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Abstract— We introduce a revised derivation of the bitwise
Markov Chain Monte Carlo (MCMC) multiple-input multiple-
output (MIMO) detector. The new approach resolves the previ-
ously reported high SNR stalling problem of MCMC without the
need for hybridization with another detector method or adding
heuristic temperature scaling factors. Another common problem
with MCMC algorithms is the unknown convergence time making
predictable fixed-length implementations problematic. When an
insufficient number of iterations are used on a slowly converging
example, the output log likelihood ratios can be unstable and
overconfident. Therefore, we develop a method to identify rare
slowly converging runs and mitigate their degrading effects on the
soft-output information. This improves forward-error-correcting
code performance and removes a symptomatic error floor in
bit error rate plots. Next, pseudo-convergence is identified with
a novel way to visualize the internal behavior of the Gibbs
sampler. An effective and efficient pseudo-convergence detec-
tion and escape strategy is suggested. Finally, the new excited
MCMC (X-MCMC) detector is shown to have near maximum-
a-posteriori performance even with challenging, realistic, and
highly-correlated channels at the maximum MIMO sizes and
modulation rates supported by the 802.11ac WiFi specification,
8 × 8 MIMO 256 quadrature amplitude modulation.

Index Terms— Markov Chain Monte Carlo (MCMC),
X-MCMC, pseudo-convergence, stalling, multiple-input multiple-
output (MIMO) detector, wireless communication.

I. INTRODUCTION

T
HE use of spatial-multiplexing multiple-input multiple-

output (MIMO) is increasingly being adopted in wireless

protocols as higher spectral efficiency is needed to meet the

capacity requirements of modern wireless networks [1], [2].

It has the potential to linearly increase spectral reuse and

capacity as the number of streams increases. Compared to

massive-MIMO, more moderately sized spatial-multiplexing

MIMO systems have many potential benefits including higher

single-device throughput in scattering environments, small

scale system capabilities appropriate for home use and small

cells, and immediate availability in several common wireless

standards. Up to 8-stream MIMO is already defined in the
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802.11ac WiFi and LTE Advanced Release 10 protocols. With

these large sizes, the performance and complexity scaling

of the MIMO detector, which separates the mixed together

transmitted streams at the receiver, is extremely important. The

maximum-a-posteriori (MAP) detector has a complexity that

increases exponentially with modulation order and the number

of transmit streams which makes it unimplementable for all but

the most trivial of cases. Zero forcing (ZF) and minimum mean

square error (MMSE) detectors have low complexity but suffer

from noise enhancement which degrades their performance

sufficiently to negate the potential spectral efficiency benefits

of MIMO.

The sphere-decoding (SD) class of MIMO detectors are

well known to have near MAP performance [3]. Specifi-

cally the K-Best variations of sphere-decoding have been

demonstrated in effective VLSI designs but their complexity

increases quickly with the number of antennas, the number of

transmitted bits per channel use, and the list size κ [4]. There-

fore, the search for alternative, lower complexity methods is

ongoing.

Markov Chain Monte Carlo (MCMC) has been shown

to have near optimal performance at low signal-to-noise-

ratio (SNR) and to have efficient hardware implementa-

tions [5], [6]. It uses a random walk through the permutations

of the transmitted bit sequence to estimate the posterior

probability distribution and accordingly generate soft-output

information. Unlike other detectors, the MCMC detector thus

far has had the undesirable behavior that its performance

degrades at higher values of SNR [7]. This issue is caused by

stalling at high SNR. Most of the attempted solutions to this

problem can be grouped into either hybridization or tempera-

ture scaling approaches. The hybridization schemes combine a

method with good, low complexity performance at high SNR

with MCMC to combine the best traits of both. Examples are

ZF, MMSE, and sphere-decoding initialized MCMC meth-

ods [8], [9]. The temperature scaling approaches are so called

because they recognize that the probabilities generated by the

Gibbs sampler are too cold, resulting in slow convergence.

A linear scaling coefficient is therefore applied to artifi-

cially increase the noise temperature. This coefficient must be

heuristically optimized depending on system parameters and

SNR [10]–[12], though a recent derivation of a near optimal

value is showing promise under some testing conditions [13].

There are three main contributions presented in this paper.

First, we present an improved derivation of the MCMC detec-

tor’s Gibbs sampler which resolves the high SNR stalling prob-

lems that have been previously reported. Our new derivation
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uses a new and more accurate system model when a Gibbs

sampler is far from the correct solution, accounting for both

noise and bits-in-error. This results in what is effectively a

dynamic temperature scaling coefficient. Then, using the ideas

developed in this derivation, the problem of the unpredictable

convergence time of the MCMC detector is explored. This

leads to development of soft-output conditioning based on

the quality of the list of samples generated by the random

walk. This allows the detection of poor convergence and

optionally extending the search with more iterations or ter-

minating with a fixed number of iterations and decreasing

the output confidence. Moderating the overconfident outputs

is found to improve the performance of the forward-error-

correcting (FEC) decoder. We also note that since the output

conditioning is derived using the sample list, this method is

applicable to other list based algorithms such as list sphere-

decoding and K-Best.

The third contribution of this paper is identification and

remediation of pseudo-convergence of the Gibbs sampler [14].

A novel way to visualize the Gibbs sampler behavior is

used which provides insight into both pseudo-convergence

and stalling. To mitigate the resulting correlated sampling,

we propose a simple motion based detection strategy and a

1-bit forced change procedure which sufficiently excites the

Gibbs sampler to allow new uncorrelated samples to be made.

The excited MCMC (X-MCMC) detector that is proposed

in this paper is comprised of the excited Gibbs sampler,

output LLR conditioning, and pseudo-convergence remedia-

tion through additional Gibbs excitation. The new X-MCMC

detector achieves near Max-MAP performance even at the

largest 802.11ac WiFi rates with 8×8 MIMO and 256 QAM

modulation. This is demonstrated on the challenging, highly

correlated WiFi TGn Model-D channel [15] with line-of-

sight (LOS) conditions, which is much more difficult to

attain near MAP performance on than with uncorrelated i.i.d.

Gaussian channels [16].

This paper is organized as follows. In Section II we

present the system model and some specialized notation

used throughout the paper. A review of a typical MCMC

derivation along with background information is provided

in Section III. The first two contributions of this paper are

explained in Section IV; in Subsection IV-A the excited Gibbs

sampler is presented and our proposed method of output

LLR conditioning is discussed in Subsection IV-B. Our third

contribution, the pseudo-convergence of Gibbs samplers and

remedy to it, is discussed in Section V. Simulation results and

a complexity analysis are presented in Section VI, and the

conclusions of the paper are made in Section VII.

II. SYSTEM MODEL

The goal of a spatial-multiplexing MIMO transceiver is

to exploit the spatial multipath of the environment to sup-

port overlapping data streams. This concept allows reuse of

the spectrum and therefore has the potential to dramatically

increase the data rates and capacity of wireless networks.

To perform data transmission with spatial-multiplexing,

the transmitter sends independent data streams simultaneously

on a set of Nt transmit antennas which are then received

Fig. 1. Turbo loop structure with a MAP, MCMC, X-MCMC, or K-Best
MIMO detector iteratively exchanging soft information with a forward error
correction decoder.

at a set of Nr receive antennas. In an orthogonal frequency

division multiplexing (OFDM) system, for each subcarrier, this

can be represented with a flat-fading frequency-domain system

model as

y = Hs + n. (1)

Here, y is the received signal vector, H is a slow flat fading

complex channel matrix containing the pairwise gain and

phase between antennas, s is the vector of transmitted com-

plex constellation symbols mapped from the bit sequence x,

and n is a noise vector. Assuming the transmit and receive

side have the same number of antennas Nt = Nr = N ,

the dimensions of the corresponding vectors and matrices are

N × 1 and N × N , respectively. Note that often it is easier

in hardware designs to use a real-valued system model which

this paper is fully compatible with, see [6]. The channels for

this paper are produced with the method described by the

WiFi TGn Model-D LOS specification [15] which creates a

correlated channel matrix H. The TGn-D channel is much

more challenging for the detector compared to the independent

and identically distributed (i.i.d.) complex Gaussian channel

typically used in the literature [3]–[6], [13]. The bit vector x

may be described as comprising of 1’s and 0’s or equivalently

+1’s and −1’s, depending on context. In principle, s can be

a vector of any complex modulated symbols, but here we use

the quadrature amplitude modulated (QAM) symbols defined

in the IEEE 802.11ac specification. The elements of n are

assumed to be i.i.d. complex Gaussian random variables with

variance of σ 2
n per each real and imaginary dimension.

The primary challenge in a MIMO receiver, and the focus

of this paper, is to accurately and efficiently estimate the

K = N log2(Nqam) simultaneously transmitted bits in x per

realization, where Nqam is the QAM constellation size.

The MIMO detectors discussed in this paper are all com-

patible with turbo iterations, the exchange of soft-information

between the detector and decoder as in Fig. 1. This allows

for the iterative joint detection of the signal for enhanced

performance. The soft-information is in the form of log

likelihood ratios (LLRs) and represented by λa and λe for

their a priori input and extrinsic output versions.

Notation: In the equations that follow, some specialized

notation is used for compactness and clarity. Vectors and matri-

ces are expressed with bold fonts and the latter are capitalized.

The removal of the kth element of a vector is shown with set
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notation as {·}\k . A variable or vector derived from the bit

sequence x with the kth bit forced to a one or zero is shown

with {·}k+ and {·}k−, respectively. When two nearly identical

equations are needed differing only in use of k+ or k− , k±

is used to represent both versions. If the kth bit is forced to

the correct transmitted value, either one or zero, it is shown

with {·}k∗.

III. MCMC DETECTOR

The MCMC MIMO detector estimates the output log like-

lihood ratio (LLR) by means of Monte Carlo sampling [5].

This can be thought of as a method to identify a list of

important bit permutation samples to approximate the full

permutation list in the MAP detector. The challenge is to

make the process computationally efficient by using an easy to

calculate short list that accurately captures the statistics of the

full permutation list. We select the bitwise method described

in [6] as our foundational algorithm because it has been shown

to be efficiently implementable in hardware.

The two main components of the MCMC detector is the

Gibbs sampler and the LLR output calculation. The Gibbs

sampler starts with an initial estimate of the transmitted bit

sequence, either randomly selected or initialized with prior

information. It then cycles through the bits, calculating the

probability of a bit being a one or zero and uses it to weight a

random decision to change the bit. Each cycle through the bits

is an iteration. The list of permutations visited by the Gibbs

sampler is used to calculate the output LLR.

To make the differences between our improved excited

MCMC detector and the original bitwise MCMC detector

clear, here, we will show the main steps in the original

MCMC’s Gibbs sampler and output LLR derivation. After a

brief summary of the algorithm, we will provide some detail

of the stalling problem and the MMSE initialized MCMC

detector variation used in comparisons of Section VI.

A. Gibbs Sampler

The Gibbs sampler is at the core of the MCMC algorithm.

It is used in difficult multi-variate posterior probability esti-

mation problems when sampling probabilities jointly across

all variables is too complex. It cycles across the variables,

calculating probabilities conditioned on all other variables

being fixed to the current state. In the bitwise MCMC MIMO

detector, this means that the Gibbs sampler needs to calculate

the probability Pgibbs of a specific bit xk being a +1 or −1

conditioned on the current state of x\k .

To derive Pgibbs we begin with the definition of the LLR

for the kth bit at the current Gibbs sampler state x

γk = ln
P(xk = +1|y, x\k,λa)

P(xk = −1|y, x\k,λa)
. (2)

Then, by noting that

P(xk = −1|y, x\k,λa) = 1 − P(xk = +1|y, x\k,λa), (3)

we can rearrange to have the definition of the Gibbs probabil-

ity as

Pgibbs = P(xk = +1|y, x\k,λa) =
1

1 + e−γk
. (4)

Next, Bayes’ Theorem is applied to γk to separate the

contribution of the prior λ
a . The result is

γk = ln
p(y|xk = +1, x\k,λa)P(xk = +1|x\k,λa)p(y)

p(y|xk = −1, x\k,λa)P(xk = −1|x\k,λa)p(y)

= ln
p(y|xk = +1, x\k)P(xk = +1|λa

k )

p(y|xk = −1, x\k)P(xk = −1|λa
k )

= ln
p(y|xk = +1, x\k)

p(y|xk = −1, x\k)
+ λa

k (5)

where in the second line λ
a , x\k , and λ

a,\k are removed

from their respective conditionals because of the independence

among the x bits created by the interleaving effect in the turbo

loop. The final line follows from the definition of the a priori

LLR λ
a .

The system model is now used to provide the probability of

the received sequence y given x and noise with variance σ 2
n

per dimension. This leads to

p(y|x) =
(

2πσ 2
n

)−N

exp

(

−
‖y − Hs‖2

2σ 2
n

)

. (6)

Substituting (6) into (5) and simplifying the result, we get

γk =
1

2σ 2
n

(

∥

∥

∥
y − Hsk−

∥

∥

∥

2
−

∥

∥

∥
y − Hsk+

∥

∥

∥

2
)

+ λa
k . (7)

This may be used with (4) to calculate the needed Pgibbs

probability for the Gibbs sampler. Note that this will only

be an accurate calculation if AWGN noise with variance σ 2
n

is the only contributer to the error residual in y − Hs. This

assumption is revisited in the derivation of the X-MCMC

detector in Section IV where we find that error in the Gibbs

sampler’s current state of s introduces additional error that

should be accounted for.

B. Output LLR

To calculate the extrinsic output LLR λ
e we first derive the

MAP output LLR. The definition of LLR for the kth bit is

the log ratio of probabilities of xk being a +1 or −1. This is

expressed as

λe
k,MAP = ln

P(xk = +1|y,λa,\k)

P(xk = −1|y,λa,\k)

= ln

∑

x∈Xk+

⎛

⎝p(y|x)
∏

j �=k

P(x j |λ
a
j )

⎞

⎠

∑

x∈Xk−

⎛

⎝p(y|x)
∏

j �=k

P(x j |λ
a
j )

⎞

⎠

(8)

where X
k+ and X

k− are the sets of all permutations of x with

the kth bit forced to a +1 and −1, respectively. To simplify (8),

we recall from [17] that

P(x j |λ
a
j ) =

e
−λa

j/2

1 + e
−λa

j

e
x jλ

a
j /2

= A(λa
j )e

x jλ
a
j /2

. (9)
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Since the coefficient A(λa
j ) is independent of x j , it may be

separated from the summation and canceled. This leads to

λe
k,MAP = ln

∑

x∈Xk+

⎛

⎝p(y|x) exp
∑

j �=k

1

2
x jλ

a
j

⎞

⎠

∑

x∈Xk−

⎛

⎝p(y|x) exp
∑

j �=k

1

2
x jλ

a
j

⎞

⎠

. (10)

Finally, the max-log approximation to the Jacobian loga-

rithm [18] is used to simplify (10) to

λe
k,Max-MAP ≈

1

2
max

x∈Xk+

(

−
1

σ 2
n

∥

∥

∥
y − Hsk+

∥

∥

∥

2
+ x\k · λa,\k

)

−
1

2
max

x∈Xk−

(

−
1

σ 2
n

∥

∥

∥
y − Hsk−

∥

∥

∥

2
+ x\k · λ

a,\k

)

(11)

where x\k · λa,\k is a vector dot product. This approximation

is commonly used by approximate-MAP MIMO detectors as

it results in a minor loss of performance while significantly

decreasing algorithm complexity [3].

To calculate the output LLR with MCMC, the max-log MAP

calculation of (11) is used but with the set X replaced with

the list Z of the sampled permutations. This, with some minor

rearrangements leads to

λe
k,MCMC ≈

1

2
min

x∈Zk−

(

1

σ 2
n

∥

∥

∥
y − Hsk−

∥

∥

∥

2

− x\k · λ
a,\k

)

−
1

2
min

x∈Zk+

(

1

σ 2
n

∥

∥

∥
y − Hsk+

∥

∥

∥

2
− x\k · λa,\k

)

(12)

where the max() operation has been changed to an equivalent

min() operation to put the equation in a more intuitive cost

function minimization form.

C. Summary

The MCMC MIMO detector algorithm starts with an initial

sequence of bits x. It then cycles across the K bits in a

bitwise fashion for Niter iterations, using the probabilities

calculated with (4) and (7) to determine state transitions. This

process effectively guides the Gibbs sampler towards the more

important regions. After a sufficient quantity of samples have

been taken in this manner, the algorithm approximates the

max-log MAP detector’s extrinsic output LLR λe
k in (11)

with (12). This procedure is outlined in Algorithm 1 for

one Gibbs sampler, though Ngibbs can be used in parallel to

increase sampling speed and increase sample diversity.

D. Stalling Problem

At high SNR, the MCMC detector derived here is known

to stall. This means that the rate at which new samples

are generated per iteration approaches zero [19]. This results

in slow convergence and an enormous number of iterations

needed to reach near MAP performance, potentially more than

the calculations needed for MAP itself. To help understand

stalling more thoroughly and the improvements proposed in

Algorithm 1 Basic MCMC Gibbs Sampler

1: Initialize x.

2: for 1 to Niter do

3: for k = 1 to N log2(Nqam) do

4: Update minx∈Zk+ ( ) and minx∈Zk−( ) for (12).

5: Calculate Pgibbs with (4) and (7).

6: Generate a uniform random variable 0 ≤ r ≤ 1.

7: if r < Pgibbs then xk ← +1 else xk ← −1

8: Compute output LLR with (12).

the subsequent sections, a detailed view of the underlying

Gibbs samplers is presented that will lead to some insight.

In Fig. 2, we see the internal behavior of a pair of randomly

initialized Gibbs samplers working on a 4×4 MIMO system

with a 16 QAM symbol constellation, thus 4 log2(16) =

16 bits per x. The only difference between the subfigures is the

magnitude of AWGN noise, 6 dB vs 12 dB Eb/N0 , which is

sufficient to strongly instigate the high SNR stalling problem.

Each subplot has the bit index k over the horizontal axis from

left to right, and the Gibbs iterations starting at the top and

descending over time. Accordingly, the Gibbs sampler moves

from left to right and top to bottom.

The left subplots show the probability of deterministic and

non-deterministic flips where

determinism = |2Pgibbs − 1|. (13)

With a gray-scale color mapping the determinism is shown as

black = 1 (fully deterministic) and white = 0 (fully random).

The right subplots show the error in the Gibbs state x when

compared to the true transmitted bit sequence, where black

indicates a bit error. State error is used instead of simply x

because it simultaneously shows if the state is changing and

where the random walk is relative to the transmitted bit

sequence.

In Fig. 2, we see the curious trend that at low SNR the

Gibbs sampler probability is moderate and the sampler quickly

converges to having only 1-bit error, whereas at high SNR the

Gibbs probabilities are persistently at extreme values and no

change is seen after the first iteration.

Stalling is not seen under all conditions. If a smaller QAM

size of 2 to 16 is used at a low SNR, near the BER cliff, stalling

will not be observed [20], [21]. Another condition where the

full extent of stalling may not be obviously observed is when

using well-conditioned, Rayleigh channels with uncorrelated

i.i.d. Gaussian channel matrix elements [16]. Real-world chan-

nels, with correlation between antennas, display stalling much

more strongly than the uncorrelated channels often used in the

literature to simulate MCMC performance [4], [6], [7], [13].

There are many variations of the MCMC detector which

attempt to mitigate the high SNR stalling problem. Most can

be broadly classified as either hybrid or temperature scaling

methods.

The idea behind the hybrid approaches is to combine the

MCMC detector, which has decreasing performance as SNR

increases, with a complementary detector, which has low

performance at low SNR but high performance at high SNR.
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Fig. 2. Gibbs sampler detail with the original randomly initialized MCMC
algorithm. Both subfigures have the exact same bit sequence, channel, seeded
random number generator, and additive noise. The only difference is in
noise magnitude which instigates the high SNR stalling problem. Parameters:
4 antennas, 16 QAM, Niter = 16, WiFi TGn Model-D LOS channel.

There are many examples of this using the sphere-decoder such

as [8] and [9] and with MMSE [7]. An interesting variation

on this theme is to use successive-over-relaxation within each

Gibbs sampler step calculation [22]. We note that although

these methods can improve the performance compared to a

standard MCMC sampler by itself, this class of detectors

do not solve the high SNR stalling problem of the MCMC

algorithm they use.

The temperature scaling class of MCMC detectors recognize

that the superficial cause of stalling is that the Pgibbs values

calculated are too extreme. They suggest that, as the SNR

increases, σ 2
n acts as a gain term in (7), therefore they heuris-

tically add an additional scaling term α which either linearly

scales or replaces σ 2
n to counteract stalling [10], [13], [23].

A variation on this idea includes methods which use man-

ually selected parameters to adjust the inclusion of addi-

tional randomization into the probability calculation or bit

selection [20], [24]. Stalling will be further explained

in the framework of the X-MCMC detector variation

of Section IV-A.

E. MMSE Initialized MCMC

To better understand the improvements made by the

X-MCMC detector that will be introduced in Section IV,

an MCMC method is needed for comparison. We have selected

the MMSE initialized MCMC detector described in [7]. This

is a hybrid type of detector since it combines MMSE, which

has good performance at high SNR, with MCMC to com-

pensate for the high SNR stalling effect. The reason why we

have selected this as apposed to some of the other excellent

QRD-hybrid or temperature scaling varieties in the literature is

that those methods are generally loosely defined with parame-

ters that need to be heuristically tuned to the application. The

MMSE initialized variety is useful as a benchmark because

it has an explicit implementation regardless of channel, SNR,

number of antennas, or modulation order.

The only extension needed for the MMSE initialized

MCMC hybrid algorithm is to initialize one of the parallel

Gibbs samplers with the hard decision from an MMSE solution

as in

ŝMMSE =
(

H†H + 2σ 2
n I

)−1
H†y (14)

where † is the conjugate transpose. This method solves the

issue where the MCMC detector does not converge for small

QAM sizes at high SNR. It works because the MMSE solution

will result in a correctly signed LLR output without any need

of additional MCMC Gibbs iterations. For turbo iterations to

work properly and to generate reasonable extrinsic information

transfer (EXIT) charts, every iteration has one parallel Gibbs

sampler initialized with the original MMSE solution.

As described in Section III-D, the MMSE initialized MCMC

detector does not prevent stalling because it is a hybrid

method, thus it is far from MAP performance when higher

QAM sizes are used. Examples that show such behavior are

presented in Section VI.

IV. X-MCMC DETECTOR

In this section, we present the two main components of the

excited MCMC (X-MCMC) detector: the excited Gibbs sam-

pler and LLR output conditioning. Both rely on the realization

that there are error contributions from both noise and bits-in-

error. Previous derivations have only included AWGN noise

in their derivations. We found that the inclusion of error in

the statistical model completely solves the high SNR stalling

problem covered in Section III-D. It also provides a method to

detect and mitigate poorly converged and overconfident output

LLRs that otherwise confuse the decoder, potentially creating

error floors in BER plots.

Previously in [16], we used a heuristic explanation to justify

the dynamic scaling used in the X-MCMC detector. Simula-

tions were matched to 8×8 MIMO testbed measurements with

near max-log MAP performance. Those ideas will be expanded

on here with a thorough theoretical understanding and some

algorithmic improvements.

In the discussions and derivations that follow, the concept

of distance is repeatedly used. It is the closeness of the current

state x to the transmitted sequence. To simplify its use, it will

be defined as the square Euclidean distance

d = ‖y − Hs‖2 (15)

where s is the complex symbol mapped version of the bit state

x. If the kth bit of x is forced to a one or zero, then this can

be indicated on all dependent variables and vectors with a

superscript k+ or k− as in

dk± =
∥

∥

∥
y − Hsk±

∥

∥

∥

2
. (16)
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A. Excited Gibbs Sampler

The cause of Gibbs sampler stalling in the MCMC detec-

tor is constant production of extreme Pgibbs values close

to 0% or 100%. This creates a nearly deterministic walk

which quickly stalls. Extreme probabilities are readily caused

by (4) and (7). At just |γk | = 3 there is a mere 2% chance

of a non-deterministic transition. In simulations of 4-antenna

64 QAM systems, γk values greater than 10 are commonly

seen and values greater than 100 are not unusual at high SNRs.

In the MCMC derivation of Section III, an assumption is

implicitly made that the only form of error is from the channel

model’s AWGN noise. It is a useful assumption because it

allows the substitution of a Gaussian probability distribution

into (5) that simplifies to the explicit γk of (7). However, this

causes problems since the incorrect bits in x also contribute

to error and in general are much larger contributors, often

by a factor of 1000 at high SNRs. This provides insight

as to why the stalling problem only appears at high SNR,

since at low SNRs the condition is less strongly violated.

Therefore, the goal here is to find a way to calculate the needed

probabilities in γk without this assumption.

We begin the derivation of the excited Gibbs sampler

with (5) from the original MCMC derivation.

γk = ln
p(y|xk = +1, x\k)

p(y|xk = −1, x\k)
+ λa

k (17)

The implicit statistical model used for the probability distrib-

utions in the original MCMC derivation is

n = y − Hs. (18)

But a more accurate model is needed when the Gibbs sampler

is far from the true transmitted bit sequence. The error ek∗

must include both AWGN interference and the incorrect bits

in the state. This is captured with the new model

ek∗ = y − Hsk∗ = H
(

stx − sk∗
)

+ n (19)

where stx is the transmitted symbol vector and sk∗ is the

current Gibbs state with the kth bit of x correct, i.e. matches the

respective transmitted bit. This model does not include error

from the kth bit in s so that the distributions of the numerator

and denominator of (17) will be the same.

It is not generally possible to separate the contributions of xk

and x\k to the error, so in the steps that follow we will initially

assume that an oracle has access to such an error metric which

excludes the kth bit and finish with approximations sufficient

for development of a detector that works well in practice.

To use the new error model, we first note that a Gaussian

distribution is an appropriate approximation for the elements

of ek∗. Excluding the contribution of noise, each element is

generated from the dot product of a row of the known H

and a column of unknown symbol errors. Therefore, each real

and imaginary component of ek∗ is created from the sum of

4N uniform random variables, where the number of antennas

has been multiplied by two for the complex nature of the

symbols and two for the contribution of the independent stx

and sk∗ symbols. For the smallest MIMO size, this results in an

n = 8 Irwin-Hall distribution which is already approximately

Gaussian and which becomes more Gaussian as the MIMO

size increases. Though our QAM symbols take discrete values,

noise and H shift and scale the symbols sufficiently to retain

the Gaussian approximation.

Here, we have assumed that stx and sk∗ are uncorrelated

which is valid when far from convergence. As the Gibbs

sampler converges and the symbols become increasingly corre-

lated, the true distribution becomes narrower than a Gaussian,

thus, a Gaussian assumption results in underconfident prob-

abilities near convergence. In Section V, we will find that

pseudo-convergence is a stronger effect leading to overcon-

fident probabilities during convergence. Therefore, the slight

underconfidence here can be safely ignored.

Using a Gaussian distribution for the elements of ek∗ with

variance σ 2
k∗ per dimension results in

p(y|xk = ±1, x\k) =
(

2πσ 2
k∗

)−N

exp

(

−

∥

∥y − Hsk±
∥

∥

2

2σ 2
k∗

)

.

(20)

Then, by substituting this Gaussian model into (17), we have

γk =
dk− − dk+

2σ 2
k∗

+ λa
k . (21)

A single sample estimate of the error variance σ 2
k∗ can be

made with the current error vector ek∗ as in

σ 2
k∗ ≈

∥

∥ek∗
∥

∥

2

2N
=

dk∗

2N
(22)

where we have noted that the squared norm of the error vector

is equivalent to having the distance d with the kth bit known to

be correct, dk∗ =
∥

∥y − Hsk∗
∥

∥

2
. We refer to this estimation of

the error variance as the oracle method since it uses knowledge

that is not generally available to the algorithm. Next, we will

develop several potential approximations to the oracle.

We begin by using the confidence that either dk+ or dk− has

the kth bit correct to generate a weighted average estimate d̂k∗.

d̂k∗ = dk+ P(xk = +1|x\k, y) + dk− P(xk = −1|x\k, y)

=
dk+ p(y|xk = +1, x\k)P(xk = +1|x\k)

p(y|x\k)

+
dk− p(y|xk = −1, x\k)P(xk = −1|x\k)

p(y|x\k)

=
dk+ p(y|xk = +1, x\k) + dk− p(y|xk = −1, x\k)

2 p(y|x\k)

(23)

where Bayes’ rule is first applied and then P(xk = ±1|x\k) =

1/2 because of the independence between bits. This estimate

can be bounded by the minimum and mean of dk± since

P(xk = −1|x\k, y) = 1 − P(xk = +1|x\k, y) and the larger

probability will correspond to the smaller distance.

d̂k∗
min = min

(

dk+, dk−
)

≤ d̂k∗ (24)

d̂k∗ ≤
1

2

(

dk+ + dk−
)

= d̂k∗
mean (25)
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Fig. 3. Mean error from using various dk∗ approximations to calculate Pgibbs
with (4), (21), and (22). Parameters: 4 antennas, 64 QAM, Ngibbs × Niter =
30 × 30, WiFi TGn Model-D LOS channel, Eb/N0 = 19dB.

These bounds are useful rough approximations to d̂k∗ as they

are readily available to the Gibbs sampler and are computa-

tionally efficient. We will refer to these as the min and mean

approximations.

A more accurate approximation to the weighted average

of (23) can be made by first replacing the denominator, which

would require the unknown xk∗, with the average of the

probabilities with xk = ±1.

p(y|x\k) =
1

2

(

p(y|xk = +1, x\k) + p(y|xk = −1, x\k)
)

(26)

Then, single sample estimates of the variances σ 2
k±

≈ dk±/2N

are used to approximate the Gaussian distributions

p(y|xk = ±1, x\k) ≈
(

2πσ 2
k±

)−N

exp

(

−
dk±

2σ 2
k±

)

≈

(

π
dk±

N

)−N

exp

(

−
dk±

dk±/N

)

. (27)

This estimate is too crude to be used directly in (17), but by

using (26) and (27), an approximation of (23) can be made

d̂k∗
weighted =

dk+(dk+)−N + dk−(dk−)−N

(dk+)−N + (dk−)−N

=
dk+ + dk−(dk+/dk−)N

1 + (dk+/dk−)N
. (28)

For comparison, it is useful to include the original MCMC

method in Section III in this framework. It implicitly uses the

approximation

d̂k∗
original = 2Nσ 2

n . (29)

The results of using the min (24), mean (25), weighted (28),

and original (29) estimates of dk∗ to generate Pgibbs are shown

in Fig. 3, where the error is the mean of |Papprox − Poracle|

over a small range of distances. Based on these plots, the new

approximations are all a vast improvement over the original

method. At large distances, all of the new approximations have

similar performance since a single bit change has little impact

on the total distance, and therefore, dk+ ≈ dk− resulting in

all of the approximations being roughly equivalent. At small

distances, the mean method has the worst performance since it

overweights the larger of dk±, making the sampler too random.

Since the min and weighted approximations have similar

performance, the less computationally complex min option is

selected for σ 2
k∗ in calculating

γk =
dk− − dk+

d̂k∗
min/N

+ λa
k . (30)

The choice of d̂k∗
min will be verified in Section VI-A with BER

plots in a complete system, but first, output LLR conditioning

and pseudo-convergence enhancements will be introduced so

that the combined effects can be accounted for.

B. Output LLR Overconfidence and Conditioning

As in the original MCMC algorithm in Section III, the out-

put LLR can be calculated with (12). It uses the list Z ⊂ X

of sampled bit permutations as an approximation to the full

permutation list used by the MAP detector in (11). This

is the method used by list based MIMO detectors such as

MCMC [5], list sphere-decoding [3], and K-Best [4]. Notice

that in order to use this method, one must have a list which

accurately represents the statistics of the full permutation list.

If the list is too short or poorly selected the statistics break

down, the calculation becomes unreliable, and the output LLRs

can be wildly inaccurate.

One can state that a requirement of the algorithm is for a

sufficient number of samples to be taken, but there are two

reasons why this is undesirable in practice. First, an imple-

mentable design has the goal of minimizing computational

complexity and therefore real-world implementations need to

use the minimum number of samples possible. As a result,

a minority of realizations are likely to be poorly converged,

leading to invalid output statistics. Second, many modern

communication systems have multiple channel realizations

per codeword, for example OFDM. When there are multiple

channel realizations, some will be more ill-conditioned than

others with a longer convergence time and therefore requiring

more Gibbs iterations than the average. During our analysis we

have observed situations where the worst channel, often during

a deep fade, requires 10x more iterations than average while

using a WiFi TGn Model-D LOS channel model, 4 antennas,

64 QAM. Using 10x more iterations consistently is undesir-

able, but if the slowly converging realizations are halted early

while still statistically unstable, then their large incorrect soft-

output values can easily corrupt the entire codeword despite

comprising a small number of bit errors.

In the context of suboptimal iterative detection and decoding

schemes, a constant positive scaling coefficient less than one

is sometimes used to scale the extrinsic LLRs [25]–[27].

This has the effect of removing divergence and thus increase

stability. Therefore, an alternative to using a large list to deal

with outlier difficult channel realizations is to decrease the

confidence of their respective LLRs so that they no longer

have the strength to corrupt the entire codeword. Unlike other

scaling methods which suggest a heuristic constant scaling

coefficient to reduce LLR confidence, we propose using the

statistics of the sample list to compute a dynamic coefficient

that may be used with any list based detector.
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If we allow that the sample list may be of poor quality,

then there are two contributions to error: the AWGN noise

in the system model and the quality of the list. The quality

of the list can be computed using the probability that the list

contains a sample that is the true transmitted signal without

error. As in Section IV-A, if we assume that the combination of

both forms of error are Gaussian distributions then the output

LLR can be changed to

λe
k,X-MCMC ≈

1

2
min

x∈Zk−

(

1

σ 2
z

∥

∥

∥
y − Hsk−

∥

∥

∥

2

− x\k · λ
a,\k

)

−
1

2
min

x∈Zk+

(

1

σ 2
z

∥

∥

∥
y − Hsk+

∥

∥

∥

2
− x\k · λ

a,\k

)

(31)

where σ 2
z represents the variance of the combined contribu-

tions of both AWGN noise and list error. This can be estimated

with the minimum distance sample in the list similarly to (22)

using d̂k∗
min. That is,

σ 2
z ≈

1

2N
min
x∈Z

(

‖y − Hs‖2
)

. (32)

Note that additionally we should limit σ 2
z ≥ σ 2

n . This protects

against a sample over-fitting the noise and therefore having

a distance less than the expectation of correct bit sequences,

2Nσ 2
n , which would incorrectly create overconfidence in the

output LLR.

The corruption of codewords by rare poorly converged

realizations can cause an error floor to appear on BER plots.

Using output LLR conditioning reduces this effect and allows a

short, fixed number of iterations to be used stably and reliably

in real-world applications.

We also note that since the output conditioning is derived

using the sample list, this method may also be applicable to

other list based algorithms such as list sphere-decoding and

K-Best. Likewise, extreme output LLR values in X-MCMC

may be saturated to more moderate values similar to what is

sometimes done in sphere-decoding [3], though we have found

the dynamic output conditioning method suggested here to be

preferable to the ad hoc saturation approach.

C. Summary

In practice, the X-MCMC algorithm is executed similarly

to the original MCMC algorithm outlined in Algorithm 1. The

changes include the use of the newly introduced dynamic

scaling of (dk− − dk+) and output conditioning applied

to λe
k,X-MCMC. The full X-MCMC algorithm is outlined

in Algorithm 2 with the necessary equations specified. Note

that many Gibbs samplers may be used in parallel to increase

sampling speed and increase sample diversity. When using

parallel Gibbs samplers each d̂k∗
min should be calculated inde-

pendently for each Gibbs sampler whereas the output LLR

should be calculated with a list Z comprising a combination

of all samplers. Moreover, σ 2
z in (32) should be obtained by

taking the minimum of d̂k∗
min of all the Gibbs samplers.

V. PSEUDO-CONVERGENCE

Now that the high SNR stalling problem is solved by the

X-MCMC detector and the Gibbs sampler moves efficiently at

Algorithm 2 X-MCMC Gibbs Sampler

1: Initialize x.

2: for 1 to Niter do

3: for k = 1 to N log2(Nqam) do

4: Calculate dk+ and dk− with (16).

5: Update minx∈Z( ) for (32).

6: Update minx∈Zk+ ( ) and minx∈Zk−( ) for (31).

7: Calculate Pgibbs with (4) and (30).

8: Generate a uniform random variable 0 ≤ r ≤ 1.

9: if r < Pgibbs then xk ← +1 else xk ← −1

10: Compute output LLR with (31), (32).

Fig. 4. Detail on Gibbs sampler behavior with the original random initialized
MCMC. Notice the high SNR stalling problem resulting in no improvement
after the first few iterations. Parameters: 4 antennas, 64 QAM, Ngibbs×Niter =
30 × 30, WiFi TGn Model-D LOS channel, Eb/N0 = 19dB.

all SNR levels, a new issue is encountered. The Gibbs sampler

may stop moving due to an effect referred to as pseudo-

convergence. This problem appears to be less understood in

MIMO communications applications, but has been noted in

the wider MCMC statistics literature [14]. Although symp-

tomatically similar, it is different from the stalling problem

discussed previously. It occurs when the posterior probability

distribution is multi-modal with weak connections between

modes, that is, important regions are weakly connected to

other important regions through very low probabilities. Thus,

the Gibbs sampler may stay in one mode (i.e. similar bit

permutations connected with sufficient probability) and col-

lect highly correlated samples. When encountered, pseudo-

convergence decreases the sampling efficiency of MCMC,

resulting in a need for a large number of iterations and/or

parallel Gibbs samplers. Others appear to be encountering this

effect as reports of performance improvements when adding

random walk restarting have been observed [20], [23].

A. Gibbs Detail Plots

To understand the pseudo-convergence phenomena more

thoroughly, we have developed the Gibbs detail plots of

Fig. 4, 5, and 7, introduced partially in Section III-D.



7726 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 12, DECEMBER 2017

Fig. 5. Detail on Gibbs sampler behavior with partial X-MCMC
(‘x - -’ = Gibbs excitement only). Stalling fixed but now there is a pseudo-
convergence stopping issue. Parameters: 4 antennas, 64 QAM, Ngibbs×Niter =
30 × 30, WiFi TGn Model-D LOS channel, Eb/N0 = 19dB.

For consistency, these figures all use the same input data and

initialized states. The first row of subplots show information

on a single Gibbs sampler whereas the second row shows

information on the combination of all parallel Gibbs samplers

of the algorithm run on a single realization of transmitted data.

LLR error ratio = |λe
k − λe

k,MAP|/mean
k

(

|λe
k,MAP|

)

(33)

is calculated against the optimal max-log MAP solution. The

max-log MAP solution is what MCMC should converge to if

run for an infinite number of iterations. In Fig. 4, 5, and 7,

the LLR error ratio values are shown with a gray-scale color

mapping, zero to one as white to black where values above

one saturate to black.

The second row shows a combined view of all of the

Ngibbs parallel Gibbs samplers. The first subplot is the average

“determinism”, whereas the second and third are the LLR sign

error relative to Max-MAP and the LLR error ratio in (33).

The desired behavior of the first column is to show signs of

the random walk being guided with a variation of determinism,

not fully random or deterministic. In the second column,

the single Gibbs sampler should not stay converged to any

state and instead should continuously explore the state space,

whereas the combined Gibbs samplers should converge to

no LLR sign error relative to Max-MAP. Finally, the third

column should continue to converge to the Max-MAP solution,

displayed by white.

Fig. 4 shows that the original MCMC detector described

in Section III is almost completely deterministic, is strongly

stalled at this high SNR, and does not improve the output LLR

after only a few iterations.

By using the excited Gibbs sampler described in

Section IV-A, Fig. 5 shows a large improvement in behavior.

It is no longer stalled and after a few Gibbs iterations the

algorithm has mostly converged. In the second row of subplots,

after an initial very active period, the guided random walk

slows as all parallel samplers become locked into an isolated

posterior mode due to pseudo-convergence.

B. Detection and Escape

As pseudo-convergence is a byproduct of the structure of

the posterior distribution, the algorithm is behaving correctly

and as expected. Given enough iterations a single Gibbs

sampler will eventually leave an isolated mode and sample

others. Instead of waiting for the low probability of transition,

we prefer a more efficient method of detecting when pseudo-

convergence has occurred and then forcing state divergence.

This allows the algorithm to collect more unique samples with

fewer iterations, thus improving the sampling efficiency of the

MCMC detector.

Two effective and computationally efficient methods to

detect pseudo-convergence include what we refer to as the

distance and motion methods. The distance method tracks

the best (smallest) distance d sampled over time, including

both dk+ and dk−. If this distance does not improve in

Nmotion steps, then pseudo-convergence is detected. Alterna-

tively, the motion method detects when no change has occurred

in Gibbs state x for Nmotion steps.

The choice of using the d̂k∗
min estimate in Section IV-A

causes the Gibbs sampler to move slightly more slowly and

deterministically, thus we have found that it tends to stop mov-

ing when in pseudo-convergence, therefore using the motion

pseudo-convergence detection strategy works well with the

choice of d̂k∗
min. For the detection threshold we use Nmotion =

N log2(Nqam) steps which is one full Gibbs iteration.

Once pseudo-convergence is detected, the most robust

though not necessarily the best solution is to restart the Gibbs

sampler with a new fully random state. This is a solution

mentioned in the wider MCMC literature beyond MIMO

communications applications [14]. A drawback of the full

restart approach is that it requires re-initialization of the Gibbs

sampler which may be an expensive and time consuming

operation in VLSI implementations. We have found that a

full restart is not necessary in a bitwise MCMC detector and

under some circumstances is a bad choice. Instead, forcing a

1-bit state change in the next bit following pseudo-convergence

detection can be a good solution. This can be thought of

as adding an impulse of energy or excitation to the random

walk which assists the Gibbs sampler in escaping the isolated

posterior mode. Using this 1-bit strategy incurs no additional

complexity from re-initializing the sampler and is trivial to

implement in VLSI designs.

In Fig. 6 which uses motion based detection, we see that the

full-restart escape method can actually degrade performance.

This is due to the number of iterations needed to converge to

a region of important samples being larger than the number

needed to naturally leave a pseudo-converged region, thus,

the full-restart is lowering overall sampling efficiency. For

these test parameters, the full-restart creates too large of

a divergence which wastes time in re-converging, whereas

the next-bit forced change is sufficient to leave the pseudo-

converged region without incurring a re-convergence penalty.
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Fig. 6. Comparison of using no pseudo-convergence mitigation, full-restart
escape, and next-bit forced change escape. Parameters: 4 antennas, 64 QAM.

Fig. 7. Detail on Gibbs sampler behavior with partial X-MCMC
(‘x - p’ = Gibbs excitement and pseudo-convergence stopping mitigation).
Stalling and stopping are now resolved. Parameters: 4 antennas, 64 QAM,
Ngibbs × Niter = 30×30, WiFi TGn Model-D LOS channel, Eb/N0 = 19dB.

By adding the motion based pseudo-convergence detection

and next-bit forced change method to the excited Gibbs

sampler we see the results presented in Fig. 7. Now the

stalling problem seen in Fig. 4 and the stopping problem

seen in Fig. 5 are resolved. Both the single and combined

Gibbs determinism subplots show that the MCMC algorithm

is consistently excited. The combined LLR quickly converges

to a correct output bit sequence and then continues to improve

the output LLR until near Max-MAP performance is achieved.

VI. RESULTS

One of the most important features of the results that follow

is that the WiFi TGn Model-D LOS channel [15] has been used

for H. This realistic, correlated indoor model creates a much

more challenging problem compared to the typical Gaussian

i.i.d. channels commonly used in the literature [3]–[6], [13].

The main issue with using an unrealistically uncorrelated,

and therefore unrealistically easy model, is that convergence

is relatively easy to achieve, making stalling and stopping

issues appear less severe. For more details on channel model

selection, see the analysis and testbed results in [16].

We have found that producing BER curves using only the

hard-decision of the MIMO detector by itself is insufficient to

analyze MCMC performance. Since the MCMC detector can

potentially have statistical stability issues, assessing the quality

of the soft-output information is essential, therefore, we have

used the LDPC 3/4 rate 1944 block length code from the

802.11n specification in generation of all of the following BER

curves. It was selected as a moderate coding level among the

1/2, 2/3, 3/4, and 5/6 rates available in the WiFi specification.

For most of the BER results, five turbo loops are used,

see Fig. 1, which enhances final BER performance by allowing

the detector and decoder to iteratively exchange extrinsic soft-

information [28]. Although not all applications have sufficient

time in their latency budget to do turbo iterations, it is useful

to do most of the analysis using these iterations because it

allows for the testing of an algorithm’s ability to use prior

information correctly.

The figures in this section include an MMSE initialized

MCMC detector for reference as described in Section III-D.

The randomly initialized version is not generally included as

it performs worse than the MMSE initialized version under

all conditions. Max-MAP/Max-ML is shown as the optimal

performance bound when possible since the channel capacity

for non-Gaussian models is generally unknown. By using a

highly optimized GPU implementation we are able to compute

MAP/ML at up to 4 antennas with 64 QAM. For the 8 antenna

with 256 QAM case we use a very large K-Best as an

approximation of the Max-MAP limit since it is known to

have near-MAP performance [4]. One moderate sized K-Best

is generally included so that the reader may do some initial

comparisons with the literature on K-Best.

A. dk∗ Approximations

In the previous sections, the X-MCMC algorithm was

developed with greatly enhanced performance. Now with all

three components fully developed, we may revisit the selection

of d̂k∗
min made in Section IV-A. The reason for doing this

verification after the development of the other X-MCMC

enhancements is that their combined interaction can impact

the final choice. Therefore, in Fig. 8, we show BER plots

comparing the suggested approximations to dk∗ while also

using the output LLR conditioning and pseudo-convergence

enhancements. Both the first and final turbo iterations need to

be shown to check for issues with the σ 2
k∗ scaling relative to

the prior λ
a in (30).

The BER curves show that the new approximations perform

well and will approach near MAP performance given sufficient

iterations, though not with equal speed or efficiency. As was

also shown in the Pgibbs error analysis of Fig. 3, we find that

the min approximation performs well. It remains the preferred

approximation since it also has a much lower computational

complexity compared to weighted.

B. EXIT Chart

To deepen the understanding of the MCMC and X-MCMC

detectors, an extrinsic information transfer (EXIT) chart is

presented in Fig. 9 with prior information randomly generated
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Fig. 8. Comparison of dk∗ approximations (29), (24), (25), and (28) with all
X-MCMC components enabled including Gibbs excitation, output LLR con-
ditioning, and pseudo-convergence mitigation. Two plots are shown, the top
without turbo iterations (Turbo#1) and with five turbo iterations (Turbo#5).
Both are important as they show the effects without and with use of a priori

information. Parameters: 4 antennas, 64 QAM.

Fig. 9. EXIT chart showing random and MMSE initialized original MCMC
methods versus X-MCMC components (‘x o p’ are flags representing inclu-
sion of Gibbs excitation, output LLR conditioning, and pseudo-convergence
mitigation). Parameters: 4 antennas, 64 QAM, Eb/N0 = 19dB, no coding.

as described in [29]. The EXIT chart is useful in evaluating

MCMC performance since it is independent of code choice

and shows both the ability of the detector to use input soft-

information and generate output soft-information [30], [31].

Given an amount of input information Ia it shows how

Fig. 10. Convergence analysis showing that X-MCMC converges quickly
to the ML solution which is placed as a reference line, though it has no
iterations. The number of parallel Gibbs samplers is specified in the legend
as ‘#x’. For X-MCMC, ‘x - p’ are flags representing inclusion of Gibbs exci-
tation and pseudo-convergence mitigation. Parameters: 4 antennas, 64 QAM,
Eb/N0 = 19dB, no coding.

much extrinsic output information Ie a given method is able

to produce, therefore, EXIT charts provide complementary

analysis to detector-only BER curves which do not show the

quality of LLR output.

As expected, the output extrinsic information Ie of the

X-MCMC detector improves as the excited Gibbs sampler,

output LLR conditioning, and pseudo-convergence enhance-

ments are included in the algorithm. The introduction of the

excited Gibbs sampler is the most important contribution as it

fixes the unusual EXIT curve shapes presented by the random

and MMSE initialized original MCMC methods, caused by

high SNR stalling. This unusual shape has also been observed

in [11]. The prolonged, flat shape with a sharp rise at the end

of the curves is produced by the large dk∗ underestimate from

using (29). This means that the (dk− − dk+)/(d̂k∗
original/2N)

is far overweighted compared to the prior λ
a in (21). Once

Ia > 0.8 the prior becomes strong enough to overcome the

imbalance at this SNR. Because an MMSE initialization only

provides the algorithm with a good starting point, it does not

change the underlying problem.

C. Convergence

One of X-MCMC’s primary advantages is that it has a

fast convergence rate because it has no high SNR stalling

problem and avoids pseudo-convergence. This can be seen

in Fig. 10 where the hard-decision BER of several detectors

are compared as the number of Gibbs iterations increases.

The convergence time will generally become longer as the

number of antennas increase, the constellation size becomes

larger, and the channel becomes more correlated. Note that

the output LLR conditioning of X-MCMC is not shown in

the figure because scaling does not change the LLR sign and

therefore has no effect on the detector BER.

D. BER Performance

The BER curves of Fig. 11 confirm the relationships shown

in the EXIT chart of Fig. 9. There is an incremental improve-

ment in performance as each of the Gibbs excitation, pseudo-

convergence enhancement, and output LLR conditioning are
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Fig. 11. BER curves comparing MCMC methods versus X-MCMC
(‘x o p’ are flags representing inclusion of Gibbs excitation, output LLR
conditioning, and pseudo-convergence mitigation). Parameters: 4 antennas,
64 QAM.

Fig. 12. BER curves showing that all methods function at low SNR with
small constellation sizes, though X-MCMC is more efficient than previous
MCMC methods. Parameters: 4 antennas, 4 QAM.

included. As predicted by the EXIT chart, a 48×48 X-MCMC

detector achieves near Max-MAP performance, and a smaller

30×30 detector is within 1dB. The most interesting feature

of these curves is the error floor seen in the X-MCMC

curves without output LLR conditioning. This is caused by

rare realizations with slow convergence that poorly converge

with the fixed number of Gibbs iterations provided. The LLR

overconfidence in the poorly converged cases are capable of

corrupting entire codewords even when representing a small

minority of realizations. For more details on how output LLR

conditioning resolves this effect see Subsection IV-B.

The most important observation in the remaining BER

figures is that the X-MCMC detector is capable of achieving

near Max-MAP performance under all conditions tested. This

is especially impressive at the maximum 802.11ac WiFi pro-

tocol size of 8 antenna MIMO with 256 QAM modulation

shown in Fig. 14. Compared to MMSE-Initialized MCMC

there is a massive >6 dB improvement. Similar results are

seen in Fig. 13 with X-MCMC again achieving Max-MAP

performance.

It is relatively easy to achieve near Max-MAP performance

on low-order modulation with low-SNR, as seen in Fig. 12 and

reported in [7] and [32]. Though MMSE-MCMC works under

these conditions, it is at a lower efficiency than X-MCMC.

This is predicted by our excited Gibbs derivation since the

poor approximation d̂k∗
original in (29) becomes more accurate at

lower SNRs and therefore the impact of stalling is limited.

Fig. 13. BER curves showing near Max-MAP performance for X-MCMC.
Parameters: 4 antennas, 64 QAM.

Fig. 14. BER curves showing X-MCMC achieves near Max-MAP per-
formance (approximated with large K-Best) even at the maximum 802.11ac
MIMO and QAM sizes. Parameters: 8 antennas, 256 QAM.

E. Complexity Analysis

To quantify complexity we will use the total number of

multiplications as a metric. One can include more complex

operations in the analysis, such as exponential functions and

division by assuming a roughly equivalent number of multi-

plies [4], [33]. For the inverted exponential function used in

the probability calculation of (4), in [6] it is shown that a

lookup table (LUT) and adder can provide sufficient accuracy,

therefore, its complexity is sufficiently less than a multiplier

to be ignored. For the scaling operations of (30) and (31),

we will temporarily set the division equal to Cdiv multiplies.

Note that using the number of multiplies as a complexity

metric may be useful to roughly compare similar algorithms,

but it is insufficient to compare X-MCMC and K-Best in

particular. This is because a major contributor to K-Best

complexity is list-sorting [4] which cannot be measured with

a multiplication count. Therefore, a gate count from a VLSI

design of X-MCMC will be needed to make a full complexity

comparison with other MIMO detector techniques.

The proposed X-MCMC algorithm can be broken into

four components for complexity analysis: frontend process-

ing (FEP), backend processing (BEP), total number of bitwise

steps including all parallel Gibbs samplers, and each bitwise

step.

The FEP is used to calculate precomputed values, including

H†H and H†y, which simplifies each Gibbs sampler step [6].

Similarly, the BEP includes the calculation of the output
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Fig. 15. Comparison of using full floating-point precision division vs a
simple shift and LUT to replace the scaling operations in (30) and (31). Note
that the ’X-MCMC float 30x30’ curve is underneath the corresponding 3-LUT
curve. Parameters: 4 antennas, 64 QAM.

LLR (31). Thus the FEP and BEP complexity can be rep-

resented as CFEP = (2N)3 + (2N)2 and CBEP = Cdiv + N M ,

where N is the number of antennas, and M is the number

of bits in each complex constellation symbol. Note that the

complex valued matrix H can be represented by a real version

with dimension 2N × 2N and likewise for y with dimension

2N × 1. The BEP includes a single reciprocal operation to

compute the scaling factor which is assumed to be equivalent

to a division and then it is applied N M times.

The Gibbs sampler includes the total number of Gibbs

sampler bitwise steps multiplied by the complexity of each

step as in

Cgibbs = (N M(2N M)2 ) × (2N + 1 + Cdiv) (34)

where we assume that there are N M bitwise steps per iteration,

2N M iterations per Gibbs sampler, and 2N M parallel Gibbs

samplers are used. This number of iterations and parallel sam-

plers is sufficient to achieve near-MAP performance, as shown

in Fig. 13, depending on the channel and coding. Using

the implementation of [6] as a foundation for the X-MCMC

enhancements, the step calculation is dominated by a dot

product of length 2N and the division introduced by our

new excitation scaling factor σ 2
k∗ in (30). It is assumed that

the simple state machine necessary to implement the pseudo-

convergence strategy of Section V is of negligible complexity

as it requires no arithmetic operations.

It is clear that the division operation introduced to scale the

calculation of γ in (30) can potentially have a large impact

on the leading complexity terms (8N4 M3 + 4N3 M3Cdiv),

therefore, we have explored a simple estimation of the division

using a shift unit and n-bit LUT using the most significant

bits of the scaling term. In Fig. 15, it is shown that a

3-bit LUT is sufficient to nearly match the floating-point

division performance. This is not surprising as the scaling

terms themselves are only rough approximations of the local

and final error variances.

Since using a rough division approximation is acceptable,

we conclude that a division complexity of Cdiv ≈ 1 is

appropriate. After this simplification, the X-MCMC algorithm

adds little additional complexity to each Gibbs step compared

to a standard MCMC detector while also significantly reducing

the number of needed steps. Thus, the algorithm complexity

appears to be polynomial in N and scalable to large MIMO

sizes.

VII. CONCLUSION

We have presented a new derivation of the MCMC detector

which solves the high SNR stalling problem without use of

hybridization or heuristic temperature scaling terms. Output

LLR quality has been improved for poorly converged cases

by conditioning output confidence on sample list statistics.

Output LLR conditioning is shown to moderate soft-output

overconfidence and allow a low complexity fixed length Gibbs

sampler to be used in practice, eliminating error floors caused

by rare slowly converging realizations. This conditioning may

have application to other list based detectors such as list

sphere-decoding and K-Best. Additionally, we have identified

pseudo-convergence conditions which lower efficiency. The

proposed 1-bit randomization procedure is shown as a low

complexity alternative way to leave pseudo-convergence com-

pared to using a full random-walk restart. Results show that the

combined improvements allow near Max-MAP performance

at all SNR regimes with large numbers of antennas and high-

order modulation. This is true even with highly correlated,

WiFi TGn Model-D LOS channels which are significantly

more challenging than the Rayleigh channels with uncorrelated

i.i.d. Gaussian elements commonly used in the literature.

No heuristic optimizations are needed, making the proposed

method straightforward to effectively implement in practice.

A brief complexity analysis demonstrated that the X-MCMC

enhancements requires little additional complexity compared

to previous MCMC detectors while dramatically improving

performance. A VLSI implementations should be possible with

straightforward extensions of existing work.

MIMO sizes beyond our verified 8×8 sizes should be

possible within the constraints of the suggested polynomial

complexity growth of the X-MCMC algorithm. More corre-

lated channels than the WiFi TGn Model-D LOS channels are

possible [16], though with somewhat longer convergence times

requiring more Gibbs iterations.
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