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Abstract— We introduce a revised derivation of the bitwise
Markov Chain Monte Carlo (MCMC) multiple-input multiple-
output (MIMO) detector. The new approach resolves the previ-
ously reported high SNR stalling problem of MCMC without the
need for hybridization with another detector method or adding
heuristic temperature scaling factors. Another common problem
with MCMC algorithms is the unknown convergence time making
predictable fixed-length implementations problematic. When an
insufficient number of iterations are used on a slowly converging
example, the output log likelihood ratios can be unstable and
overconfident. Therefore, we develop a method to identify rare
slowly converging runs and mitigate their degrading effects on the
soft-output information. This improves forward-error-correcting
code performance and removes a symptomatic error floor in
bit error rate plots. Next, pseudo-convergence is identified with
a novel way to visualize the internal behavior of the Gibbs
sampler. An effective and efficient pseudo-convergence detec-
tion and escape strategy is suggested. Finally, the new excited
MCMC (X-MCMC) detector is shown to have near maximum-
a-posteriori performance even with challenging, realistic, and
highly-correlated channels at the maximum MIMO sizes and
modulation rates supported by the 802.11ac WiFi specification,
8 x 8 MIMO 256 quadrature amplitude modulation.

Index Terms—Markov Chain Monte Carlo (MCMC),
X-MCMC, pseudo-convergence, stalling, multiple-input multiple-
output (MIMO) detector, wireless communication.

I. INTRODUCTION

HE use of spatial-multiplexing multiple-input multiple-

output (MIMO) is increasingly being adopted in wireless
protocols as higher spectral efficiency is needed to meet the
capacity requirements of modern wireless networks [1], [2].
It has the potential to linearly increase spectral reuse and
capacity as the number of streams increases. Compared to
massive-MIMO, more moderately sized spatial-multiplexing
MIMO systems have many potential benefits including higher
single-device throughput in scattering environments, small
scale system capabilities appropriate for home use and small
cells, and immediate availability in several common wireless
standards. Up to 8-stream MIMO is already defined in the
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802.11ac WiFi and LTE Advanced Release 10 protocols. With
these large sizes, the performance and complexity scaling
of the MIMO detector, which separates the mixed together
transmitted streams at the receiver, is extremely important. The
maximum-a-posteriori (MAP) detector has a complexity that
increases exponentially with modulation order and the number
of transmit streams which makes it unimplementable for all but
the most trivial of cases. Zero forcing (ZF) and minimum mean
square error (MMSE) detectors have low complexity but suffer
from noise enhancement which degrades their performance
sufficiently to negate the potential spectral efficiency benefits
of MIMO.

The sphere-decoding (SD) class of MIMO detectors are
well known to have near MAP performance [3]. Specifi-
cally the K-Best variations of sphere-decoding have been
demonstrated in effective VLSI designs but their complexity
increases quickly with the number of antennas, the number of
transmitted bits per channel use, and the list size x [4]. There-
fore, the search for alternative, lower complexity methods is
ongoing.

Markov Chain Monte Carlo (MCMC) has been shown
to have near optimal performance at low signal-to-noise-
ratio (SNR) and to have efficient hardware implementa-
tions [5], [6]. It uses a random walk through the permutations
of the transmitted bit sequence to estimate the posterior
probability distribution and accordingly generate soft-output
information. Unlike other detectors, the MCMC detector thus
far has had the undesirable behavior that its performance
degrades at higher values of SNR [7]. This issue is caused by
stalling at high SNR. Most of the attempted solutions to this
problem can be grouped into either hybridization or tempera-
ture scaling approaches. The hybridization schemes combine a
method with good, low complexity performance at high SNR
with MCMC to combine the best traits of both. Examples are
ZF, MMSE, and sphere-decoding initialized MCMC meth-
ods [8], [9]. The temperature scaling approaches are so called
because they recognize that the probabilities generated by the
Gibbs sampler are too cold, resulting in slow convergence.
A linear scaling coefficient is therefore applied to artifi-
cially increase the noise temperature. This coefficient must be
heuristically optimized depending on system parameters and
SNR [10]-[12], though a recent derivation of a near optimal
value is showing promise under some testing conditions [13].

There are three main contributions presented in this paper.
First, we present an improved derivation of the MCMC detec-
tor’s Gibbs sampler which resolves the high SNR stalling prob-
lems that have been previously reported. Our new derivation
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uses a new and more accurate system model when a Gibbs
sampler is far from the correct solution, accounting for both
noise and bits-in-error. This results in what is effectively a
dynamic temperature scaling coefficient. Then, using the ideas
developed in this derivation, the problem of the unpredictable
convergence time of the MCMC detector is explored. This
leads to development of soft-output conditioning based on
the quality of the list of samples generated by the random
walk. This allows the detection of poor convergence and
optionally extending the search with more iterations or ter-
minating with a fixed number of iterations and decreasing
the output confidence. Moderating the overconfident outputs
is found to improve the performance of the forward-error-
correcting (FEC) decoder. We also note that since the output
conditioning is derived using the sample list, this method is
applicable to other list based algorithms such as list sphere-
decoding and K-Best.

The third contribution of this paper is identification and
remediation of pseudo-convergence of the Gibbs sampler [14].
A novel way to visualize the Gibbs sampler behavior is
used which provides insight into both pseudo-convergence
and stalling. To mitigate the resulting correlated sampling,
we propose a simple motion based detection strategy and a
1-bit forced change procedure which sufficiently excites the
Gibbs sampler to allow new uncorrelated samples to be made.

The excited MCMC (X-MCMC) detector that is proposed
in this paper is comprised of the excited Gibbs sampler,
output LLR conditioning, and pseudo-convergence remedia-
tion through additional Gibbs excitation. The new X-MCMC
detector achieves near Max-MAP performance even at the
largest 802.11ac WiFi rates with 8x8 MIMO and 256 QAM
modulation. This is demonstrated on the challenging, highly
correlated WiFi TGn Model-D channel [15] with line-of-
sight (LOS) conditions, which is much more difficult to
attain near MAP performance on than with uncorrelated i.i.d.
Gaussian channels [16].

This paper is organized as follows. In Section II we
present the system model and some specialized notation
used throughout the paper. A review of a typical MCMC
derivation along with background information is provided
in Section III. The first two contributions of this paper are
explained in Section IV; in Subsection I'V-A the excited Gibbs
sampler is presented and our proposed method of output
LLR conditioning is discussed in Subsection IV-B. Our third
contribution, the pseudo-convergence of Gibbs samplers and
remedy to it, is discussed in Section V. Simulation results and
a complexity analysis are presented in Section VI, and the
conclusions of the paper are made in Section VII.

II. SYSTEM MODEL

The goal of a spatial-multiplexing MIMO transceiver is
to exploit the spatial multipath of the environment to sup-
port overlapping data streams. This concept allows reuse of
the spectrum and therefore has the potential to dramatically
increase the data rates and capacity of wireless networks.

To perform data transmission with spatial-multiplexing,
the transmitter sends independent data streams simultaneously
on a set of N; transmit antennas which are then received
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MIMO detector iteratively exchanging soft information with a forward error
correction decoder.

at a set of N; receive antennas. In an orthogonal frequency
division multiplexing (OFDM) system, for each subcarrier, this
can be represented with a flat-fading frequency-domain system
model as

y = Hs +n. (1)

Here, y is the received signal vector, H is a slow flat fading
complex channel matrix containing the pairwise gain and
phase between antennas, s is the vector of transmitted com-
plex constellation symbols mapped from the bit sequence X,
and n is a noise vector. Assuming the transmit and receive
side have the same number of antennas N;, = N, = N,
the dimensions of the corresponding vectors and matrices are
N x 1 and N x N, respectively. Note that often it is easier
in hardware designs to use a real-valued system model which
this paper is fully compatible with, see [6]. The channels for
this paper are produced with the method described by the
WiFi TGn Model-D LOS specification [15] which creates a
correlated channel matrix H. The TGn-D channel is much
more challenging for the detector compared to the independent
and identically distributed (i.i.d.) complex Gaussian channel
typically used in the literature [3]-[6], [13]. The bit vector x
may be described as comprising of 1’s and 0’s or equivalently
+1’s and —1’s, depending on context. In principle, s can be
a vector of any complex modulated symbols, but here we use
the quadrature amplitude modulated (QAM) symbols defined
in the IEEE 802.11ac specification. The elements of n are
assumed to be i.i.d. complex Gaussian random variables with
variance of a,% per each real and imaginary dimension.

The primary challenge in a MIMO receiver, and the focus
of this paper, is to accurately and efficiently estimate the
K = Nlog,(Ngam) simultaneously transmitted bits in x per
realization, where Ngam is the QAM constellation size.

The MIMO detectors discussed in this paper are all com-
patible with turbo iterations, the exchange of soft-information
between the detector and decoder as in Fig. 1. This allows
for the iterative joint detection of the signal for enhanced
performance. The soft-information is in the form of log
likelihood ratios (LLRs) and represented by A and A¢ for
their a priori input and extrinsic output versions.

Notation: In the equations that follow, some specialized
notation is used for compactness and clarity. Vectors and matri-
ces are expressed with bold fonts and the latter are capitalized.
The removal of the k™ element of a vector is shown with set
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notation as {-}\X. A variable or vector derived from the bit
sequence X with the k™ bit forced to a one or zero is shown
with {-}¥* and {-}f—, respectively. When two nearly identical
equations are needed differing only in use of k+ or k—, k+
is used to represent both versions. If the k™ bit is forced to
the correct transmitted value, either one or zero, it is shown
with {-}F*.

III. MCMC DETECTOR

The MCMC MIMO detector estimates the output log like-
lihood ratio (LLR) by means of Monte Carlo sampling [5].
This can be thought of as a method to identify a list of
important bit permutation samples to approximate the full
permutation list in the MAP detector. The challenge is to
make the process computationally efficient by using an easy to
calculate short list that accurately captures the statistics of the
full permutation list. We select the bitwise method described
in [6] as our foundational algorithm because it has been shown
to be efficiently implementable in hardware.

The two main components of the MCMC detector is the
Gibbs sampler and the LLR output calculation. The Gibbs
sampler starts with an initial estimate of the transmitted bit
sequence, either randomly selected or initialized with prior
information. It then cycles through the bits, calculating the
probability of a bit being a one or zero and uses it to weight a
random decision to change the bit. Each cycle through the bits
is an iteration. The list of permutations visited by the Gibbs
sampler is used to calculate the output LLR.

To make the differences between our improved excited
MCMC detector and the original bitwise MCMC detector
clear, here, we will show the main steps in the original
MCMC'’s Gibbs sampler and output LLR derivation. After a
brief summary of the algorithm, we will provide some detail
of the stalling problem and the MMSE initialized MCMC
detector variation used in comparisons of Section VL.

A. Gibbs Sampler

The Gibbs sampler is at the core of the MCMC algorithm.
It is used in difficult multi-variate posterior probability esti-
mation problems when sampling probabilities jointly across
all variables is too complex. It cycles across the variables,
calculating probabilities conditioned on all other variables
being fixed to the current state. In the bitwise MCMC MIMO
detector, this means that the Gibbs sampler needs to calculate
the probability Pgipps of a specific bit x; being a +1 or —1
conditioned on the current state of x\¥.

To derive Pgiphs wWe begin with the definition of the LLR
for the k™™ bit at the current Gibbs sampler state x

Pl = +1ly.x\*, 1)
P(x = —1ly, x\k, 29

7k =In 2)

Then, by noting that
POy = =1y, x\\, A% =1 - P(xx = +1ly,x'*,1%), (3)
we can rearrange to have the definition of the Gibbs probabil-
1ty as

1

Paibbs = P(xx = +1Jy,x\¥,19) = Tren 4)
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Next, Bayes’ Theorem is applied to y; to separate the
contribution of the prior A%. The result is

o PO = L XYAD Pl = +11X A p(y)
T p(ylae = —Lx\E APy = —1x\K, 1) p(y)
Pyl = +1L,x\ P = +1129)

p(ylxk = =1, x\K)P(xx = —1[49)
p(ylxe = +1,x\5)

=In A4 5
POk = —Lxk) % ®

where in the second line A%, x\¥, and A%\* are removed
from their respective conditionals because of the independence
among the x bits created by the interleaving effect in the turbo
loop. The final line follows from the definition of the a priori
LLR A“.

The system model is now used to provide the probability of
the received sequence y given x and noise with variance anz

per dimension. This leads to

_N —H 2
po = am) e (-2 E0)

Substituting (6) into (5) and simplifying the result, we get
1 2 2
peo=—s (Hy— s~ - |y - Hstt | ) S TRNC)
20}

This may be used with (4) to calculate the needed Pgipps
probability for the Gibbs sampler. Note that this will only
be an accurate calculation if AWGN noise with variance o2
is the only contributer to the error residual in y — Hs. This
assumption is revisited in the derivation of the X-MCMC
detector in Section IV where we find that error in the Gibbs
sampler’s current state of s introduces additional error that

should be accounted for.

B. Output LLR

To calculate the extrinsic output LLR A¢ we first derive the
MAP output LLR. The definition of LLR for the k™ bit is
the log ratio of probabilities of x; being a +1 or —1. This is
expressed as

py 1o PO = +1ly, A%\
VAR T PG = 1yt
Gmmﬂwa)
x k j #k
eXk+ J# ®)
Z)pmmﬂfmuﬁ
xeXk— J#k

where X**+ and X*~ are the sets of all permutations of x with
the k" bit forced to a +1 and — 1, respectively. To simplify (8),
we recall from [17] that

2472
u e i
P(xjl2}) = ———a

I = AGDHER )
1+e 7
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Since the coefficient A(l‘j‘.) is independent of x;, it may be
separated from the summation and canceled. This leads to

> | raxexpd] %XM‘}

Xkt Jj#k
¢ Map =In == (10)
1
2 | pOexp > Sx
xeXk- j#k

Finally, the max-log approximation to the Jacobian loga-
rithm [18] is used to simplify (10) to

1

1 2
. 1 e ekt \k  qa\k
Ak Max-MAP ~ 7 X?;,ﬁ( o2 Hy Hs H XA )
1 1 2
— — max (——2Hy - Hsk7H +x\K ')»a’\k)
2 xeXk- O,

(1)

where x\k . 1% \¥ is a vector dot product. This approximation
is commonly used by approximate-MAP MIMO detectors as
it results in a minor loss of performance while significantly
decreasing algorithm complexity [3].

To calculate the output LLR with MCMC, the max-log MAP
calculation of (11) is used but with the set X replaced with
the list Z of the sampled permutations. This, with some minor
rearrangements leads to

L ! k- k k
o~ 7 i (- -2

xeZk-
1 1 2
— — min (—2Hy — Hs*+ H —x\k. X“’\k)
2 xezt+ \ o}

12)

where the max() operation has been changed to an equivalent
min() operation to put the equation in a more intuitive cost
function minimization form.

C. Summary

The MCMC MIMO detector algorithm starts with an initial
sequence of bits x. It then cycles across the K bits in a
bitwise fashion for Nje, iterations, using the probabilities
calculated with (4) and (7) to determine state transitions. This
process effectively guides the Gibbs sampler towards the more
important regions. After a sufficient quantity of samples have
been taken in this manner, the algorithm approximates the
max-log MAP detector’s extrinsic output LLR A7 in (11)
with (12). This procedure is outlined in Algorithm 1 for
one Gibbs sampler, though Ngipps can be used in parallel to
increase sampling speed and increase sample diversity.

D. Stalling Problem

At high SNR, the MCMC detector derived here is known
to stall. This means that the rate at which new samples
are generated per iteration approaches zero [19]. This results
in slow convergence and an enormous number of iterations
needed to reach near MAP performance, potentially more than
the calculations needed for MAP itself. To help understand
stalling more thoroughly and the improvements proposed in
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Algorithm 1 Basic MCMC Gibbs Sampler

1: Initialize x.

2: for 1 to Njer do

for k =1 to Nlogy(Ngam) do

4 Update ming+ () and ming () for (12).

5 Calculate Pgibbs With (4) and (7).

6: Generate a uniform random variable 0 < r < 1.
7

8

(5]

if r < Pgibhs then xp < 41 else x; < —1
: Compute output LLR with (12).

the subsequent sections, a detailed view of the underlying
Gibbs samplers is presented that will lead to some insight.

In Fig. 2, we see the internal behavior of a pair of randomly
initialized Gibbs samplers working on a 4x4 MIMO system
with a 16 QAM symbol constellation, thus 4log,(16) =
16 bits per x. The only difference between the subfigures is the
magnitude of AWGN noise, 6 dB vs 12 dB Ej /Ny, which is
sufficient to strongly instigate the high SNR stalling problem.
Each subplot has the bit index k over the horizontal axis from
left to right, and the Gibbs iterations starting at the top and
descending over time. Accordingly, the Gibbs sampler moves
from left to right and top to bottom.

The left subplots show the probability of deterministic and
non-deterministic flips where

determinism = |2 Pgipbs — 1] (13)
With a gray-scale color mapping the determinism is shown as
black = 1 (fully deterministic) and white = 0 (fully random).

The right subplots show the error in the Gibbs state x when
compared to the true transmitted bit sequence, where black
indicates a bit error. State error is used instead of simply x
because it simultaneously shows if the state is changing and
where the random walk is relative to the transmitted bit
sequence.

In Fig. 2, we see the curious trend that at low SNR the
Gibbs sampler probability is moderate and the sampler quickly
converges to having only 1-bit error, whereas at high SNR the
Gibbs probabilities are persistently at extreme values and no
change is seen after the first iteration.

Stalling is not seen under all conditions. If a smaller QAM
size of 2 to 16 is used at a low SNR, near the BER cliff, stalling
will not be observed [20], [21]. Another condition where the
full extent of stalling may not be obviously observed is when
using well-conditioned, Rayleigh channels with uncorrelated
i.i.d. Gaussian channel matrix elements [16]. Real-world chan-
nels, with correlation between antennas, display stalling much
more strongly than the uncorrelated channels often used in the
literature to simulate MCMC performance [4], [6], [7], [13].
There are many variations of the MCMC detector which
attempt to mitigate the high SNR stalling problem. Most can
be broadly classified as either hybrid or temperature scaling
methods.

The idea behind the hybrid approaches is to combine the
MCMC detector, which has decreasing performance as SNR
increases, with a complementary detector, which has low
performance at low SNR but high performance at high SNR.
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Fig. 2. Gibbs sampler detail with the original randomly initialized MCMC

algorithm. Both subfigures have the exact same bit sequence, channel, seeded
random number generator, and additive noise. The only difference is in
noise magnitude which instigates the high SNR stalling problem. Parameters:
4 antennas, 16 QAM, Njier = 16, WiFi TGn Model-D LOS channel.

There are many examples of this using the sphere-decoder such
as [8] and [9] and with MMSE [7]. An interesting variation
on this theme is to use successive-over-relaxation within each
Gibbs sampler step calculation [22]. We note that although
these methods can improve the performance compared to a
standard MCMC sampler by itself, this class of detectors
do not solve the high SNR stalling problem of the MCMC
algorithm they use.

The temperature scaling class of MCMC detectors recognize
that the superficial cause of stalling is that the Pgipps values
calculated are too extreme. They suggest that, as the SNR
increases, 0,12 acts as a gain term in (7), therefore they heuris-
tically add an additional scaling term o which either linearly
scales or replaces anz to counteract stalling [10], [13], [23].
A variation on this idea includes methods which use man-
vally selected parameters to adjust the inclusion of addi-
tional randomization into the probability calculation or bit
selection [20], [24]. Stalling will be further explained
in the framework of the X-MCMC detector variation
of Section IV-A.

E. MMSE Initialized MCMC

To better understand the improvements made by the
X-MCMC detector that will be introduced in Section IV,
an MCMC method is needed for comparison. We have selected
the MMSE initialized MCMC detector described in [7]. This
is a hybrid type of detector since it combines MMSE, which
has good performance at high SNR, with MCMC to com-
pensate for the high SNR stalling effect. The reason why we
have selected this as apposed to some of the other excellent
QRD-hybrid or temperature scaling varieties in the literature is
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that those methods are generally loosely defined with parame-
ters that need to be heuristically tuned to the application. The
MMSE initialized variety is useful as a benchmark because
it has an explicit implementation regardless of channel, SNR,
number of antennas, or modulation order.

The only extension needed for the MMSE initialized
MCMC hybrid algorithm is to initialize one of the parallel
Gibbs samplers with the hard decision from an MMSE solution
as in

Swwise = (H'H + 2071) "Hiy (14)
where 1 is the conjugate transpose. This method solves the
issue where the MCMC detector does not converge for small
QAM sizes at high SNR. It works because the MMSE solution
will result in a correctly signed LLR output without any need
of additional MCMC Gibbs iterations. For turbo iterations to
work properly and to generate reasonable extrinsic information
transfer (EXIT) charts, every iteration has one parallel Gibbs
sampler initialized with the original MMSE solution.

As described in Section III-D, the MMSE initialized MCMC
detector does not prevent stalling because it is a hybrid
method, thus it is far from MAP performance when higher
QAM sizes are used. Examples that show such behavior are
presented in Section VL.

IV. X-MCMC DETECTOR

In this section, we present the two main components of the
excited MCMC (X-MCMC) detector: the excited Gibbs sam-
pler and LLR output conditioning. Both rely on the realization
that there are error contributions from both noise and bits-in-
error. Previous derivations have only included AWGN noise
in their derivations. We found that the inclusion of error in
the statistical model completely solves the high SNR stalling
problem covered in Section III-D. It also provides a method to
detect and mitigate poorly converged and overconfident output
LLRs that otherwise confuse the decoder, potentially creating
error floors in BER plots.

Previously in [16], we used a heuristic explanation to justify
the dynamic scaling used in the X-MCMC detector. Simula-
tions were matched to 8 x8 MIMO testbed measurements with
near max-log MAP performance. Those ideas will be expanded
on here with a thorough theoretical understanding and some
algorithmic improvements.

In the discussions and derivations that follow, the concept
of distance is repeatedly used. It is the closeness of the current
state x to the transmitted sequence. To simplify its use, it will
be defined as the square Euclidean distance

d = ly - Hs|? (15)
where s is the complex symbol mapped version of the bit state
x. If the k' bit of x is forced to a one or zero, then this can
be indicated on all dependent variables and vectors with a
superscript k+ or k— as in

2

d¥ = Hy — Hs** (16)
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A. Excited Gibbs Sampler

The cause of Gibbs sampler stalling in the MCMC detec-
tor is constant production of extreme Pgibhs values close
to 0% or 100%. This creates a nearly deterministic walk
which quickly stalls. Extreme probabilities are readily caused
by (4) and (7). At just |yx| = 3 there is a mere 2% chance
of a non-deterministic transition. In simulations of 4-antenna
64 QAM systems, y; values greater than 10 are commonly
seen and values greater than 100 are not unusual at high SNRs.

In the MCMC derivation of Section III, an assumption is
implicitly made that the only form of error is from the channel
model’s AWGN noise. It is a useful assumption because it
allows the substitution of a Gaussian probability distribution
into (5) that simplifies to the explicit y; of (7). However, this
causes problems since the incorrect bits in x also contribute
to error and in general are much larger contributors, often
by a factor of 1000 at high SNRs. This provides insight
as to why the stalling problem only appears at high SNR,
since at low SNRs the condition is less strongly violated.
Therefore, the goal here is to find a way to calculate the needed
probabilities in y; without this assumption.

We begin the derivation of the excited Gibbs sampler
with (5) from the original MCMC derivation.

Pyl = +1,x\5)
In k

plylxe = —1,x\K)
The implicit statistical model used for the probability distrib-
utions in the original MCMC derivation is

7= + 7 (17)

n =y — Hs. (18)

But a more accurate model is needed when the Gibbs sampler
is far from the true transmitted bit sequence. The error e**
must include both AWGN interference and the incorrect bits
in the state. This is captured with the new model

e =y — Hs" =H(stx—sk*) +n (19)
where sy is the transmitted symbol vector and s** is the
current Gibbs state with the k™ bit of x correct, i.e. matches the
respective transmitted bit. This model does not include error
from the k™ bit in s so that the distributions of the numerator
and denominator of (17) will be the same.

It is not generally possible to separate the contributions of x
and x\* to the error, so in the steps that follow we will initially
assume that an oracle has access to such an error metric which
excludes the k™ bit and finish with approximations sufficient
for development of a detector that works well in practice.

To use the new error model, we first note that a Gaussian
distribution is an appropriate approximation for the elements
of e**. Excluding the contribution of noise, each element is
generated from the dot product of a row of the known H
and a column of unknown symbol errors. Therefore, each real
and imaginary component of e** is created from the sum of
4N uniform random variables, where the number of antennas
has been multiplied by two for the complex nature of the
symbols and two for the contribution of the independent six
and sk* symbols. For the smallest MIMO size, this results in an
n = 8 Irwin-Hall distribution which is already approximately
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Gaussian and which becomes more Gaussian as the MIMO
size increases. Though our QAM symbols take discrete values,
noise and H shift and scale the symbols sufficiently to retain
the Gaussian approximation.

Here, we have assumed that sy and s** are uncorrelated
which is valid when far from convergence. As the Gibbs
sampler converges and the symbols become increasingly corre-
lated, the true distribution becomes narrower than a Gaussian,
thus, a Gaussian assumption results in underconfident prob-
abilities near convergence. In Section V, we will find that
pseudo-convergence is a stronger effect leading to overcon-
fident probabilities during convergence. Therefore, the slight
underconfidence here can be safely ignored.

Using a Gaussian distribution for the elements of e** with
variance ”13* per dimension results in

_ _ k+ |12
pylxe = +1,x\F) = (27rcrk2*) Nexp(—w)_

27
(20)

Then, by substituting this Gaussian model into (17), we have

dkf _ dk+

+ A%,
2 k
20k*

Yk = 21

A single sample estimate of the error variance akz* can be
made with the current error vector e as in

2

o2 ~ Je]" _ a™ (22)
2N 2N
where we have noted that the squared norm of the error vector
is equivalent to having the distance d with the k™ bit known to
be correct, d¥* = Hy — Hsk* H2 We refer to this estimation of
the error variance as the oracle method since it uses knowledge
that is not generally available to the algorithm. Next, we will
develop several potential approximations to the oracle.

We begin by using the confidence that either d** or d¥~ has
the kM bit correct to generate a weighted average estimate dkx.

d* = d" Py = +1x\y) +d Py = —1x\K,y)
A p(ylxi = +1,x\9) Py = +1x\5)

p(yIx\k)
+dk*P(YIXk = —1,x\O)P( = —1|x\F)
p(ylx\k)
_d"p(yln = +1,x\) +d plyla = —1,x\0)
B 2p(y|x\k)

(23)

where Bayes’ rule is first applied and then P(x; = +1[x\F) =
1/2 because of the independence between bits. This estimate
can be bounded by the minimum and mean of d** since
P(xp = —1|x\*,y) =1— P(xx = +1|x\¥, y) and the larger
probability will correspond to the smaller distance.
J%  — min (dk+’dk7) < gk

min

(24)

ak < (dk+ +dkf):3k* (25)

1
5 mean
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Fig. 3. Mean error from using various akx approximations to calculate Pgipps
with (4), (21), and (22). Parameters: 4 antennas, 64 QAM, Ngipps X Niter =
30 x 30, WiFi TGn Model-D LOS channel, E;/Ng = 19dB.

These bounds are useful rough approximations to d** as they
are readily available to the Gibbs sampler and are computa-
tionally efficient. We will refer to these as the min and mean
approximations.

A more accurate approximation to the weighted average
of (23) can be made by first replacing the denominator, which
would require the unknown x**, with the average of the
probabilities with x; = +1.

1
pylx\¥) = - (p(ylxk = +1,x\) + plylxx = —1,x\"))

2
(26)

Then, single sample estimates of the variances o7, ~ d* /2N
are used to approximate the Gaussian distributions

_N dki
pylx = +1,x\) ~ (ZMki) eXp(— )

2akzi
dk:t dk:t

This estimate is too crude to be used directly in (17), but by
using (26) and (27), an approximation of (23) can be made
dk+(dk+)7N _i_dkf(dkf)fN
(dk+)—N + (dk—)—N
dk+ dk— dk+ dk— N
_ +d"(d""/d") . 28)
1+ (d*t/d*—)N

For comparison, it is useful to include the original MCMC
method in Section III in this framework. It implicitly uses the
approximation

-N

Gk _
dwei ghted —

dlisina = 2No,;. (29)

The results of using the min (24), mean (25), weighted (28),
and original (29) estimates of d** to generate Pyibbs are shown
in Fig. 3, where the error is the mean of |Papprox — Poraclel
over a small range of distances. Based on these plots, the new
approximations are all a vast improvement over the original
method. At large distances, all of the new approximations have
similar performance since a single bit change has little impact
on the total distance, and therefore, d¥t ~ gk~ resulting in
all of the approximations being roughly equivalent. At small
distances, the mean method has the worst performance since it
overweights the larger of d**, making the sampler too random.
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Since the min and weighted approximations have similar
performance, the less computationally complex min option is
selected for akz* in calculating

dk— _ dk+
W=t 2. (30)

min
The choice of ﬁﬁn will be verified in Section VI-A with BER
plots in a complete system, but first, output LLR conditioning
and pseudo-convergence enhancements will be introduced so
that the combined effects can be accounted for.

B. Output LLR Overconfidence and Conditioning

As in the original MCMC algorithm in Section III, the out-
put LLR can be calculated with (12). It uses the list Z C X
of sampled bit permutations as an approximation to the full
permutation list used by the MAP detector in (11). This
is the method used by list based MIMO detectors such as
MCMC [5], list sphere-decoding [3], and K-Best [4]. Notice
that in order to use this method, one must have a list which
accurately represents the statistics of the full permutation list.
If the list is too short or poorly selected the statistics break
down, the calculation becomes unreliable, and the output LLRs
can be wildly inaccurate.

One can state that a requirement of the algorithm is for a
sufficient number of samples to be taken, but there are two
reasons why this is undesirable in practice. First, an imple-
mentable design has the goal of minimizing computational
complexity and therefore real-world implementations need to
use the minimum number of samples possible. As a result,
a minority of realizations are likely to be poorly converged,
leading to invalid output statistics. Second, many modern
communication systems have multiple channel realizations
per codeword, for example OFDM. When there are multiple
channel realizations, some will be more ill-conditioned than
others with a longer convergence time and therefore requiring
more Gibbs iterations than the average. During our analysis we
have observed situations where the worst channel, often during
a deep fade, requires 10x more iterations than average while
using a WiFi TGn Model-D LOS channel model, 4 antennas,
64 QAM. Using 10x more iterations consistently is undesir-
able, but if the slowly converging realizations are halted early
while still statistically unstable, then their large incorrect soft-
output values can easily corrupt the entire codeword despite
comprising a small number of bit errors.

In the context of suboptimal iterative detection and decoding
schemes, a constant positive scaling coefficient less than one
is sometimes used to scale the extrinsic LLRs [25]-[27].
This has the effect of removing divergence and thus increase
stability. Therefore, an alternative to using a large list to deal
with outlier difficult channel realizations is to decrease the
confidence of their respective LLRs so that they no longer
have the strength to corrupt the entire codeword. Unlike other
scaling methods which suggest a heuristic constant scaling
coefficient to reduce LLR confidence, we propose using the
statistics of the sample list to compute a dynamic coefficient
that may be used with any list based detector.
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If we allow that the sample list may be of poor quality,
then there are two contributions to error: the AWGN noise
in the system model and the quality of the list. The quality
of the list can be computed using the probability that the list
contains a sample that is the true transmitted signal without
error. As in Section IV-A, if we assume that the combination of
both forms of error are Gaussian distributions then the output
LLR can be changed to

. 1 2 L .
A x-MeMc 5 Xlélzlg (EHy — Hs H — x\k @\
Z
1 1 2
— — min (—2 Hy _ Hsk+ H _ X\k . A.a’\k)
2 xezk+ o;
3D

where a represents the variance of the combined contribu-
tions of both AWGN noise and list error. This can be estimated
with the minimum distance sample in the list similarly to (22)
using c?rlgfn That is,

|

2 2

IR mm Hs )
2N x (Ily |

Note that additionally we should limit 012 > 0,12. This protects
against a sample over-fitting the noise and therefore having
a distance less than the expectation of correct bit sequences,
2N 2, which would incorrectly create overconfidence in the
output LLR.

The corruption of codewords by rare poorly converged
realizations can cause an error floor to appear on BER plots.
Using output LLR conditioning reduces this effect and allows a
short, fixed number of iterations to be used stably and reliably
in real-world applications.

We also note that since the output conditioning is derived
using the sample list, this method may also be applicable to
other list based algorithms such as list sphere-decoding and
K-Best. Likewise, extreme output LLR values in X-MCMC
may be saturated to more moderate values similar to what is
sometimes done in sphere-decoding [3], though we have found
the dynamic output conditioning method suggested here to be
preferable to the ad hoc saturation approach.

o (32)

C. Summary

In practice, the X-MCMC algorithm is executed similarly
to the original MCMC algorithm outlined in Algorithm 1. The
changes include the use of the newly introduced dynamic
scaling of (d¥~ — d**) and output conditioning applied
to AZ’X_MCMC. The full X-MCMC algorithm is outlined
in Algorithm 2 with the necessary equations specified. Note
that many Gibbs samplers may be used in parallel to increase
sampling speed and increase sample diversity. When using
parallel Gibbs samplers each 31];:11 should be calculated inde-
pendently for each Gibbs sampler whereas the output LLR
should be calculated with a list Z comprising a combination
of all samplers. Moreover, 0_2 in (32) should be obtained by
taking the minimum of d¥ of all the Gibbs samplers.

min

V. PSEUDO-CONVERGENCE

Now that the high SNR stalling problem is solved by the
X-MCMC detector and the Gibbs sampler moves efficiently at
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Algorithm 2 X-MCMC Gibbs Sampler

1: Initialize x.

2: for 1 to Njer do

3. for k =1 to Nlog,(Ngam) do

Calculate d** and d*~ with (16).

Update mingez( ) for (32).

Update ming_,+ () and min, - () for (31).
Calculate Pgipbs with (4) and (30).

Generate a uniform random variable 0 < r < 1.
o: if r < Pgibhs then xp < 41 else x; < —1
10: Compute output LLR with (31), (32).

® > nRs

LLR Error Ratio
(white = 0, black >= 1)

Gibbs Determinism State Bit Error
(blk,wht = determ.,random) (black = error)

LLR Sign Error

T

Fig. 4. Detail on Gibbs sampler behavior with the original random initialized
MCMC. Notice the high SNR stalling problem resulting in no improvement
after the first few iterations. Parameters: 4 antennas, 64 QAM, Ngipps X Niter =
30 x 30, WiFi TGn Model-D LOS channel, Ej;/Ny = 19dB.

Single Gibbs

Combined Gibbs
<~ lterations

Bit index

all SNR levels, a new issue is encountered. The Gibbs sampler
may stop moving due to an effect referred to as pseudo-
convergence. This problem appears to be less understood in
MIMO communications applications, but has been noted in
the wider MCMC statistics literature [14]. Although symp-
tomatically similar, it is different from the stalling problem
discussed previously. It occurs when the posterior probability
distribution is multi-modal with weak connections between
modes, that is, important regions are weakly connected to
other important regions through very low probabilities. Thus,
the Gibbs sampler may stay in one mode (i.e. similar bit
permutations connected with sufficient probability) and col-
lect highly correlated samples. When encountered, pseudo-
convergence decreases the sampling efficiency of MCMC,
resulting in a need for a large number of iterations and/or
parallel Gibbs samplers. Others appear to be encountering this
effect as reports of performance improvements when adding
random walk restarting have been observed [20], [23].

A. Gibbs Detail Plots

To understand the pseudo-convergence phenomena more
thoroughly, we have developed the Gibbs detail plots of
Fig. 4, 5, and 7, introduced partially in Section III-D.
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Fig. 5. Detail on Gibbs sampler behavior with partial X-MCMC
(‘x - - = Gibbs excitement only). Stalling fixed but now there is a pseudo-
convergence stopping issue. Parameters: 4 antennas, 64 QAM, Ngibbs X Niter =
30 x 30, WiFi TGn Model-D LOS channel, E; /Ny = 19dB.

For consistency, these figures all use the same input data and
initialized states. The first row of subplots show information
on a single Gibbs sampler whereas the second row shows
information on the combination of all parallel Gibbs samplers
of the algorithm run on a single realization of transmitted data.

LLR error ratio = |{ — 4} pap|/mean (I2emapl)  (33)

is calculated against the optimal max-log MAP solution. The
max-log MAP solution is what MCMC should converge to if
run for an infinite number of iterations. In Fig. 4, 5, and 7,
the LLR error ratio values are shown with a gray-scale color
mapping, zero to one as white to black where values above
one saturate to black.

The second row shows a combined view of all of the
Ngivbs parallel Gibbs samplers. The first subplot is the average
“determinism”, whereas the second and third are the LLR sign
error relative to Max-MAP and the LLR error ratio in (33).

The desired behavior of the first column is to show signs of
the random walk being guided with a variation of determinism,
not fully random or deterministic. In the second column,
the single Gibbs sampler should not stay converged to any
state and instead should continuously explore the state space,
whereas the combined Gibbs samplers should converge to
no LLR sign error relative to Max-MAP. Finally, the third
column should continue to converge to the Max-MAP solution,
displayed by white.

Fig. 4 shows that the original MCMC detector described
in Section III is almost completely deterministic, is strongly
stalled at this high SNR, and does not improve the output LLR
after only a few iterations.

By wusing the excited Gibbs sampler described in
Section IV-A, Fig. 5 shows a large improvement in behavior.
It is no longer stalled and after a few Gibbs iterations the
algorithm has mostly converged. In the second row of subplots,
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after an initial very active period, the guided random walk
slows as all parallel samplers become locked into an isolated
posterior mode due to pseudo-convergence.

B. Detection and Escape

As pseudo-convergence is a byproduct of the structure of
the posterior distribution, the algorithm is behaving correctly
and as expected. Given enough iterations a single Gibbs
sampler will eventually leave an isolated mode and sample
others. Instead of waiting for the low probability of transition,
we prefer a more efficient method of detecting when pseudo-
convergence has occurred and then forcing state divergence.
This allows the algorithm to collect more unique samples with
fewer iterations, thus improving the sampling efficiency of the
MCMC detector.

Two effective and computationally efficient methods to
detect pseudo-convergence include what we refer to as the
distance and motion methods. The distance method tracks
the best (smallest) distance d sampled over time, including
both d*t and d*~. If this distance does not improve in
Nmotion Steps, then pseudo-convergence is detected. Alterna-
tively, the motion method detects when no change has occurred
in Gibbs state X for Npmotion Steps.

The choice of using the ‘?ﬁn estimate in Section IV-A
causes the Gibbs sampler to move slightly more slowly and
deterministically, thus we have found that it tends to stop mov-
ing when in pseudo-convergence, therefore using the motion
pseudo-convergence detection strategy works well with the
choice of ‘?ﬁn For the detection threshold we use Nmotion =
N logy(Ngam) steps which is one full Gibbs iteration.

Once pseudo-convergence is detected, the most robust
though not necessarily the best solution is to restart the Gibbs
sampler with a new fully random state. This is a solution
mentioned in the wider MCMC literature beyond MIMO
communications applications [14]. A drawback of the full
restart approach is that it requires re-initialization of the Gibbs
sampler which may be an expensive and time consuming
operation in VLSI implementations. We have found that a
full restart is not necessary in a bitwise MCMC detector and
under some circumstances is a bad choice. Instead, forcing a
1-bit state change in the next bit following pseudo-convergence
detection can be a good solution. This can be thought of
as adding an impulse of energy or excitation to the random
walk which assists the Gibbs sampler in escaping the isolated
posterior mode. Using this 1-bit strategy incurs no additional
complexity from re-initializing the sampler and is trivial to
implement in VLSI designs.

In Fig. 6 which uses motion based detection, we see that the
full-restart escape method can actually degrade performance.
This is due to the number of iterations needed to converge to
a region of important samples being larger than the number
needed to naturally leave a pseudo-converged region, thus,
the full-restart is lowering overall sampling efficiency. For
these test parameters, the full-restart creates too large of
a divergence which wastes time in re-converging, whereas
the next-bit forced change is sufficient to leave the pseudo-
converged region without incurring a re-convergence penalty.
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Fig. 6. Comparison of using no pseudo-convergence mitigation, full-restart

escape, and next-bit forced change escape. Parameters: 4 antennas, 64 QAM.
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Fig. 7. Detail on Gibbs sampler behavior with partial X-MCMC
(‘x - p° = Gibbs excitement and pseudo-convergence stopping mitigation).
Stalling and stopping are now resolved. Parameters: 4 antennas, 64 QAM,
Nagibbs X Niter = 30 x 30, WiFi TGn Model-D LOS channel, Ej /Ny = 19dB.

By adding the motion based pseudo-convergence detection
and next-bit forced change method to the excited Gibbs
sampler we see the results presented in Fig. 7. Now the
stalling problem seen in Fig. 4 and the stopping problem
seen in Fig. 5 are resolved. Both the single and combined
Gibbs determinism subplots show that the MCMC algorithm
is consistently excited. The combined LLR quickly converges
to a correct output bit sequence and then continues to improve
the output LLR until near Max-MAP performance is achieved.

VI. RESULTS

One of the most important features of the results that follow
is that the WiFi TGn Model-D LOS channel [15] has been used
for H. This realistic, correlated indoor model creates a much
more challenging problem compared to the typical Gaussian
ii.d. channels commonly used in the literature [3]-[6], [13].
The main issue with using an unrealistically uncorrelated,
and therefore unrealistically easy model, is that convergence
is relatively easy to achieve, making stalling and stopping
issues appear less severe. For more details on channel model
selection, see the analysis and testbed results in [16].
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We have found that producing BER curves using only the
hard-decision of the MIMO detector by itself is insufficient to
analyze MCMC performance. Since the MCMC detector can
potentially have statistical stability issues, assessing the quality
of the soft-output information is essential, therefore, we have
used the LDPC 3/4 rate 1944 block length code from the
802.11n specification in generation of all of the following BER
curves. It was selected as a moderate coding level among the
1/2, 2/3, 3/4, and 5/6 rates available in the WiFi specification.

For most of the BER results, five turbo loops are used,
see Fig. 1, which enhances final BER performance by allowing
the detector and decoder to iteratively exchange extrinsic soft-
information [28]. Although not all applications have sufficient
time in their latency budget to do turbo iterations, it is useful
to do most of the analysis using these iterations because it
allows for the testing of an algorithm’s ability to use prior
information correctly.

The figures in this section include an MMSE initialized
MCMC detector for reference as described in Section III-D.
The randomly initialized version is not generally included as
it performs worse than the MMSE initialized version under
all conditions. Max-MAP/Max-ML is shown as the optimal
performance bound when possible since the channel capacity
for non-Gaussian models is generally unknown. By using a
highly optimized GPU implementation we are able to compute
MAP/ML at up to 4 antennas with 64 QAM. For the § antenna
with 256 QAM case we use a very large K-Best as an
approximation of the Max-MAP limit since it is known to
have near-MAP performance [4]. One moderate sized K-Best
is generally included so that the reader may do some initial
comparisons with the literature on K-Best.

A. d** Approximations

In the previous sections, the X-MCMC algorithm was
developed with greatly enhanced performance. Now with all
three components fully developed, we may revisit the selection
of c?ﬁjn made in Section IV-A. The reason for doing this
verification after the development of the other X-MCMC
enhancements is that their combined interaction can impact
the final choice. Therefore, in Fig. 8, we show BER plots
comparing the suggested approximations to d** while also
using the output LLR conditioning and pseudo-convergence
enhancements. Both the first and final turbo iterations need to
be shown to check for issues with the o7, scaling relative to
the prior A% in (30).

The BER curves show that the new approximations perform
well and will approach near MAP performance given sufficient
iterations, though not with equal speed or efficiency. As was
also shown in the Pgyjpbs error analysis of Fig. 3, we find that
the min approximation performs well. It remains the preferred
approximation since it also has a much lower computational
complexity compared to weighted.

B. EXIT Chart

To deepen the understanding of the MCMC and X-MCMC
detectors, an extrinsic information transfer (EXIT) chart is
presented in Fig. 9 with prior information randomly generated
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Fig. 8. Comparison of akx approximations (29), (24), (25), and (28) with all
X-MCMC components enabled including Gibbs excitation, output LLR con-
ditioning, and pseudo-convergence mitigation. Two plots are shown, the top
without turbo iterations (Turbo#1) and with five turbo iterations (Turbo#5).
Both are important as they show the effects without and with use of a priori
information. Parameters: 4 antennas, 64 QAM.
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Fig. 9. EXIT chart showing random and MMSE initialized original MCMC
methods versus X-MCMC components (‘x o p’ are flags representing inclu-
sion of Gibbs excitation, output LLR conditioning, and pseudo-convergence
mitigation). Parameters: 4 antennas, 64 QAM, Ej /Ny = 19dB, no coding.

as described in [29]. The EXIT chart is useful in evaluating
MCMC performance since it is independent of code choice
and shows both the ability of the detector to use input soft-
information and generate output soft-information [30], [31].
Given an amount of input information /, it shows how
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Fig. 10. Convergence analysis showing that X-MCMC converges quickly
to the ML solution which is placed as a reference line, though it has no
iterations. The number of parallel Gibbs samplers is specified in the legend
as ‘#x’. For X-MCMC, ‘x - p’ are flags representing inclusion of Gibbs exci-
tation and pseudo-convergence mitigation. Parameters: 4 antennas, 64 QAM,
Ep /Ny = 19dB, no coding.

much extrinsic output information /, a given method is able
to produce, therefore, EXIT charts provide complementary
analysis to detector-only BER curves which do not show the
quality of LLR output.

As expected, the output extrinsic information I, of the
X-MCMC detector improves as the excited Gibbs sampler,
output LLR conditioning, and pseudo-convergence enhance-
ments are included in the algorithm. The introduction of the
excited Gibbs sampler is the most important contribution as it
fixes the unusual EXIT curve shapes presented by the random
and MMSE initialized original MCMC methods, caused by
high SNR stalling. This unusual shape has also been observed
in [11]. The prolonged, flat shape with a sharp rise at the end
of the curves is produced by the large d** underestimate from
using (29). This means that the (@~ — d**)/(dk},0/2N)
is far overweighted compared to the prior A in (21). Once
I, > 0.8 the prior becomes strong enough to overcome the
imbalance at this SNR. Because an MMSE initialization only
provides the algorithm with a good starting point, it does not
change the underlying problem.

C. Convergence

One of X-MCMC'’s primary advantages is that it has a
fast convergence rate because it has no high SNR stalling
problem and avoids pseudo-convergence. This can be seen
in Fig. 10 where the hard-decision BER of several detectors
are compared as the number of Gibbs iterations increases.
The convergence time will generally become longer as the
number of antennas increase, the constellation size becomes
larger, and the channel becomes more correlated. Note that
the output LLR conditioning of X-MCMC is not shown in
the figure because scaling does not change the LLR sign and
therefore has no effect on the detector BER.

D. BER Performance

The BER curves of Fig. 11 confirm the relationships shown
in the EXIT chart of Fig. 9. There is an incremental improve-
ment in performance as each of the Gibbs excitation, pseudo-
convergence enhancement, and output LLR conditioning are
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Fig. 11. BER curves comparing MCMC methods versus X-MCMC

(‘x o p’ are flags representing inclusion of Gibbs excitation, output LLR
conditioning, and pseudo-convergence mitigation). Parameters: 4 antennas,
64 QAM.
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Fig. 12.  BER curves showing that all methods function at low SNR with

small constellation sizes, though X-MCMC is more efficient than previous
MCMC methods. Parameters: 4 antennas, 4 QAM.

included. As predicted by the EXIT chart, a 48 x48 X-MCMC
detector achieves near Max-MAP performance, and a smaller
30x30 detector is within 1dB. The most interesting feature
of these curves is the error floor seen in the X-MCMC
curves without output LLR conditioning. This is caused by
rare realizations with slow convergence that poorly converge
with the fixed number of Gibbs iterations provided. The LLR
overconfidence in the poorly converged cases are capable of
corrupting entire codewords even when representing a small
minority of realizations. For more details on how output LLR
conditioning resolves this effect see Subsection IV-B.

The most important observation in the remaining BER
figures is that the X-MCMC detector is capable of achieving
near Max-MAP performance under all conditions tested. This
is especially impressive at the maximum 802.11ac WiFi pro-
tocol size of 8 antenna MIMO with 256 QAM modulation
shown in Fig. 14. Compared to MMSE-Initialized MCMC
there is a massive >6 dB improvement. Similar results are
seen in Fig. 13 with X-MCMC again achieving Max-MAP
performance.

It is relatively easy to achieve near Max-MAP performance
on low-order modulation with low-SNR, as seen in Fig. 12 and
reported in [7] and [32]. Though MMSE-MCMC works under
these conditions, it is at a lower efficiency than X-MCMC.
This is predicted by our excited Gibbs derivation since the
poor approximation c?é‘égina] in (29) becomes more accurate at
lower SNRs and therefore the impact of stalling is limited.
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Fig. 13.  BER curves showing near Max-MAP performance for X-MCMC.
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Fig. 14. BER curves showing X-MCMC achieves near Max-MAP per-
formance (approximated with large K-Best) even at the maximum 802.11ac
MIMO and QAM sizes. Parameters: 8 antennas, 256 QAM.

E. Complexity Analysis

To quantify complexity we will use the total number of
multiplications as a metric. One can include more complex
operations in the analysis, such as exponential functions and
division by assuming a roughly equivalent number of multi-
plies [4], [33]. For the inverted exponential function used in
the probability calculation of (4), in [6] it is shown that a
lookup table (LUT) and adder can provide sufficient accuracy,
therefore, its complexity is sufficiently less than a multiplier
to be ignored. For the scaling operations of (30) and (31),
we will temporarily set the division equal to Cgiy multiplies.

Note that using the number of multiplies as a complexity
metric may be useful to roughly compare similar algorithms,
but it is insufficient to compare X-MCMC and K-Best in
particular. This is because a major contributor to K-Best
complexity is list-sorting [4] which cannot be measured with
a multiplication count. Therefore, a gate count from a VLSI
design of X-MCMC will be needed to make a full complexity
comparison with other MIMO detector techniques.

The proposed X-MCMC algorithm can be broken into
four components for complexity analysis: frontend process-
ing (FEP), backend processing (BEP), total number of bitwise
steps including all parallel Gibbs samplers, and each bitwise
step.

The FEP is used to calculate precomputed values, including
H'H and H'y, which simplifies each Gibbs sampler step [6].
Similarly, the BEP includes the calculation of the output
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curve. Parameters: 4 antennas, 64 QAM.

LLR (31). Thus the FEP and BEP complexity can be rep-
resented as Cpgp = (2N)3 + (2N)? and Cggp = Caiv + NM,
where N is the number of antennas, and M is the number
of bits in each complex constellation symbol. Note that the
complex valued matrix H can be represented by a real version
with dimension 2N x 2N and likewise for y with dimension
2N x 1. The BEP includes a single reciprocal operation to
compute the scaling factor which is assumed to be equivalent
to a division and then it is applied NM times.

The Gibbs sampler includes the total number of Gibbs
sampler bitwise steps multiplied by the complexity of each
step as in

Caibbs = (NM(2NM)?) x (2N +1+Ca)  (34)
where we assume that there are N M bitwise steps per iteration,
2NM iterations per Gibbs sampler, and 2N M parallel Gibbs
samplers are used. This number of iterations and parallel sam-
plers is sufficient to achieve near-MAP performance, as shown
in Fig. 13, depending on the channel and coding. Using
the implementation of [6] as a foundation for the X-MCMC
enhancements, the step calculation is dominated by a dot
product of length 2N and the division introduced by our
new excitation scaling factor akz* in (30). It is assumed that
the simple state machine necessary to implement the pseudo-
convergence strategy of Section V is of negligible complexity
as it requires no arithmetic operations.

It is clear that the division operation introduced to scale the
calculation of y in (30) can potentially have a large impact
on the leading complexity terms (8N*M?> + 4N3M3Cqy),
therefore, we have explored a simple estimation of the division
using a shift unit and n-bit LUT using the most significant
bits of the scaling term. In Fig. 15, it is shown that a
3-bit LUT is sufficient to nearly match the floating-point
division performance. This is not surprising as the scaling
terms themselves are only rough approximations of the local
and final error variances.

Since using a rough division approximation is acceptable,
we conclude that a division complexity of Cgiy ~ 1 is
appropriate. After this simplification, the X-MCMC algorithm
adds little additional complexity to each Gibbs step compared
to a standard MCMC detector while also significantly reducing
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the number of needed steps. Thus, the algorithm complexity
appears to be polynomial in N and scalable to large MIMO
sizes.

VII. CONCLUSION

We have presented a new derivation of the MCMC detector
which solves the high SNR stalling problem without use of
hybridization or heuristic temperature scaling terms. Output
LLR quality has been improved for poorly converged cases
by conditioning output confidence on sample list statistics.
Output LLR conditioning is shown to moderate soft-output
overconfidence and allow a low complexity fixed length Gibbs
sampler to be used in practice, eliminating error floors caused
by rare slowly converging realizations. This conditioning may
have application to other list based detectors such as list
sphere-decoding and K-Best. Additionally, we have identified
pseudo-convergence conditions which lower efficiency. The
proposed 1-bit randomization procedure is shown as a low
complexity alternative way to leave pseudo-convergence com-
pared to using a full random-walk restart. Results show that the
combined improvements allow near Max-MAP performance
at all SNR regimes with large numbers of antennas and high-
order modulation. This is true even with highly correlated,
WiFi TGn Model-D LOS channels which are significantly
more challenging than the Rayleigh channels with uncorrelated
i.i.d. Gaussian elements commonly used in the literature.
No heuristic optimizations are needed, making the proposed
method straightforward to effectively implement in practice.
A brief complexity analysis demonstrated that the X-MCMC
enhancements requires little additional complexity compared
to previous MCMC detectors while dramatically improving
performance. A VLSI implementations should be possible with
straightforward extensions of existing work.

MIMO sizes beyond our verified 8x8 sizes should be
possible within the constraints of the suggested polynomial
complexity growth of the X-MCMC algorithm. More corre-
lated channels than the WiFi TGn Model-D LOS channels are
possible [16], though with somewhat longer convergence times
requiring more Gibbs iterations.
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