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Abstract—We have developed a fast, scalable, and sequence
order-flexible protein structure search combining techniques
from information retrieval and big data with a novel approach to
encoding sequences of torsion angles. Along the way, we introduce
a new torsion angle plot without breaks in continuity while still
maintaining traditional torsion angle ranges, to assist in defining
separable regions of torsion angles. Subsequently, we introduce
a new heuristic we call run position encoding, for handling the
lack of specificity of items within character sequences containing
runs of repeats. Comparing our results to the output of the
CATH structural scan, response times are measured in seconds
as opposed to minutes and average RMSDs and TM-scores
are better. Our approach is a step towards a comprehensive
indexing of protein structures scalable to millions of entries.
Code and data are available at https://github.com/rayoub/rupee

I. INTRODUCTION

Proteins represent the functional end-product within the cen-
tral dogma of molecular biology [1]. As such, understanding
protein structure is a central goal within structural bioinfor-
matics. Protein structure determination, prediction, alignment,
and search all serve to advance this understanding. Below, we
present our new approach to a fast, scalable, and sequence
order-flexible protein structure search we refer to with the
cumbersome but catchy acronym of RUn Position Encoded
Encodings of residue descriptors (RUPEE).

For comparisons, we examine results from the CATHE-
DRAL structural scan [2] available at the CATH website [3].
In addition to recognizing domains in multidomain proteins,
CATHEDRAL also can be used to find structural neighbors
among CATH domains for an uploaded protein data bank
(PDB) file, that is, where an identifier is not provided that can
be used for retrieval of pre-calculated results. CATHEDRAL
is effective at this task but can take upwards of 10 minutes to
produce results against CATH s35 representatives.

Restricting our initial approach to protein domains, we have
indexed CATH v4.1 domains, consisting of 308,999 structures,
and developed a feature similar to CATHEDRAL that performs
a protein structure search based on a PDB file, returning results
in seconds rather than minutes. To evaluate RUPEE, we have
made comparisons to the output of CATHDERAL along two
dimensions, quality of results and response times. In both
cases, RUPEE performs better on average for the domains we
evaluated.
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Besides our approach to protein structure search, we in-
troduce a polar plot for torsion angles that may have wider
applicability in the study of protein structure. Further, the run
position encoding heuristic introduced below may have wider
applicability to algorithms for character sequences containing
long runs of repeats.

For the remainder of this paper, we first discuss some
related work to provide context for our approach followed
by a description of our method. We end with the results of
evaluation with CATHEDRAL along with an analysis and
conclusion.

II. RELATED WORK

Pairwise alignment involves finding a set of spatial rotations
and translations for two protein structures that minimizes
a distance metric. Most commonly, the root mean squared
deviation (RMSD) between a-carbons of aligned residues is
minimized.

The typical use case of aligning one protein structure to
another does not impose tight response time requirements. For
this reason, pairwise alignments can focus on accuracy. On the
other hand, a protein structure search can involve thousands
of comparisons and accuracy is often balanced against speed.
In this case, pairwise alignment is still useful for evaluating
the results of the search.

For pairwise alignment, Combinatorial Extensions (CE) [4]
and FATCAT [5] are among the most popular tools, repre-
senting rigid and flexible protein alignments, respectively. CE
performs a rigid alignment in order to minimize RMSD and
FATCAT allows for a constrained number of twists in the
protein chain in order to find a more flexible alignment before
minimizing RMSD.

Though CE and FATCAT standout as complimentary meth-
ods, rigid and flexible respectively, they are both limited by
being sequence order-dependent alignments as touched upon
in [6]. While they are not dependent on the specific sequence
of amino acids along the backbone, they are dependent on the
ordering of the a-carbons. Even this lesser form of depen-
dence can fail to account for divergence between homologous
proteins [7].

To address this, topological permutations such as circu-
lar permutations, segment-swapping and changing secondary



structures within homologous proteins have been examined
in [8]. Subsequently, Combinatorial Extension for Circular
Permutations (CE-CP) [9], an extension to CE, was developed
to address circular permutations specifically.

Whereas pairwise alignments often only depend on the
sequence order of a-carbons, protein structure searches often
introduce a further dependence on the specific sequence of
amino acids. This approach often takes the form of clus-
tering proteins based on their amino acid sequences and
pre-calculating results for pairwise alignments among cluster
representatives. Then, these pre-calculated results are used
for filtering the number of structures used for comparisons
against a query protein. The exact formula for combining the
use of representatives and pre-calculated results varies from
system to system. However, all systems using this approach
share the same disadvantage, an indirect dependence on amino
acid sequences through the choice of representatives based on
clustering sequences. In the absence of a reliance on repre-
sentatives and pre-calculated results, and without sacrificing
accuracy, response times suffer greatly, often taking upwards
of an hour for queries to complete.

For protein structure searches, VAST [10] and the FATCAT
server [11] are among the most popular. If given a known
protein domain, VAST can return structural neighbors in
seconds based on pre-calculated results. However, if uploading
a PDB file where pre-calculated results are not used, response
times for VAST can exceed 30 minutes. Similarly, the FATCAT
server, that does not use pre-calculated results, can take
over an hour to send results for a search against PDB-90
representatives [6].

The PhyreStorm server [12] provides another notable pro-
tein structure search. Here too, it depends on PDB pre-
calculated pairwise comparisons among PDB-40 cluster repre-
sentatives [6]. Notably, PhyreStorm returns good results within
minutes based on an uploaded PDB file.

Given the above, there remains a need for a sequence order-
independent protein structure search. For the serendipitous
exploration of relations between protein structures performed
in the trenches, this search should be fast. Moreover, with
a 10% yearly growth rate of solved structures deposited in
the PDB [13], this search should be scalable. At a minimum,
RUPEE takes a significant step in this direction as will be
shown below.

III. METHODS

Broadly, we define a linear encoding of protein structure and
convert this linear encoding into a bag of features amenable
to big data processing. Protein structure searches that use
linear encodings are not unique [14]-[16]. The novelty of
our approach lies in its remarkable performance given its
simplicity. Additionally, elements of our approach can be
isolated and found to be useful in their own right.

A. Regions of Torsion Angles

Our first step towards a linear encoding of protein structure
is to encode separable regions of permissible torsion angles,
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Fig. 1. Ramachandran plot of randomly sampled torsion angles

but first we introduce a new plot of torsion angles better suited
to this effort.

Torsion angles, first developed in [17] by Sasisekharan in
the research group of Ramachandran, have seen near universal
acceptance as the primary determinate of protein structure.
Likewise, the ubiquitous Ramachandran plot [18] is the most
widely used visualization of permissible torsion angle regions.

Despite the utility and familiarity of Ramachandran plots,
they represent angular data using a square plot better suited
for scalar data. This leads to the unwieldy arrangement where
the top part of the plot is continuous with the bottom and the
left is continuous with the right.

To identify regions of torsion angles, we randomly sampled
10,000 residues from high-resolution, CATH s35 representa-
tives to account for precision and redundancy, respectively. A
Ramachandran plot of the sampled torsions angles is shown
in Fig. 1. As can be seen, a single cluster of 3-strand residues
is represented, at least to some extent, at all 4 corners of the
Ramachandran plot.

This continuity problem was partially addressed in [19]
using wrapped and mirrored plots. Both wrapped and mirrored
plots take advantage of the sparsely populated vertical strip of
the Ramachandran plot at ¢ = 0° and the horizontal strip at
1» = —120°. However, with larger samples of torsion angles,
the vertical strip remains sparse whereas the horizontal strip
becomes less sparse. We found the use of a polar plot resolves
this elegantly by only requiring one break in continuity along
the ¢ = 0° vertical.

Fig. 2 plots the same torsion angles appearing in Fig. 1
using the polar plot. In this plot, ¢ corresponds to the radius
r and v corresponds to the angle 6 in traditional polar plots.
Notice the -strand residues appearing at the 4 corners of the
Ramachandran plot now appear in one continuous region of
the polar plot centered at ¢ = £180° and ¢ = +180°.
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TABLE I
DSSP CODE/DESCRIPTOR MAP

DSSP Codes SS Descriptors
G, H, I helix 1-4

E strand 5-7

S, C bend, coil  8-10

T turn 11

B bridge 12

B. Linear Encoding of Protein Structure

The polar plot described above is used to define torsion
angle regions for each secondary structure assignment. The
eight DSSP secondary structure assignment codes defined
in [20] divide into three groups in which torsion angle regions
are roughly the same: ‘G’,’H’,‘’, and ‘T’ corresponding to
310-helix, a-helix, 7-helix, and turn, respectively; ‘E’ and ‘B’
corresponding to S-strand and [-bridge, respectively; and ‘S’
and ‘C’ corresponding to bend and coil, respectively.

Polar plots for each group of DSSP assignment codes are
shown in Fig. 3 with the exception of turns and bridges, which
each receive a single descriptor designation independent of
torsion angles. For each polar plot, there are well-defined
continuous regions of torsion angles that remain continuous
in the plots. The only exception is found in the bends and coil
plot at ¢ = 60° between ¢ = —180° and ¢ = 0°.

TABLE I summarizes the mapping between region and
secondary structure assignment combinations and ranges of
integer valued descriptors. The specific mapping was arrived
at primarily based on quality of results.

Our initial use of Ramachandran plots to identify regions
resulted in the frequent case of highly similar domains from
the same CATH s95 clusters being considered significantly
different. Alignment of these domains in PyMOL [21] and the
development of a script to label residues with their descriptors
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Fig. 3. Polar plots of randomly sampled torsion angles with designated
descriptors for region and DSSP code combinations are shown. Descriptors
for turns and bridges are not shown since those are not dependent on region.

showed that slight differences in structure often resulted in
distinct descriptors being assigned to aligned residues. Once
we defined regions using the less confusing polar plots, this
discrepancy was no longer observed.

As an example of our linear encoding, the following se-
quence of descriptors represents a 3-turn-3 motif followed by
bends and coil.

(5,5,5,5,5,11,11,5,5,5,5,5,8,8,10,9 (1

As noted in [22], secondary structure assignments for ter-
mini are not always consistent among the variety of secondary
structure assignment tools. We also observed this to be the case
for DSSP assignments across homologous domains. Here, we
introduce a heuristic we call secondary structure extension
(SSE) to address this variance.



SSE iterates a sequence of descriptors once in both the
forward and backward directions. Whenever a helix or strand
descriptor is encountered, the next descriptor receives the same
assignment as the preceding residue if its torsion angles match
the region of the preceding residue, regardless of its own
secondary structure assignment.

SSE performed on the sequence found in (1) gives the
sequence in (2). Notice, the subsequence [8,8] in (1), cor-
responding to bends with torsion angles falling in the densest
region of S-strands, becomes [5,5] in (2).

[5,5,5,5,5,11,11,5,5,5,5,5,5,5,10,9] )

Though [22] lends some support to this heuristic, we use it
primarily based on its performance.

C. Bag representation of protein structure

Once a linear encoding for a protein structure is obtained, it
needs to be further transformed into a representation suitable
for fast and scalable similarity comparisons to other struc-
tures. The processing of text documents within Information
Retrieval (IR) has long been used to satisfy these requirements
using bag representations. There are two distinct categories
of representations for documents, syntactic and semantic, and
much of the research applying IR to protein structure search
has focused on the latter [23]-[25].

We have adapted the syntactic approach to documents, often
referred to as shingling [26], to our linear encoding of protein
structure. We transform a linear sequence of descriptors into a
multiset of shingles consisting of 4 consecutive descriptors.
The overlap between shingles ensures some of the order
information within the original sequence is preserved in the
bag while maintaining sequence order-flexibility.

By shingling, we obtain a multiset of ordered lists from an
ordered list of numbers. As an example, the sequence in (2)
is transformed into the following bag of shingles.

{[5,5,5,5],[5,5,5,5],[5,5,5,11], [5, 5, 11, 11],
5,11,11,5],[11,11,5,5],[11,5,5,5], 5,5, 5, 5],
5,5,5,5],[5,5,5,5], [5,5,5,5], 5,5, 5,10,
5,5,10,9] }

3)

Next, each shingle s is hashed to an integer as shown in (4).
The hash function used is a simplification of the hash function
used in the Rabin-Karp algorithm [27]. The prime number
13 is used as the base since it is large enough to spread the
descriptor values out in hash space without collisions.

Shash = S1 X 133 4+ 59 x 132 4+ 53 x 13 + 34 4)

Subsequently, the multiset in (3) becomes the following bag
of integers.
{11900, 11900, 11906, 11984, 12992,
26096, 25082, 11900, 11900, 11900, (5)
11900, 11905, 11969 }

This final step completes the transformation of an ordered
list of descriptors to a multiset of integers that still retains
some of the order information present in the original list.

Notice in (5) the value 11900, corresponding to the shin-
gle [5,5,5,5], occurs frequently indicating the presence of
a [-strand. Since most proteins are dominated by regular
secondary structure, the abundance of shingles for S-strands
as well as the three types of helices, end up dominating
comparisons. Moreover, since shingles are limited in length,
this situation allows for structures with many short S-strands to
match structures with fewer long S-strands. The same situation
applies to helices.

To address this lack of specificity, we introduce a heuristic
we call run position encoding (RPE). To distinguish between
short and long runs, thereby increasing the specificity of the
shingles, we add a factor of 10° to each shingle hash as a
function of the first residue’s position in a run .

) if ¢ < [1/2]
I —1—1 otherwise

runfactor(i) = { (6)
where 7 is zero-based and [ is the length of the run. Multiplying
by 10° places the run factor as the left-most digit in the hash
to avoid interference with the digits provided by the hash in
(4). This placement is also convenient for visual inspection,
since the run factor is isolated as the left-most digit.

The run factors for the sequence in (2) are

[0,1,2,1,0,0,0,0,1,2,3,2,1,0,0,0]. @)
Applied to the bag of integers in (5) gives

{ 011900, 111900, 211906, 111984, 012992,
026096, 025082, 011900, 111900, 211900, (8)
311900, 211905, 111969 },

where the leading zero run factors are shown for clarity.

This pyramidal approach preserves matches at the bound-
aries between secondary structure runs and loops that would
not otherwise be preserved in the presence of differences in
run lengths of one or more.

To see why RPE run factors are calculated at the descriptor
level and factored in at the shingle level, consider shingling
a list of RPE run factors themselves, which mirrors applying
them at the descriptor level.

The sequence of RPE factors
[0,1,2,3,2,1,0] becomes
{[0,1,2,3],]1,2,3,2],[2,3,2,1],[3,2,1,0] }
and with one less element
[0,1,2,2,1,0] becomes
{[0,1,2,2],[1,2,2,1],[2,2,1,0] }
Notice above, there is not a single shingle match for this one-

off difference in run length. Now consider shingling a list
of RPE factors, but this time all elements in the shingle are



set equal to the first element in the shingle, which mirrors
applying them at the shingle level.

The sequence of RPE factors
[0,1,2,3,2,1,0] becomes
{]0,0,0,0],[1,1,1,1],[2,2,2,2],[3,3,3,3] }
and with one less element
[0,1,2,2,1,0] becomes
{10,0,0,0],[1,1,1,1],[2,2,2,2] }

In this latter case, a one-off difference in run length results
in one less shingle match while still serving to increase the
specificity of the shingles.

Now that we have a representation of a protein structure as
a bag of integers, similarity between any two structures a and
b is defined as the Jaccard similarity [28] for multisets,

>, min(ag, by)
o> maz(ag, b;)’
where ¢ ranges over all possible shingle hashes s; and a; and
b; give the counts of shingle hash s; in structures a and b,
respectively.

J(a,b) €))

D. Fast and scalable structure search

In IR, the bag of shingles representation of documents is
used in the near dupe clustering of documents [29]. One
application of near dupe clustering is in the review stage of
Electronic-Discovery [30], which is the most expensive stage
in a discovery process. Often millions of documents must be
examined by a staff of attorneys to make a reasonable effort
at providing all documents relevant to the discovery request.
Grouping documents into near dupe clusters and assigning
all documents within a cluster to a single reviewer reduces
duplication of effort.

In the case of near dupe clustering, each document must
be compared to every other document in the collection, taking
quadratic time. For this task, min-hashing [31] and locality
sensitive hashing (LSH) [32] can be combined to reduce this
to subquadratic time. Although we do not near dupe cluster
domains, we can still leverage the techniques of min-hashing
and LSH to speed up protein structure search by a large
constant factor.

Min-hashing is used to randomly select items from a set of
items by repeatedly randomly hashing the items, sorting the
hashes into a list, and then selecting the minimum item in
each permuted list. If the same random permutation of items
is performed on each set of items in a collection, the key result
is that the probability of matching min-hashes is equal to the
Jaccard similarity [31]. In order to approximate the Jaccard
similarity for a given pair of sets, a sufficient number of min-
hashes must be obtained.

In our case, the items are bags of shingle hashes for protein
structures from which we obtain 60 min-hashes as described
in [33]. Given the key result above, the Jaccard similarity
can now be approximated by the proportion of matching min-
hashes.

Weighted min-hashing [34] with integral weights is an
extension to min-hashing that can be applied to multisets
where the frequency of a hash within a multiset is used as
its weight.

Next, we use the LSH banding technique as described
in [33]. The key result of the banding technique is that if any
band positions are a match for a given pair of structures, the
probability that a specific similarity threshold has been met
can be calculated. We use 20 bands of 3-min-hashes where
the probability of a Jaccard similarity of 60% or greater is
approximately 99%. Banding allows the problem of finding
similar items to be parallelized across bands since all that is
needed for a match is a single band match.

Together, min-hashing and LSH allow for a fast and scalable
protein structure search based on run position encoded shingles
of residue descriptors.

IV. RESULTS

Protein structure searches can be evaluated using pairwise
alignment scores or by comparison of results against the hier-
archy of a protein structure classification database. The RMSD
of aligned residues is widely used in evaluations but is not
perfectly suited to full-length comparisons between structures
since distances between unaligned residues are not factored
into the score. On the other hand, the TM-score [35] takes all
residues into account. Among protein structure classification
databases, SCOPe [36] and CATH [3] are the most popular.

We evaluate RUPEE against the results of the CATHE-
DRAL structural scan available at the CATH website using
RMSD scores and TM-scores provided as outputs from CE-
CP and FATCAT pairwise alignments. We also evaluate the
precision of RUPEE results against the topology and super-
family levels of the CATH hierarchy.

Given that CATHEDRAL does not depend on pre-calculated
results but yet yields decent response times, it is well-suited for
a fair comparison against RUPEE. Aside from that, the CATH
web site that host CATHEDRAL is among the most popu-
lar protein structure classification databases that is currently
maintained and regularly updated with new additions to the
PDB. Given the integration of CATHEDRAL into the CATH
website and with the CATH v4.1 database, it is convenient
to compare precision of results against different levels of the
CATH hierarchy.

All evaluations are based on structure searches for 94
superfamily representatives of the 100 most diverse CATH
superfamilies. We only used superfamily representatives for
which CATHEDRAL returned greater than 50 results and also
returned the query domain as the first ranked result. This
restriction accounts for possible bugs in CATHEDRAL and
helps ensure a fair comparison.

For CATHEDRAL, one CATH superfamily representa-
tive (1jfbAOO for 1.10.630.10) only returned 14 results.
For 5 other CATH superfamily representatives (3sjmA00,
3s0vA02, 3zml1A00, 4cayB00, 4q4w300 for 3.40.50.720,
1.10.10.60, 2.10.25.10, 3.90.190.10, 1.10.20.10, 2.60.120.20,
respectively), CATHEDRAL failed to return the query domain
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Fig. 4. Response times by residue count for RUPEE and CATHEDRAL

as the first ranked result. For all diverse superfamily represen-
tatives, RUPEE returned greater than 50 results and always
returned the query domain as the first ranked result.

The search results among both tools are limited to CATH
s35 representatives since this is what is returned by the
CATHEDRAL structural scan. The plots in Fig. 5 and Fig. 6
are for the top 50 ranked results. For perspective, the minimum
number of domains included in a diverse CATH superfamily is
573, the maximum is 19,468, and the average is 1,646. Among
CATH 535 representatives, the minimum number of domains
included in a diverse CATH superfamily is 1, the maximum
is 707, and the average is 95.

A plot comparing response times by residue count among
the two systems is shown in Fig. 4. CATHEDRAL returns
results for searches against CATH s35 representatives in
roughly between 30 seconds and 45 minutes depending on the
residue count whereas RUPEE returns results against CATH
$35 representatives in roughly 1 second or less, regardless of
residue count, while running on an 8-core laptop. For a more
balanced understanding of these numbers, the average number
of residues in a CATH domain is 162, for which a vertical
reference line is shown in Fig. 4. This corresponds to the
casual observation that CATHEDRAL usually returns results
in somewhere between 1 and 10 minutes.

Fig. 5 shows average cumulative values for each rank and
proceeding ranks averaged over all searches. Both RMSD
and TM-score values are shown, provided as outputs from
CE-CP and FATCAT pairwise alignments. For RMSD, where
lower scores are better, results are nearly identical, with
RUPEE having a small advantage for ranks greater than 5 and
CATHEDRAL having a smaller advantage for ranks less than
5. For TM-score, where higher scores are better, RUPEE has
a clear advantage for ranks greater than 5 and CATHEDRAL
has a small advantage for ranks less than 5.
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References lines are drawn in the TM-score plot in Fig. 5 at
TM-scores of 0.5 and 0.17. A TM-score above 0.5 is a good
predictor for whether or not two domains are in the same
fold [37]. In CATH, the topology level of the hierarchy cor-
responds to fold. TM-scores greater than 0.17 are considered
potentially meaningful whereas TM-scores less than 0.17 are
considered to be due to random alignment [35]. Both RUPEE
and CATHEDRAL TM-scores remain well above this level for
ranks up to 50.

Fig. 6 shows precision (i.e. positive predictive value or PPV)
averaged over all searches, where positive results are defined
as domains in the same topology or the same superfamily as
the query domain. As review, precision is defined as

TP
TP+ FP

where T'P is the number of true positives and F'P is the
number of false positives. The sum of true positives and false
positives is the total number of predicted positives.

For ranks greater than 5, RUPEE has a clear advantage
for topology precision and a large advantage for superfam-
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ily precision. For both topology and superfamily precision,
CATHEDRAL has a small advantage for ranks less than 5.

Overall, RUPEE has a clear advantage for ranks greater
than 5 and a large advantage when it comes to performance,
especially given that RUPEE was run on an 8-core laptop and
CATHEDRAL results were obtained from the website where
CATHEDRAL runs in a server environment.

V. CONCLUSION

With the growth rate of solved structures deposited in
the PDB, the need for a fast and scalable structure search
is growing. Using run position encoded shingles of residue
descriptors combined with min-hashing and LSH, we have
shown that RUPEE provides good results in seconds running
on an 8-core laptop against the RUPEE index in a PostgresQL
database, serviced by a single thread. RUPEE response times
may be further improved by the structural near dupe clustering
of domains for use in a filtering step not dependent on clusters
derived from sequence data.

Aside from response times and scalability, there is room for
improvement in RUPEE, especially with respect to encoding
unstructured regions of proteins, where it is predicted that
30% of all proteins contain large, unstructured regions [38].
For short loops containing simple motifs such as the §-turn-g3
motif, shingle matches from these regions correctly factor into
RUPEE similarity comparisons. However, with the longer and
more complex loop and tail regions, random matching and
mismatching takes a toll further down in the list of ranked
results.

In addition to RUPEE, we have introduced two items that
may find wider applicability. The first item is the introduction
of a new polar torsion angle plot that maintains the continuity
of permissible torsion angle regions while maintaining the
familiar torsion angle ranges used in Ramachandran plots. The

next item is the run position encoding heuristic, which may
find wider applicability due to it simplicity and generality.
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