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Abstract—We have developed a fast, scalable, and sequence
order-flexible protein structure search combining techniques
from information retrieval and big data with a novel approach to
encoding sequences of torsion angles. Along the way, we introduce
a new torsion angle plot without breaks in continuity while still
maintaining traditional torsion angle ranges, to assist in defining
separable regions of torsion angles. Subsequently, we introduce
a new heuristic we call run position encoding, for handling the
lack of specificity of items within character sequences containing
runs of repeats. Comparing our results to the output of the
CATH structural scan, response times are measured in seconds
as opposed to minutes and average RMSDs and TM-scores
are better. Our approach is a step towards a comprehensive
indexing of protein structures scalable to millions of entries.
Code and data are available at https://github.com/rayoub/rupee

I. INTRODUCTION

Proteins represent the functional end-product within the cen-

tral dogma of molecular biology [1]. As such, understanding

protein structure is a central goal within structural bioinfor-

matics. Protein structure determination, prediction, alignment,

and search all serve to advance this understanding. Below, we

present our new approach to a fast, scalable, and sequence

order-flexible protein structure search we refer to with the

cumbersome but catchy acronym of RUn Position Encoded

Encodings of residue descriptors (RUPEE).

For comparisons, we examine results from the CATHE-

DRAL structural scan [2] available at the CATH website [3].

In addition to recognizing domains in multidomain proteins,

CATHEDRAL also can be used to find structural neighbors

among CATH domains for an uploaded protein data bank

(PDB) file, that is, where an identifier is not provided that can

be used for retrieval of pre-calculated results. CATHEDRAL

is effective at this task but can take upwards of 10 minutes to

produce results against CATH s35 representatives.

Restricting our initial approach to protein domains, we have

indexed CATH v4.1 domains, consisting of 308,999 structures,

and developed a feature similar to CATHEDRAL that performs

a protein structure search based on a PDB file, returning results

in seconds rather than minutes. To evaluate RUPEE, we have

made comparisons to the output of CATHDERAL along two

dimensions, quality of results and response times. In both

cases, RUPEE performs better on average for the domains we

evaluated.

Besides our approach to protein structure search, we in-

troduce a polar plot for torsion angles that may have wider

applicability in the study of protein structure. Further, the run

position encoding heuristic introduced below may have wider

applicability to algorithms for character sequences containing

long runs of repeats.

For the remainder of this paper, we first discuss some

related work to provide context for our approach followed

by a description of our method. We end with the results of

evaluation with CATHEDRAL along with an analysis and

conclusion.

II. RELATED WORK

Pairwise alignment involves finding a set of spatial rotations

and translations for two protein structures that minimizes

a distance metric. Most commonly, the root mean squared

deviation (RMSD) between α-carbons of aligned residues is

minimized.

The typical use case of aligning one protein structure to

another does not impose tight response time requirements. For

this reason, pairwise alignments can focus on accuracy. On the

other hand, a protein structure search can involve thousands

of comparisons and accuracy is often balanced against speed.

In this case, pairwise alignment is still useful for evaluating

the results of the search.

For pairwise alignment, Combinatorial Extensions (CE) [4]

and FATCAT [5] are among the most popular tools, repre-

senting rigid and flexible protein alignments, respectively. CE

performs a rigid alignment in order to minimize RMSD and

FATCAT allows for a constrained number of twists in the

protein chain in order to find a more flexible alignment before

minimizing RMSD.

Though CE and FATCAT standout as complimentary meth-

ods, rigid and flexible respectively, they are both limited by

being sequence order-dependent alignments as touched upon

in [6]. While they are not dependent on the specific sequence

of amino acids along the backbone, they are dependent on the

ordering of the α-carbons. Even this lesser form of depen-

dence can fail to account for divergence between homologous

proteins [7].

To address this, topological permutations such as circu-

lar permutations, segment-swapping and changing secondary







SSE iterates a sequence of descriptors once in both the

forward and backward directions. Whenever a helix or strand

descriptor is encountered, the next descriptor receives the same

assignment as the preceding residue if its torsion angles match

the region of the preceding residue, regardless of its own

secondary structure assignment.

SSE performed on the sequence found in (1) gives the

sequence in (2). Notice, the subsequence [ 8, 8 ] in (1), cor-

responding to bends with torsion angles falling in the densest

region of β-strands, becomes [ 5, 5 ] in (2).

[ 5, 5, 5, 5, 5, 11, 11, 5, 5, 5, 5, 5, 5, 5, 10, 9 ] (2)

Though [22] lends some support to this heuristic, we use it

primarily based on its performance.

C. Bag representation of protein structure

Once a linear encoding for a protein structure is obtained, it

needs to be further transformed into a representation suitable

for fast and scalable similarity comparisons to other struc-

tures. The processing of text documents within Information

Retrieval (IR) has long been used to satisfy these requirements

using bag representations. There are two distinct categories

of representations for documents, syntactic and semantic, and

much of the research applying IR to protein structure search

has focused on the latter [23]–[25].

We have adapted the syntactic approach to documents, often

referred to as shingling [26], to our linear encoding of protein

structure. We transform a linear sequence of descriptors into a

multiset of shingles consisting of 4 consecutive descriptors.

The overlap between shingles ensures some of the order

information within the original sequence is preserved in the

bag while maintaining sequence order-flexibility.

By shingling, we obtain a multiset of ordered lists from an

ordered list of numbers. As an example, the sequence in (2)

is transformed into the following bag of shingles.

{ [5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 11], [5, 5, 11, 11],

[5, 11, 11, 5], [11, 11, 5, 5], [11, 5, 5, 5], [5, 5, 5, 5],

[5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 10],

[5, 5, 10, 9] }

(3)

Next, each shingle s is hashed to an integer as shown in (4).

The hash function used is a simplification of the hash function

used in the Rabin-Karp algorithm [27]. The prime number

13 is used as the base since it is large enough to spread the

descriptor values out in hash space without collisions.

shash = s1 × 133 + s2 × 132 + s3 × 13 + s4 (4)

Subsequently, the multiset in (3) becomes the following bag

of integers.

{ 11900, 11900, 11906, 11984, 12992,

26096, 25082, 11900, 11900, 11900,

11900, 11905, 11969 }

(5)

This final step completes the transformation of an ordered

list of descriptors to a multiset of integers that still retains

some of the order information present in the original list.

Notice in (5) the value 11900, corresponding to the shin-

gle [5, 5, 5, 5], occurs frequently indicating the presence of

a β-strand. Since most proteins are dominated by regular

secondary structure, the abundance of shingles for β-strands

as well as the three types of helices, end up dominating

comparisons. Moreover, since shingles are limited in length,

this situation allows for structures with many short β-strands to

match structures with fewer long β-strands. The same situation

applies to helices.

To address this lack of specificity, we introduce a heuristic

we call run position encoding (RPE). To distinguish between

short and long runs, thereby increasing the specificity of the

shingles, we add a factor of 105 to each shingle hash as a

function of the first residue’s position in a run i.

runfactor(i) =

{

i if i < bl/2c

l − i− 1 otherwise
(6)

where i is zero-based and l is the length of the run. Multiplying

by 105 places the run factor as the left-most digit in the hash

to avoid interference with the digits provided by the hash in

(4). This placement is also convenient for visual inspection,

since the run factor is isolated as the left-most digit.

The run factors for the sequence in (2) are

[ 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0 ]. (7)

Applied to the bag of integers in (5) gives

{ 011900, 111900, 211906, 111984, 012992,

026096, 025082, 011900, 111900, 211900,

311900, 211905, 111969 },

(8)

where the leading zero run factors are shown for clarity.

This pyramidal approach preserves matches at the bound-

aries between secondary structure runs and loops that would

not otherwise be preserved in the presence of differences in

run lengths of one or more.

To see why RPE run factors are calculated at the descriptor

level and factored in at the shingle level, consider shingling

a list of RPE run factors themselves, which mirrors applying

them at the descriptor level.

The sequence of RPE factors

[ 0, 1, 2, 3, 2, 1, 0 ] becomes

{ [0, 1, 2, 3], [1, 2, 3, 2], [2, 3, 2, 1], [3, 2, 1, 0] }

and with one less element

[ 0, 1, 2, 2, 1, 0 ] becomes

{ [0, 1, 2, 2], [1, 2, 2, 1], [2, 2, 1, 0] }

Notice above, there is not a single shingle match for this one-

off difference in run length. Now consider shingling a list

of RPE factors, but this time all elements in the shingle are



set equal to the first element in the shingle, which mirrors

applying them at the shingle level.

The sequence of RPE factors

[ 0, 1, 2, 3, 2, 1, 0 ] becomes

{ [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3] }

and with one less element

[ 0, 1, 2, 2, 1, 0 ] becomes

{ [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2] }

In this latter case, a one-off difference in run length results

in one less shingle match while still serving to increase the

specificity of the shingles.

Now that we have a representation of a protein structure as

a bag of integers, similarity between any two structures a and

b is defined as the Jaccard similarity [28] for multisets,

J(a, b) =

∑

i
min(ai, bi)

∑

i
max(ai, bi)

, (9)

where i ranges over all possible shingle hashes si and ai and

bi give the counts of shingle hash si in structures a and b,
respectively.

D. Fast and scalable structure search

In IR, the bag of shingles representation of documents is

used in the near dupe clustering of documents [29]. One

application of near dupe clustering is in the review stage of

Electronic-Discovery [30], which is the most expensive stage

in a discovery process. Often millions of documents must be

examined by a staff of attorneys to make a reasonable effort

at providing all documents relevant to the discovery request.

Grouping documents into near dupe clusters and assigning

all documents within a cluster to a single reviewer reduces

duplication of effort.

In the case of near dupe clustering, each document must

be compared to every other document in the collection, taking

quadratic time. For this task, min-hashing [31] and locality

sensitive hashing (LSH) [32] can be combined to reduce this

to subquadratic time. Although we do not near dupe cluster

domains, we can still leverage the techniques of min-hashing

and LSH to speed up protein structure search by a large

constant factor.

Min-hashing is used to randomly select items from a set of

items by repeatedly randomly hashing the items, sorting the

hashes into a list, and then selecting the minimum item in

each permuted list. If the same random permutation of items

is performed on each set of items in a collection, the key result

is that the probability of matching min-hashes is equal to the

Jaccard similarity [31]. In order to approximate the Jaccard

similarity for a given pair of sets, a sufficient number of min-

hashes must be obtained.

In our case, the items are bags of shingle hashes for protein

structures from which we obtain 60 min-hashes as described

in [33]. Given the key result above, the Jaccard similarity

can now be approximated by the proportion of matching min-

hashes.

Weighted min-hashing [34] with integral weights is an

extension to min-hashing that can be applied to multisets

where the frequency of a hash within a multiset is used as

its weight.

Next, we use the LSH banding technique as described

in [33]. The key result of the banding technique is that if any

band positions are a match for a given pair of structures, the

probability that a specific similarity threshold has been met

can be calculated. We use 20 bands of 3-min-hashes where

the probability of a Jaccard similarity of 60% or greater is

approximately 99%. Banding allows the problem of finding

similar items to be parallelized across bands since all that is

needed for a match is a single band match.

Together, min-hashing and LSH allow for a fast and scalable

protein structure search based on run position encoded shingles

of residue descriptors.

IV. RESULTS

Protein structure searches can be evaluated using pairwise

alignment scores or by comparison of results against the hier-

archy of a protein structure classification database. The RMSD

of aligned residues is widely used in evaluations but is not

perfectly suited to full-length comparisons between structures

since distances between unaligned residues are not factored

into the score. On the other hand, the TM-score [35] takes all

residues into account. Among protein structure classification

databases, SCOPe [36] and CATH [3] are the most popular.

We evaluate RUPEE against the results of the CATHE-

DRAL structural scan available at the CATH website using

RMSD scores and TM-scores provided as outputs from CE-

CP and FATCAT pairwise alignments. We also evaluate the

precision of RUPEE results against the topology and super-

family levels of the CATH hierarchy.

Given that CATHEDRAL does not depend on pre-calculated

results but yet yields decent response times, it is well-suited for

a fair comparison against RUPEE. Aside from that, the CATH

web site that host CATHEDRAL is among the most popu-

lar protein structure classification databases that is currently

maintained and regularly updated with new additions to the

PDB. Given the integration of CATHEDRAL into the CATH

website and with the CATH v4.1 database, it is convenient

to compare precision of results against different levels of the

CATH hierarchy.

All evaluations are based on structure searches for 94

superfamily representatives of the 100 most diverse CATH

superfamilies. We only used superfamily representatives for

which CATHEDRAL returned greater than 50 results and also

returned the query domain as the first ranked result. This

restriction accounts for possible bugs in CATHEDRAL and

helps ensure a fair comparison.

For CATHEDRAL, one CATH superfamily representa-

tive (1jfbA00 for 1.10.630.10) only returned 14 results.

For 5 other CATH superfamily representatives (3sjmA00,

3sovA02, 3zm1A00, 4cayB00, 4q4w300 for 3.40.50.720,

1.10.10.60, 2.10.25.10, 3.90.190.10, 1.10.20.10, 2.60.120.20,

respectively), CATHEDRAL failed to return the query domain
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Fig. 4. Response times by residue count for RUPEE and CATHEDRAL

as the first ranked result. For all diverse superfamily represen-

tatives, RUPEE returned greater than 50 results and always

returned the query domain as the first ranked result.

The search results among both tools are limited to CATH

s35 representatives since this is what is returned by the

CATHEDRAL structural scan. The plots in Fig. 5 and Fig. 6

are for the top 50 ranked results. For perspective, the minimum

number of domains included in a diverse CATH superfamily is

573, the maximum is 19,468, and the average is 1,646. Among

CATH s35 representatives, the minimum number of domains

included in a diverse CATH superfamily is 1, the maximum

is 707, and the average is 95.

A plot comparing response times by residue count among

the two systems is shown in Fig. 4. CATHEDRAL returns

results for searches against CATH s35 representatives in

roughly between 30 seconds and 45 minutes depending on the

residue count whereas RUPEE returns results against CATH

s35 representatives in roughly 1 second or less, regardless of

residue count, while running on an 8-core laptop. For a more

balanced understanding of these numbers, the average number

of residues in a CATH domain is 162, for which a vertical

reference line is shown in Fig. 4. This corresponds to the

casual observation that CATHEDRAL usually returns results

in somewhere between 1 and 10 minutes.

Fig. 5 shows average cumulative values for each rank and

proceeding ranks averaged over all searches. Both RMSD

and TM-score values are shown, provided as outputs from

CE-CP and FATCAT pairwise alignments. For RMSD, where

lower scores are better, results are nearly identical, with

RUPEE having a small advantage for ranks greater than 5 and

CATHEDRAL having a smaller advantage for ranks less than

5. For TM-score, where higher scores are better, RUPEE has

a clear advantage for ranks greater than 5 and CATHEDRAL

has a small advantage for ranks less than 5.
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Fig. 5. Scoring for RUPEE and CATHEDRAL for ranked results among
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References lines are drawn in the TM-score plot in Fig. 5 at

TM-scores of 0.5 and 0.17. A TM-score above 0.5 is a good

predictor for whether or not two domains are in the same

fold [37]. In CATH, the topology level of the hierarchy cor-

responds to fold. TM-scores greater than 0.17 are considered

potentially meaningful whereas TM-scores less than 0.17 are

considered to be due to random alignment [35]. Both RUPEE

and CATHEDRAL TM-scores remain well above this level for

ranks up to 50.

Fig. 6 shows precision (i.e. positive predictive value or PPV)

averaged over all searches, where positive results are defined

as domains in the same topology or the same superfamily as

the query domain. As review, precision is defined as

TP

TP + FP

where TP is the number of true positives and FP is the

number of false positives. The sum of true positives and false

positives is the total number of predicted positives.

For ranks greater than 5, RUPEE has a clear advantage

for topology precision and a large advantage for superfam-
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ily precision. For both topology and superfamily precision,

CATHEDRAL has a small advantage for ranks less than 5.

Overall, RUPEE has a clear advantage for ranks greater

than 5 and a large advantage when it comes to performance,

especially given that RUPEE was run on an 8-core laptop and

CATHEDRAL results were obtained from the website where

CATHEDRAL runs in a server environment.

V. CONCLUSION

With the growth rate of solved structures deposited in

the PDB, the need for a fast and scalable structure search

is growing. Using run position encoded shingles of residue

descriptors combined with min-hashing and LSH, we have

shown that RUPEE provides good results in seconds running

on an 8-core laptop against the RUPEE index in a PostgresQL

database, serviced by a single thread. RUPEE response times

may be further improved by the structural near dupe clustering

of domains for use in a filtering step not dependent on clusters

derived from sequence data.

Aside from response times and scalability, there is room for

improvement in RUPEE, especially with respect to encoding

unstructured regions of proteins, where it is predicted that

30% of all proteins contain large, unstructured regions [38].

For short loops containing simple motifs such as the β-turn-β
motif, shingle matches from these regions correctly factor into

RUPEE similarity comparisons. However, with the longer and

more complex loop and tail regions, random matching and

mismatching takes a toll further down in the list of ranked

results.

In addition to RUPEE, we have introduced two items that

may find wider applicability. The first item is the introduction

of a new polar torsion angle plot that maintains the continuity

of permissible torsion angle regions while maintaining the

familiar torsion angle ranges used in Ramachandran plots. The

next item is the run position encoding heuristic, which may

find wider applicability due to it simplicity and generality.
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