nine groups as shown in Fig. 2(a) such that

H = diag {t 4

(&)

T
X = {Xi XB XT XL XR XLB XRB XLT XRT}

where the subscripts i, B, T, L, and R denote internal, bottom, top,
left, and right nodes, respectively. As such, the transformation
x = Qx can be applied for a harmonic analysis such that

K. — o®MJ%x =0 ©)
where % = {x;xgx xip} , K. = Q'K.Q, M. = Q"M.Q, and
Q is a transformation matrix, which can be expressed as
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Schematic of the metamaterial plate and its unit cell along with their dimensions
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Fig. 2 (a) Discretization of the unit cell and the arrangement of
the degrees-of-freedom groups and (b) the dispersion curves
for the unit cell shown in Fig. 1

where i, and p, are the wavenumbers (spatial frequencies) in the
x and y directions, I is the identity matrix, i = v—1, and QT is the
Hermitian transpose of the matrix Q. The dispersion relations can
then be attained by sweeping the values of the wavenumbers p,
and , across the irreducible Brillouin zone and by solving the
eigenvalue problem in Eq. (6) for the angular frequency w. Figure
2(b) shows the dispersion curves for the unit cell under considera-
tion where the first band gap spans the frequency range 1569
<w/2n < 2259 Hz, which is the one of interest in this study.
While Fig. 2(b) represents the dispersion characteristics as pre-
dicted by the Kirchhoff-plate theory, such results can be verified
using a complete three-dimensional (3D) model that comprises
solid elements. The latter would account for both in-plane and out-
of-plane motions as well as any thickness effects of the plate. Fig-
ure 3 shows the dispersion curves generated for the same

i w/2m (kHz)

metamaterial plate using the 3D model as well as how it compares
to the Kirchhoff theory predictions. The figure also discriminates
between out-of-plane and in-plane modes at several points on dif-
ferent dispersion branches, for which the corresponding deforma-
tion modes are given. It can be seen that the Kirchhoff theory
shows a strong agreement with the 3D model for all the transverse
modes. In addition to being less computationally intensive, this also
confirms that the Kirchhoff model is reliable and sufficiently accu-
rate to carry out the numerical analysis for this particular plate.

2.2 Structural Intensity Analysis. Structural intensity is
defined as the vibrational power per unit cross-sectional area flow-
ing in a structure undergoing dynamic loading. The general for-
mula to obtain the instantaneous structural intensity is given by
[33]

in(1) = —og(1)v,(0) ®)

where i;(f) is the kth component of the instantaneous structural
intensity in the time domain, oy;() is the stress tensor at a point
where £ is the normal direction of the area, and v;(7) is the velocity
vector in the j-direction, where k=1, 2, 3 and j=1, 2, 3. For a
Kirchhoff plate undergoing transverse motion, the instantaneous
structural intensity in the x and y directions can be hence reduced
to [23]

L(1) = = [ ()0 (1) + 0, ()M (1) — 0,M,,(1)] (9a)

L,(1) = =[#()Qy(1) = 0()My (1) + O, My (1)) (OD)

In Egs. (9a) and (9b), w is the transverse deflection of the plate,
0 = Ow/dy is the bending angle in the x-direction, 0, = —0w/0x
is the bending angle in the y-direction, while (") denotes the deriv-
ative in time. Q.(¢) and Q,() are the shear forces in the x and y
directions, respectively, and M. (r), My(t), M, (t) and M, (t) are
the internal moments. In the frequency domain, the steady-state
structural intensity /; () can be computed via a Fourier transform
of Eq. (8), which yields [34]

(@) = — 2 0y(@)V; () = P©) +i0(0)

2 (10)

where ay;(w) is the frequency-dependent stress tensor and v/*((u)
is the complex conjugate of the frequency-dependent velocity.
The complex structural intensity /x(w) can be decomposed into

7

------ In-plane Modes
3D Model
—— Out-of-plane Modes

0O Kirchhoff Theory

Solid Elements Mesh

Fig. 3

In-plane (dashed) and out-of-plane (solid) dispersion curves (and corresponding deformation modes) for the shown unit

cell mesh obtained via a 3D model of solid elements. Kirchhoff predictions (circles) are shown for comparison.
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Fig. 4 (a) The experimental setup consisting of the vibrometer, the magnifier, the electrodynamic shaker and the metamaterial

plate and (b) a flow diagram of the experimental testing

imaginary and real terms to obtain the active P(w) and reactive
Q(w) power components, respectively. Similar to Egs. (9a) and
(9b), the steady-state active power flow along the x- and y-
directions of the Kirchhoff plate can be expressed as

Py(w) = f%wlm [Qx(w)w*(w) + Mx(w)G; (w) — Mw(w)H;(w)]
(11a)

Py(o) = - % olm [0y (w)w" (w) = My(@)0(0) + My ()0} ()]
(11b)

3 Experimental Analysis and Results

3.1 Experimental Setup. The experimental study is per-
formed using the setup shown in Fig. 4(a). In the experimental
tests, a machined prototype of the elastic metamaterial plate
(shown in Fig. 1) is anchored to an electrodynamic shaker and
excited at its base using a signal fed from a function generator
through an amplifier. The metamaterial’s vibrational response is
measured using a 100 kHz polytec SLDV. The SLDV is synchron-
ized with the excitation signal fed to the shaker and its head shines
a laser beam that scans the plate’s vibrating surface enabling it to
measure surface deformations and velocities using time of travel
calculations. Displacement measurements at approximately
13,000 points, evenly distributed along the plate’s surface, consti-
tute the experimental displacement field. Such measurement

Sensor

resolution, while time costly, ensures that the flexural wave propa-
gation is accurately captured. The schematic diagram shown in
Fig. 4(b) illustrates the various components of the experimental
setup.

3.2 Frequency Response of the Metamaterial Plate. To
verify the presence of the theoretically predicted band gap in Sec.
2.1, the frequency response function of the finite plate is measured
via a sine sweep of a broad frequency spectrum that includes the
band gap range. The frequency response is displayed for an arbi-
trary point at the midspan of the plate, as highlighted in Fig. 5(a),
via a discrete sensor. The experimentally measured frequency
response is shown in Fig. 5(b) and is compared to its numerical
counterpart from the finite element description of the plate. The
dispersion-predicted (1569 <w/2n < 2259 Hz) and measured
(1550 <w/2m < 2275 Hz) band gap frequency ranges are found
to be in reasonable agreement. The discrepancies between the
numerical and experimental frequency responses can be under-
standably attributed to (1) machining imperfections and tolerances
in the physical metamaterial prototype resulting in small varia-
tions of thickness and resonators dimensions along both the x- and
y-directions and (2) structural and viscous damping differences,
which typically influence the attenuation magnitude within the
theoretically predicted band gaps.

3.3 Displacement Field. Both the theoretical analysis and the
experimentally obtained frequency responses identify a band gap
in the elastic metamaterial in the approximate range between
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Fig. 5 (a) Schematic diagram illustrating the sensing and excitation locations on the metamaterial plate and (b) the numerical
and experimental frequency response function at the sensing location
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Fig. 6 Numerical and experimental displacement fields at a (a) pass band frequency (500 Hz)

and (b) a band gap frequency (1700 Hz)

1550 and 2275Hz. To experimentally visualize this, we select
500 Hz as a representative frequency outside the band gap (i.e., a
pass band frequency) and 1700 Hz for a frequency within the band
gap range. The displacement fields of the metamaterial plate at
the two frequencies are obtained both theoretically via a harmonic
analysis of the finite element model and experimentally from the
SLDV scanned measurements. Figure 6 displays both sets which
graphically illustrate how the propagation of waves emerging
from the shaker (excitation source) is impeded in the plate when
excited inside a band gap. On the contrary, such waves propagate
freely to the end of the metamaterial outside that range. It can also
be observed that the source vibrations are predominantly absorbed
into the first couple of local resonator rows within the band gap.

3.4 Structural Intensity Analysis and Power Flow Maps.
Equations (11a) and (11b) are utilized to evaluate the structural
intensity distribution corresponding to both excitation frequencies
(500 and 1700 Hz). Figure 7 summarizes the numerical and exper-
imental SIA computational procedures. The experimentally
obtained structural intensity is based on the hybrid approach pre-
sented in Ref. [22], which utilizes the experimentally measured
displacement field (in this case, using the SLDV) while computing

’—>‘ Post-Processing ‘—» Numerical
SIA

Numerical Simulation Internal Forces
(COMSOL) Q. Q, M,, M,and M,
Experimental
Experimental w SIA
(Using SLDV)

Spatial Derivatives
(COMSOL)

Experimental
0z and 9y

Fig. 7 Flow chart illustrating the procedure of the numerical
and experimental SIA computations

Journal of Applied Mechanics

the internal forces within the structure numerically. The structural
mechanics module of the commercial comMsoL MULTIPHYSICS pack-
age is used here for that purpose. The experimental bending
angles 0, and 0, are calculated from the spatial derivative of the
transverse deflection matrix w obtained from the SLDV.

Figures 8 and 9 show the power flow maps obtained at 500 and
1700 Hz, respectively, for both the theoretical and experimental
cases. In these figures, the power flow maps are presented as an
array of arrows that emerge from the power source (excitation
location) and propagate throughout the structure. The direction
and the magnitude of each individual arrow depend on the values
of the two active power components P, and P, at that respective
location. Figures 8 and 9 show that the power flow patterns are
alternative indicative of wave propagation trends and reveal that
energy transmission in the plate is effectively blocked within a
band gap. It can also be seen that, despite the apparent deforma-
tions of the second row of resonators (as shown in Fig. 6(b)),
power flow to these cells is almost negligible, which reflects the
weakness of the internal forces at these nodes. More importantly,
by comparing the active power magnitudes at the base of the
metamaterial plate and in the vicinity of the excitation source,
much larger energy concentrations can be observed within a band
gap frequency than outside it, a feature that is not necessarily evident
in the deformation shapes. The amplified structural intensity closer to
the source is indicative of the entrapped power as a result of the
strong counter inertial forces in the local resonances. This inter-
change between strong vibration attenuation and magnified power
closer to the source within a metamaterial can be exploited to
enhance energy harvesting and extraction capabilities of such struc-
tures as attempted, for e.g., in Ref. [15].

The frequency response of the active power magnitude |P|

(where |P| = /P; + P}) gives an additional insight into how the

blocked power flow to the bulk area of the metamaterial plate
within a band gap is simultaneously met with a noticeable
increase in the power intensity in the small area in the neighbor-
hood of the exciting source. Figures 10 and 11 show the evolution
of |P| as the excitation frequency increases for a point close to the
source and the sensor point (marked earlier on Fig. 5(a)), respec-
tively. Both figures are augmented with close-ups of the power
flow maps surrounding both points. The gradual increase in the
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Fig. 8 Theoretical and experimental power flow maps for the pass band frequency (500 Hz)
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Fig. 10 The frequency response of the active power magnitude |P| function at a point near the
excitation source and select close-ups of the power flow map in its neighborhood
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Fig. 11 The frequency response of the active power magnitude |P| function at the sensing
point and select close-ups of the power flow map in its neighborhood

power intensity near the source can be clearly seen in Fig. 10 up
until the band gap range (shaded area), after which the magnitudes
of the arrows go back to normal levels. The opposite trend exactly
takes place in Fig. 11 where there is completely no power flow at
and around the sensing point within the band gap range while
there is noticeable power flow before and after it. The increase in
power flow near the source during a band gap can be also intui-
tively understood in the context of overall energy conservation at
any given band gap frequency. Such increase compensates for the
local resonance band gap effect, which effectively hinders energy
transmission to the plate boundaries resulting in magnified energy
sinks at the vicinity of the source as a direct consequence.

3.5 Streamline Representations. The streamline representa-
tion is an interesting alternative technique to quantify structural
power flow patterns in mechanically loaded elastic metamaterials.
The streamlines provide a visualization, which describes the
velocity field as a gradient of a scalar function. Such representa-
tions are capable of revealing additional underlying mechanics of
energy transport within an elastic structure such as vortex-like

patterns. In addition, they can reflect the speed of the power trans-
mission in the structure which is proportional to the relative spac-
ing between the flow streamlines. Structural power flow
streamlines are mathematically obtained via a cross product of the
energy flow particle position dr and the structural intensity vec-
tors [35] and can be expressed as

dr xI(r,1) =0 (12)
which, for a steady-state harmonic response in a 2D structure,
reduces to

13)

Figures 12 and 13 show the streamline representations obtained
at 500 and 1700 Hz, respectively, for both the theoretical and
experimental cases. Similar to the power flow maps, the stream-
lines are nonexistent in the bulk part of the metamaterial plate
when excited at a band gap frequency. In addition to the high
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magnitudes at the base of the plate corresponding to a band gap
frequency, it can also be observed that the intensity streamlines
have a much heavier presence into the resonators closer to the
excitation source inside a band gap as compared to outside it. As a
result of the impeded energy transmission, the structural intensity
is entrapped in vortices, which span almost the entire space of the
resonators in the vicinity of the exciting source. It can also be
seen that the resonators closest to the excitation source all com-
prise hot spots at the resonator necks as well as the anchors con-
necting them to the base structure. In addition to being regions of
high stress concentrations, these can also be interpreted in light of
the resonator design. If the locally resonant component is to be
thought of as a discrete spring-mass mechanism, the resonator
neck and its supporting edges would serve as the inner spring
where the largest deformations take place within a band gap.
Additionally, the experimental portion of Fig. 13 shows a couple
of hot spots on two of the first row resonators closer to the left end
of the plate. By referring to the experimentally measured displace-
ment fields (Fig. 6), it can be seen that the resonator deformations
are not perfectly symmetric about the center (in contrast to their
numerical counterparts) with particularly large deformations in
the neighborhood of the same aforementioned resonators. Such
discrepancies are typical due to both machining imperfections and
resultant variations of both the thickness and resonator dimen-
sions. Finally, the circulating flux in the resonators is expected
and common in small finite structural components with no power
flow exits (outlets).

4 Conclusions

A theoretical and experimental investigation of vibrational
power transmission in plate-type locally resonant elastic metama-
terials has been presented. Starting from a Kirchhoff-Love model
for thin plates undergoing flexural deformations, the dispersion
characteristics of the self-repeating unit cell of the metamaterial
plate were theoretically obtained via a finite element model. The
dispersion curves were used to predict the location of the local
resonance band gap. Following the dispersion analysis, the actual
mechanics of a finite metamaterial plate consisting of a square
array of 100 cells were examined both numerically and experi-
mentally on a manufactured specimen. SLDV tests were carried
out to experimentally measure the entire deformation field of the
metamaterial at different frequencies of interest and were used to
verify the band gap behavior. By utilizing energy rather than a
displacement-based approach, a structural intensity analysis was
employed to depict the power flow maps corresponding to band

041005-8 / Vol. 85, APRIL 2018

gap conditions as well as outside them. In addition to using power
flow to confirm the presence of wave propagation band gaps due
to local resonance effects, the magnitudes and direction of struc-
tural power flow along the different regions of the metamaterial
plate revealed some interesting observations. The drastic reduc-
tion of power flow to the bulk area of the plate as a result of a
band gap was found to be met with a noticeable magnification of
structural intensity around and in the vicinity of the exciting
source as a compensatory effect. Such confined energy traps can
be a double-edged weapon. While favorable for potential energy
extraction or harvesting applications, their long-term effect on the
structural integrity and durability of this class of metamaterials
can be detrimental. Such findings concretize the value of using the
SIA as a valuable, yet overlooked, tool in the performance evalua-
tion of finite and physically realizable elastic metamaterials.
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