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Abstract—The size of a BDD heavily depends on its variable
order. Significant efforts have been made to find good variable
orders, statically or dynamically. This paper concentrates on a
related issue, transforming a BDD from one variable order to
another, as needed when an application must cope with BDDs
having different variable orders. Instead of rebuilding BDDs
as done in previous work, we accomplish such transformation
through a sequence of adjacent variable swaps. Since there are
many ways to schedule these swaps, we propose and compare
several heuristics to determine good schedules.

I. INTRODUCTION

A binary decision diagram (BDD) [6] is a data structure
to represent and manipulate Boolean functions, with many
important real–world applications such as hardware verifica-
tion and model checking [8]. Since the choice of variable
order can significantly impact the size of a BDD (thus its
performance) and since finding an optimal variable order is
NP-hard [5], significant efforts have been made towards good
ordering heuristics. Static heuristics [1], [12], [18] establish a
variable order using information available prior to building any
BDD, while dynamic heuristics [4], [20] attempt to improve
the variable order by modifying the existing BDDs on the fly.

We consider a related topic, variable reordering, i.e., how
to transform an existing BDD from one variable order to
another. This naturally arises when transferring BDDs between
applications that choose different variable orders, or when
a single application has different computational phases with
different optimal variable orders. For example, in reachability
analysis with a disjunctively-partitioned next-state function
N =

⋃
Nα, each Nα could benefit from a possibly differ-

ent variable order; then, before applying Nα, the already-
discovered set of states should be reordered according to Nα’s
variable order. Another example arises when two BDDs have
been separately improved using dynamic heuristics: before
using them in a binary operation, we must compute a common
order and transform them into that order efficiently [10].

Several works have proposed variable reordering algorithms
based on rebuilding the BDD with the new variable order.
Tani and Imai [22] build an equivalent quasi-reduced BDD
first, then apply reduction rules on it. Bern, Meinel, and
Slobodová [3] adopt a top-down recursive approach and use
compute tables to avoid recomputation. Savickỳ and We-
gener [21] build the new BDD in breadth first order, but require
reverse edges (from a child to its parent) to find a backward
path, a feature not usually found in BDD implementations.

Instead, we obtain the desired variable reordering through
a sequence of adjacent variable swaps. Relying on swaps is

not new (e.g. CUDD [?] and BuDDy [?] accomplish variable
reordering using our BU heuristic of Section III). However,
to the best of our knowledge, this approach has not been
investigated or compared with rebuilding in the literature,
especially in regard to heuristics to schedule swaps.

The rest of this paper is organized as follows: Section II
gives basic BDD definitions and reviews the algorithm of adja-
cent variable swap. Section III analyzes the minimum number
of swaps needed for a reordering, and proposes heuristics to
choose among minimum-length swap schedules. Section IV
presents experimental results for combinatorial circuits and
Petri net reachability sets. Section V contains conclusions and
directions for further research.

II. PRELIMINARIES

A. Binary decision diagrams

Given domain variables D = {v1, ..., vL} and an order Π on
D, where vi ≺Π vj means “vi precedes vj in Π”, an (ordered)
binary decision diagram (BDD) with order Π is an acyclic
directed edge-labeled graph where:
• The only terminal nodes are the elements of B = {0, 1},

associated with a variable v0, s.t. v0≺Π vi for any vi∈D.
• A nonterminal node p is associated with a domain

variable, denoted p.var, and has two outgoing edges
labeled 0 and 1, pointing to children denoted p[0] and
p[1], s.t. p[0].var ≺Π p.var and p[1].var ≺Π p.var.

The function fp : BL→B encoded by a node p is given by

fp(i1, ..., iL) =

{
p if p.var = v0

fp[ik](i1, ..., iL) if p.var = vk ∈ D
.

A node p is said to be redundant if p[0] = p[1], while two
nodes p and q are said to be duplicates if p.var = q.var,
p[0] = q[0], and p[1] = q[1]. To ensure that each function has
a unique BDD node representing it, we restrict ourselves to
canonical forms of BDDs containing no redundant nodes and
no duplicates. A non-canonical BDD can be transformed into
this reduced form [6] but, in practice, one can avoid creating
redundant and duplicate nodes during BDD manipulations by
employing a unique table (usually a hash table) [7].

Some BDD definitions assume a single root node (with no
incoming edges), thus focus on the encoding of a particular
function, and use the term shared BDD for our definition,
which has no such requirement. We assume that, given a BDD
as we defined, there is a set of nodes (which includes all roots
but possibly also internal nodes), corresponding to the set F of
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functions of interest. The other nodes in the BDD also encode a
set of functions, G (where F∩G = ∅ and |F∪G| is the number
of nodes in the BDD), but these functions are not of interest.
This is important because, if we reorder the BDD variables,
the functions of interest encoded by the original BDD must
be preserved in the new BDD, whose nodes will then encode
the disjoint sets of functions F and G′. G and G′ might not
share many (or even any) elements and, of course, the new
order results in a smaller BDD iff |G′| < |G|.

A BDD node can encode a set Y ⊆ BL through its char-
acteristic function, i.e., fp(i1, ..., iL) = 1 ⇔ (i1, ..., iL) ∈ Y .
The size of a BDD is not directly related to the size of the
encoded set (for example, any set requires as many nodes as its
complement), but can be very sensitive to the variable order.

B. Swapping adjacent variables

We can swap adjacent variables vi and vj , with vi ≺Π vj , in
time proportional to the number of nodes labeled by vj [14],
without affecting, or even accessing, the nodes below vi or
above vj , as long as the unique table is partitioned into
subtables, one for each variable, and the nodes can be modified
in place.

Let f be the function associated with a node labeled by vj .
If we express f using the Shannon expansion:

f = vjf1 + v̄jf0 = vj(vif11 + v̄if10) + v̄j(vif01 + v̄if00),

swapping vi and vj corresponds to rearranging these terms as:

f = vi(vjf11 + v̄jf01) + v̄i(vjf10 + v̄jf00) = vig1 + v̄ig0.

Thus, the node encoding f must be relabeled and overwritten
with new content: its variable changes from vj to vi, and its
children change from the nodes encoding f0 and f1 (which are
disconnected) to the nodes encoding g0 and g1 (which must
be created). The nodes encoding f11, f10, f01, and f00 are
reused without change. Fig. 1 illustrates such rearrangement.
This algorithm is fundamental to dynamic variable ordering
techniques (sifting [20] or its variations [15], [16], [19]).

III. VARIABLE REORDERING WITH SWAPS

Since swapping adjacent variables can be done efficiently,
we use a sequence of swaps to transform a BDD from one vari-
able order to another. Let B be a BDD over D = {v1, ..., vL}.
We write B ∼ Π if B has variable order Π. A schedule
specifies a sequence of pairs of adjacent variables to swap.
The BDD variable reordering problem we consider is:

Given a BDD Bs, with Bs ∼ Πs, encoding a set F
of functions of interest, and a variable order Πt, find

a schedule of swaps to transform Bs into Bt, where
Bt ∼ Πt and Bt encodes all functions in F .

This section analyzes the number of swaps required for this
transformation and proposes heuristics for scheduling swaps.

A. Inversions between two orders

Let Πt be our target order, Πn the current order of the
variables in D, and Πn+1 an order resulting from swapping
two adjacent elements in Πn. We say that vi and vj form an
inversion if their relative orders are different in Πn and Πt,
i.e., if vi ≺Πn

vj and vj ≺Πt
vi, or vj ≺Πn

vi and vi ≺Πt
vj .

We call this inversion swappable if vi and vj are adjacent
in Πn. Let I(Πn,Πt) denote the total number of inversions
between Πn and Πt:

I(Πn,Πt) =
∑

1≤i,j≤L,vi≺Πnvj

Ii,j(Πn,Πt), (1)

where Ii,j(Πn,Πt) = 1 if vi and vj form an inversion, 0 if
not. I(Πn,Πt) is the Kendall tau distance [17], the number
of swaps bubble-sort requires to sort a list of items [?].

Theorem 1: It is always possible to transform Πn into Πt

using exactly I(Πn,Πt) swaps of adjacent elements.
Proof: Omitted (easily proved by induction).

Let S(Πn,Πt) denote the number of swappable inversions
between Πn and Πt:

S(Πn,Πt) =
∑

1≤i,j≤L,vi4Πn
vj

Ii,j(Πn,Πt) (2)

where vi4Πn
vj means that vi immediately precedes vj in Πn.

It is easy to see that S(Πn,Πt) is always less than or equal
to I(Πn,Πt), and at most |D| − 1.

Theorem 2: Given an order Πn and a target order Πt,
let Πn+1 be the order obtained from Πn by swapping a
swappable inversion in Πn. Then, S(Πn+1,Πt) can only equal
S(Πn,Πt)− 1, S(Πn,Πt), or S(Πn,Πt) + 1.

Proof: Consider four adjacent variables in Πn, satisfying
vi4Πn

vj4Πn
vk4Πn

vl, where vj and vk form an inversion,
i.e., vk ≺Πt

vj . If we swap vj and vk, the order becomes
vi4Πn+1

vk4Πn+1
vj4Πn+1

vl and, as the swap does not induce
changes below vi or above vl, the number of swappable
inversions not involving vj or vk remains the same. Then,
it suffices to consider all possible relative orders of these four
variables in Πt, subject to vk ≺Πt

vj , and verify that the
number of swappable inversions involving vj or vk can only
decrease by one, remain the same, or increase by one. Table I
lists the 4!/2 = 12 cases in lexicographic order and shows the
swappable inversions involving vj or vk in Πn and Πn+1, and
the net change S(Πn+1,Πt)− S(Πn,Πt), for each case. The
situation where vj is the lowest or vk the highest variable in
Πn is analogous and omitted.

Applying Theorem 1 to the BDD variable reordering prob-
lem, we write the BDD sequence resulting from a schedule
of swaps as Bs ≡ B0 → B1 → · · · → Bt, where Bn+1

is obtained by swapping two adjacent variables in Bn, and
we let Πs ≡ Π0 → Π1 → · · · → Πt, where Bn ∼ Πn,
be the corresponding sequence of orders. Theorem 1 requires



TABLE I
THE 12 CASES FOR THE PROOF OF THEOREM 2.

Order in Πt Swappable in Πn Swappable in Πn+1 ∆

vi4vj4vk4vl vi4vk4vj4vl
vi ≺ vk ≺ vj ≺ vl vj4vk -1
vi ≺ vk ≺ vl ≺ vj vj4vk vj4vl 0
vi ≺ vl ≺ vk ≺ vj vj4vk vk4vl vj4vl -1
vk ≺ vi ≺ vj ≺ vl vj4vk vi4vk 0
vk ≺ vi ≺ vl ≺ vj vj4vk vi4vk vj4vl +1
vk ≺ vj ≺ vi ≺ vl vi4vj vj4vk vi4vk -1
vk ≺ vj ≺ vl ≺ vi vi4vj vj4vk vi4vk -1
vk ≺ vl ≺ vi ≺ vj vj4vk vi4vk vj4vl +1
vk ≺ vl ≺ vj ≺ vi vi4vj vj4vk vi4vk vj4vl 0
vl ≺ vi ≺ vk ≺ vj vj4vk vk4vl vj4vl -1
vl ≺ vk ≺ vi ≺ vj vj4vk vk4vl vi4vk vj4vl 0
vl ≺ vk ≺ vj ≺ vi vi4vj vj4vk vk4vl vi4vk vj4vl -1
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Fig. 2. Sequences of variable orders produced by BU, SD, LI, and HI.

at least I(Πs,Πt) swaps to transform Bs into Bt, and we
restrict our study to schedules that use this minimum number
of swaps, by always choosing to swap variables forming a
swappable inversion. Even with this restriction, identifying an
efficient schedule is still non-trivial as there are usually many
swappable inversions to choose from at each step.

B. Scheduling heuristics

We begin by proposing five intuitive scheduling heuristics:
• Random (RAN): Randomly choose a swappable inversion.
• Bring Up (BU): Choose the swappable inversion with the

highest variable in Πt not yet in its final position.
• Sink Down (SD): Choose the swappable inversion with

the lowest variable in Πt not yet in its final position.
• Lowest Inversion (LI): Choose the lowest swappable

inversion.
• Highest Inversion (HI): Choose the highest swappable

inversion.
Fig. 2 illustrates different variable orders produced by these

heuristics (except RAN). None of these heuristics considers
the cost of a given swap, which is proportional to the number
of nodes associated with the top variable being swapped. We
then propose a greedy heuristic that considers execution time,
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Fig. 3. Results of transforming BDDs of C499 100 times with RAN.

hoping to approach a global optimum by always choosing a
local optimum.
• Lowest Cost (LC): Choose the swappable inversion where

the variable on top has the fewest associated nodes.
To investigate the metrics affecting the performance of vari-

able reordering, we consider three factors: max(|Bs|, |Bt|),
the largest between the number of nodes before and after
reordering; P (Bs, Bt), the peak number of nodes during
reordering; and I(Πs,Πt), the required number of swaps. As
a preliminary experiment (further experiments are discussed
in Section IV), we build the BDD encoding all the outputs
of combinatorial circuit C499 [23], generate 100 random
variable orders, and transform this BDD into each variable
order, sequentially, with the RAN heuristic. Fig. 3 shows the
execution time, P (Bs, Bt), max(|Bs|, |Bt|), and I(Πs,Πt),
for each reordering.

The execution time has a high correlation (0.9406) with
P (Bs, Bt) and almost as high a correlation (0.868) with
max(|Bs|, |Bt|), but a much lower correlation (0.3476) with
I(Πs,Πt). This strengthens the intuition that BDD operations
benefit from being applied to BDDs of small size, indicating
that it might be useful to seek a schedule that takes P (Bs, Bt)
into account. Therefore, we propose a heuristic aimed at
minimizing the number of nodes after each swap:
• Lowest Memory (LM): Choose the swappable inversion

that will result in the smallest BDD next.
We are not aware of a way to inexpensively and accurately

predict the resulting number of nodes after a swap, thus we
implement LM by probing (actually performing) each swap-
pable inversion, recording the number of resulting nodes, and
then undoing the swap. Because of this overhead, LM should



be expected to have poor time performance compared with
the other heuristics, but it could provide a good benchmark in
terms of achieving a small peak size.

We enhance the performance of LM, by observing that we
only need to probe every swappable inversion, and that, if the
swappable inversion resulting in the lowest memory happens
to be the last one to be considered, it does not need to be
reverted, it can be simply kept as the result of that step. More
importantly, Theorem 2 implies that, once LM determines
which swappable inversion should be performed, the next
probing can reuse most of the probes from the previous step,
since all the swappable inversions remain the same except
the ones that involve the variables just swapped (at most
two new ones). In other words, by maintaining appropriate
information (i.e., not the absolute size of the BDD, but the
difference in its size, which can be positive or negative,
computed when probing each swappable inversion), we can
identify the swappable inversion to be performed at each step
with moderate overhead compared to non-probing heuristics.

To avoid LM’s probing overhead, we can estimate the num-
ber of nodes after a swap. Let Ni be the set of nodes associated
with variable vi, and φ(p) be the number of incoming edges
to node p. Define the average reference count of vi as

φ(i) =
∑
p∈Ni

φ(p)/|Ni| (3)

and, for variables vi and vj with vi4Πn
vj , let φ(i, j) = φ(i).

We hypothesize that a low φ(i, j) indicates that swapping vi
and vj reduces the number of nodes or, at worst, increases it
only slightly. φ is a rough estimate because redundant nodes
will be reduced and do not contribute to the sum of reference
counts. Since φ(p) is already maintained by BDD libraries that
use reference counts to determine when a node is no longer
needed, computing φ is inexpensive, and we investigate the
effectiveness of the following heuristic:
• Lowest Average Reference Count (LARC): Choose the

swappable inversion with the lowest φ(i, j).
We stress that we only consider greedy, no lookahead,

heuristics that perform the minimum number I(Πs,Πt) of
swaps and differ only in how they schedule these swaps. We
ignore heuristics that may perform more swaps, even if it is
conceivable that a schedule may be suboptimal in number of
swaps (i.e., it may perform swaps that increase the number of
inversions by one and need to be undone later) yet have better
runtime or memory requirements.

IV. EXPERIMENTS

We implemented our scheduling heuristics as well as the
Global Rebuilding algorithm (GR) [3] in a decision diagram
library, MEDDLY [2]. We assess memory consumption in
terms of BDD nodes, these results are independent of our
specific implementation. We set the memory consumption
of GR as |Bs| + |Bt|, this is a lower bound for rebuilding
approaches, as they also require extra storage, e.g. compute
table, while swap-based approaches do not. We limit the
number of BDD nodes to 1.6×108, and impose no time limit.

To compare the set H of heuristics, we normalize the result
xr,h (time or memory) of applying heuristic h ∈ H to a
reordering instance r through the following scoring scheme:

sr,h =

{
mink∈H(xr,k)/xr,h if the experiment completes
0 otherwise (out of memory) ,

i.e., each heuristic earns a score (a value in (0, 1]) according
to its performance relative to the best one, and a score of 0 if
it runs out of memory.

The overall score of heuristic h over a set R of reordering
instances is: sh =

∑
r∈R sr,h, thus a high sh indicates that

heuristic h tends to do well on most reordering instances.

A. Combinatorial circuits

Our first benchmark focuses on combinatorial circuits [23].
For each circuit, we build the BDD encoding all its outputs.
Then, we generate 100 random variable orders and transform
the BDD from each random variable order to the next, sequen-
tially. The tops of Table II and Table III show the results.

Clearly, for combinatorial circuits, swap-based approaches
run significantly faster, while using less memory than GR in
most cases. LARC gets high scores for both time and memory
— it may not always be the best, but it is consistently close to
the best. Fig. 4 compares LARC to the other heuristics using
logscale scatter plots for each reordering instance. A data point
above the diagonal means that LARC performs better, a data
point below means the opposite. In most plots, LARC has a
slight advantage over other heuristics.

Unfortunately, in most cases, we do not observe a global
optimum of time from LC. On the other hand, with relatively
low memory, LM does not pay a heavy price in terms of time,
perhaps reflecting the high correlation between runtime and
peak memory. In situations where the available memory is
limited, LM’s probing strategy can be quite valuable.

B. Petri nets

Our second set of experiments uses four Petri net mod-
els [13]; we compute the BDD representing each reachable
state space and then transform it into different variable orders:
• phils models the dining-philosophers problem, where N

philosophers sit around a table with a fork between each
of them. A philosopher must acquire both the fork to his
left and the one to his right before eating.

• robin models a round-robin resource sharing protocol,
where N processes can cyclically access a resource.

• slot models a slotted ring transmission protocol, where, as
in robin, a token cyclically grants access to the resource.
Unlike robin, the resource is not modeled, thus each
process communicates with its two neighbors through
shared transitions, not a globally shared place.

• queen models the placement of N queens on an N ×N
chessboard such that they are not attacking each other.

Prior to BDD generation, the variable orders are computed
using well-known static variable ordering heuristics that ex-
ploit known relationships between variables (related variables
should generally be close to one another; for Petri nets,



TABLE II
SCORES W.R.T. TIME (LARGER IS BETTER).

Model #States BU SD LI HI LC LM LARC RAN GR
C432 62.4 67.6 54.0 57.4 71.9 50.9 72.5 62.5 3.4
C499 61.7 66.1 61.7 64.2 66.8 52.4 71.9 73.3 0.2
C880 70.1 77.3 63.5 78.6 72.3 56.7 68.0 70.6 2.4
C1355 55.7 69.4 56.7 76.1 59.4 59.8 79.6 56.2 0.2
C1908 79.1 77.0 79.8 83.8 88.9 57.7 82.5 76.7 0.9

Sum 329.0 357.4 315.7 360.1 359.3 277.5 374.5 339.3 7.1

phils 30 6.44 · 1018 58.1 83.0 61.0 81.4 (40) 41.1 (34) 24.9 (29) 43.5 (42) 40.5 0.5
phils 40 1.19 · 1025 61.5 71.7 60.4 75.1 (32) 52.4 (32) 32.7 (32) 51.3 (32) 47.6 0.1
robin 15 1.10 · 106 85.4 48.1 85.0 48.7 46.0 40.9 47.0 41.1 0.1
robin 16 2.35 · 106 80.2 51.2 79.0 51.7 47.9 50.2 59.8 41.6 0.1
slot 15 1.46 · 1015 78.5 61.4 78.8 65.0 68.1 60.3 70.4 61.2 0.0
slot 20 2.73 · 1020 65.4 40.7 63.2 39.6 (19) 38.9 49.4 47.2 (13) 33.1 0.0
queen 7 552 76.9 87.6 76.2 82.5 88.4 51.6 84.8 82.7 0.1
queen 8 2.05 · 103 78.6 84.7 74.6 87.9 87.7 47.9 82.8 82.8 0.0

Sum 584.6 528.4 578.2 531.9 470.5 357.9 486.8 430.6 0.9

phils 70 7.71 · 1043 58.2 72.8 53.7 77.7 56.0 42.2 75.2 56.4 -
phils 80 1.43 · 1050 55.6 72.8 55.6 74.7 (18) 56.5 (18) 42.1 (18) 70.3 (18) 62.4 -
phils 90 2.67 · 1056 51.3 71.3 52.5 71.4 52.0 48.8 76.0 53.6 -
robin 18 1.06 · 107 66.6 50.7 65.6 50.5 27.7 40.9 39.4 28.3 -
robin 20 4.71 · 107 78.0 50.5 74.9 55.5 52.9 35.6 49.1 (1) 52.3 -
robin 22 2.07 · 108 74.9 75.4 73.3 79.1 (6) 45.8 36.4 54.2 (6) 44.9 -
slot 25 5.26 · 1025 48.4 50.2 46.7 49.1 (50) 34.2 55.9 (4) 39.6 (49) 33.4 -
slot 30 1.03 · 1031 69.3 56.4 59.9 59.6 (18) 67.1 53.0 (1) 57.8 (18) 59.9 -
slot 35 2.06 · 1036 54.8 58.3 51.7 57.1 (32) 45.5 61.7 (13) 53.1 (32) 42.9 -
queen 10 3.55 · 104 63.9 75.7 62.9 82.4 68.9 40.5 63.4 53.9 -
queen 11 1.66 · 105 62.0 78.7 64.1 76.7 72.0 40.7 71.0 71.3 -
queen 12 8.56 · 105 63.9 86.3 63.3 84.3 74.9 44.0 79.0 68.4 -

Sum 746.8 798.9 724.3 817.9 653.3 541.9 728.1 627.6 -

variables are related if they correspond to places connected via
transitions). More precisely, these orders are generated using
a modified version of the FORCE heuristic [1], resulting in 10
distinct “good” orders for each model (thus we have 10 × 9
distinct reordering instances for each model). These orders
are realistic starting and ending points for our experiment,
and provide insight not found with random orders. Results are
shown in the middles and bottoms of Table II (numbers in
parentheses, if any, indicate how many of the 90 reorderings
failed due to excessive memory requirements) and Table III.
The value of the parameter N is listed after the model name.
We also list the size of the reachable state space.

This time GR has advantage in keeping the peak memory
low, since both the initial and final order are statically chosen
to be “good”. However, it is still the most time-consuming
approach, much slower than the others. This is why we could
run GR only for instances with small N .

Among the swap scheduling heuristics, the four simple
heuristics BU, SD, LI, and HI exhibit superior and reliable
performance, but there is no clear winner. Again, LM proves
its effectiveness in requiring a low peak memory, and is even
the best w.r.t. both time and memory for slot 25 and slot 35.
However, its overall runtime score is the lowest among our
swap scheduling heuristics, due to its probing overhead.

An interesting observation not reflected in the scores is that
some variable orders generated by FORCE happen to be nearly
the reverses of some others. Not surprisingly, changing an
order into its reverse is expensive and more likely to have the
intermediate BDD size explode. Nevertheless, all four simple
heuristics BU, SD, LI, and HI can complete these instances.

C. Additional discussion

Unlike swap-based approaches, the performance of rebuild-
ing is predictable because neither time nor space depend
on unknown and unpredictable sizes of intermediate BDDs.
However, our experiments demonstrate that the swap-based
approaches can be much more time-efficient and in many cases
require less memory than rebuilding. To reorder variables of a
BDD, we thus suggest trying the swap-based approaches first,
while rebuilding should be employed only when the amount of
memory required by swaps exceeds the available resources..

SD and HI have a strong inherent connection: it is easy to
prove that the schedule produced by SD to reorder Bs with Πt

is the reverse of the one produced by HI to reorder Bt with Πs.
The same connection exists between BU and LI. This is why
SD and HI (and BU and LI) have similar time and memory
performance.

The two sets of experiments we considered represent two
important scenarios. The circuit experiment transforms BDDs



TABLE III
SCORES W.R.T. MEMORY (LARGER IS BETTER).

Model #States BU SD LI HI LC LM LARC RAN GR
C432 76.4 74.8 75.6 74.7 82.6 89.7 84.2 83.3 75.1
C499 72.2 81.9 71.2 81.8 73.3 95.2 89.6 87.0 75.2
C880 80.9 83.6 80.8 83.8 82.0 93.0 86.3 86.1 70.5
C1355 71.1 80.3 70.8 81.5 71.2 93.5 87.7 81.7 77.2
C1908 88.5 91.5 88.8 91.6 90.2 97.2 94.3 91.8 65.0

Sum 389.1 412.1 387.2 413.4 399.3 468.6 442.1 429.9 363.0

phils 30 6.44 · 1018 44.9 46.8 44.9 46.8 41.4 44.0 43.5 43.1 69.2
phils 40 1.19 · 1025 53.9 50.6 53.9 50.6 52.7 57.2 56.6 55.0 65.8
robin 15 1.10 · 106 57.7 37.2 57.7 37.2 39.7 52.6 44.0 40.7 70.2
robin 16 2.35 · 106 59.4 40.0 59.3 40.1 35.8 60.3 51.7 39.2 77.2
slot 15 1.46 · 1015 70.5 59.8 70.6 59.5 61.5 86.0 68.5 69.6 57.7
slot 20 2.73 · 1020 33.7 26.8 33.7 26.8 23.9 45.4 28.7 25.4 80.8
queen 7 552 84.6 87.9 84.6 87.9 85.3 89.5 87.9 87.1 47.2
queen 8 2.05 · 103 87.7 88.3 87.7 88.3 87.5 89.6 88.5 88.0 45.9

Sum 492.4 437.4 492.4 437.2 427.8 524.6 469.4 448.1 514.0

phils 70 7.71 · 1043 73.4 82.6 73.4 82.6 77.9 87.2 87.6 84.0 -
phils 80 1.43 · 1050 65.3 83.2 65.3 83.2 66.7 71.6 71.6 69.9 -
phils 90 2.67 · 1056 68.8 77.9 68.8 77.9 72.9 87.5 87.1 81.2 -
robin 18 1.06 · 107 63.0 51.3 63.1 51.2 27.1 62.6 45.6 32.5 -
robin 20 4.71 · 107 80.8 62.4 80.7 62.5 55.5 65.5 59.9 57.6 -
robin 22 2.07 · 108 72.5 69.7 72.2 69.9 43.4 59.3 56.4 46.5 -
slot 25 5.26 · 1025 46.5 49.7 46.3 50.3 26.2 73.9 39.0 35.4 -
slot 30 1.03 · 1031 71.9 70.1 72.2 70.3 67.7 89.3 70.2 68.7 -
slot 35 2.06 · 1036 51.1 59.9 51.2 60.3 45.5 82.9 52.1 53.9 -
queen 10 3.55 · 104 84.0 88.1 84.0 88.1 82.7 86.9 87.5 83.3 -
queen 11 1.66 · 105 86.4 88.6 86.4 88.6 86.5 88.2 88.3 86.8 -
queen 12 8.56 · 105 83.9 88.5 83.9 88.5 83.8 86.9 87.4 83.4 -

Sum 847.6 872.2 847.5 873.5 735.9 941.8 832.9 783.3 -

between variable orders of unknown quality, while the Petri
net experiment transforms BDDs between high-quality orders.
Without considering rebuilding, BU, SD, LI, and HI complete
all Petri net instances while other heuristics sometimes cause
the size of intermediate BDDs to exceed our imposed bound.
Implicitly, these intuitive heuristics are inclined to respect Πs

or Πt. Specifically, by moving the variables down to their
positions in Πt, SD builds the lower portion of Bt in an early
stage of the reordering and does not change it anymore, while
HI keeps the lower portion untouched until one inversion in
it becomes the highest. This tends to works well when Πs

or Πt is high-quality (when the initial or the final BDD size
is expected to be “small”), while greedy heuristics pursuing
local optima are more likely to cause an excessive growth in
the number of nodes.

Additionally, LC does not perform as well as hoped, sug-
gesting that, instead of the time complexity of a single swap,
future work on reordering should focus on the influence of
swaps on the number of nodes. This is consistent with the
observation that a heuristic is “good” mostly if it requires a low
peak memory. LM proves its effectiveness in requiring a low
peak memory, and its runtime could be improved if a probing
technique that is less expensive but still accurate in estimating
the resulting BDD size is discovered. Finally, randomly-

generated schedules are undesirable in practice, since LARC
outperforms RAN in most cases.

V. CONCLUSION AND FUTURE WORK

We have presented heuristics to perform variable reordering
in BDDs through a schedule of adjacent variable swaps.
Experimental results have shown that swap-based approaches
tend to be faster than rebuilding, and that reducing the peak
memory is critical to the performance of reordering. Also, it is
apparent that it can be beneficial to choose different reordering
heuristics in different scenarios, and additional knowledge
about the initial and target variable orders may be helpful in
making such choice.

There are several directions for future work. First, consid-
ering the case when the target order Πt is believed to be
high-quality, we should investigate new heuristics that tend
to respect Πt. For example, the heuristics could try to keep
together, throughout the reordering process, variables that are
close to each other in Πt. Second, new metrics considering
both duplicate nodes and redundant nodes can be designed to
more accurately estimate the change in the number of nodes
due to a swap.
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[12] Ciardo, G., Lüttgen, G., Yu, A.J.: Improving static variable orders via
invariants. In: Petri Nets and Other Models of Concurrency–ICATPN
2007, pp. 83–103. Springer (2007)

[13] Ciardo, G., Zhao, Y., Jin, X.: Ten years of saturation: a petri net perspec-
tive. In: Transactions on Petri Nets and Other Models of Concurrency
V, pp. 51–95. Springer (2012)

[14] Drechsler, R., Becker, B.: Binary decision diagrams: theory and imple-
mentation. Springer (1998)

[15] Drechsler, R., Günther, W., Somenzi, F.: Using lower bounds during dy-
namic bdd minimization. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 20(1), 51–57 (2001)

[16] Ebendt, R., Drechsler, R.: Lower bounds for dynamic BDD reordering.
In: Proceedings of the 2005 Asia and South Pacific Design Automation
Conference. pp. 579–582. ACM (2005)

[17] Kendall, M.: Rank Correlation Methods. Charles Griffin and Company
Limited (1948)

[18] Malik, S., Wang, A.R., Brayton, R.K., Sangiovanni-Vincentelli, A.:
Logic verification using binary decision diagrams in a logic synthesis
environment. In: Computer-Aided Design, 1988. ICCAD-88. Digest of
Technical Papers., IEEE International Conference on. pp. 6–9. IEEE
(1988)

[19] Panda, S., Somenzi, F.: Who are the variables in your neighbourhood.
In: Proceedings of the 1995 IEEE/ACM international conference on
Computer-aided design. pp. 74–77. IEEE (1995)

[20] Rudell, R.: Dynamic variable ordering for ordered binary decision dia-
grams. In: Proceedings of the 1993 IEEE/ACM international conference
on Computer-aided design. pp. 42–47 (1993)
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Fig. 4. LARC (x-axis) vs. other heuristics (y-axis) on combinatorial circuits;
left: runtime (seconds); right: memory consumption (millions of nodes).


