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Abstract

Although reproductive strategies can be influenced by a variety of intrinsic and extrinsic
factors, life history theory provides a rigorous framework for explaining variation in reproductive
effort. The terminal investment hypothesis proposes that a decreased expectation of future
reproduction (as might arise from a mortality threat) should precipitate increased investment in
current reproduction. Terminal investment has been widely studied, and a variety of intrinsic and
extrinsic cues that elicit such a response have been identified across an array of taxa. Although
terminal investment is often treated as a static strategy, the level at which a cue of decreased
future reproduction is sufficient to trigger increased current reproductive effort (i.e., the terminal
investment threshold) may depend on context, including the internal state of the organism or its
current external environment, independent of the cue that triggers a shift in reproductive
investment. Here, we review empirical studies that address the terminal investment hypothesis,
exploring both the intrinsic and extrinsic factors that mediate its expression. Based on these
studies, we propose a novel framework within which to view the strategy of terminal investment,
incorporating factors that influence an individual’s residual reproductive value beyond a terminal

investment trigger — the dynamic terminal investment threshold.

Keywords: Residual reproductive value, life history evolution, condition-dependent reproductive

investment, fecundity compensation, phenotypic plasticity
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Introduction

Investment in life history traits (i.e., growth, survival, and reproduction) can be
constrained by limited resource availability (Calow 1979; Stearns 1992; Zera and Harshman
2001; Roff and Fairbairn 2007), genetic covariance and antagonistic pleiotropy between traits
(Stearns 1989), or changes in the direction or strength of selection at different stages of life
history (Schluter et al. 1991). These constraints may drive trade-offs (i.e. negative phenotypic or
genetic associations) both between life history traits and within traits over time (Clutton-Brock et
al. 1982; Reznick 1985; van Noordwijk and de Jong 1986; Stearns 1989; Roff 1992; Stearns
1992), such that investment cannot be simultaneously optimized for all traits at all times
throughout an individual’s lifetime. Selection acts within the bounds of these trade-offs to
optimize investment strategies that maximize fitness within a particular context.

An especially salient trade-off is between reproductive effort and somatic defense (i.e.,
immunity) (Reznick 1985; Lochmiller and Deerenberg 2000; Zera and Harshman 2001; Zuk and
Stoehr 2002; Lawniczak et al. 2007; Durso and French 2017). Investments in these traits can
enhance fitness through their effects on reproduction and survival, but such investments
inevitably entail evolutionary, maintenance, and deployment costs, which leads to an allocation
trade-off between them (Schwenke et al. 2016). Evolutionary trade-offs arise from linkage or
pleiotropy of the genes involved, and results in negative genetic covariance between traits.
Negative genetic correlations have been demonstrated between reproductive effort and
resistance to infection (e.g., Cotter et al. 2004; Simmons and Roberts 2005; Graham et al.
2010). Experimental evolution, with selection for either increased reproductive effort or
resistance to infection, has resulted in coinciding decreases in resistance to infection and
reproductive effort, respectively (e.g., Boots and Begon 1993; Zwaan et al. 1995; Luong and
Polak 2007). Additionally, trade-offs can occur due to the immediate nutritional and metabolic
costs of maintaining and utilizing these traits and their physiological linkage (Sheldon and
Verhulst 1996; Lochmiller and Deerenberg 2000; Sadd and Schmid-Hempel 2009; Schwenke et
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al. 2016); allocating resources towards defense against infection necessarily diverts resources
away from reproductive effort and vice versa.

Given the evidence for trade-offs between reproduction and defense, the conventional
view has been that individuals faced with a threat to self-integrity and longevity should change
their life history investment pattern, shifting investment away from reproduction and towards
defense and repair, thus ensuring their continued survival (Norris et al. 1994; Gustafsson et al.
1994; Svensson et al. 1998; Adamo et al. 2001; Jacot et al. 2004; Ahtiainen et al. 2005;
Stahlschmidt et al. 2013). However, an alternative strategy is for individuals to increase
investment in current reproduction when cued to a decreased likelihood of survival, at a cost of
decreased somatic maintenance and future reproduction. Although this might at first seem
counter-intuitive, evolutionary theory predicts that when an individual’s expectation of future
offspring (residual reproductive value) decreases upon its perception of increased mortality risk,
investment in current reproduction should increase (Williams 1966). Within the context of life
history theory, this has been termed the terminal investment hypothesis (Clutton-Brock 1984),
with some authors also referring to the strategy as fecundity compensation (Parker et al. 2011).
Terminal investment encompasses a broader range of potential changes in reproductive effort,
and thus, we adopt this more general term in subsequent discussion.

The terminal investment hypothesis has received considerable attention since it was first
proposed, but in a number of cases, the evidence is equivocal. At least part of this ambiguity
may be due the framework within which the strategy of terminal investment has been
addressed. The goal of this review is to: 1) synthesize the findings from previous empirical
studies exploring the terminal investment hypothesis, and 2) propose an extended conceptual
framework for a more nuanced interpretation of these findings. We propose that the strategy of
terminal investment will exhibit a threshold in its expression, with this threshold being dynamic
and dependent on an organism’s internal state and extrinsic factors that together influence its
expectation for future progeny (i.e., residual reproductive value).

4



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

The terminal investment hypothesis in review

Trade-offs concerning investment in life history traits, including reproduction and
defense, are likely contingent on an individual’s residual reproductive value. For example, if the
chances of producing future offspring are high, individuals should invest in their current progeny
at sub-maximal levels to optimize the trade-off between current and future reproduction.
Conversely, if the chances of producing future offspring are low, individuals should increase
investment in their current progeny (Williams 1966; Hirshfield and Tinkle 1975; Clutton-Brock
1984). Therefore, current reproductive effort and residual reproductive value are expected to
exhibit negative covariance (Williams 1966; Hirshfield and Tinkle 1975; Pianka and Parker
1975). When a threat to future reproduction is raised consistently for all individuals globally,
fixed strategies may evolve in populations, such as semelparity instead of iteroparity (Young
1990). However, in an environment where individuals face a spatial and temporal mosaic of
varied levels of a threat to future reproduction, plastic strategies, such as terminal investment,
will be advantageous.

The terminal investment hypothesis proposes that individuals facing a significant survival
threat, and hence decreased residual reproductive value as a consequence of a truncated
lifespan, should divert time, energy, and resources away from other life history traits (e.g.,
growth, maintenance or defense, and future reproduction) and towards current reproduction as
a way of maximizing lifetime reproductive output (Williams 1966). The trade-off between current
and future reproduction dictates that such an acceleration of reproductive effort would be sub-
optimal within the context of a normal, undisrupted reproductive lifespan. Empirical studies have
found support for terminal investment in numerous species in response to a real or simulated
survival threat, with increases detected in various components of reproductive effort, including
attractiveness of plastic epigamic traits in males, offspring production, and parental care (Tables

1-3).
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Integral to the terminal investment hypothesis are the cues of reduced residual
reproductive value, which can be considered terminal investment friggers that an individual must
be able to perceive to adaptively alter their reproductive investment. The type, timing, intensity,
and predictability of these triggers are likely paramount to an individual’s ability to implement a
terminal investment strategy. Both intrinsic factors (e.g. age and nutrition-dependent condition)
and extrinsic factors (e.g. contemporary food shortage, perceived predation risk, and infectious

disease) can affect mortality rate, and consequently, residual reproductive value.

l. Intrinsic State

Both the probability of survival and the quantity and quality of offspring should be determined, at
least in part, by an individual’s internal state, potentially in interaction with current environmental
conditions. In many organisms, likelihood of survival decreases the older an individual becomes
(Type | survivorship), as does residual reproductive value (Pianka and Parker 1975). In addition,
it is not surprising that the condition of an individual, as influenced by prior resource intake, will
often affect reproductive investment (e.g., Wagner and Hoback 1999; Ohlsson et al. 2002;
Warner et al. 2007; Fricke et al. 2008). This should be particularly pertinent in the case of capital
breeders (Varpe et al. 2009), individuals that acquire their resources in advance, and then rely
on stored energy reserves during reproduction (Drent and Daan 1980; Jénsson 1997). This
dependency of reproduction on intrinsic state suggests that altered reproductive effort based on
a perception of internal state could represent a form of terminal investment. Focusing primarily
on age and nutrition-dependent condition, we highlight evidence from studies that explore
alterations in reproductive effort brought about by intrinsic influences on residual reproductive

value.

Age as an intrinsic cue for terminal investment
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Age-related reproductive investment has been studied extensively (e.g., Gadgil and
Bossert 1970; Hirshfield and Tinkle 1975; Pianka and Parker 1975; Pugesek 1983). Generally,
reproductive effort is predicted to increase toward the end of the lifespan in species in which
residual reproductive value decreases with age. This increase is hypothesized to arise from: i)
decreased survival of low-performing reproducers, leading to overrepresentation of high-
performing reproducers as cohorts age (Curio 1983; Forslund and Part 1995; Mauck et al.
2004); ii) age-related improvements in reproductive performance, as often accrues with
increased breeding experience (Curio 1983); and iii) optimization of reproductive effort as
individuals age, as predicted by life history theory (Williams 1966; Stearns 1992; Forslund and
Part 1995). The last of these invokes a cost of reproduction. Based on the assumption that
reproduction is costly (e.g., by decreasing future reproduction or survival) (Calow 1979; Reznick
1985; Alonso-Alvarez et al. 2004; Harshman and Zera 2007), this hypothesis predicts that
young individuals, of high reproductive value or high future reproductive potential (Fisher 1930),
should allocate less to current reproduction to ensure future reproductive opportunities, whereas
older individuals, of low reproductive value, should allocate more to current reproduction. Within
this framework of age-dependent terminal investment (Clutton-Brock 1984), selection favors
older individuals that assume greater costs of reproduction, because future opportunities may
be unavailable (Williams 1966). Overall, empirical evidence for the age-related reproductive
patterns that are predicted by the cost of reproduction hypothesis is mixed (Table 1), but
support for age-dependent terminal investment has been found in both sexes in various
mammals, reptiles, and insects (Table 1; supplementary table S1). For example, queens of the
ant Cardiocondyla obscurior have been shown to increase their rate of egg production with age,
even months after mating (Heinze and Schrempf 2012).

An important obstacle to assessing age-dependent terminal investment is that it is
difficult to disentangle a strategy of terminal investment from either of the other aforementioned
hypotheses (i.e., differential survival of low- or high-performing reproducers or age-related

7
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improvements in reproductive performance). The inability to perform empirical manipulations on
fixed intrinsic parameters, such as age, means that positive relationships with reproductive effort
cannot be conclusively attributed to an adaptive terminal investment strategy. For instance,
while much of the early evidence for the terminal investment hypothesis comes from
assessments of reproductive effort of large ungulates (e.g., Clutton-Brock et al. 1982; Maher
and Byers 1987; Ericsson et al. 2001), several parameters that correlate with reproductive
success (e.g., social dominance and experience) often increase with age (e.g., Coltman et al.
2002). On the other hand, if a reduction in reproductive success is observed with increasing
age, this could simply be a consequence of somatic deterioration (i.e. senescence) rather than
adaptive changes in reproductive effort (e.g., Loison et al. 1999; Weladiji et al. 2002).
Consequently, it is difficult to determine if changes in reproductive success as an individual
ages are a result of increased reproductive effort consistent with a terminal investment strategy,
or due to some other age-related behavioral or physiological manifestation (Pugesek 1981;
Clutton-Brock et al. 1982). Tarwater and Arcese (2017) recently argued that future studies
should consider both chronological age and time to death (independent of age) in assessments
of age-related changes in reproductive effort. By separating these two factors, they observed
both senescence (among old females) and terminal investment (among young females only) in
song sparrows (Melospiza melodia). Interestingly, reproductive effort was highest for females in
their last year of life only if they were 1 or 2 years old, even though this species can live beyond

5 years of age (Tarwater and Arcese 2017).

Nutrition-dependent condition as a cue for changes in reproductive effort

Variation in food availability is an important aspect of environmental heterogeneity.
Allocation of limited resources lies at the heart of life history trade-offs (Stearns 1992; Roff
2002), with empirical manipulation of quantity and quality of nutrition being shown to influence
trade-offs across an array of taxa (Hill and Kaplan 1999; Brown and Shine 2002; Lardner and
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Loman 2003; Hunt et al. 2004; Kolluru and Grether 2005; Karell et al. 2007; Cotter et al. 2011).
As energetically costly reproductive traits are constrained by the availability of adequate
nutrition, most studies demonstrate that food limitation leads to decreased reproductive effort
(Table 2; supplementary table S2). For example, cockroaches (Nauphoeta cinerea) reared on a
low-quality diet regimen as juveniles exhibited a fixed phenotype as adults (i.e., one that could
not be recovered with a change in diet), in which reproductive lifespan was significantly shorter
than adults fed a high-quality diet as juveniles (Barrett et al. 2009). There is also evidence to
suggest that low nutrition-dependent condition can also lead to terminal investment. In katydids
(Simmons and Gwynne 1991), tree crickets (Brown 1997), and humped-winged grigs (Judge et
al. 2011), all insect species in which males provide females with nuptial food gifts at mating,
females held on a low-quality diet were more quick to remate than those held on a high-quality
diet. Although the increased mating activity of females could represent a kind of “foraging effort”
to offset nutrient limitation (direct benefit), it is equally consistent with a strategy of terminal
investment due to the numerous genetic (indirect) benefits of polyandry (e.g., Fedorka and
Mousseau 2002; lvy and Sakaluk 2005). Additional evidence suggests that diet may also
influence an individual’s propensity to terminally invest in response to other extrinsic cues of
reduced residual reproductive value (see “Interactions indicative of a dynamic terminal

investment threshold” below).

Il. Extrinsic Factors

While much initial theoretical and empirical work focused on the influence of intrinsic
factors on residual reproductive value and, by extension, the likelihood of terminal investment,
there has subsequently been a shift in focus to the extrinsic factors that elicit terminal
investment. Residual reproductive value should be determined, in part, by the external
environment, with the potential for perceived changes in extrinsic cues leading to the adaptive
alteration of reproductive effort, including terminal investment. Extrinsic factors can positively or
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negatively affect residual reproductive value, and do so either through a direct influence on
reproduction (e.g. castration, mate availability) or indirectly through an altered probability of
survival. Extrinsic factors that have been examined in this latter respect include variation in
predation risk (Korpimaki et al. 1994), and physical injury, including post-mating damage
(Morrow et al. 2003). However, most of the attention in this area has centered on exposure to

and infection by parasites and pathogens (Table 2).

Parasite and pathogen infection as a trigger of life history changes

The realization that parasites and pathogens could play major roles in the evolutionary
ecology of organisms (Hamilton 1980; Hamilton and Zuk 1982) precipitated their inclusion as
important drivers of life history strategies. At an ecological level, parasite infection is presumed
to have negative impacts on reproductive output and survival, with these fitness-related
consequences culminating in selection on hosts to either prevent or curtail infection, or to
mitigate any consequences of infection. For example, hosts can reduce the loss of fitness from
infection by upregulating their immune system. While the benefits of increased immune
investment in response to infection are obvious, the costs of upregulation often result in
restriction of resources that could be invested in reproduction. As highlighted more broadly
earlier, it is commonly predicted that infected individuals should exhibit decreased reproductive
effort due to a reallocation of resources towards defense (i.e. immunity). However, increasing
evidence suggests that some infected organisms instead increase their investment in
reproduction. While seemingly counter-intuitive, these results can be explained within a life
history framework via the terminal investment hypothesis.

Minchella and Loverde (1981) were among the first to discover parasite-induced
increases in reproductive effort in hosts, finding that snails (Biomphalaria glabrata) infected with
castrating trematodes (Schistosoma mansoni) exhibit transient increases in fecundity prior to
complete cessation of egg production due to the parasite-induced castration. This transient
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increase resulted in fecundity compensation (or, terminal investment), thus decreasing the
negative effects of a shortened reproductive lifespan associated with parasite infection in this
system. Subsequently, many studies have explored infection-related changes in reproductive
effort following both natural and artificial inoculation (Table 2; supplementary table S2).

Numerous studies report increases in reproductive effort following infection (Table 2),
which is congruent with the predictions of the terminal investment hypothesis, yet overall a
variety of outcomes have been found, sometimes even within the same study. For example,
female deer mice (Peromyscus maniculatus) parasitized with the trematode parasite,
Schistosomatium douthitti increase the expression of some reproductive traits (time to first
reproduction and total litter mass), but not others (the time between consecutive litters,
probability of litter cannibalism, litter size, litter sex ratio) (Schwanz 2008b; supplementary table
S2). These results are intriguing with regard to the specifics of life history investment, but they
make interpretation of overall life history strategies problematic, and unraveling contributions of
individual traits would require multi-generational fitness measures. However, the trait-specific
alterations of investment do provide some insight into potential constraints on the plasticity of
reproductive traits following infection. An understanding of trait plasticity, in addition to the
context within which a cue of reduced residual reproductive value is perceived, may help clarify
equivocal findings (see “Dynamic terminal investment threshold” below).

Although most studies focus on responses in host traits, live pathogens and parasites
used in the aforementioned studies cannot be regarded as passive bystanders. Shifts in host life
history may be beneficial for parasite fitness, and therefore host responses may be a
consequence of parasite manipulation (Minchella 1985; Sheldon and Verhulst 1996). Thus, it is
important when interpreting findings to account for the fact that life history consequences of
infection may be the result of selection on hosts, selection on parasites, or even non-adaptive
side effects (Hurd 2001). Interestingly, however, several studies have found that individuals
exposed to parasites (both with and without a subsequent infection), shift investment towards
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current reproduction, consistent with predictions from the terminal investment hypothesis (e.g.,

Minchella 1985).

Non-pathogenic immune stimulation to test for infection-associated host life history shifts

To disentangle strategic shifts in life history by hosts from shifts due to parasite
manipulation, many studies have employed measures to elicit an immune response in focal
individuals without the confounding effects of pathogen proliferation and manipulation. The
triggering of an immune response acts to simulate an infection that may signal reduced residual
reproductive value to the host. Studies have utilized non-pathogenic immune-elicitors such as
lipopolysaccharides (LPS), antigens, vaccines, sterile implants, and inactivated pathogens to act
as a cue of pathogen or parasite infection, and then subsequently measured responses in
various aspects of host reproductive effort (Table 2; supplementary table S2). Using this
approach, any responses observed can clearly be attributed to changes in investment by the
focal individual, rather than the result of parasite manipulation or the pathology of a real
infection. Although several studies have documented outcomes that are consistent with a trade-
off between investment in immune defense and reproduction, many others have documented
increases in various components of reproductive effort in individuals following an experimental
immune challenge, which is consistent with the predictions of the terminal investment
hypothesis (Table 2; supplementary table S2). For example, male mealworm beetles (Tenebrio
molitor) implanted with a nylon filament exhibit increased attractiveness of their sex
pheromones, which are important for acquiring mates (Sadd et al. 2006).

Interestingly, some studies have investigated the influence of multiple infection-
associated cues, which allows for a comparative analysis of how different stimuli are perceived
as cues of reduced residual reproductive value, or that lead to differential responses. For
example, Adamo (1999) assessed the effects of infection on oviposition in female crickets
(Acheta domesticus), incorporating both live infections of the gram-negative bacteria Serratia

12



312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

marcescens and the larvae of a parasitoid tachinid fly, Ormia ochracea, and inactive non-
pathogenic immune-eliciting substitutes for each of the infections. Female crickets increased the
number of eggs laid in response to both live S. marcescens and non-pathogenic LPS derived
from S. marcescens. However, females did not alter their oviposition schedule when challenged
with either live O. ochracea or its non-pathogenic substitute, Sephadex beads. These results
suggest that changes in life history strategies, including those involving terminal investment,
may be dependent on specific infection scenarios. Differential responses may be adaptive and
related to how different infections change residual reproductive value, or may instead be subject
to physiological constraints, such that only infections that trigger certain immune pathways act
as terminal investment triggers.

With respect to the use of simulated infections to assess life history responses, an
important methodological consideration is the incorporation of appropriate controls. Although
sham controls are critical for identifying exact causal effects in any experiment, the inclusion of
unmanipulated controls may be equally important, depending on the protocol of simulated
infection used. However, studies often do not incorporate both unmanipulated and sham control
treatments (supplementary table S2). The importance of both controls can be seen in the
illustrative example of using an injection to deliver a non-pathogenic elicitor into the haemocoel
of an insect, and subsequently measuring reproductive investment. A sham control injection of
the vehicle alone is necessary to attribute any changes to the introduced elicitor. However, it is
well known that cuticle wounding in insects leads to an immune response (Brey et al. 1993;
Wigby et al. 2008), and thus, it is plausible that a sham control alone could result in an
observable shift in reproductive effort (for example, see Altincicek et al. 2008). In this case,
absence of an unmanipulated control that provides a baseline of reproductive effort could result
in the conclusion that a particular organism does not exhibit terminal investment, when, in fact, it

does.
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lll. The terminal investment threshold

The discussion above suggests that a strategy of terminal investment may be dependent
on the form and intensity of the cue imposed. Historically, terminal investment has been
approached as a static strategy, in which investigators have sought to determine if terminal
investment does, or does not, occur in response to a specific cue believed to signal decreased
residual reproductive value (i.e., a terminal investment trigger). Often the intensity of cues
utilized is purposefully high, in an attempt to ensure that any potential response is triggered.
Interestingly, more recent studies have incorporated a gradation in the intensity of these cues,
which has shown that when individuals terminally invest, they often do so only at high cue
intensities. For example, Hendry et al. (2016) found that asexual reproduction in pea aphids
(Acyrthosiphon pisum) is affected by infection by the bacterium, Pseudomonas syringae, in a
dose-dependent manner. Aphids exposed to low doses exhibited reduced reproduction relative
to controls, presumably investing in defense against the pathogen (cost of immunity
hypothesis), whereas those exposed to higher concentrations of bacteria exhibited the highest
levels of reproduction (terminal investment). In this instance, individuals exposed to the highest
dose of P. syringae, however, had the lowest reproduction, which is likely a consequence of the
high live infection load leading to pathogenesis as this dose leads to high aphid mortality
(Hendry et al. 2016). These results suggest that the intensity of the terminal investment trigger
can be viewed as a threshold, one that reflects the relationship between the trigger and an
individual’s perceived residual reproductive value, which we refer to as the terminal investment
threshold (Figure 1). Using the example of a pathogen infection, it may pay to invest in
mitigation or clearance of the infection at low levels of infection, thus leading to a decrease in
reproductive effort as a result of the cost of increased immunity. As the level of infection
increases, the threat to longevity and future reproduction, both of which contribute to residual
reproductive value, also increases. When the cue intensity reaches a tipping point at which
investment in resistance against the infection is futile, infected individuals are predicted to fully
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switch to a terminal investment strategy. The concept of a terminal investment threshold allows
for a more quantitative assessment of terminal investment under a spectrum of cues that signal
reduced residual reproductive value. Although such a threshold is illustrated here with respect to
pathogen infection, it is relevant to a diversity of other cues associated with future reproductive
potential. The exact threshold is presumed to have been optimized by selection, and is
expected to differ between organisms and among the different cues that signal reduced residual
reproductive value, thus potentially contributing to the equivocal findings across studies

investigating terminal investment.

The dynamic terminal investment threshold

In addition to species-specific evolutionary or physiological constraints on life history
plasticity, failure to uncover terminal investment in particular organisms could occur because the
terminal investment threshold has not been exceeded. Furthermore, in the framework of a
terminal investment threshold, it is highly likely that the tipping point is not static, but rather
context dependent, leading to a dynamic terminal investment threshold.

It has been largely overlooked that the strategy of terminal investment, and the terminal
investment threshold, may depend on the internal state of the organism or external
environmental factors that are independent of the focal cue of reduced residual reproductive
value (e.g. infection). Specifically, any extrinsic or intrinsic factor that influences baseline
residual reproductive value beyond the threat posed by a potential terminal investment trigger
may alter the severity of residual reproductive value reduction cued by a particular threat level
and determine whether an individual adopts a terminal investment strategy (Figure 1). Indeed,
many life history models have explored dynamic aspects of resource allocation (Perrin and Sibly
1993; Noonburg et al. 1998; Heino and Kaitala 1999), suggesting that trade-offs, and

corresponding investment strategies, need not be static (Zera and Harshman 2001). Here, we
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discuss evidence from previous studies in support of our proposed framework of a dynamic

terminal investment threshold, and describe the specific factors that may influence it.

Interactions indicative of a dynamic terminal investment threshold

The relationship between individual age and residual reproductive value, with prospects
of future reproductive opportunities diminishing as individuals move closer to the end of their
lifespan (Williams 1966; Pianka and Parker 1975), makes age a highly relevant intrinsic factor
upon which a dynamic terminal investment threshold to another threat cue might be contingent.
More simply, age may determine the intensity of a second trigger that is required to elicit
terminal investment. Due to the difference in residual reproductive value between young and old
individuals, the intensity of a terminal investment trigger should be lower for older individuals
(i.e., a lower terminal investment threshold than for younger individuals). Indeed, evidence of an
age-dependent terminal investment threshold, as demonstrated by statistically significant
interaction effects of age and treatment on reproductive effort, has been shown in previous
studies (Table 3; supplementary table S3), even if these have not been explicitly situated within
the framework of a dynamic terminal investment threshold. For example, Velando et al. (2006)
demonstrated that the reproductive success of male blue-footed boobies (Sula nebouxii)
declines with age. However, immune-challenged older males exhibited a 98% increase in
reproductive output compared with old control males, whereas the reproductive success of
immune-challenged younger males decreased relative to young control males. This significant
interaction between age and another cue of reduced residual reproductive value (immune
challenge) on the outcome of reproductive effort is indicative of a dynamic threshold in the
propensity to terminally invest. Other studies have found similar significant interactions with age
in birds, fish, and insects (Table 3). In some cases, extrinsic threat cues may not interact with
age. For example, female burying beetles (Nicrophorus vespilloides) treated with inactivated
bacteria (Micrococcus lysodeikticus) produced heavier broods compared with control females,
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415  but this effect was observed regardless of female age (Cotter et al. 2010). However, further

416  work using a spectrum of infection cues, including lower doses, would be required to determine
417  whether the apparent absence of age-dependent terminal investment in this species is real, or is
418 due instead to a relevant, but variable, infection cue threshold being exceeded in all age groups.
419 While age likely represents a widespread intrinsic factor underlying a dynamic terminal
420 investment threshold, numerous other factors are likely to fine-tune the thresholds for focal

421  triggers. For example, genetic differences in life histories and reproductive effort may also play
422  an important role in determining an individual’s propensity to terminally invest. Although this has
423  not yet been tested explicitly, several studies have incorporated different clonal lines in the

424  examination of reproductive effort following experimental manipulation of extrinsic mortality cues
425 (e.g., the concentration of alarm cues) influencing residual reproductive value in both pea

426  aphids (Acyrthosiphon pisum) and water fleas (Daphnia magna) (Table 3). These studies have
427  revealed considerable variation in the response to these cues between lines and across

428 treatments, demonstrating that a genotype-by-environment interaction may play a particularly
429  important role in determining the terminal investment threshold. Superimposed on this genetic
430 variation, the presence or absence of symbionts may also influence the terminal investment

431  threshold, as these can modify the host’s life history phenotype by causing numerous

432  physiological, morphological, and even behavioral changes (e.g., Leonardo and Mondor 2006).
433  Symbionts in aphids have been shown to significantly influence how hosts alter reproductive
434  investment following a decrease in residual reproductive value (Barribeau et al. 2010).

435 Interactions involving numerous other individual-level traits (e.g., body size, mating history,

436  confidence of paternity) abound (Table 3; supplementary table S3).

437 In addition to intrinsic factors such as age and genotype, environmental factors that

438 influence residual reproductive value may act as supplementary determinants of the propensity
439  to terminally invest following exposure to a focal terminal investment trigger (Table 3). For

440 example, when in isolation, captive zebra finches (Taeniopygia guttata) injected with LPS
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engaged in classic ‘sickness behavior’ (e.g., lethargy, loss of appetite) relative to vehicle-
injected controls, ostensibly to enhance survival in the face of an immune challenge; however,
there was no effect of LPS injection on activity or time spent resting when in a group setting and
in the presence of potential mates, despite similar underlying physiological responses to LPS in
the two social settings (Lopes et al. 2012). Thus, multiple intrinsic and extrinsic factors, including
the social environment and mate availability, can clearly interact to shape the propensity of
individuals to increase mating activity in the face of a mortality cue.

At a coarse level, seasonal effects likely constitute an especially important extrinsic
factor because they comprise both abiotic (e.g., photoperiod, temperature, precipitation) and
biotic (food and/or mate availability, predator abundance) environmental factors that can
influence reproduction. Indeed, many species exhibit seasonal variation in reproductive output,
often to increase survival to a later, more favorable, season for breeding (Baker 1938; Cockrem
1995). It follows, then, that season may influence an individual's terminal investment threshold,
especially in seasonal breeders. A significant interaction between season and reduced residual
reproductive value (specifically age) has been demonstrated for several reproductive traits
(including reproductive allotment to clutch, clutch size, and offspring dry mass) in Western
mosquitofish (Gambusia affini) (Billman and Belk 2014; Table 3; supplementary table 3).
Specifically, younger fish decreased reproductive investment over the season, whereas older
fish increased investment, suggesting that younger individuals adopt a strategy of reproductive
restraint, whereas older individuals exhibit terminal investment (Billman and Belk 2014; (Billman
and Belk 2014; Table 3; supplementary table 3). However, such a pattern may also be
explained by experience, if older breeders are better at coping with poor environmental
conditions or the reproduction-survival trade-off. Thus, disentangling the myriad factors
influencing between-individual differences in reproductive effort requires an experimental

approach.
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Future avenues for investigating terminal investment

Although the current empirical evidence in support of a dynamic terminal investment
threshold is compelling (Table 3; supplementary table S3), it is still fairly limited in scope. To
better understand why evidence for terminal investment is often equivocal, or even conflicting,
both among and within studies, future research should pay particular attention to the form and
intensity of the focal cue of reduced residual reproductive value (i.e., the terminal investment
trigger), other intrinsic and extrinsic factors that might further affect residual reproductive value,
and the specific reproductive traits of interest that are measured. One pattern that seems to be
emerging is that increases in reproductive effort are frequently observed in some traits, but not
in others (supplementary tables S1-S3). One possible explanation for this is that traits may differ
in their flexibility to respond to reduced residual reproductive value. Consequently, it is important
to consider the plasticity of the reproductive traits of interest when seeking to document terminal
investment. Similarly, this review highlights the importance of considering both the form and
intensity of cues that signal reduced residual reproductive value. Therefore, further investigation
into the propensity of certain cues to alter reproductive effort may prove illuminating. For
instance, studies that incorporate both active and inactivated pathogens (Adamo 1999), different
strains of pathogens (Sanz et al. 2001), or different cues altogether (Barribeau et al. 2010), can
provide valuable information about how, and under what circumstances, individuals differentially
respond. It is important to note that there may also be taxonomic constraints to the expression
of terminal investment. For example, mammals or other groups with prolonged parental care
may be the least likely to exhibit terminal investment (e.g., high risk of vertical transmission of
pathogens during gestation and lactation, prolonged periods of offspring production and
parental care necessitating parental survival beyond offspring production). Our incomplete
understanding of these constraints may explain the lack of clear examples of terminal

investment in within some groups.
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Theoretical modeling of the evolution of plastic life history strategies can aid in the
discovery of the conditions under which terminal investment will be favored by selection. Only
recently have studies attempted to theoretically define these conditions (Gandon et al. 2002;
Bonds 2006; Javois 2013, Leventhal et al. 2014; Luu and Tate 2017). For example, Luu and
Tate (2017) examined the competing strategies of somatic maintenance and terminal
investment using a model in which investments in these traded off differentially with other life
history traits. They determined that the trade-off between reproduction and maintenance drives
directional selection for either terminal investment or maintenance, depending on the cost of
reproduction to an individual’s survival, and that diversifying selection leading to coexistence of
divergent strategies is favored under particular conditions (i.e., when virulence of the pathogen
invoking a response is low and the cost of reproduction by the host is high) (Luu and Tate
2017). This study highlights further the context-dependent nature of both the evolution and
expression of terminal investment. For example, the bifurcation of strategies shown under
certain parameter values could lead to genotype-dependent terminal investment, as mentioned
earlier. Additional theoretical approaches are needed to expand predictions related to
thresholds of terminal investment triggers and dynamic terminal investment thresholds.

A major gap in the literature is the almost complete absence of testing for terminal
investment outside of animal taxa. There is no obvious a priori hypothesis for why terminal
investment should be taxonomically constrained, and thus broader taxonomic coverage might
provide additional novel and valuable insights, along with systems that might be more amenable
to further study. The potential for this is demonstrated by work on Pseudomonas fluorescens
(SBW25), which was found to exhibit transient increases in population growth rate induced by
lytic DNA phage (SBW25®2) binding, consistent with predictions of the terminal investment
hypothesis, (Poisot et al. 2013). However, this was accompanied by decreased size of daughter
bacterial cells, which may reflect constraints on terminal investment due to a trade-off between
number and quality of progeny. This is the only study of which we are aware that investigates
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these inducible responses following reduced residual reproductive value in bacteria, although
results from studies like these could have potentially important consequences for applied fields
such as medicine and epidemiology. Indeed, recent work has demonstrated that parasites can
adopt a terminal investment response to environmental stressors, including pharmacological
treatments or host immune responses. For example, malaria parasites (Plasmodium spp) divert
resources from within-host replication to the production of transmission stages (gametocytes) in
response to high doses of antimalarial drugs (reviewed in Carter et al. 2013). Multicellular
parasites have also been shown to increase immediate fecundity in harsh environments (e.g.,
nematodes in response to a sudden rise of pro-inflammatory cytokines of the host; Guivier et al.
2017).

Although age-related shifts in reproductive investment have been well studied in plants
(e.g., Thomas 2011), seldom have tests of terminal investment been applied to these systems,
despite their tractability and amenability to experimental manipulation. Root herbivory in
mustard (Sinapis arvensis), for example, led to an increase in the number of visits per flower by
pollinators (Poveda et al. 2003), analogous to changes in sexual attractiveness seen in animals
facing a mortality cue (e.g., Sadd et al. 2006), whereas above-ground herbivory and a
combination of above- and below-ground herbivory reduced reproductive output (Poveda et al.
2003). Thus, plant systems may provide a compelling arena in which controlled experiments
can disentangle the numerous extrinsic and intrinsic influences on the terminal investment
threshold.

A major obstacle in moving the field forward is the lack of knowledge concerning the
mechanisms that precipitate terminal investment. Although potential mechanisms have been
proposed for some systems (e.g., Bowers et al. 2015), this void needs to be filled, and likely
requires greater integration of molecular and physiological approaches in studies of life history
evolution. Advances may also be made by investigating other traits aside from reproduction that
are influenced by strategic shifts in allocation toward competing life history demands. Although
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evidence for terminal investment comes chiefly from changes in reproductive effort, the terminal
investment hypothesis predicts that increased reproductive effort following reduced residual
reproductive value also comes at a cost to investment in other life history traits, including growth
and survival. Mechanistic studies (i.e., those that assess the allocation of resources following
decreases in RRV) could also be particularly important for uncovering potential cryptic terminal
investment. For example, under some conditions (e.g., particularly advanced infection) it may be
impossible for individuals to increase reproductive investment relative to uninfected individuals
(e.g., due to a loss of homeostasis); however, their relative decrease in fecundity may be less

compared with individuals who do not terminally invest.

Conclusions

The strategy of terminal investment has received widespread support, and has been
documented across an array of taxa and evoked by a variety of cues that signal reduced
residual reproductive value. However, equivocal, and sometimes conflicting, results also
abound, and the various outcomes observed across studies may reflect, in part, the traits that
are measured, how the responses affect individual fitness, differences in methodology, and
system-specific constraints on plasticity. However, much of this ambiguity can be resolved
within the conceptual framework of a dynamic terminal investment threshold, which considers
both the internal state of the individual and extrinsic factors that determine the optimal response
to a mortality cue, situating this important life history decision within a more realistic backdrop of
environmental heterogeneity. The further characterization of the dynamic terminal investment
threshold is greatly in need of empirical studies that include multiple factors influencing residual
reproductive value along a graduated spectrum of cues that facilitate the detection of the

interactions indicative of a dynamic threshold.
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980 Table 1 Intrinsic decreases in individual residual reproductive value and overall evidence for

981 terminal investment in specific studies. A more detailed version of this table can be found in the

982  Supplementary Materials section (supplementary table S1)

Common Investigated Overall
Taxon Species Sex Reference
name factor evidence
Ficedula Collared Part et al.
bird Age F yes
albicollis flycatcher 1992
Larus Pugesek
bird California gull Age F yes
californicus 1981
Blue-footed Velando et
bird Sula nebouxii Age M yes
booby al. 2006
American Gonzalez-
Hetaerina
insect rubyspot Age M yes Tokman et
americana
damselfly al. 2013
Heinze and
Cardiocondyla
insect Ant Age F yes Schrempf
obscurior
2012
Lesser wax Lafaille et al.
insect  Achroia grisella Age F/M yes
moth 2010
Texas field Shoemaker
insect  Gryllus texensis Age F yes
cricket et al. 2006
European
Ostrinia Thanda Win
insect corn borer Age M yes
scapulalis et al. 2013
moth
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Chrysemys Paitz et al.
reptile Painted turtle Age yes
picta 2007
North
Tamiasciurus Descamps et
rodent American red Age yes
hudsonicus al. 2007
squirrel
Cété and
Oreamnos Festa-
ungulate Mountain goat Age yes
americanus Bianchet
2001
Ericsson et
ungulate Alces alces Moose Age yes
al. 2001
Festa-
Ovis Bighorn
ungulate Age yes Bianchet
canadensis sheep
1988
Kobus Bercovitch et
ungulate Nile lechwe Age yes
megaceros al. 2009
see
Gambusia Western Billman and
fish Age interaction
affinis mosquitofish Belk 2014
table
American Maher and
ungulate Bison bison Age yes
bison Byers 1987
Nicrophorus Burying Benowitz et
insect Age mixed
vespilloides beetle al. 2013
Nicrophorus Burying Creighton et
insect Age mixed
orbicollis beetle al. 2009
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Rhesus Hoffman et
primate Macaca mulatta Age mixed
macaque al. 2010
Clutton-
ungulate Cervus elaphus Red deer Age mixed Brock et al.
1982
Jennings et
ungulate  Dama dama Fallow deer Age mixed
al. 2010
Nauphoeta Speckled Juvenile diet Barrett et al.
insect mixed
cinerea cockroach quality 2009
Chronological
no
age
Melospiza Tarwater and
bird Song sparrow see
melodia Years to death Arcese 2017
interaction
(YTD)
table
Ficedula Pied Sanz et al.
bird Age no
hypoleuca flycatcher 2001
Syngnathus Broad-nosed Billing et al.
fish Age no
typhle pipefish 2007
Copeland
Allonemobius Southern
insect Age no and Fedorka
socius ground cricket
2012
Glossina Langley and
insect morsitans Tsetse fly Age no Clutton-
morsitans Brock 1998
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Tobacoo

Heliothis Staudacher
insect budworm Age F no
virescens et al. 2015
moth
Common Fessler et al.
primate  Pan troglodytes Age F no
chimpanzee 2005
Nicrophorus Burying Age at first Cotter et al.
insect F no
vespilloides beetle reproduction 2010
Oak (8 Time prior to Koenig et al.
tree Quercus spp. NA no
species) death 2017
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984

44



985 Table 2 Extrinsic decreases in individual residual reproductive value and overall evidence for
986 terminal investment in specific studies. A more detailed version of this table can be found in the

987  Supplementary Materials section (supplementary table S2)

Common Overall
Taxon Species Investigated factor Sex Reference
name evidence
Fungal pathogen An and
Japanese
amphibian Hyla japonica (Batrachochytrium M yes Waldman
tree frog
dendrobatidis) 2016
Malaria infection
House Marzal et
bird Delichon urbica (Haemoproteus or  FIM yes
martin al. 2008

Plasmodium spp.)

Entomopathogenic

Cardiocondyla fungus Giehr et al.
insect Ant F yes
obscurior (Metarhizium 2017
brunneum)

Oral exposure to

Acyrthosiphon bacteria Hendry et
insect Pea aphid FIM yes
pisum (Pseudomonas al. 2016
syringae)
Ectoparasitic mite Polak and
Drosophila
insect Fruit fly (Macrocheles M yes Starmer
nigrospiracula
subbadius) 1998
Texas field Bacteria (Serratia Shoemaker
insect Gryllus texensis F yes
cricket marcescens) et al. 2006
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Trematode infection Blair and
Biomphalaria Freshwater
snail (Schistosoma yes Webster
glabrata snail
mansoni) 2007
Trematode infection
Peromyscus Schwanz
rodent Deer mouse  (Schistosomatium yes
maniculatus 2008a
douthitti)
Passer House Newcastle virus Bonneaud
bird yes
domesticus sparrow vaccine et al. 2004
LPS (from
Troglodytes Bowers et
bird House wren Salmonella yes
aedon al. 2015
enterica)
Somateria Common Hanssen
bird SRBC yes
mollissima elder 2006
Acyrthosiphon HK bacteria Altincicek
insect Pea aphid yes
pisum (Escherichia coli) et al. 2008
Dead bacteria
Nicrophorus Burying Cotter et al.
insect (Micrococcus yes
vespilloides beetle 2010
lysodeikticus)
Gryllodes Decorated HK bacteria Duffield et
insect yes
sigillatus cricket (Escherichia coli) al. 2015
Yellow Nylon implant
Kivleniece
insect Tenebrio molitor mealworm (single or two yes
et al. 2010
beetle consecutive)
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Yellow

Nylon implant

Krams et
insect Tenebrio molitor mealworm (single or two M yes
al. 2011
beetle consecutive)
Nielsen
Yellow
LPS (from and
insect Tenebrio molitor mealworm M yes
Escherichia coli) Holman
beetle
2012
Yellow
Sadd et al.
insect Tenebrio molitor mealworm Nylon implant M yes
2006
beetle
Peromyscus White-footed Derting and
rodent SRBC M yes
leucopus mouse Virk 2005
Phodopus Siberian LPS (undefined Weil et al.
rodent M yes
sungorus hamster source) 2006
Chloroquine (CQ)
Plasmodium Rodent treatment of hosts Buckling et
alveolate NA yes
chabaudi malaria (Mus musculus al. 1997
musculus)
Plasmodium Human Chloroquine (CQ) Buckling et
alveolate NA yes
falciparum malaria treatment (in vitro) al. 1999
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LPS-induced

circulating pro-

Heligmosomoides Intestinal inflammatory Guivier et
nematode F/IM yes
polygyrus roundworm cytokines within al. 2017
host (Mus musculus
musculus)
Southern
Pseudophryne
corroboree Fungal pathogen M
corroboree Brannelly
amphibian frog (Batrachochytrium mixed
et al. 2016
Litoria verreauxii ~ Alpine tree dendrobatidis)
FIM
alpina frog
Protozoan
(Haemoproteus
Ficedula Pied Sanz et al.
bird balmorali) F mixed
hypoleuca flycatcher 2001
Protozoan
(Trypanosoma spp.)
Microsporidian Chadwick
crustacean  Daphnia magna Water flea spores (Glugoides  F/IM mixed and Little
intestinalis) 2005
Root herbivory
Mustard (Agriotes sp.) Poveda et
plant Sinapis arvensis NA mixed
plant Leaf herbivory al. 2003

(Pieris rapae)
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Trematode infection

Peromyscus Schwanz
rodent Deer mouse  (Schistosomatium mixed
maniculatus 2008b
douthitti)
Minchella
Trematode infection
Biomphalaria Freshwater and
snail (Schistosoma mixed
glabrata snail Loverde
mansoni)
1981
Live bacteria or
LPS (Serratia
marcescens)
Acheta House Adamo
insect Parasitoid tachinid mixed
domesticus cricket 1999
fly (Ormia
ochracea)
Sephadex beads
Enforced running
(blowing air on
Adamo and
Texas field cerci)
insect Gryllus texensis mixed McKee
cricket Predator (praying
2017
mantis, Tenodera
sinensis) exposure
Pseudomonas Rhizosphere  UV-inactivated lytic Poisot et al.
bacteria mixed
fluorescens bacteria bacteriophage 2013
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LPS (from

Troglodytes Bowers et
bird House wren Salmonella mixed
aedon al. 2012
enterica)
Tobacoo Dead bacteria
Heliothis Staudacher
insect budworm (Serratia mixed
virescens et al. 2015
moth entomophila)
Ficedula Pied Diphtheria-tetanus llImonen et
bird no
hypoleuca flycatcher vaccine al. 2000
Yellow Tapeworm infection
Worden et
insect Tenebrio molitor mealworm (Hymenolepis no
al. 2000
beetle diminuta)
Lungworm infection Festa-
Bighorn
ungulate Ovis canadensis (Protostrongylus no Bianchet
sheep
spp.) 1988
LPS (undefined
African
Anopheles source) Ahmed et
insect malaria no
gambiae Orally administered al. 2002
mosquito
LPS
LPS (from Serratia
Gryllus Jacot et al.
insect Field cricket marcescens) no
camperstris 2004

Food availability
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Cyphoderris Sagebrush LPS (from Serratia Leman et
insect M no
strepitans grig marcesens) al. 2009
Tribolium Red flour
castaneum beetle
Callosobruchus Cowpea Post-mating Morrow et
insect F no
maculatus weevil somatic damage al. 2003
Drosophila
Fruit fly
melanogaster
Reaney
Euoniticellus LPS (from Serratia
insect Dung beetle F no and Knell
infermedius. marcescens)
2010
Shoemaker
Texas field  LPS (from Serratia
insect Gryllus texensis F no and Adamo
cricket marcescens)
2007
Kubicka
Madagascar
and
reptile Paroedura picta ground Food availability F no
Kratochvil
gecko
2009
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Mallee LPS (from Uller et al.
reptile Ctenophorus fordi F no
dragon Escherichia coli) 2006
Malaria infection see
Cyanistes Podmokta
bird Blue tit (Haemoproteus and F/M interaction
caeruleus et al. 2014
Plasmodium spp.) table
see
Blue-footed LPS (from Velando et
bird Sula nebouxii M interaction
booby Escherichia coli) al. 2006
table
Perceived predation see
Syngnathus Broadnosed Billing et al.
fish risk (Gadus M interaction
typhle pipefish 2007
morhua) table
HK bacteria (genus see
Acyrthosiphon Barribeau
insect Pea aphid Enterobacter) both interaction
pisum et al. 2010
Alarm pheromone table
Copeland
Southern see
Allonemobius LPS (undefined and
insect ground M  interaction
socius source) Fedorka
cricket table
2012
American see Gonzalez-
Hetaerina
insect rubyspot Nylon implant M interaction Tokman et
americana
damselfly table al. 2013

988
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Abbreviations: HK, heat-killed; LPS, lipopolysaccharides; SRBC, sheep red blood cells



989 Table 3 Evidence of interactions between factors influencing terminal investment. A more
990 detailed version of this table can be found in the Supplementary Materials section
991  (supplementary table S3)
Factors in investigated
Common Se Interactio Referen
Taxon Species interaction
name X n? ce
X4 X2
Tarwater
Melospiza Song Chronologi Years to and
bird F yes
melodia sparrow cal age death (YTD) Arcese
2017
Western Billman
Gambusia
fish mosquitof Age Season F yes and Belk
affinis
ish 2014
HK bacteria Duffield
Gryllodes  Decorate
insect Age (Escherichia M yes etal.in
sigillatus d cricket
coli) prep.
Ectoparasiti
Polak
Drosophila C mite
and
insect nigrospirac  Fruit fly Age (Macrochele M yes
Starmer
ula S
1998
subbadius)
Acoustic
Ephippiger  Chorusin Rebar
insect Age environment M yes
diurnus g and

S
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bushcrick Geographic Greenfiel
et population d 2017
Bacteria Vale and
crustace Daphnia Water F/
Genotype (Pasteuria yes Little
an magna flea M
ramosa) 2012
HK bacteria
(Enterobact
er cloacae),
gram- Leventha
Acyrthosip F/
insect Pea aphid Genotype positive yes | et al.
hon pisum M
bacteria, 2014
fungus
(Erynia
neoaphidis)
Chloroquin
Plasmodiu Bluckling
Human e (CQ)
alveolate m Genotype NA yes et al.
malaria treatment
falciparum 1999
(in vitro)
Newcastle Bonneau
Passer House
bird Body size virus F yes detal.
domesticus  sparrow
vaccine 2004
Somateria Common  Individual Hanssen
bird SRBC F yes
2006

mollissima elder quality
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Fungal Season M
pathogen
Roznik
amphibia Litoria Common  (Batracho- Body
yes et al.
n rheocola mist frog chytrium condition
2015
dendrobati index
dis)
Perceived Relative
Broadnos
Syngnathu predation activity of Billing et
fish ed M yes
s typhle risk (Gadus female al. 2007
pipefish
morhua) partner
Belostoma Giant Temperatu Kight et
insect Clutchsize M yes
flumineum  waterbug re al. 2000
Yellow
Tenebrio Nylon Food Krams et
insect mealwor M yes
molitor implant availability al. 2015
m beetle
Bacteria
Texas Shoema
Gryllus (Serratia Oviposition
insect field F yes ker et al.
texensis marcescen substrate
cricket 2006
s)
Protozoan
Ficedula Pied (Haemoprot Sanz et
bird Age F mixed
hypoleuca flycatcher eus al. 2001
balmorali)
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Blue- LPS (from Velando
Sula
bird footed Age Escherichia M mixed et al.
nebouxii
booby coli) 2006
Nicrophoru
Benowitz
s Burying Paternity
insect Age M mixed et al.
vespilloide beetle assurance
2013
S
Copelan
Southern
Allonemobi d and
insect ground Age LPS M mixed
us socius Fedorka
cricket
2012
Age M Gonzale
American z-
Hetaerina Nylon
insect rubyspot mixed Tokman
americana implant Body size
damselfly et al.
2013
Carcass
Age F
size
Creighto
Nicrophoru  Burying Number of
insect mixed n et al.
s orbicollis beetle previous Resource
2009
reproductiv  availability
e attempts
Age at first Prior
Nicrophoru  Burying Cotter et
insect reproductio reproductive F yes
S beetle al. 2010
n investment
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vespilloide

S
Microsporidi Chadwic
crustace Daphnia Water an spores F/ k and
Genotype mixed
an magna flea (Glugoides M Little
intestinalis) 2005
HK bacteria
(genus
Enterobacte
Genotype
r)
Alarm F/
Barribea
Acyrthosip pheromone M
insect Pea aphid mixed uetal.
hon pisum HK bacteria
2010
Artificially (genus
established Enterobacte
secondary r)
symbionts Alarm
pheromone
Malaria
infection Podmokt
Cyanistes F/
bird Blue tit (Haemo- Clutch size mixed aetal.
caeruleus M
proteus 2014
and
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992

Plasmodiu

m spp.)
Root Leaf
Poveda
Sinapis Mustard herbivory herbivory
plant NA mixed et al.
arvensis plant (Agriotes (Pieris
2003
sp.) rapae)
Bacteria
Acheta House (Serratia Adamo
insect Age F no
domesticus  cricket marcescens 1999
)
HK bacteria Duffield
Gryllodes  Decorate
insect Genotype (Escherichia M no et al.
sigillatus d cricket
coli) 2015
LPS (from
Gryllus
Field Serratia Food Jacot et
insect camperstri M no
cricket marcescen  availability al. 2004
s
s)
White- Derting
Peromyscu Testostero
rodent footed SRBC M no and Virk
s leucopus ne levels
mouse 2005

Abbreviations: HK, heat-killed; LPS, lipopolysaccharides; SRBC, sheep red blood cells
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Fig 1 Predictions based on intrinsic residual reproductive value (RRV) from the dynamic
terminal investment threshold model. At low threat levels, individuals invest intermediately in
reproduction to balance the reproduction-immunity trade-off. As a threat increases, investment
in immunity increases to combat the threat. Thus, costs of immunity necessitate a decreased
reproductive investment. At high threat levels, past where resistance is ineffective (terminal
investment threshold, vertical dashed line), a terminal investment strategy of increased
reproductive investment is predicted. Intrinsic RRV is expected to influence this threshold, with

the threshold dropping as intrinsic RRV decreases.
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