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Abstract—Myocardial infarction (MI) is among the leading5
causes of death in the United States. It is imperative to iden-6
tify and characterize MIs for timely delivery of life-saving7
medical interventions. Cardiac electrical activity propagates8
in space and evolves over time. Traditional works focus on9
the analysis of time-domain ECG (e.g., 12-lead ECG) on the10
body surface for the detection of MIs, but tend to overlook11
spatiotemporal dynamics in the heart. Body surface poten-12
tial mappings (BSPMs) provide high-resolution distribution13
of electric potentials over the entire torso, and therefore pro-14
vide richer information than 12-lead ECG. However, BSPM15
are available on the body surface. Clinicians are in need of16
a closer look of the electric potentials in the heart to in-17
vestigate cardiac pathology and optimize treatment strate-18
gies. In this paper, we applied the method of spatiotemporal19
inverse ECG (ST-iECG) modeling to map electrical poten-20
tials from the body surface to the heart, and then charac-21
terize the location and extent of MIs by investigating the22
reconstructed heart-surface electrograms. First, we inves-23
tigate the impact of mesh resolution on the inverse ECG24
modeling. Second, we solve the inverse ECG problem and25
reconstruct heart-surface electrograms using the ST-iECG26
model. Finally, we propose a wavelet-clustering method to27
investigate the pathological behaviors of heart-surface elec-28
trograms, and thereby characterize the extent and location29
of MIs. The proposed methodology is evaluated and vali-30
dated with real data of MIs from human subjects. Experimen-31
tal results show that negative QRS waves in heart-surface32
electrograms indicate potential regions of MI, and the pro-33
posed ST-iECG model yields superior characterization re-34
sults of MIs on the heart surface over existing methods.35

Index Terms—Inverse ECG problem, myocardial infarc-36
tion, spatiotemporal regularization, wavelet clustering.37

I. INTRODUCTION38

MYOCARDIAL infarction (MI), commonly known as39

heart attack, is among the leading causes of death40

throughout the world. It is shown that approximately every41

40 seconds, an American will suffer a heart attack [1]. MI occurs42
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due to the blockage of coronary arteries. This will significantly 43

decrease or stop the blood flow or oxygen supply to the heart, 44

thereby damaging the heart muscle and triggering the heart 45

attack. According to the American Heart Association, heart dis- 46

ease accounts for approximately 1 in 7 deaths in 2016, and there 47

are about 790,000 people experience heart attacks annually in 48

the United States [1]. MI is among the most expensive dis- 49

eases for clinical diagnosis, medical treatment, and follow-up 50

care. The economic costs of heart diseases are estimated to be 51

around $1,044 billion by 2030 [1]. The effective time window 52

for MI treatments is within one hour from the onset of symp- 53

toms. Therefore, it is imperative to characterize and identify 54

MIs in the early stage for timely delivery of optimal medical 55

interventions and the improvement of heart health. 56

There are two categories of tests commonly used in clini- 57

cal practice for the MI identification, namely structure imaging 58

or functional sensing. Structure imaging is essentially frozen 59

screenshots of heart structures. For example, computed tomog- 60

raphy (CT) helps examine the inside structure of the heart and 61

identify tissue damages. Magnetic resonance imaging (MRI) 62

utilizes the magnetic fields to get images of the heart. Most of 63

them are expensive tests conducted in a short period of time 64

and are not always readily available. Even if routine examina- 65

tions are performed multiple times each day, the intermittence 66

still fails to detect life-threatening cardiac events [2]. Functional 67

sensing captures a wealth of information pertinent to dynamic 68

changes in cardiac conditions, e.g., electrocardiogram (ECG) 69

signals. Cardiac dynamics over time are essential to monitor the 70

progression of disease processes. 71

The 12-lead ECG is widely used for the identification of MIs 72

by checking abnormalities in ECG wave deflections, e.g., signif- 73

icant Q waves, ST depression/elevation, or inverted T-waves. It 74

may be noted that cardiac electrical activity propagates in space 75

and evolves in time. One lead ECG captures 1-dimensional 76

views of such space-time cardiac electrical activity. The 12-lead 77

ECG systems provide 12-directional views of such space-time 78

dynamics [3]. Most existing works [4], [5] focus on the analysis 79

of time-domain ECG signals on the body surface for the de- 80

tection of ECG wave deflections (i.e., P, QRS, T waves) on the 81

body surface but tend to overlook spatiotemporal dynamics in 82

the heart [4]–[6]. Time-domain ECG is a projected view of spa- 83

tiotemporal cardiac electrical activity that diminishes important 84

spatial information pertinent to heart diseases (e.g., myocar- 85

dial infarction). Because distributed sensors at various locations 86
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on the body surface respond to changes of heart conditions87

differently, body surface potential mapping (BSPM) employs88

hundreds of sensors to achieve high-resolution ECG sensing.89

High-resolution ECG images from BSPM facilitate the recon-90

struction of spatiotemporal distribution of electric potentials91

over the entire torso, and therefore provide richer information92

than 12-lead ECG for clinical decision making [7], [8].93

However, ECG images provide the distribution of electri-94

cal potentials on the body surface. Clinicians call for the es-95

timation of heart-surface potentials to delineate pathological96

changes in the heart (e.g., infarct tissues). This is also called97

inverse ECG problem. Note that spatiotemporal ECG data and98

complex torso-heart geometries pose significant challenges on99

analytical modeling of the relationship between body-surface100

potentials φB (t) and heart-surface potentials φH (t). The high-101

dimensional predictive model, φB (t) = RBH φH (t) + ε, is102

generally ill-conditioned. The transfer matrix RBH is derived103

based on torso-heart geometries and electromagnetic theory, but104

physics-based models do not account for real-world uncertain-105

ties (i.e., approximation errors and measurement noises), and106

therefore do not always match satisfactorily with data from107

real-world experiments. Our previous investigation developed a108

new methodology of spatiotemporal regularization (STRE) to109

solve inverse ECG problems, see details in [9]. This approach110

leverages ECG data to improve the spatial and temporal regular-111

ity of the solutions, thereby making more accurate predictions112

(closer to reality). Note that the STRE model involves both113

the spatial and temporal regularization terms, and is difficult to114

be solved analytically. We developed an iterative algorithm of115

dipole multiplicative update, inspired by the dipole assumptions116

in electrodynamic physics, to solve spatiotemporal regulariza-117

tion problems.118

In this paper, we further investigate the application of119

the STRE model to reconstruct heart-surface potentials from120

BSPMs for MI characterization. Also, we develop a wavelet-121

clustering method to cluster time series of electrical potentials122

on the heart surface and thereby characterize the extent and lo-123

cation of the MIs. Specifically, our contributions in the present124

investigation are as follows:125

1) Wavelet clustering of heart-surface electrograms to dif-126

ferentiate healthy and infarcted regions: It is common to iden-127

tify and characterize MIs by checking abnormalities of time-128

domain ECGs on the body surface (i.e., significant Q waves,129

ST depression/elevation, and inverted T waves). However, lit-130

tle has been done to study pathological behaviors of heart-131

surface electrograms in the time-frequency domain. We solve132

the inverse ECG problem using the STRE model and pro-133

pose a wavelet-clustering method of heart electrograms to dif-134

ferentiate healthy and infarcted patterns. Different frequency135

bands of heart-surface electrograms are studied. Experimental136

results show approximation bands provide better characteriza-137

tion results than detailed bands. (See details in the experimental138

results.)139

2) Case studies on ECG images from human subjects: First,140

we performed wavelet-clustering of the electrograms on the141

heart surface for two training cases. We studied different seg-142

ments of heart-surface ECGs, including the entire ECG cycle,143

P wave, QRS wave, and T wave. Experimental results show that 144

QRS clustering yields the best characterization of MIs based 145

on the MRI images. Second, we validated the characterization 146

results with the other two test cases, and found consistent re- 147

sults that the cluster of negative QRS waves on the heart surface 148

indicates potential infarction areas. The characterization results 149

by the proposed methodology are further benchmarked with 150

golden standards provided by Gadolinium-enhanced transaxial 151

MRI (GE-MRI) images. 152

The rest of this paper is organized as follows: Section II intro- 153

duces the research background of existing MI characterization 154

methods and inverse ECG problems. Section III presents the re- 155

search methodology of spatiotemporal inverse ECG model and 156

wavelet clustering. Section IV describes the experimental design 157

and results. Section V concludes the present investigation. 158

II. RESEARCH BACKGROUND 159

A. Characterizing MIs From BSPMs 160

BSPM employs hundreds of electrodes on the body surface 161

and records the spatiotemporal distribution of electric poten- 162

tials over the entire torso. Many previous studies characterized 163

the size and location of MIs by investigating BSPMs. Simelius 164

et al. [10] proposed the use of self-organizing maps to analyze 165

and classify the spatiotemporal BSPM data and further local- 166

ize the abnormal ventricular activation. Li and He et al. [11] 167

and Farina et al. [12] proposed to determine the optimal extent 168

and location of a spherical MI by minimizing the differences 169

between the real-world BSPM data and the BSPM simulated 170

from a heart model with infarctions. SadAbadi et al. [13] de- 171

veloped a location relationship between the positions of BSPM 172

sensors and regions of the heart, and further characterized the 173

extent and location of MIs by investigating abnormal features 174

in BSPM. Mneimneh et al. [14] proposed to use a reconstructed 175

phase space and a Gaussian mixture model to create a multi- 176

dimensional representation of the BSPMs to differentiate the 177

electrical signals from healthy and infarct segments of the hu- 178

man heart, and further quantify the MIs on the heart surface. 179

Although BSPMs provides the high-resolution distribution of 180

electric potentials on the body surface, cardiac electrical activity 181

is often blurred while propagating from the heart to the body, 182

which diminishes important spatiotemporal characteristics per- 183

tinent to the MIs. The characterization methods by investigating 184

BSPMs are therefore limited in the ability to quantify the extent 185

and location of MIs on the heart surface. In order to delin- 186

eate pathological changes in the heart, medical scientists call 187

for the estimation of heart-surface electrograms from the high- 188

resolution BSPMs and the complex torso-heart geometry, i.e., 189

the inverse ECG problem. 190

B. Inverse ECG Problem 191

The inverse ECG model is proposed to reconstruct heart- 192

surface electrograms from BSPMs, and is further used to non- 193

invasively image electrical activities of the heart. Two source 194

models are commonly used in the inverse ECG problems. 195

The first source model is called “action-based model”, where 196
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the dominant feature of cardiac electrical activity is assumed197

to be the arrival timing of the depolarization wavefront at each198

location in the heart. In this model, the entire heart is modeled199

with finite element method instead of the epicardial surface [15],200

[16]. For example, Wang et al. [17] modeled the inverse ECG201

problem by constraining the solution on the electrophysiolog-202

ical model, i.e., the reaction-diffusion model, that guides the203

propagation of potential and recovery current.204

The second source model is called ”potential-based” model,205

which assumes that cardiac sources are represented by time-206

varying electrical potentials on the heart surface. Electromag-207

netic theory is integrated with boundary element method to208

model the relationship between potential distributions on the209

body and heart surfaces [9], [18]. Cheng et al. [19] compared the210

two source models and found there are no significant differences211

between the reconstructed heart-surface potentials. Nonetheless,212

the “activation-based” model requires modeling the entire heart,213

which introduces more imaging and computational efforts than214

the “potential-based” model [15], [20].215

The present investigation will focus on the “potential-based”216

model. The relationship between the potential distributions on217

the body and heart surfaces is represented by a transfer matrix218

RBH . In order to calculate RBH , the human body is first mod-219

eled as a source-free homogeneous volume conductor, whose220

boundary consists of the heart and body surfaces. Second, the221

boundary element method is implemented to discretize the heart222

and body surfaces [21]. Finally, the electric potentials on the two223

surfaces are related by:224

φB = RBH φH (1)

in which φB and φH denote the potential distributions on the225

body and heart surfaces, respectively, and RBH incorporates226

both the torso-heart geometries and the electrical conducting227

properties of the human body [22].228

However, the inverse ECG problem involves dynamic poten-229

tials distributed on the complex heart and body surfaces, and230

is generally ill-conditioned. The transfer matrix RBH is with231

large condition number (i.e., cond(RBH ) = ‖R−1
BH ‖‖RBH ‖),232

indicating that a small noise ΔφB in φB caused by measurement233

equipment will result in a big difference ΔφH in the estimation234

of φH (i.e., ΔφH

φH
� cond(RBH )ΔφB

φB
). To address this prob-235

lem, different methods have been proposed, such as Tikhonov236

L2-norm [23] and L1-norm regularization methods [24], [25].237

These methods solve the inverse ECG problem individually at238

each time point, and do not account for temporal correlations239

among the time-varying electric potentials.240

Brooks et al. [18] proposed to increase the spatial and tem-241

poral regularity of the inverse solution by simultaneously con-242

straining the magnitude or second-order spatial derivative and243

the first-order temporal derivative of heart-surface potentials.244

In order to solve the proposed model, they reformulated the245

problem with an augmented model, which resulted in a ma-246

trix representation with the dimension of (N ∗ T ) × (N ∗ T ),247

where N is the number of nodes on the heart surface and T is248

the length of the time series. The computation involves complex249

matrix-operations and the complexity will increase when the250

dimension (N or T ) is getting large.251

Fig. 1. The flowchart of research methodology.

Messnarz et al. [26] estimated cardiac electric potentials us- 252

ing a spatiotemporal approach, in which they accounted for the 253

spatial correlation by a symmetric gradient matrix, and formu- 254

late the temporal constraint assuming that the potential signals 255

are monotonically nonincreasing during depolarization phase. 256

However, the torso-heart geometry is highly complex, and a 257

symmetric matrix tends to be limited to approximate the surface 258

gradient. Moreover, the nondecreasing assumption in the tem- 259

poral constraint may not be generally applicable to real-world 260

inverse ECG model. 261

Our previous work proposed a spatiotemporal regularization 262

(STRE) model to solve the high-dimensional inverse ECG prob- 263

lem [9]. We define a surface Laplacian for irregular triangle 264

meshes to improve the spatial regularity of the inverse solution, 265

and account for the temporal correlation by constraining the 266

sum-of-square of the differences in potential signals in a small 267

time window. In addition, we proposed an iterative method of 268

dipole multiplicative update to solve the STRE model, which is 269

inspired by the dipole assumption in electrodynamic physics. 270

However, very little has been done to identify and characterize 271

MIs on the heart surface using the spatiotemporal regularization 272

method. In this investigation, we utilize the STRE framework 273

to solve the inverse ECG problem from BSPMs and torso-heart 274

geometry, and further quantify the extent and location of MIs 275

on the heart surface using a wavelet-clustering method. 276

III. RESEARCH METHODOLOGY 277

As shown in Fig. 1, this paper presents the application of spa- 278

tiotemporal inverse ECG (ST-iECG) modeling to characterize 279

the location and extent of MIs. First, we reconstruct the time- 280

varying heart-surface electrograms from BSPMs using the in- 281

verse ECG modeling and spatiotemporal regularization method. 282

Second, heart-surface electrograms are decomposed into mul- 283

tiple frequency bands through the wavelet transformation. This 284

time-frequency decomposition provides salient features to rep- 285

resent disease-altered patterns in heart-surface electrograms. 286

Finally, we performed the hierarchical clustering of wavelet 287

coefficients to delineate the grouping behavior of heart-surface 288

electrograms, which further help characterize the extent and 289

location of MIs. 290
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A. Spatiotemporal Regularization291

BSPMs provide high-resolution distribution of electric po-292

tentials over the entire torso to delineate the spatiotemporal293

dynamics in the heart. Little has been done to reconstruct the294

electric potentials on the heart surface from BSPMs using spa-295

tiotemporal regularization method and further quantify the MIs.296

In the present investigation, we solve the inverse ECG problem297

from BSPMs and the torso-heart geometries using the STRE298

model, and will characterize the extent and location of MIs by299

investigating the reconstructed heart-surface electrograms. The300

objective function of the STRE model [9] is as follows:301

min
φH (t)

J =
T∑

t=1

{‖φB (t) − RBH φH (t)‖2 + λ2
s‖ΔsφH (t)‖2

+ λ2
t

t+ w
2∑

τ =t− w
2

‖φH (t) − φH (τ)‖2} (2)

where λs and λt are the spatial and temporal regularization302

parameters, respectively, which are chosen by L-curve method303

[27] or cross validation. The matrix Δs represents the spatial304

Laplacian operator of irregular triangle meshes and is proposed305

to improve the spatial regularity of the estimated potentials on306

the heart surface. The sum-of-square of the differences in elec-307

trical potentials in a time window w, i.e., the third term in (2), is308

proposed to increase model robustness to measurement noises309

in the time domain.310

The STRE model involves both the spatial and temporal cor-311

relations among the electric potential φH , and it is difficult312

to solve for φH analytically. In our previous work, we pro-313

pose to estimate φH using the iterative method of dipole mul-314

tiplicative update (DMU) inspired by the dipole assumption in315

electrodynamic physics. Briefly, the DMU method splits the316

electric potential φH into its positive part φ+
H and negative317

part φ−
H , where φ+

H and φ−
H are defined as φ+

H = max{0,φH }318

and φ−
H = max{0,−φH }. And then, we can write φH as319

φH = φ+
H − φ−

H , and obtain the updating rules for φ+
H and320

φ−
H in the algorithm shown in Table I (see details in [9]).321

B. Wavelet Decomposition of Heart-Surface322

Electrograms323

The time series data such as heart-surface electrograms φH324

are generally characterized by high dimensionality, high corre-325

lation, uncertainties and measurement noises. Traditional time-326

domain investigation tends to overlook hidden information in-327

herent in original signals (e.g., spatial information pertinent to328

MIs). Frequency-domain analysis such as Fourier transforma-329

tion identifies spectral components present in the signal but does330

not provide temporal localization of these components. Meth-331

ods of time-frequency analysis such as wavelet transformation332

provide interpretation of time series in both time and frequency333

simultaneously, which enables the delineation of local, transient334

or intermittent components inherent to the data.335

In the present investigation, we propose to transform the elec-336

trograms on the heart surface with the Daubechies wavelet [28].337

Note that most of the previous works show that the closer the338

wavelet functions match the signal pattern, the more compact 339

the representation will be [29]. The heart electrogram φH is 340

denoted as {φH (t)}T
t=1 and is decomposed into the running av- 341

erages Aj (k) to approximate the original time sequence, and 342

running differences Dj (k) to characterize the details of the 343

time series φH , where j = 1, 2, . . . denotes the decomposition 344

level (i.e., scaling value) and k = 1, 2, . . . represents the po- 345

sition (i.e., translation value). Aj (k) and Dj (k) are defined 346

recursively as 347

Aj (k) =
T∑

t=1

hjAj−1
(
(2k + t) mod 2j+2) (3)

Dj (k) =
T∑

t=1

(−1)thjAj−1
(
(2k + 2T − t) mod 2j+2) (4)

A1(k) =
T∑

t=1

φ(t)Vn (t − k) (5)

where hj ’s are filter coefficients of the Daubechies scaling func- 348

tion, and the scaling function Vn (t) and wavelet function Wn (t) 349

are defined recursively as 350

Vn (t) =
√

2
2n−1∑
k=0

hkVn (2t − k) (6)

Wn (t) =
√

2
2n−1∑
k=0

(−1)kh2n−1−kVn (2t − k) (7)

Thus, at level j of decomposition, φH is expressed as 351

φH (t) =
∑

k

Aj (k)Vn

(
t

2j
− 2j k

)

+
j∑

j ′=1

∑
k

Dj ′(k)Wn

(
t

2j ′ − 2j ′
k

)
(8)

The wavelet decomposition provides an effective framework 352

of multi-resolution analysis for investigating the heart-surface 353

electrogram φH at various levels of approximations Aj ’s and de- 354

tails Dj ’s. This multi-resolution framework will better elucidate 355

both the local and transient characteristics of φH that are often 356

obscured by the traditional time-domain or frequency-domain 357

analysis. 358

C. Hierarchical Clustering 359

Hierarchical clustering (HC) algorithm is further used to clus- 360

ter each sequence of running average Aj ’s and running differ- 361

ence Dj ’s of heart-surface electrogram φH (t) at different level 362

j. The HC algorithm creates a hierarchical decomposition of 363

the input data represented by a dendrogram. The dendrogram is 364

constructed according to the N × N distance (similarity) ma- 365

trix given by the N observations (i.e., N ECG time series) in 366

the dataset. (Note in the present investigation, N is the number 367

of nodes on the heart surface.) At the first step of HC, each 368

observation is assigned to its own cluster, which results in N 369

singleton clusters. Then, the closest (i.e., most similar) pair 370
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TABLE I
THE PROPOSED DIPOLE MULTIPLICATIVE UPDATE ALGORITHM

Fig. 2. 17-segment model of the left ventricle.

of clusters is merged into one single cluster. The recursive371

merging strategy continues to move up the hierarchy until372

all the observations are clustered into one single cluster of373

size N .374

The optimal number of clusters is chosen by the Silhouette375

index. Let C = {C1 , . . . , CK } denote the K clusters of the data376

set. The jth cluster is defined as Cj = {φj
1(t), . . . , φ

j
nj

(t)}, and377

nj = |Cj | is the cardinality of the jth cluster. Let d(φk (t), φl(t))378

denote the distance between φk (t) and φl(t). Then the Silhouette379

index with K clusters is defined as:380

SK =
1
K

K∑
j=1

1
nj

nj∑
j=1

bj
i − aj

i

max{aj
i , b

j
i }

(9)

where aj
i is the average distance between the i-th observation381

in cluster Cj and the other observations in the same cluster,382

bj
i denotes the minimum average distance between the i-th ob-383

servation in Cj and all the observations in Ck , k = 1, . . . , K,384

k �= j. 385

aj
i =

1
nj − 1

nj∑
k=1,k �=i

d(φj
i (t), φ

j
k (t)) (10)

bj
i = min

m=1,...,K,m �=j

{
1

nm

nm∑
k=1

d(φj
i (t), φ

m
k (t))

}
(11)

The value of SK is between -1 and 1, and a bigger SK indicates 386

better clustering result. Therefore, the optimal number of cluster 387

K∗ is chosen as 388

K∗ = arg max
K

SK (12)

Furthermore, Aj ’s and Dj ’s are clustered into K∗ clusters 389

using the HC algorithm. The clustering results are further used 390

to characterize the extent and location of MIs on the heart surface 391

in the experiment. 392

D. Performance Metrics 393

Gadolinium-enhanced transaxial MRI (GE-MRI) images pro- 394

vide the golden standards to evaluate the performance of the 395

ST-iECG model. The extent, centroid and location of infarc- 396

tion area on the heart surface are presented by the 17-segment 397

model [30] as shown in Fig. 2. In the 17-segment model, the left 398

ventricle (LV) is first segmented into three coarse parts: basal, 399

apical and mid-cavity along its long axis from the apex of LV 400

to the base. Furthermore, the basal area and the mid-cavity are 401

divided into six finer segments, respectively, and the apical area 402

is divided into four finer segments. The name of each segment 403

is displayed in Fig. 2. 404

Three performance metrics are defined to evaluate the perfor- 405

mance of the proposed ST-iECG model: 406

1) EPD-percentage discrepancy between the extent of in- 407

farction as estimated and as given by GE-MRI images; 408

2) SO-overlap percentage between infarct segments as esti- 409

mated and as given by GE-MRI images; 410
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Fig. 3. Torso-heart geometry.

3) CED-distance from the centroid of the infarct area as411

given by GE-MRI images to that as estimated.412

The three metrics of the proposed ST-iECG model are further413

benchmarked with the results provided by the existing iECG414

model [23] in the next section.415

IV. EXPERIMENTAL DESIGN AND RESULTS416

A. Dataset417

The dataset in this investigation including the customized418

torso-heart geometry (as shown in Fig. 3) and body surface419

potential mapping (BSPM) is sourced from the PhysioNet web-420

site [23], [31]. The BSPMs are collected from four patients421

who carried one-year MIs, which contain time series of electric422

potentials from 0 to 1000 ms at 352 locations on the body423

surface. These four cases are split into two training cases and two424

test cases. The true MI segments for each patient are outlined by425

the GE-MRI images, which provides the reference for evaluating426

the performance of the ST-iECG model.427

B. The Impact of Mesh Resolution on Inverse ECG428

Modeling429

In potential-based inverse ECG problem, the transfer ma-430

trix RBH is computed by integrating electromagnetic theory431

and boundary element method (BEM). In BEM, the torso-heart432

geometries are discretized into triangle meshes to numerically433

solve the Laplacian equation that establishes the relationship be-434

tween φH and φB . The solution integrals are approximated by435

the summation of a series of numerical integrations over triangle436

elements. The approximation accuracy is closely dependent on437

the mesh resolution, which impacts the estimation of the inverse438

ECG problem. Few, if any previous works studied the effects439

of mesh resolution on the inverse ECG solution. At the present440

investigation, we study the effects of mesh resolution on the441

solution to inverse models in order to find the optimal mesh442

resolution [21].443

We vary the number of elements NT on the triangle mesh of444

the heart surface by setting it to be 136, 272, 408, 546, 654, 872445

and 1092. Fig. 4 is an illustration of the triangle mesh and the446

3D heart model. Under different mesh resolution, we solve the447

inverse problem and investigate the variation of mean squared448

error (MSE) with respect to NT as shown in Fig. 5. Note that449

in order to calculate MSE, the estimated heart-surface potential450

φH (t) is used to predict the body-surface potential from the451

Fig. 4. Illustration of the interpolated 3D heart model and triangle
meshes of the heart surface.

Fig. 5. The variation of mean squared errors with respect to the number
of triangle elements NT on the heart mesh.

Fig. 6. The variation of Silhouette index with respect to different number
of clusters for the 4 cases.

forward ECG model, i.e., φ̂B (t) = RBH φH (t). Then the MSE 452

is computed as 453

MSE =
∑T

t=1 ‖φ̂B (t) − φB (t)‖
T × NB

(13)

where φB (t) is real data of body-surface potentials, T is the 454

length of time series, and NB is the number of nodes on the 455

body surface. 456

According to Fig. 5, the MSE decreases as the number of 457

triangles increases. Moreover, when NT exceeds 400, the value 458
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TABLE II
RESULTS OF MI CHARACTERIZATION WITH WAVELET CLUSTERING IN TRAINING CASE 1 AND CASE 2

of MSE remains relatively stable and little improvement can be459

achieved if we further increase the number of triangle elements.460

The value of NT should be greater than 400 to guarantee the461

accuracy of the inverse model, but should not be very large462

to make the inverse model computationally expensive. In this463

investigation, we therefore set the number of mesh elements464

triangulating the heart surface to be 546, which is the elbow465

point between NT = 500 and NT = 600.466

C. MI Characterization With Wavelet Clustering467

The body surface consists of 677 triangle elements and 352468

nodes, and the heart surface is formed with 546 triangle el-469

ements and 275 nodes, which results in a 352 × 275 transfer470

matrix RBH . The ST-iECG method with λs=0.06, λt = 0.005471

chosen by L-curve method and w = 2 is implemented to solve472

the potential distribution φH on the heart surface. The QRS473

interval (represents ventricular depolarization) of estimated po-474

tential signals on the heart surface are grouped into different475

clusters by the HC algorithm with the cluster number varying476

from 2 to 20. Note that we conducted experiments to study477

different segments of heart-surface electrograms, including the478

entire ECG cycle, P wave, QRS wave, and T wave. Experimental479

results show that clustering of QRS wave yields the best char-480

acterization results. This agrees with the fact that QRS wave481

corresponds to the ventricular depolarization. Therefore, in this482

investigation we characterize the MIs using the QRS waves of483

the heart-surface electrograms.484

Fig. 6 shows the variation of Silhouette index with respect to485

the cluster number of the four cases. Notably, cases 1, 3 and 4486

yield the highest Silhouette index when the number of clusters487

is two. This shows that two different clusters exist in the heart-488

surface electrograms. One cluster denotes signals from healthy489

segments and the other represents signals from infarct segments490

on the heart surface. In case 2, the Silhouette index is higher with491

four clusters than that with two clusters. This may be due to the492

existence of inhomogeneous tissues and cellular structures in the493

infarction regions of case 2. Such inhomogeneity leads to more 494

variations in heart-surface electrograms, which can be further 495

partitioned into sub-clusters. In other words, the big cluster is 496

further split into three sub-clusters. In the present investigation, 497

the number of cluster is selected as two so as to achieve the 498

overall highest Silhouette index for four cases. 499

The calculated φH in training case 1 and case 2 is further 500

decomposed into running averages Aj ’s and running difference 501

Dj ’s with j = 1, 2, 3, 4, 5, 6 by Daubechies wavelet. The esti- 502

mated signal φH , each Aj and Dj are grouped into two clusters 503

by the HC algorithm. Table II shows the characterization results 504

estimated by the wavelet-clustering method and the reference 505

results given by the GE-MRI images. Note that characteriza- 506

tion of MIs by the approximation levels Aj ’s generally yield 507

better performance metrics, i.e., lower EPD, higher SO, and 508

lower CED. This suggests that the characteristics in transient 509

parts (high-frequency details, Dj ’s) in the heart electrograms 510

may not relate to useful information pertinent to MIs. It is worth 511

noting that in training case 1, A3 (i.e., the approximation at 512

level j = 3) yields the smallest EPD of 1%, highest SO of 67%, 513

and CED of zero. In training case 2, A3 yields a zero CED and 514

the highest SO of 60%. Therefore, A3 is chosen as the optimal 515

representation of φH , and is grouped into healthy and infarct 516

clusters to further characterize the MIs on the heart surface in 517

later experiments. 518

D. Characterization Results in Training Case 1 and 519

Case 2 520

Fig. 7(a) shows the average potential signals ± standard de- 521

viation of two clusters denoting onset of infarction and normal 522

heart activity of training case 1 by the proposed ST-iECG model. 523

Note that although significant variations exist in the clusters of 524

onset of infarction and normal heart activity due to the heart 525

geometry and disease complexity, the cluster colored in blue 526

contains more positive signals, while the one in red consists of 527

negative signals, particularly, a negative Q wave. Fig. 7(b) shows 528
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Fig. 7. (a) Average potential signals ± one standard deviation of the
clusters of normal heart activity and onset of infarction in training case 1;
(b) Color-coded distribution of the two clusters on the heart surface with
inferior view (top) and anterosuperior view (bottom).

Fig. 8. (a) Estimated MIs (i.e., segments colored in red) by the pro-
posed ST-iECG model of training case 1; (b) Reference MIs (i.e.,
segments colored in red) provided by the GE-MRI image of training
case 1.

the color-coded 3D heart surface with red and blue colors rep-529

resenting the infarct and normal clusters respectively. The 3D530

heart surface is then projected into the 17-segment model, as531

shown in Fig. 8(a). The true infarct segments (colored in red)532

given by the GE-MRI image is shown in Fig. 8(b). By com-533

paring the segments of each cluster estimated by the ST-iECG534

model with the true infarct segments, the red cluster, i.e., the535

one contains negative Q wave, is identified as the cluster of536

onset of infarction, while the blue one, i.e., the one contains537

more positive signals, is specified as the cluster of normal heart538

activity.539

As shown in Fig. 8(a), the estimated infarct segments (i.e.,540

the segments colored in red) are 1, 2, 3, 8, 9, 13, 15 and 16 in541

case 1. The true infarct segments given by GE-MRI image are542

1, 2, 3, 8, 9, 13, 14 and 15 as shown in Fig. 8(b). The extent543

of infarction is obtained by dividing the number of the infarct544

nodes on the heart surface by the total number of nodes, which545

is 32% in case 1, and is close to the GE-MRI result of 31%.546

In addition, it can be noted from Fig. 8(a) that the centroid of547

the estimated infarct segments is segment 8, which matches the548

centroid given by the GE-MRI image.549

Fig. 9(a) illustrates average potential signals ± one standard550

deviation of the clusters of normal heart activity and onset of551

infarction in training case 2 by the proposed ST-iECG model.552

Notably, the magnitude of negative potentials in the blue cluster553

Fig. 9. (a) Average potential signals ± one standard deviation of the
clusters of normal heart activity and onset of infarction in training case 2;
(b) Color-coded distribution of the two clusters on the heart surface with
inferior view (top) and anterosuperior view (bottom).

Fig. 10. (a) Estimated MIs (i.e., segments colored in red) by the
proposed ST-iECG model of training case 2; (b) Reference MIs (i.e.,
segments colored in red) provided by the GE-MRI image of training
case 2.

is much smaller compared with that in the red cluster. Fig. 9(b) 554

shows the color-coded heart surface with red and blue colors 555

representing the two different clusters. The corresponding 17- 556

segment model is shown in Fig. 10(a), and Fig. 10(b) shows 557

the true infarct clusters (colored in red) given by the GE-MRI 558

image. Comparing the two clusters estimated by the proposed 559

ST-iECG model with the true infarct segments of case 2, the 560

red cluster is identified as the infarct cluster, while the blue one 561

denotes the normal cluster, which is consistent with the training 562

result in case 1. 563

As shown in Fig. 10(a), the estimated infarct segments (i.e., 564

segments colored in red) are 3, 5, 9 and 10 in case 2. The true 565

infarct segments are 3, 4, 9 and 10 given by the GE-MRI image 566

as shown in Fig. 10(b). The estimated extent of infarction in 567

case 2 is 20% which is not too far away from 30% given by 568

the GE-MRI analysis, and the estimated centroid is segment 10 569

matching the centroid given by GE-MRI image. 570

E. Characterization Results in Test Case 3 and Case 4 571

Fig. 11(a) shows the average potential signals ± one standard 572

deviation of the two clusters representing onset of infarction and 573

normal heart activity estimated by the proposed ST-iECG model 574

in test case 3. According to the experimental results in training 575

case 1 and case 2 in subsection D, the red cluster containing 576
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Fig. 11. (a) Average potential signals ± one standard deviation of the
clusters of normal heart activity and onset of infarction in test case 3;
(b) Color-coded distribution of the two clusters on the heart surface with
inferior view (top) and anterosuperior view (bottom).

Fig. 12. (a) Estimated MIs (i.e., segments colored in red) by the pro-
posed ST-iECG model of test case 3; (b) Reference MIs (i.e., segments
colored in red) provided by the GE-MRI image of test case 3.

more negative signals is specified as infarct cluster, and the blue577

one with more positive signals is the cluster of normal heart578

activity. Fig. 11(b) illustrates the heart surface with the infarct579

areas colored in red and healthy area colored in blue. Projecting580

the heart surface into the 17-segment model, Fig. 12 shows the581

comparison of the infarct segments (colored in red) as estimated582

by the ST-iECG model and as given by the GE-MRI image. Note583

that the estimated infarct segments are 1, 3, 5, 9, 10, 11, 12, 15,584

16 and 17. The extent of the estimated infarct area in case 3 is585

51%, and the estimated centroid is segment 11 or 15.586

Fig. 13(a) presents the clustering results in test case 4. The red587

cluster containing negative signals is specified as infarct clus-588

ter, and the blue one with positive signals is the normal cluster589

according to the training results in subsection D. Fig. 13(b) il-590

lustrates the infarct areas colored in red and the normal cluster591

colored in blue on the heart surface of case 4. Fig. 14 shows592

the comparison of the estimated infarct segments and reference593

result given by the GE-MRI image, after projecting the heart sur-594

face into the 17-segment model. Note that the estimated infarct595

segments are 1, 4, 5, 7, 9, 15 and 17. The extent and centroid of596

the estimated MI are 29% and segment 15, respectively.597

Table III summarizes the reference results of MIs for all the598

four cases given by GE-MRI images, the estimated results given599

by the proposed ST-iECG model, and that estimated by the600

existing iECG model [23]. Table IV highlights the comparison601

of performance metrics (i.e., EPD, SO, and CED) in test case 3602

Fig. 13. (a) Average potential signals ± one standard deviation of the
clusters of normal heart activity and onset of infarction in test case 4;
(b) Color-coded distribution of the two clusters on the heart surface with
inferior view (top) and anterosuperior view (bottom).

Fig. 14. (a) Estimated MIs (i.e., segments colored in red) by the pro-
posed ST-iECG model of test case 4; (b) Reference MIs (i.e., segments
colored in red) provided by the GE-MRI image of test case 4.

and case 4 by the ST-iECG model with the iECG model [23]. 603

The ST-iECG model yields a smaller EPD of 1% for case 3 and 604

15% for case 4 compared with the iECG model (i.e., 17% and 605

26% for case 3 and case 4, respectively), which suggests that 606

the extent of estimated MIs is closer to the true results given by 607

GE-MRI images. The SO estimated by the ST-iECG model is 608

0.727 in case 3 and 0.444 in case 4, and that estimated by the 609

iECG model is 0.556 and 0.3 for case 3 and case 4, respectively, 610

which indicates that our estimated infarction overlaps more with 611

the true infarct area. Furthermore, our estimated CED’s are 612

zero in both case 3 and case 4, suggesting that the centers of 613

the estimated infarction by the ST-iECG model match the true 614

centers given by the golden standards in both test cases, while 615

the estimated center by iECG is 1 and 2 segments away from 616

the true centers in case 3 and case 4, respectively. 617

According to Tables III and IV, all the three performance 618

metrics (i.e., EPD, SO and CED) given by the ST-iECG model 619

score better compared with the existing iECG model [23]. It 620

is worth noting that both the proposed ST-iECG and the iECG 621

overestimate the segments and extent of MI in case 4. The 622

segments of infarction in case 4 given by the GE-MRI images 623

are 1, 9, 10, 11, 15, 17 as shown in Table III, and there are 624

6 segments of MI in total. However, the extent of MI covers 625

only 14% of the heart surface. This suggests that the infarction 626

area in case 4 is highly spread, which poses a great challenge to 627

accurately characterize the MI. 628
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TABLE III
RESULTS FROM THE PROPOSED ST-IECG MODEL, EXISTING IECG MODEL [23], AND GE-MRI IMAGES

Characteristic Method Case 1 Case 2 Case 3 Case 4

GE-MRI 31% 30% 52% 14%
Extent iECG 25% 35% 35% 40%

ST-iECG 32% 20% 51% 29%

GE-MRI 1, 2, 3, 8, 9, 13, 14, 15 3,4,9,10 3, 4, 5, 9, 10, 11, 12, 15, 16 1,9,10,11,15,17
Infarct Segments iECG 2, 3, 8, 9, 14 3, 4, 5, 9, 10, 11 3, 4, 5, 10, 11 3, 4, 5, 6, 9, 10, 11

ST-iECG 1, 2, 3, 8, 9, 13, 15, 16 3, 5, 9, 10 1, 3, 5, 9, 10, 11, 12, 15, 16, 17 1, 4, 5, 7, 9, 15, 17

GE-MRI 8 3 or 9 or 4 or 10 10 or 11 15
Centroid iECG 9 10 4 4

ST-iECG 8 10 11 or 15 15

TABLE IV
COMPARISON OF PERFORMANCE METRICS OF THE PROPOSED ST-IECG

MODEL AND THE EXISTING IECG MODEL [23]

Metric Method Case 3 Case 4

EPD iECG 17% 26%
ST-iECG 1% 15%

SO iECG 0.556 0.3
ST-iECG 0.727 0.444

CED iECG 1 2
ST-iECG 0 0

Notably, the estimated centroids by the proposed ST-iECG629

model in all the training and test cases match that given by630

GE-MRI images, while there are discrepancies in the extent and631

segments of infarction between the estimated and true results.632

One of the possible sources of the discrepancies might be the633

orientation mismatch between the body surface and the heart634

surface in the 3D torso-heart model. Another possible reason635

is that we use a customized torso-heart geometry in this inves-636

tigation, but the torso-heart geometries may vary from person637

to person, which will introduce uncertainties and errors in the638

estimation. In addition, the reference results given by GE-MRI639

images are characterized in terms of the 17-segment model of640

the left ventricle, while the modeled heart surface consists of641

both the right and left ventricles. The electrical activity in the642

inter-ventricular segments is thus greatly blurred by the activ-643

ities on the right ventricle. Nevertheless, our inverse model is644

able to provide valuable information on the centroid, location,645

and extent of MIs on the heart surface, which is important to646

support medical scientists to make intervention decisions for647

patients with heart disease.648

V. CONCLUSIONS649

Myocardial infarction (MI) is among the leading causes of650

death in the United States. It is imperative to identify and char-651

acterize MIs for the timely delivery of medical intervention and652

the improvement of the quality of life. Cardiac electrical activity653

propagates in space and evolves over time. Most existing work654

identifies heart abnormalities by analyzing time-domain ECG655

signals (e.g., 12-lead ECG) on the body surface for detecting656

ECG wave deflections (i.e., P, QRS, and T waves), but tend to657

overlook spatiotemporal dynamics in the heart. They are limited658

in the ability to identify and characterize the extent and location 659

of MIs. 660

BSPMs provide high-resolution of spatiotemporal distribu- 661

tion of electrical potentials on the entire torso, and therefore pro- 662

vide richer information than 12-lead ECG. Little has been done 663

to reconstruct the heart-surface electrograms from BSPMs using 664

spatiotemporal regularization method and further characterize 665

MIs. In this paper, we propose the ST-iECG method to character- 666

ize the location and extent of MIs on the heart surface. We solve 667

the inverse ECG problem and reconstruct heart-surface electro- 668

grams from BSPMs using the STRE model. In addition, we pro- 669

pose a wavelet-clustering method to investigate the pathological 670

behaviors of heart-surface electrograms to characterize the MIs. 671

The ST-iECG model is evaluated and validated with real 672

data of MIs from 4 human subjects. First, we perform wavelet- 673

clustering of electrograms on the heart surface for two training 674

cases. Experimental results show that A3 (i.e., the approxima- 675

tion at level j = 3 of the Daubechies wavelet decomposition) 676

of the QRS waves on the heart surface yields the best charac- 677

terization of MIs based on golden standards by GE-MRI im- 678

ages. Second, we validate the characterization results with the 679

other two test cases, and found that negative QRS waves in the 680

heart-surface electrograms indicate potential regions of MI. The 681

performance of the proposed ST-iECG model is described by 682

three metrics, i.e., EPD, SO and CED, all of which score better 683

compared with existing iECG model, and demonstrate strong 684

potential as a decision-support tool to noninvasively investigate 685

cardiac pathological activities. 686

One limitation of the present study lies in the sample size 687

and the range of patients’ characteristics, although there are 688

a large number of heart-surface electrograms in the healthy 689

and infarction regions in each of four cases. The availability of 690

BSPM data and GE-MRI images helps mitigate this limitation 691

to some extent in the evaluation and validation experiments. In 692

the future work, it is necessary to include more patients with 693

healthy status and patients with mild and severe MIs in the 694

investigation before fully establishing the utility of proposed 695

methods for clinical applications. 696
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