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Characterizing the Location and Extent of
Myocardial Infarctions With Inverse ECG
Modeling and Spatiotemporal Regularization
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Abstract—Myocardial infarction (M) is among the leading
causes of death in the United States. It is imperative to iden-
tify and characterize Mis for timely delivery of life-saving
medical interventions. Cardiac electrical activity propagates
in space and evolves over time. Traditional works focus on
the analysis of time-domain ECG (e.g., 12-lead ECG) on the
body surface for the detection of Mis, but tend to overlook
spatiotemporal dynamics in the heart. Body surface poten-
tial mappings (BSPMs) provide high-resolution distribution
of electric potentials over the entire torso, and therefore pro-
vide richer information than 12-lead ECG. However, BSPM
are available on the body surface. Clinicians are in need of
a closer look of the electric potentials in the heart to in-
vestigate cardiac pathology and optimize treatment strate-
gies. In this paper, we applied the method of spatiotemporal
inverse ECG (ST-IECG) modeling to map electrical poten-
tials from the body surface to the heart, and then charac-
terize the location and extent of Mis by investigating the
reconstructed heart-surface electrograms. First, we inves-
tigate the impact of mesh resolution on the inverse ECG
modeling. Second, we solve the inverse ECG problem and
reconstruct heart-surface electrograms using the ST-IECG
model. Finally, we propose a wavelet-clustering method to
investigate the pathological behaviors of heart-surface elec-
trograms, and thereby characterize the extent and location
of Mis. The proposed methodology is evaluated and vali-
dated with real data of Mls from human subjects. Experimen-
tal results show that negative QRS waves in heart-surface
electrograms indicate potential regions of MI, and the pro-
posed ST-IECG model yields superior characterization re-
sults of Mis on the heart surface over existing methods.

Index Terms—Inverse ECG problem, myocardial infarc-
tion, spatiotemporal regularization, wavelet clustering.

. INTRODUCTION

YOCARDIAL infarction (MI), commonly known as
heart attack, is among the leading causes of death
throughout the world. It is shown that approximately every
40 seconds, an American will suffer a heart attack [1]. MI occurs
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due to the blockage of coronary arteries. This will significantly
decrease or stop the blood flow or oxygen supply to the heart,
thereby damaging the heart muscle and triggering the heart
attack. According to the American Heart Association, heart dis-
ease accounts for approximately 1 in 7 deaths in 2016, and there
are about 790,000 people experience heart attacks annually in
the United States [1]. MI is among the most expensive dis-
eases for clinical diagnosis, medical treatment, and follow-up
care. The economic costs of heart diseases are estimated to be
around $1,044 billion by 2030 [1]. The effective time window
for MI treatments is within one hour from the onset of symp-
toms. Therefore, it is imperative to characterize and identify
MIs in the early stage for timely delivery of optimal medical
interventions and the improvement of heart health.

There are two categories of tests commonly used in clini-
cal practice for the MI identification, namely structure imaging
or functional sensing. Structure imaging is essentially frozen
screenshots of heart structures. For example, computed tomog-
raphy (CT) helps examine the inside structure of the heart and
identify tissue damages. Magnetic resonance imaging (MRI)
utilizes the magnetic fields to get images of the heart. Most of
them are expensive tests conducted in a short period of time
and are not always readily available. Even if routine examina-
tions are performed multiple times each day, the intermittence
still fails to detect life-threatening cardiac events [2]. Functional
sensing captures a wealth of information pertinent to dynamic
changes in cardiac conditions, e.g., electrocardiogram (ECG)
signals. Cardiac dynamics over time are essential to monitor the
progression of disease processes.

The 12-lead ECG is widely used for the identification of Mls
by checking abnormalities in ECG wave deflections, e.g., signif-
icant Q waves, ST depression/elevation, or inverted T-waves. It
may be noted that cardiac electrical activity propagates in space
and evolves in time. One lead ECG captures 1-dimensional
views of such space-time cardiac electrical activity. The 12-lead
ECG systems provide 12-directional views of such space-time
dynamics [3]. Most existing works [4], [5] focus on the analysis
of time-domain ECG signals on the body surface for the de-
tection of ECG wave deflections (i.e., P, QRS, T waves) on the
body surface but tend to overlook spatiotemporal dynamics in
the heart [4]-[6]. Time-domain ECG is a projected view of spa-
tiotemporal cardiac electrical activity that diminishes important
spatial information pertinent to heart diseases (e.g., myocar-
dial infarction). Because distributed sensors at various locations
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on the body surface respond to changes of heart conditions
differently, body surface potential mapping (BSPM) employs
hundreds of sensors to achieve high-resolution ECG sensing.
High-resolution ECG images from BSPM facilitate the recon-
struction of spatiotemporal distribution of electric potentials
over the entire torso, and therefore provide richer information
than 12-lead ECG for clinical decision making [7], [8].

However, ECG images provide the distribution of electri-
cal potentials on the body surface. Clinicians call for the es-
timation of heart-surface potentials to delineate pathological
changes in the heart (e.g., infarct tissues). This is also called
inverse ECG problem. Note that spatiotemporal ECG data and
complex torso-heart geometries pose significant challenges on
analytical modeling of the relationship between body-surface
potentials ¢ (t) and heart-surface potentials ¢ (¢). The high-
dimensional predictive model, ¢5(t) = Rpy oy (t) + €, is
generally ill-conditioned. The transfer matrix Ry is derived
based on torso-heart geometries and electromagnetic theory, but
physics-based models do not account for real-world uncertain-
ties (i.e., approximation errors and measurement noises), and
therefore do not always match satisfactorily with data from
real-world experiments. Our previous investigation developed a
new methodology of spatiotemporal regularization (STRE) to
solve inverse ECG problems, see details in [9]. This approach
leverages ECG data to improve the spatial and temporal regular-
ity of the solutions, thereby making more accurate predictions
(closer to reality). Note that the STRE model involves both
the spatial and temporal regularization terms, and is difficult to
be solved analytically. We developed an iterative algorithm of
dipole multiplicative update, inspired by the dipole assumptions
in electrodynamic physics, to solve spatiotemporal regulariza-
tion problems.

In this paper, we further investigate the application of
the STRE model to reconstruct heart-surface potentials from
BSPMs for MI characterization. Also, we develop a wavelet-
clustering method to cluster time series of electrical potentials
on the heart surface and thereby characterize the extent and lo-
cation of the MlIs. Specifically, our contributions in the present
investigation are as follows:

1) Wavelet clustering of heart-surface electrograms to dif-
ferentiate healthy and infarcted regions: It is common to iden-
tify and characterize MIs by checking abnormalities of time-
domain ECGs on the body surface (i.e., significant Q waves,
ST depression/elevation, and inverted T waves). However, lit-
tle has been done to study pathological behaviors of heart-
surface electrograms in the time-frequency domain. We solve
the inverse ECG problem using the STRE model and pro-
pose a wavelet-clustering method of heart electrograms to dif-
ferentiate healthy and infarcted patterns. Different frequency
bands of heart-surface electrograms are studied. Experimental
results show approximation bands provide better characteriza-
tion results than detailed bands. (See details in the experimental
results.)

2) Case studies on ECG images from human subjects: First,
we performed wavelet-clustering of the electrograms on the
heart surface for two training cases. We studied different seg-
ments of heart-surface ECGs, including the entire ECG cycle,

P wave, QRS wave, and T wave. Experimental results show that
QRS clustering yields the best characterization of MIs based
on the MRI images. Second, we validated the characterization
results with the other two test cases, and found consistent re-
sults that the cluster of negative QRS waves on the heart surface
indicates potential infarction areas. The characterization results
by the proposed methodology are further benchmarked with
golden standards provided by Gadolinium-enhanced transaxial
MRI (GE-MRI) images.

The rest of this paper is organized as follows: Section II intro-
duces the research background of existing MI characterization
methods and inverse ECG problems. Section III presents the re-
search methodology of spatiotemporal inverse ECG model and
wavelet clustering. Section IV describes the experimental design
and results. Section V concludes the present investigation.

[I. RESEARCH BACKGROUND
A. Characterizing Mls From BSPMs

BSPM employs hundreds of electrodes on the body surface
and records the spatiotemporal distribution of electric poten-
tials over the entire torso. Many previous studies characterized
the size and location of MIs by investigating BSPMs. Simelius
et al. [10] proposed the use of self-organizing maps to analyze
and classify the spatiotemporal BSPM data and further local-
ize the abnormal ventricular activation. Li and He et al. [11]
and Farina et al. [12] proposed to determine the optimal extent
and location of a spherical MI by minimizing the differences
between the real-world BSPM data and the BSPM simulated
from a heart model with infarctions. SadAbadi et al. [13] de-
veloped a location relationship between the positions of BSPM
sensors and regions of the heart, and further characterized the
extent and location of MIs by investigating abnormal features
in BSPM. Mneimneh et al. [14] proposed to use a reconstructed
phase space and a Gaussian mixture model to create a multi-
dimensional representation of the BSPMs to differentiate the
electrical signals from healthy and infarct segments of the hu-
man heart, and further quantify the MIs on the heart surface.

Although BSPMs provides the high-resolution distribution of
electric potentials on the body surface, cardiac electrical activity
is often blurred while propagating from the heart to the body,
which diminishes important spatiotemporal characteristics per-
tinent to the MIs. The characterization methods by investigating
BSPMs are therefore limited in the ability to quantify the extent
and location of MIs on the heart surface. In order to delin-
eate pathological changes in the heart, medical scientists call
for the estimation of heart-surface electrograms from the high-
resolution BSPMs and the complex torso-heart geometry, i.e.,
the inverse ECG problem.

B. Inverse ECG Problem

The inverse ECG model is proposed to reconstruct heart-
surface electrograms from BSPMs, and is further used to non-
invasively image electrical activities of the heart. Two source
models are commonly used in the inverse ECG problems.
The first source model is called “action-based model”, where
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the dominant feature of cardiac electrical activity is assumed
to be the arrival timing of the depolarization wavefront at each
location in the heart. In this model, the entire heart is modeled
with finite element method instead of the epicardial surface [15],
[16]. For example, Wang et al. [17] modeled the inverse ECG
problem by constraining the solution on the electrophysiolog-
ical model, i.e., the reaction-diffusion model, that guides the
propagation of potential and recovery current.

The second source model is called “’potential-based”” model,
which assumes that cardiac sources are represented by time-
varying electrical potentials on the heart surface. Electromag-
netic theory is integrated with boundary element method to
model the relationship between potential distributions on the
body and heart surfaces [9], [18]. Cheng et al. [19] compared the
two source models and found there are no significant differences
between the reconstructed heart-surface potentials. Nonetheless,
the “activation-based” model requires modeling the entire heart,
which introduces more imaging and computational efforts than
the “potential-based” model [15], [20].

The present investigation will focus on the “potential-based”
model. The relationship between the potential distributions on
the body and heart surfaces is represented by a transfer matrix
Rpp. In order to calculate Ry 7, the human body is first mod-
eled as a source-free homogeneous volume conductor, whose
boundary consists of the heart and body surfaces. Second, the
boundary element method is implemented to discretize the heart
and body surfaces [21]. Finally, the electric potentials on the two
surfaces are related by:

¢p = Rprdn (D

in which ¢ and ¢ denote the potential distributions on the
body and heart surfaces, respectively, and Rpy incorporates
both the torso-heart geometries and the electrical conducting
properties of the human body [22].

However, the inverse ECG problem involves dynamic poten-
tials distributed on the complex heart and body surfaces, and
is generally ill-conditioned. The transfer matrix Rpy is with
large condition number (i.e., cond(Rpy) = | R5% || Rz |
indicating that a small noise A¢p in ¢ 5 caused by measurement
equipment will result in a big difference A¢y in the estimation
of ¢y (ie., % ~ cond(RBH)AJ;B ). To address this prob-
lem, different methods have been proposed, such as Tikhonov
L2-norm [23] and L1-norm regularization methods [24], [25].
These methods solve the inverse ECG problem individually at
each time point, and do not account for temporal correlations
among the time-varying electric potentials.

Brooks et al. [18] proposed to increase the spatial and tem-
poral regularity of the inverse solution by simultaneously con-
straining the magnitude or second-order spatial derivative and
the first-order temporal derivative of heart-surface potentials.
In order to solve the proposed model, they reformulated the
problem with an augmented model, which resulted in a ma-
trix representation with the dimension of (N xT") x (N % T'),
where N is the number of nodes on the heart surface and 7" is
the length of the time series. The computation involves complex
matrix-operations and the complexity will increase when the
dimension (N or T) is getting large.

Time-varying electrograms at
specific sites on the heart surface
- =y

s - o g 5 iy -
... . | IECGModel ' S N
L AN ‘ = - :- - -
a ST Regularization (o
| Infarct t L4 R

B Region
.

Heart-surface
b5 Electrogram ¢,

dl Wavelet
A Characterizing MI Transformation
. location & extent

t

Hierarchical Clustering

Fig. 1. The flowchart of research methodology.

Messnarz et al. [26] estimated cardiac electric potentials us-
ing a spatiotemporal approach, in which they accounted for the
spatial correlation by a symmetric gradient matrix, and formu-
late the temporal constraint assuming that the potential signals
are monotonically nonincreasing during depolarization phase.
However, the torso-heart geometry is highly complex, and a
symmetric matrix tends to be limited to approximate the surface
gradient. Moreover, the nondecreasing assumption in the tem-
poral constraint may not be generally applicable to real-world
inverse ECG model.

Our previous work proposed a spatiotemporal regularization
(STRE) model to solve the high-dimensional inverse ECG prob-
lem [9]. We define a surface Laplacian for irregular triangle
meshes to improve the spatial regularity of the inverse solution,
and account for the temporal correlation by constraining the
sum-of-square of the differences in potential signals in a small
time window. In addition, we proposed an iterative method of
dipole multiplicative update to solve the STRE model, which is
inspired by the dipole assumption in electrodynamic physics.

However, very little has been done to identify and characterize
MIs on the heart surface using the spatiotemporal regularization
method. In this investigation, we utilize the STRE framework
to solve the inverse ECG problem from BSPMs and torso-heart
geometry, and further quantify the extent and location of MIs
on the heart surface using a wavelet-clustering method.

Ill. RESEARCH METHODOLOGY

As shown in Fig. 1, this paper presents the application of spa-
tiotemporal inverse ECG (ST-iIECG) modeling to characterize
the location and extent of MIs. First, we reconstruct the time-
varying heart-surface electrograms from BSPMs using the in-
verse ECG modeling and spatiotemporal regularization method.
Second, heart-surface electrograms are decomposed into mul-
tiple frequency bands through the wavelet transformation. This
time-frequency decomposition provides salient features to rep-
resent disease-altered patterns in heart-surface electrograms.
Finally, we performed the hierarchical clustering of wavelet
coefficients to delineate the grouping behavior of heart-surface
electrograms, which further help characterize the extent and
location of MIs.
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A. Spatiotemporal Regularization

BSPMs provide high-resolution distribution of electric po-
tentials over the entire torso to delineate the spatiotemporal
dynamics in the heart. Little has been done to reconstruct the
electric potentials on the heart surface from BSPMs using spa-
tiotemporal regularization method and further quantify the MlIs.
In the present investigation, we solve the inverse ECG problem
from BSPMs and the torso-heart geometries using the STRE
model, and will characterize the extent and location of MIs by
investigating the reconstructed heart-surface electrograms. The
objective function of the STRE model [9] is as follows:

T
;ni(lg) J=> {lést) — Rpudy(t)|” + 22| Ay (1)
o t=1

t+%

+45 > du(t) = du (M)}

—_w
T=1—73

2

where A; and A, are the spatial and temporal regularization
parameters, respectively, which are chosen by L-curve method
[27] or cross validation. The matrix A, represents the spatial
Laplacian operator of irregular triangle meshes and is proposed
to improve the spatial regularity of the estimated potentials on
the heart surface. The sum-of-square of the differences in elec-
trical potentials in a time window w, i.e., the third term in (2), is
proposed to increase model robustness to measurement noises
in the time domain.

The STRE model involves both the spatial and temporal cor-
relations among the electric potential ¢z, and it is difficult
to solve for ¢y analytically. In our previous work, we pro-
pose to estimate ¢y using the iterative method of dipole mul-
tiplicative update (DMU) inspired by the dipole assumption in
electrodynamic physics. Briefly, the DMU method splits the
electric potential ¢ into its positive part ¢;; and negative
part ¢y;, where ¢}; and ¢, are defined as ¢}, = max{0, ¢y }
and ¢; = max{0, —¢y}. And then, we can write ¢y as
¢y = ¢}; — ¢y, and obtain the updating rules for ¢}, and
¢ in the algorithm shown in Table I (see details in [9]).

B. Wavelet Decomposition of Heart-Surface
Electrograms

The time series data such as heart-surface electrograms ¢
are generally characterized by high dimensionality, high corre-
lation, uncertainties and measurement noises. Traditional time-
domain investigation tends to overlook hidden information in-
herent in original signals (e.g., spatial information pertinent to
MlIs). Frequency-domain analysis such as Fourier transforma-
tion identifies spectral components present in the signal but does
not provide temporal localization of these components. Meth-
ods of time-frequency analysis such as wavelet transformation
provide interpretation of time series in both time and frequency
simultaneously, which enables the delineation of local, transient
or intermittent components inherent to the data.

In the present investigation, we propose to transform the elec-
trograms on the heart surface with the Daubechies wavelet [28].
Note that most of the previous works show that the closer the

wavelet functions match the signal pattern, the more compact
the representation will be [29]. The heart electrogram ¢ is
denoted as {¢g (t)}]_, and is decomposed into the running av-
erages A;(k) to approximate the original time sequence, and
running differences D; (k) to characterize the details of the
time series ¢, where j = 1,2, ... denotes the decomposition
level (i.e., scaling value) and k£ = 1,2,... represents the po-
sition (i.e., translation value). A;(k) and D;(k) are defined
recursively as

Aj(k) = hjA; 1 (2k+1t) mod 272 3)
t=1
T

Dj(k)=>> (~1)'hjA; 1 (2k+2T —t) mod 2/*%) (4)
.

Av(k) =" ¢)Valt = k) (5)

“
Il
=

where h;’s are filter coefficients of the Daubechies scaling func-
tion, and the scaling function V,, () and wavelet function W), (¢)
are defined recursively as

2n—1
V() = V2> hpVi (2t — k) (6)
k=0
2n—1
Wi (t) = \/5 Z (_l)kh@n—l—k‘/n(2t - k) (7
k=0
Thus, at level j of decomposition, ¢y is expressed as
t .
ou(t) =Y A;j(k)V, (2} — 2 k>
k
J
t o
+ Z > "Dy (k)W (2] — 9 k;) (8)

The wavelet decomposition provides an effective framework
of multi-resolution analysis for investigating the heart-surface
electrogram ¢ at various levels of approximations A;’s and de-
tails D;’s. This multi-resolution framework will better elucidate
both the local and transient characteristics of ¢ that are often
obscured by the traditional time-domain or frequency-domain
analysis.

C. Hierarchical Clustering

Hierarchical clustering (HC) algorithm is further used to clus-
ter each sequence of running average A;’s and running difter-
ence D;’s of heart-surface electrogram ¢ (t) at different level
j. The HC algorithm creates a hierarchical decomposition of
the input data represented by a dendrogram. The dendrogram is
constructed according to the N x N distance (similarity) ma-
trix given by the N observations (i.e., N ECG time series) in
the dataset. (Note in the present investigation, N is the number
of nodes on the heart surface.) At the first step of HC, each
observation is assigned to its own cluster, which results in [V
singleton clusters. Then, the closest (i.e., most similar) pair
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TABLE |
THE PROPOSED DIPOLE MULTIPLICATIVE UPDATE ALGORITHM

—

. Set constants Ay, \; and w .

2: Initialize {¢};} and {¢;} as positive random matrices: whose columns
(rows) denote different time points (different nodes on the heart surface)

(Ady )it+Bity/(Ady )i+B:)?+4(AT ¢ )i(A~ b )i

(qu,t)i

(2A+¢<I§,t)i

(Ad}; )i—Bity/(Adf; )i—Bi)?+4(AT by )i(A ¢y )i

3: Repeat

4 fort=1,...,T do
(¢—|}},t>i <~
(45;1,15)1‘ —
where

5: end for
6: until convergence

A=RLyRpp + NATA + 202wl
B =¢p(t)Rpn + 2 3024, 01 (7) + 20 SIS 7 (7)

(¢E,t)i

(2A+¢;j,t)’i

— » Left Ventricle::>

Right Ventricle
Basal Mid-cavity Apical
Segments Segments Segments
1. basal A N 13. apical

. 7. mid anterior .
anterior anterior
2. basal 8. mid 14. apical

septal
3. basal 9. mid 15. apical
i i inferior Right corenary artery [RCA)
4. basal inferior | 10. mid inferior :‘e:’l"a' Left snterior descending artery (LAD]
5. basal 11, mid s Lot circumflex artery (LCX)
; h . apex
6. basal 12. mid
Fig. 2. 17-segment model of the left ventricle.

of clusters is merged into one single cluster. The recursive
merging strategy continues to move up the hierarchy until
all the observations are clustered into one single cluster of
size N.

The optimal number of clusters is chosen by the Silhouette
index. LetC = {C1, ..., Ck } denote the K clusters of the data
set. The j'" cluster is defined as C; = {¢] (1), . . ., ¢}, (1)}, and
n; = |C;|is the cardinality of the j'" cluster. Let d(¢y (t), ¢ (t))
denote the distance between ¢y, (¢) and ¢; (¢). Then the Silhouette
index with K clusters is defined as:

n; i ;
b —a;

< max{al, b/}

(€))

1771

K

1 1

Sk =
j=1

J=

where ag is the average distance between the i-th observation
in cluster C; and the other observations in the same cluster,
b{ denotes the minimum average distance between the i-th ob-
servation in C; and all the observations in C, k =1,..., K,

k5.
) 1 71,]' ) )
al = ——= Y d@](1).4(t) (10)
My = R
. ) 1 Mom ) .
bl = i {n ;d(# (t), ¢} (t))} (11)

The value of Sk is between -1 and 1, and a bigger Sx indicates
better clustering result. Therefore, the optimal number of cluster
K™ is chosen as
K = argmhz}xSK (12)
Furthermore, A;’s and D;’s are clustered into K* clusters
using the HC algorithm. The clustering results are further used
to characterize the extent and location of MIs on the heart surface
in the experiment.

D. Performance Metrics

Gadolinium-enhanced transaxial MRI (GE-MRI) images pro-
vide the golden standards to evaluate the performance of the
ST-ECG model. The extent, centroid and location of infarc-
tion area on the heart surface are presented by the 17-segment
model [30] as shown in Fig. 2. In the 17-segment model, the left
ventricle (LV) is first segmented into three coarse parts: basal,
apical and mid-cavity along its long axis from the apex of LV
to the base. Furthermore, the basal area and the mid-cavity are
divided into six finer segments, respectively, and the apical area
is divided into four finer segments. The name of each segment
is displayed in Fig. 2.

Three performance metrics are defined to evaluate the perfor-
mance of the proposed ST-iIECG model:

1) EPD-percentage discrepancy between the extent of in-
farction as estimated and as given by GE-MRI images;

2) SO-overlap percentage between infarct segments as esti-
mated and as given by GE-MRI images;
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Fig. 3.

Torso-heart geometry.

3) CED-distance from the centroid of the infarct area as
given by GE-MRI images to that as estimated.
The three metrics of the proposed ST-IECG model are further
benchmarked with the results provided by the existing iECG
model [23] in the next section.

IV. EXPERIMENTAL DESIGN AND RESULTS
A. Dataset

The dataset in this investigation including the customized
torso-heart geometry (as shown in Fig. 3) and body surface
potential mapping (BSPM) is sourced from the PhysioNet web-
site [23], [31]. The BSPMs are collected from four patients
who carried one-year MIs, which contain time series of electric
potentials from 0 to 1000 ms at 352 locations on the body
surface. These four cases are split into two training cases and two
test cases. The true MI segments for each patient are outlined by
the GE-MRI images, which provides the reference for evaluating
the performance of the ST-IECG model.

B. The Impact of Mesh Resolution on Inverse ECG
Modeling

In potential-based inverse ECG problem, the transfer ma-
trix Rppy is computed by integrating electromagnetic theory
and boundary element method (BEM). In BEM, the torso-heart
geometries are discretized into triangle meshes to numerically
solve the Laplacian equation that establishes the relationship be-
tween ¢z and ¢p. The solution integrals are approximated by
the summation of a series of numerical integrations over triangle
elements. The approximation accuracy is closely dependent on
the mesh resolution, which impacts the estimation of the inverse
ECG problem. Few, if any previous works studied the effects
of mesh resolution on the inverse ECG solution. At the present
investigation, we study the effects of mesh resolution on the
solution to inverse models in order to find the optimal mesh
resolution [21].

We vary the number of elements /N7 on the triangle mesh of
the heart surface by setting it to be 136, 272, 408, 546, 654, 872
and 1092. Fig. 4 is an illustration of the triangle mesh and the
3D heart model. Under different mesh resolution, we solve the
inverse problem and investigate the variation of mean squared
error (MSE) with respect to N7 as shown in Fig. 5. Note that
in order to calculate MSE, the estimated heart-surface potential
¢y (t) is used to predict the body-surface potential from the

Interpolated Meshed

Coarsely Meshed

Fig. 4. lllustration of the interpolated 3D heart model and
meshes of the heart surface.

triangle

10

1 . . . | L N n
200 300 400 500 600 700 800 900 1000

Ny

Fig.5. The variation of mean squared errors with respect to the number
of triangle elements N7 on the heart mesh.
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Fig.6. The variation of Silhouette index with respect to different number
of clusters for the 4 cases.

forward ECG model, i.e., ¢ (t) = Rz ¢y (t). Then the MSE
is computed as

S lés(t) — o)
MSE = == T x Ng

where ¢ (t) is real data of body-surface potentials, 7" is the
length of time series, and Np is the number of nodes on the
body surface.

According to Fig. 5, the MSE decreases as the number of
triangles increases. Moreover, when N exceeds 400, the value
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TABLE I
RESULTS OF MI CHARACTERIZATION WITH WAVELET CLUSTERING IN TRAINING CASE 1 AND CASE 2

MI Characterization GE-MRI Signal A1 A2 A3 A4

Extent 31% 24% 34% 34% 32% 22%

MI 1,2,3,8,9,1,2,3,8,9,235789,1,2,3,8,9,1,23,89131,2,3,8,9,1,2,3,8,9,1,2,3,8,9,

Case1  gegments 13,14,15 13,1516 11,1314 13,1516 1516 13,15, 16
Centroid 8 8 8or9 8 8 8
EPD 7% 3% 3% 1% 9%
so 67% 50% 67% 67% 67%
CED = 0 0 0 0 0
Extent 30% 17% 19% 28% 20% 18%
M 1,3,5,9,10,1
Case2  gogments 4910 35910 35910 g 3,59,10 359,10
Centroid 3 °c:r41 5 9 10 10 9 10 10
EPD 13% 1% 2% 10% 12%
o) 60% 60% 42% 60% 60%
CED 0 0 0 0 0 0

of MSSE remains relatively stable and little improvement can be
achieved if we further increase the number of triangle elements.
The value of Ny should be greater than 400 to guarantee the
accuracy of the inverse model, but should not be very large
to make the inverse model computationally expensive. In this
investigation, we therefore set the number of mesh elements
triangulating the heart surface to be 546, which is the elbow
point between Ny = 500 and Ny = 600.

C. MI Characterization With Wavelet Clustering

The body surface consists of 677 triangle elements and 352
nodes, and the heart surface is formed with 546 triangle el-
ements and 275 nodes, which results in a 352 x 275 transfer
matrix Rpy. The STAECG method with A,=0.06, A; = 0.005
chosen by L-curve method and w = 2 is implemented to solve
the potential distribution ¢z on the heart surface. The QRS
interval (represents ventricular depolarization) of estimated po-
tential signals on the heart surface are grouped into different
clusters by the HC algorithm with the cluster number varying
from 2 to 20. Note that we conducted experiments to study
different segments of heart-surface electrograms, including the
entire ECG cycle, P wave, QRS wave, and T wave. Experimental
results show that clustering of QRS wave yields the best char-
acterization results. This agrees with the fact that QRS wave
corresponds to the ventricular depolarization. Therefore, in this
investigation we characterize the Mls using the QRS waves of
the heart-surface electrograms.

Fig. 6 shows the variation of Silhouette index with respect to
the cluster number of the four cases. Notably, cases 1, 3 and 4
yield the highest Silhouette index when the number of clusters
is two. This shows that two different clusters exist in the heart-
surface electrograms. One cluster denotes signals from healthy
segments and the other represents signals from infarct segments
on the heart surface. In case 2, the Silhouette index is higher with
four clusters than that with two clusters. This may be due to the
existence of inhomogeneous tissues and cellular structures in the

1,3,4,7,9,151,3,5,7,9,10
A7

A5 A6 D1 D2 D3 D4 D5 D6

24% 25% 61% 38% 23% 40% 26% 26%

12,3457, 1,2,357.8, 1235,
8.9.12,13,1 11,12,13,14 23.6.8,9.10

8.911.12.1 1,2,34,7,8, 1,234,778,

13,15,16 13,15,16 41517 1517 31417 9,14,15,16 9,14,15,16
8 8 14 13 9 14 8or9 8or9
7% 6% 30% 7% 8% 9% 5% 5%
67% 67% 56% 50% 45% 54% 58% 58%
0 0 1 2 0 0 0 0

28% 36% 43% 21% 36% 43% 26% 31%

POl 1,3,6,9,10,11,2,5,7,9,10 1,3,4,7,9,10 1,3,4,7,9,10

113,14,15 '12*12*15*1 847915 "yN4a7 11347 15 15

9 14 15 9 10 13 15 15

2% 6% 13% 9% 6% 13% 4% 1%

3750%  30% 40% 50% 33% 18% 57% 57%
0 1 1 0 0 3 1 1

infarction regions of case 2. Such inhomogeneity leads to more
variations in heart-surface electrograms, which can be further
partitioned into sub-clusters. In other words, the big cluster is
further split into three sub-clusters. In the present investigation,
the number of cluster is selected as two so as to achieve the
overall highest Silhouette index for four cases.

The calculated ¢y in training case 1 and case 2 is further
decomposed into running averages A;’s and running difference
D;’s with j =1,2,3,4,5,6 by Daubechies wavelet. The esti-
mated signal ¢, each A; and D; are grouped into two clusters
by the HC algorithm. Table II shows the characterization results
estimated by the wavelet-clustering method and the reference
results given by the GE-MRI images. Note that characteriza-
tion of MIs by the approximation levels A;’s generally yield
better performance metrics, i.e., lower EPD, higher SO, and
lower CED. This suggests that the characteristics in transient
parts (high-frequency details, D;’s) in the heart electrograms
may not relate to useful information pertinent to MIs. It is worth
noting that in training case 1, A3 (i.e., the approximation at
level j = 3) yields the smallest EPD of 1%, highest SO of 67%,
and CED of zero. In training case 2, A3 yields a zero CED and
the highest SO of 60%. Therefore, A3 is chosen as the optimal
representation of ¢, and is grouped into healthy and infarct
clusters to further characterize the MIs on the heart surface in
later experiments.

D. Characterization Results in Training Case 1 and
Case 2

Fig. 7(a) shows the average potential signals + standard de-
viation of two clusters denoting onset of infarction and normal
heart activity of training case 1 by the proposed ST-IECG model.
Note that although significant variations exist in the clusters of
onset of infarction and normal heart activity due to the heart
geometry and disease complexity, the cluster colored in blue
contains more positive signals, while the one in red consists of
negative signals, particularly, a negative Q wave. Fig. 7(b) shows
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Fig. 7. (a) Average potential signals + one standard deviation of the

clusters of normal heart activity and onset of infarction in training case 1;
(b) Color-coded distribution of the two clusters on the heart surface with
inferior view (top) and anterosuperior view (bottom).
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Fig. 9. (a) Average potential signals + one standard deviation of the

clusters of normal heart activity and onset of infarction in training case 2;
(b) Color-coded distribution of the two clusters on the heart surface with
inferior view (top) and anterosuperior view (bottom).

Estimated
(a)

Reference
(b)

Estimated
(a)

Reference
(b)

Fig. 8. (a) Estimated Mls (i.e., segments colored in red) by the pro-
posed ST-IECG model of training case 1; (b) Reference Mis (i.e.,
segments colored in red) provided by the GE-MRI image of training
case 1.

the color-coded 3D heart surface with red and blue colors rep-
resenting the infarct and normal clusters respectively. The 3D
heart surface is then projected into the 17-segment model, as
shown in Fig. 8(a). The true infarct segments (colored in red)
given by the GE-MRI image is shown in Fig. 8(b). By com-
paring the segments of each cluster estimated by the ST-IECG
model with the true infarct segments, the red cluster, i.e., the
one contains negative Q wave, is identified as the cluster of
onset of infarction, while the blue one, i.e., the one contains
more positive signals, is specified as the cluster of normal heart
activity.

As shown in Fig. 8(a), the estimated infarct segments (i.e.,
the segments colored in red) are 1, 2, 3, 8,9, 13, 15 and 16 in
case 1. The true infarct segments given by GE-MRI image are
1,2,3,8,9, 13, 14 and 15 as shown in Fig. 8(b). The extent
of infarction is obtained by dividing the number of the infarct
nodes on the heart surface by the total number of nodes, which
is 32% in case 1, and is close to the GE-MRI result of 31%.
In addition, it can be noted from Fig. 8(a) that the centroid of
the estimated infarct segments is segment 8, which matches the
centroid given by the GE-MRI image.

Fig. 9(a) illustrates average potential signals + one standard
deviation of the clusters of normal heart activity and onset of
infarction in training case 2 by the proposed ST-iIECG model.
Notably, the magnitude of negative potentials in the blue cluster

Fig. 10. (a) Estimated Mls (i.e., segments colored in red) by the
proposed ST-IECG model of training case 2; (b) Reference Mis (i.e.,
segments colored in red) provided by the GE-MRI image of training
case 2.

is much smaller compared with that in the red cluster. Fig. 9(b)
shows the color-coded heart surface with red and blue colors
representing the two different clusters. The corresponding 17-
segment model is shown in Fig. 10(a), and Fig. 10(b) shows
the true infarct clusters (colored in red) given by the GE-MRI
image. Comparing the two clusters estimated by the proposed
ST-iECG model with the true infarct segments of case 2, the
red cluster is identified as the infarct cluster, while the blue one
denotes the normal cluster, which is consistent with the training
result in case 1.

As shown in Fig. 10(a), the estimated infarct segments (i.e.,
segments colored in red) are 3, 5, 9 and 10 in case 2. The true
infarct segments are 3, 4, 9 and 10 given by the GE-MRI image
as shown in Fig. 10(b). The estimated extent of infarction in
case 2 is 20% which is not too far away from 30% given by
the GE-MRI analysis, and the estimated centroid is segment 10
matching the centroid given by GE-MRI image.

E. Characterization Results in Test Case 3 and Case 4

Fig. 11(a) shows the average potential signals + one standard
deviation of the two clusters representing onset of infarction and
normal heart activity estimated by the proposed ST-IECG model
in test case 3. According to the experimental results in training
case 1 and case 2 in subsection D, the red cluster containing
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Fig. 11. (a) Average potential signals + one standard deviation of the

clusters of normal heart activity and onset of infarction in test case 3;
(b) Color-coded distribution of the two clusters on the heart surface with
inferior view (top) and anterosuperior view (bottom).

Reference
(b)

Estimated
(a)

Fig. 12. (a) Estimated Mls (i.e., segments colored in red) by the pro-
posed ST-IECG model of test case 3; (b) Reference Mils (i.e., segments
colored in red) provided by the GE-MRI image of test case 3.

more negative signals is specified as infarct cluster, and the blue
one with more positive signals is the cluster of normal heart
activity. Fig. 11(b) illustrates the heart surface with the infarct
areas colored in red and healthy area colored in blue. Projecting
the heart surface into the 17-segment model, Fig. 12 shows the
comparison of the infarct segments (colored in red) as estimated
by the STIECG model and as given by the GE-MRIimage. Note
that the estimated infarct segments are 1, 3, 5,9, 10, 11, 12, 15,
16 and 17. The extent of the estimated infarct area in case 3 is
51%, and the estimated centroid is segment 11 or 15.

Fig. 13(a) presents the clustering results in test case 4. The red
cluster containing negative signals is specified as infarct clus-
ter, and the blue one with positive signals is the normal cluster
according to the training results in subsection D. Fig. 13(b) il-
lustrates the infarct areas colored in red and the normal cluster
colored in blue on the heart surface of case 4. Fig. 14 shows
the comparison of the estimated infarct segments and reference
result given by the GE-MRI image, after projecting the heart sur-
face into the 17-segment model. Note that the estimated infarct
segments are 1,4, 5,7,9, 15 and 17. The extent and centroid of
the estimated MI are 29% and segment 15, respectively.

Table IIT summarizes the reference results of MIs for all the
four cases given by GE-MRI images, the estimated results given
by the proposed ST-IECG model, and that estimated by the
existing iECG model [23]. Table IV highlights the comparison
of performance metrics (i.e., EPD, SO, and CED) in test case 3

Case 4

+Onsel of infarction
+ Normal heart activity

40

20

By(mV)

-20

(2) (b)

Fig. 13.  (a) Average potential signals + one standard deviation of the
clusters of normal heart activity and onset of infarction in test case 4;
(b) Color-coded distribution of the two clusters on the heart surface with
inferior view (top) and anterosuperior view (bottom).

Reference
(b)

Estimated
(a)

Fig. 14. (a) Estimated Mls (i.e., segments colored in red) by the pro-
posed ST-IECG model of test case 4; (b) Reference Mls (i.e., segments
colored in red) provided by the GE-MRI image of test case 4.

and case 4 by the STMECG model with the iECG model [23].
The ST-IECG model yields a smaller EPD of 1% for case 3 and
15% for case 4 compared with the iECG model (i.e., 17% and
26% for case 3 and case 4, respectively), which suggests that
the extent of estimated MIs is closer to the true results given by
GE-MRI images. The SO estimated by the ST-IECG model is
0.727 in case 3 and 0.444 in case 4, and that estimated by the
iECG model is 0.556 and 0.3 for case 3 and case 4, respectively,
which indicates that our estimated infarction overlaps more with
the true infarct area. Furthermore, our estimated CED’s are
zero in both case 3 and case 4, suggesting that the centers of
the estimated infarction by the ST-IECG model match the true
centers given by the golden standards in both test cases, while
the estimated center by iECG is 1 and 2 segments away from
the true centers in case 3 and case 4, respectively.

According to Tables III and IV, all the three performance
metrics (i.e., EPD, SO and CED) given by the ST-IECG model
score better compared with the existing iECG model [23]. It
is worth noting that both the proposed ST-IECG and the iECG
overestimate the segments and extent of MI in case 4. The
segments of infarction in case 4 given by the GE-MRI images
are 1, 9, 10, 11, 15, 17 as shown in Table III, and there are
6 segments of MI in total. However, the extent of MI covers
only 14% of the heart surface. This suggests that the infarction
area in case 4 is highly spread, which poses a great challenge to
accurately characterize the MI.
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TABLE I
REsuULTS FROM THE PROPOSED ST-IECG MODEL, EXISTING IECG MODEL [23], AND GE-MRI IMAGES

Characteristic Method Case 1 Case 2 Case 3 Case 4
GE-MRI 31% 30% 52% 14%

Extent iECG 25% 35% 35% 40%
ST-IECG 32% 20% 51% 29%
GE-MRI 1,2,3,8,9,13, 14, 15 3,4,9,10 3,4,5,9,10, 11, 12, 15, 16 1,9,10,11,15,17

Infarct Segments iECG 2,3,8,9, 14 3,4,5,9,10, 11 3,4,5,10, 11 3,4,5,6,9,10, 11
ST-HECG 1,2,3,8,9,13,15, 16 3,5,9,10 1,3,5,9,10, 11, 12, 15, 16, 17 1,4,5,7,9,15,17
GE-MRI 8 3or9or4orl0 10or 11 15

Centroid iECG 9 10 4 4
STHECG 8 10 11or15 15

TABLE IV

COMPARISON OF PERFORMANCE METRICS OF THE PROPOSED ST-IECG
MODEL AND THE EXISTING IECG MODEL [23]

Metric Method Case 3 Case 4
EPD iECG 17% 26%
ST-IECG 1% 15%
SO iECG 0.556 0.3
STHECG 0.727 0.444
CED iECG 1 2
STHECG 0 0

Notably, the estimated centroids by the proposed STAECG
model in all the training and test cases match that given by
GE-MRI images, while there are discrepancies in the extent and
segments of infarction between the estimated and true results.
One of the possible sources of the discrepancies might be the
orientation mismatch between the body surface and the heart
surface in the 3D torso-heart model. Another possible reason
is that we use a customized torso-heart geometry in this inves-
tigation, but the torso-heart geometries may vary from person
to person, which will introduce uncertainties and errors in the
estimation. In addition, the reference results given by GE-MRI
images are characterized in terms of the 17-segment model of
the left ventricle, while the modeled heart surface consists of
both the right and left ventricles. The electrical activity in the
inter-ventricular segments is thus greatly blurred by the activ-
ities on the right ventricle. Nevertheless, our inverse model is
able to provide valuable information on the centroid, location,
and extent of MIs on the heart surface, which is important to
support medical scientists to make intervention decisions for
patients with heart disease.

V. CONCLUSIONS

Myocardial infarction (MI) is among the leading causes of
death in the United States. It is imperative to identify and char-
acterize MIs for the timely delivery of medical intervention and
the improvement of the quality of life. Cardiac electrical activity
propagates in space and evolves over time. Most existing work
identifies heart abnormalities by analyzing time-domain ECG
signals (e.g., 12-lead ECG) on the body surface for detecting
ECG wave deflections (i.e., P, QRS, and T waves), but tend to
overlook spatiotemporal dynamics in the heart. They are limited

in the ability to identify and characterize the extent and location
of Mls.

BSPMs provide high-resolution of spatiotemporal distribu-
tion of electrical potentials on the entire torso, and therefore pro-
vide richer information than 12-lead ECG. Little has been done
to reconstruct the heart-surface electrograms from BSPMs using
spatiotemporal regularization method and further characterize
MIs. In this paper, we propose the ST-IECG method to character-
ize the location and extent of MIs on the heart surface. We solve
the inverse ECG problem and reconstruct heart-surface electro-
grams from BSPMs using the STRE model. In addition, we pro-
pose a wavelet-clustering method to investigate the pathological
behaviors of heart-surface electrograms to characterize the Mls.

The ST-iIECG model is evaluated and validated with real
data of MIs from 4 human subjects. First, we perform wavelet-
clustering of electrograms on the heart surface for two training
cases. Experimental results show that A3 (i.e., the approxima-
tion at level j = 3 of the Daubechies wavelet decomposition)
of the QRS waves on the heart surface yields the best charac-
terization of MIs based on golden standards by GE-MRI im-
ages. Second, we validate the characterization results with the
other two test cases, and found that negative QRS waves in the
heart-surface electrograms indicate potential regions of MI. The
performance of the proposed ST-IECG model is described by
three metrics, i.e., EPD, SO and CED, all of which score better
compared with existing iECG model, and demonstrate strong
potential as a decision-support tool to noninvasively investigate
cardiac pathological activities.

One limitation of the present study lies in the sample size
and the range of patients’ characteristics, although there are
a large number of heart-surface electrograms in the healthy
and infarction regions in each of four cases. The availability of
BSPM data and GE-MRI images helps mitigate this limitation
to some extent in the evaluation and validation experiments. In
the future work, it is necessary to include more patients with
healthy status and patients with mild and severe MIs in the
investigation before fully establishing the utility of proposed
methods for clinical applications.
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