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Abstract

Rapid advancement of mobile sensing and Internet-of-Things (IoT) 
technology provides an unprecedented opportunity to realize smart 
and connected health. However, large-scale IoT systems lead to big 
data. Realizing the full potential of big data depends on a great 
extent on the development of new human-centered computing 
methodologies for real-time health monitoring, on-the-fly disease 
diagnosis, and timely delivery of life-saving treatments. Thus far, 
very little has been done to develop advanced IoT technologies for 
smart monitoring and control of heart health. This chapter presents 
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214 Stochastic Modeling and Analytics in Healthcare Delivery Systems

a new IoT technology of Mobile and E-Network Smart Health 
(MESH) specific to the heart, also called the Internet of Hearts 
(IoH), to advance the cardiac mHealth with IoT sensing, stochastic 
modeling and network analytics. The MESH technology will ena-
ble and assist (1) the acquisition of electrocardiogram (ECG) sig-
nals pertinent to space-time cardiac dynamics anytime, anywhere; 
(2) real-time management and compact representation of multi-
lead ECG signals; (3) big data analytics in large-scale IoT contexts. 
In particular, we first developed a spatiotemporal approach to 
visualize the real-time motion of 3D VCG cardiac vectors. Then, an 
optimal model-based representation algorithm was developed to 
facilitate the compression of ECG signals and the extraction of 
features pertinent to disease-altered signal patterns. Further, we 
developed stochastic network models for real-time patient-centered 
monitoring, modeling, and analysis of stochastic variations between 
heartbeats from an individual and among human subjects. The 
MESH technology shows a great potential in providing an indis-
pensable and enabling tool for realizing smart heart health and 
wellbeing for the population worldwide.

9.1.  Introduction

Cardiac diseases are the leading cause of death in the world. About 
30% of global deaths (17.3 million) are due to cardiac diseases. 
According to the report from World Health Organization (WHO), 
this number will increase to 23 million by 2030. In United States, 
heart diseases are responsible for one in every four deaths, amount-
ing to an annual loss of $448.5 billion [1]. Cardiac diseases claim 
more lives each year than the next four leading causes of death 
combined — cancer, chronic lower respiratory diseases, accidents, 
and diabetes mellitus. As opposed to chronic ones, most of the car-
diac diseases are acute and can occur at any time in daily life [2]. For 
example, a heart attack is caused by the blockage in coronary arter-
ies, which results in insufficient blood and oxygen supply to cardiac 
muscles. When a heart attack occurs, every minute counts. Patients 
who experience acute heart attacks are required to receive the treat-
ment within 90 minutes after the onset of the symptom. A delay 
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 9. Internet of Hearts — Large-Scale Stochastic Network Modeling 215

could result in permanent heart muscle damage and increased risk 
of death. However, if the sign of heart attack is detected early, life-
saving medications or treatments can be delivered to avoid hospi-
talization and even reduce the mortality rate. Therefore, the optimal 
management and treatment of cardiac diseases hinge on the identi-
fication of cardiac disorders in the early stage and the delivery of 
timely medical interventions.

In the past decade, mobile health (mHealth) has gained increas-
ing attention from the health-care research community. Advances in 
sensing technology and the rapid expansion of mobile networks 
have made remotely monitoring of patient’s condition and provision 
of timely feedback possible and affordable. mHealth technologies, 
therefore, offer a great opportunity to improve diagnosis, treatment, 
and adherence; increase access to health services, and lower health-
care costs. The applications of cardiac mHealth have increased dur-
ing the recent years. Wireless sensors are readily available to measure 
single-lead electrocardiogram (ECG). Patients can forward recorded 
ECG signals to physicians and receive feedbacks remotely. However, 
the existing mHealth technologies are limited in their ability to ana-
lyze complex patterns of ECG signals for the identification of cardiac 
diseases. This is mainly because the spatiotemporal cardiac electrical 
activity manifests significant stochastic behaviors. It poses significant 
challenges on the existing mHealth systems, which implement simple 
algorithms to recognize disease patterns. It is well known that ECG 
signals are initiated at the sinoatrial (SA) node, then conducted in 
both atria, relayed through the atrioventricular (AV) node to further 
propagate through the bundle of His and Purkinje fibers toward 
ventricular depolarization and repolarization [3, 4]. Such electrical 
conduction, nevertheless, is a stochastic process and can be influ-
enced by various types of uncertainties. For example, the excitation 
of SA node may too slow or too fast, may pause, or fail to exit the 
SA region. To investigate the underlying mechanisms, researchers 
developed multiscale recurrence models [5–8] that revealed  nonlinear 
stochastic dynamics in vectorcardiogram (VCG) signals. Furthermore, 
the process of orchestrated depolarization and repolarization of 
 cardiac muscle cells are controlled by the orchestrated function of 
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216 Stochastic Modeling and Analytics in Healthcare Delivery Systems

individual ion channels in the cell membrane and are, thereby, cou-
pled with real-world uncertainties [9, 10]. Notably, cardiac electro-
mechanical function is closely related to cyclic changes in the 
differences between intracellular and extracellular concentration of 
ions. The potential difference increases as multiple ions travel across 
the cell membrane through ion channels. Ions flow through these 
channels and, thus, change the action potential across the cell mem-
brane [11, 12]. The rate at which ionic channels open and close is in 
a stochastic manner and is based largely on the potential difference 
across the membrane. 

The stochastic behavior of the cardiac electrical activity consists 
of two aspects: within-a-patient and between-patient stochastic 
dynamics. On the one hand, cardiac electrical activity within a patient 
demonstrates temporal dynamics. As shown in Fig. 9.1a, a 10-second 
ECG signal is generated from continuous monitoring. It may be noted 
that the amplitude of the 4th cycle of the ECG signal is smaller than 
the first three, so as the 8th cycle. Furthermore, the 6th cycle shows a 
significant S wave and an elevated T wave. Moreover, apparent vari-
ability can be identified even among those cycles that look similar, for 
example, cycle #1, #2, #3, #9, and #10. The stochastic behavior of 
cardiac activity for an individual patient is critical to the identification 
of arrhythmic events. Taking consideration of historical variabilities 
in cardiac activity is conducive to the delivery of personalized treat-
ment planning. On the other hand, the cardiac activity is different 
between patients. As shown in Fig. 9.1b, 2-second ECG signals of six 
patients demonstrate big variability. For example, the heart rate is 
apparently different among these patients. Patient P1, P3, and P6 
have only two ECG cycles, but the others have 2.5–3 cycles within 
2 seconds. Also, the morphology of these ECG signals shows signifi-
cant dissimilarities. Patient P3 shows inverted T wave (i.e., T wave is 
pointing downward instead of upward). P3 has an abnormal wave 
before the onsite of Q wave, and the R peak of P6 is notched. 
Notably, between-patient stochastic behaviors are closely pertinent to 
the disease-altered cardiac patterns. The detection and differentiation 
of cardiac diseases hinge on the effective characterization of both 
within-a-patient and between-patient stochastic behaviors.
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218 Stochastic Modeling and Analytics in Healthcare Delivery Systems

In the present investigation, we developed a new technology of 
Mobile and E-Network Smart Health (MESH) to advance the car-
diac mHealth with stochastic modeling and network analytics [13]. 
The MESH technology is developed in the world’s most widely used 
iOS mobile operating system, which is compatible with iPhone, iPad, 
and iPod Touch devices). In addition, it supplies in-situ information 
processing capabilities and enables physicians to access the patients’ 
ECG signals in real time, remotely interact with the patients, and 
rapidly respond to life-threatening cardiac disorders. The MESH 
system is composed of three components: real-time visualization of 
three-dimensional (3D) VCG trajectory and feature detection, opti-
mal model-based representation of ECG signals, and stochastic net-
work modeling and online diagnosis.

The remainder of this chapter is organized as follows: Section 9.2 
presents the background of ECG sensing and signal patterns; 
Section 9.3 throws light on the present analytical modules for large-
scale ECG sensing systems; Section 9.4 provides the design of the 
MESH system, including the wearable sensor, MESH database, and 
smart phone applications; Section 9.5 presents marketing research, 
and Section 9.6 concludes this chapter.

9.2.  Background

The human heart is essentially an autonomous electro-mechanical 
blood pump that operates near-periodically to maintain vital living 
organs. The heart consists of four compartments: right and left atria 
and right and left ventricles. This autonomous pump circulates 
blood in the body and constantly produces a sequence of electrical 
activities within every heartbeat. It is well known that an electrical 
activity begins in a specified pacemaker region, called the SA node, 
to excite the atrial muscle contraction. Then, the activity spreads 
through the upper chambers of the heart (the atria) and reaches the 
AV node. The AV node propagates the stimulus through bundle of 
His and Purkinje fibers toward the ventricles [3, 4]. The ordered 
stimulation, starting from the SA node, leads to the orchestrated 
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 9. Internet of Hearts — Large-Scale Stochastic Network Modeling 219

contraction of the heart, thereby, pumping the blood throughout 
the body.

The ECG system, designed by Augustus Waller in 1889 and fur-
ther improved by Willem Einthoven in 1901, has been used for over 
100 years for the monitoring of cardiac electrical activity and clinical 
diagnosis of cardiovascular disorders [14]. One lead ECG captures 
one-dimensional (1D) temporal view of a space-time cardiac electri-
cal activity. Multi-lead ECG systems provide multi-directional views 
of such space-time dynamics [15]. A normal ECG tracing is often 
segmented into P wave, QRS complex, and T wave (see Fig. 9.2a 
[16]). Atrial depolarization (and systole) is represented by the P 
wave, ventricular depolarization (and systole) is represented by the 
QRS complex, and ventricular repolarization (and diastole) is repre-
sented by the T wave [17, 18]. It may be noted that ECG signals 
contain a wealth of dynamic information pertinent to cardiac opera-
tions, which is indispensable for cardiac care — from monitoring 
and diagnosis to treatment planning to smart health management. 
Existing time-domain algorithms were developed to quantify the 
characteristics of ECG wave deflections (i.e., P, QRS, and T waves) 
for the identification of cardiac diseases. Examples of ECG features 
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Figure 9.2.  Two types of cardiac signals: (a) 2D ECG cycles and (b) 3D VCG 
loops.
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220 Stochastic Modeling and Analytics in Healthcare Delivery Systems

include PR interval, RR interval, ST elevation/depression, QT inter-
val, and R amplitude. 

However, time-domain projections of space-time cardiac electri-
cal activity will diminish important spatial information of cardiac 
pathological behaviors. As such, medical decisions that are made can 
be significantly influenced by such an information loss [3]. Therefore, 
3-lead vector cardiogram (VCG) is designed to provide multi- 
directional views of space-time electrical activity. VCG observes the 
heart potentials as a cardiac vector in three orthogonal components 
instead of the scalar amplitude (ECG curve) [19]. In VCGs, the 
mutually orthogonal bipolar measurements are taken by placing 
parallel electrodes on the opposite sides of the torso. As shown in 
Fig. 9.2b, VCG signals contain P loops, QRS loops, and T loops, 
which correspond to P wave, QRS complex, and T wave in the ECG, 
respectively. Dower et al. and our previous studies [20–22] have 
demonstrated that 3-lead VCG can be linearly transformed to 
12-lead ECG by multiplying a generalized transformation matrix. 
Thus, the information in 12-lead ECG is redundant and the 3-lead 
VCG surmounts not only the information loss in 1-lead ECG but 
also the redundant information in 12-lead ECG.

In clinical practice, the 12-lead ECG is widely used because phy-
sicians are trained and are accustomed to using them. It has, thus, 
proven its value, time-tested, and considered as the gold standard. It 
is generally difficult for physicians to interpret disease patterns via 
the high-dimensional VCGs. However, VCGs capture important 
space-time information of cardiac electrical activity, which is not 
contained in ECG signals. The methodologies developed in our pre-
vious research were proved to be efficient and effective for identify-
ing disease patterns in VCG signals. Those algorithms have fueled 
increasing interests in VCG signals. However, they have not been 
applied to clinical practice due to lack of user-friendly software. 
Therefore, there is a need to develop software that implements those 
advanced algorithms. MESH incorporates novel pattern recognition 
algorithms that will serve as a tool to enable and assist physicians in 
characterizing VCG patterns and identifying early signs of cardiac 
disorders. The MESH system not only enables access to patients’ 
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data anywhere and anytime but also extracts valuable diagnostic 
information from the signals to help physicians in the decision-
making process. MESH is designed to enable physicians and nurses 
to access and visualize the patients’ ECG signals in real time, as 
well as timely analysis of patient’s data and rapidly respond to life-
threatening cardiac disorders.

9.3.  Analytical Modules

As shown in Fig. 9.3, the proposed MESH system consists of three 
analytical modules. We first develop a spatiotemporal representa-
tion approach to visualize the real-time dynamics of 3D VCG tra-
jectories. This enables physicians and nurses to easily interpret the 
high-dimensional VCG patterns and extract space-time characteris-
tics. Second, an optimal model-based representation algorithm is 
developed to facilitate the compression of cardiac signals and extrac-
tion of features pertinent to the disease-altered cardiac activity. Third, 
a stochastic network model is designed for real-time patient-centered 
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Network 
embedding 
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High-dimensional 
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Figure 9.3.  The overall structure of the proposed MESH system.
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monitoring of cardiac variations. The developed spatiotemporal 
warping algorithm characterizes the patient-patient variations in a 
warping matrix, which is further embedded into a high-dimensional 
network to facilitate classification and prediction of patients’ cardiac 
conditions. 

9.3.1.  Real-time spatiotemporal visualization  
and feature extraction

ECG signals are recorded on body surface to track the continuous 
dynamic details of cardiac functioning. Such valuable real-time 
information is usually unavailable in static and discrete clinical labo-
ratory tests, for example, computer imaging, chest x-ray, and blood 
enzyme test. Even if routine laboratory examinations are performed 
multiple times per day, discontinuity often fails to prevent the lethal 
consequences of acute cardiac disorders. The awareness about the 
importance of real-time cardiac monitoring for the early identifica-
tion pathological patterns is increasing as it tracks cardiac dynamic 
behaviors, as opposed to static screenshots.

However, lead ECG signals only capture one perspective tempo-
ral view of the space-time excitation and propagation of cardiac 
electrical activities. Multiple lead ECG systems, for example, 12-lead 
ECG and 3-lead VCG, are designed to capture the multi-directional 
view of space-time cardiac electrical activities [23]. Time-domain 
visualization is the traditional routine for representing cardiac elec-
tric signals. It is the major function of most of the existing cardiac 
mHealth systems. The medical doctors are used to the time-domain 
identification of cardiac disease patterns. Therefore, this module is 
preserved in MESH. The characteristic points of cardiac signals, for 
example, locations of R peak and the end of T wave, are automati-
cally detected by implementing the wavelet-based algorithm devel-
oped in our previous research. 

However, cardiac electrical dynamics are initiated and propa-
gated spatiotemporally. The projection of spatiotemporal activity 
into 1D time domain diminishes important spatial information 
underlying cardiac electrical activities. In MESH, a novel dynamic 
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spatiotemporal visualization of VCG signals is implemented [23]. 
In the Frank XYZ lead system, VCG is represented as three orthogo-
nal scalar measurements with respect to time, which is given as:
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The dynamic VCG signal representation embeds the cardiac 
vector, composed of three scalar measurements, in real time. As 
shown in Fig. 9.4, three scalar x, y, and z components are plotted 
in the top and the simultaneous 3D movement of cardiac vectors in 
the bottom.

The top plot displays VCG signals in three-vector components as 
a function of time, and the bottom part shows the real-time cardiac 
vector movement in the 3D space. Head (green) gives the current 
position of cardiac vector. Body (red) indicates the direction and 
rotation of cardiac vector movements [23].

Figure 9.4.  Real-time spatiotemporal VCG representation.
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This explicitly real-time spatiotemporal VCG representation 
makes it easier to integrate with prior knowledge and experiences of 
time-based ECG. As shown in Fig. 9.4, this representation consists 
of three components, namely, head (green), body (red), and tail 
(blue). Head gives the current position of the cardiac vector. Body 
records a short history of the cardiac vector movements, which 
clearly indicates where the current vector is from. It avoids the con-
fusion regarding the group of heart activity to which the current 
cardiac vector belongs as they usually intersect at the isoelectric 
points. The tail provides full history pertinent to the complete topo-
logical shape of VCG state space. By following the cardiac vector 
movement with respect to time, the P, QRS, and T waves will be 
easily located in the VCG state space [23].

The real-time visualization of spatiotemporal ECG signals is an 
enabling tool that can be used in clinical practices of cardiac care. 
This approach incorporates additional dynamical properties of car-
diac vector movements (such as curvature, velocity, octant, and 
phase angle) with the color coding scheme, which can be used for the 
interpretation of high-dimensional cardiac vectors by physicians or 
nurses. Our prior research [23] showed that the proposed dynamic 
VCG surmounts some drawbacks of time-domain representation 
and provides critical spatial, as well as temporal information of the 
heart dynamics. The cardiovascular pathological patterns are found 
to be effectively captured by this new 3D dynamic representation 
approach. The presence of both spatial and temporal characteristics 
in dynamic representation improves the automatic assessment of 
cardiovascular diseases with the use of VCG signals.

9.3.2.  Optimal model-based representation

The proposed MESH system enables long-term continuous cardiac 
monitoring. However, continuous sensing in days, months, and even 
years generates enormous amount of data, which contains multifac-
eted information pertinent to the evolving dynamics of process opera-
tions. As such, it provides physicians with a spatially and temporally 
data-rich environment in the process of medical decision-making. 
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Big data poses significant challenges for human experts (e.g., physi-
cians, nurses, and quality technicians) to accurately and precisely 
examine all the generated high-dimensional sensor signals for fault 
diagnosis and quality inspection. Moreover, the proliferation of sens-
ing data also provides an unprecedented opportunity to develop 
sensor-based methodologies for realizing the full potential of multi-
dimensional sensing capabilities toward real-time process monitoring 
and disease diagnosis.

In MESH, a new model-driven parametric monitoring strategy 
[16, 24] is developed for the detection of dynamic fault patterns in 
high-dimensional functional profiles that are non-linear and non-
stationary. Specifically, a sparse basis function model is developed 
to represent high-dimensional functional profiles, which mini-
mizes the number of basis functions involved but maintains suffi-
cient explanatory power. As such, large amount of data is reduced 
to a parsimonious set of model parameters (i.e., weight, shifting, 
and scaling factors in basis functions) while preserving the signal 
information. 

The 3D VCG is represented as the superposition of M multiscale 
basis functions:

 ( ) ( )ϕ μ σ ε
=

= + − +∑ �� � �
0

1

, ( ) / ,
M

j j j j
j

v t w w w t  

where ϕ(t) is the general basis function form, which is not limited to 
Gaussian function, μj

 is the shifting factor, and σj is the scaling factor. 
The objective is to minimize the representation error, that is, 

( ) ( ) ( )
=

⎡ ⎤− −⎢ ⎥⎣ ⎦∑ �� �� 2
0 1

argmin , { , , } 
M

j jj
t t M tν ϕ ϕw w w , between VCG signals 

and basis function models. In a matrix form, the basis function 
model is rewritten as V = WTϕ, where W is the weight matrix and ϕ 
is the basis function matrix.

An iterative procedure, that is, matching pursuit algorithms [25], 
was developed to search the suboptimal solution based on character-
istic wave patterns in the VCG/ECG signals. The VCG matching 
pursuit method is started from an initial approximation S(0) = 0, 
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residual ( )(0)R v t= � , and dictionary ( ){ },   1,2, , jD t j Nϕ= = … .  
The first step identifies the basis function in the dictionary that best 
correlates with the residual, that is, finding γ0 such that 

( ) ( ) ( ) ( )0 0 0, max ,R Rγ γϕ ϕ= , γ ∈ N and ϕ(γ0) ∈ D. Then, the current 

approximation will be ( ) ( ) ( ) ( ) ( )γ γϕ ϕ= +1 0 0 0 0,s s R , and the residual is 

defined as ( ) ( ) ( ) ( ) ( )1 0 0 0 0,R R R γ γϕ ϕ= − . If the orthogonal wavelet 
bases are used, it may be noted that ϕ(γ0) is orthogonal to R(1) 
because:

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

, , ,

, , ,

, , 0

R R R

R R

R R

γ γ γ γ

γ γ γ γ

γ γ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

= −

= −

= − =
 

Hence, ( ) ( ) ( )0 0 0,R γ γϕ ϕ  is also orthogonal to R(1) so that

 ( ) ( ) ( ) ( ) ( )0 1 0 0 02 2 2,R R R γ γϕ ϕ= +  

At step j + 1, the residual R(j+1) is treated as R(0) in the first step, 
yielding

 
( ) ( ) ( ) ( ) ( )1 ,j j j j jR R R γ γϕ ϕ+ = −  

 
( ) ( ) ( ) ( )1

1

 ,
j

j i i i

i

s R γ γϕ ϕ+

=

=∑  

After M such steps, one has a representation of the form of addi-
tive decomposition: 

 ( ) ( ) ( ) ( )
1

1

( ) ,
M

i i i M

i

v t R Rγ γϕ ϕ
−

=

= +∑  

The adaptive algorithm will stop when the residual sum of 
squares is less than a small threshold at step M (i.e., ( )M < εR ). An 
intrinsic feature of matching pursuit algorithm is that when the 
dictionary has orthogonal bases, it works perfectly after a few steps 
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yielding a sparse adaptive representation using only a few basis 
functions. An example of fitting high-dimensional nonlinear profile 
using the superposition of basis functions is shown in Fig. 9.5. It 
may be noted that the basis function model (red/solid) effectively 
represents the original data (blue/dashed). 

It may be noted that optimal representation of 3D VCG topology 
in the MESH system will lead to the following benefits:

• Feature extraction: The model parameters such as weights, shift-
ing, and scaling factors in the basis functions can be potentially 
used as features for the diagnostic application. As a result, large 
amount of VCG and ECG data is reduced to a limited amount 
of features (i.e., model parameters) while preserving the same 
information. 

• Data compression: It is well known that hundreds of gigabytes 
of VCG and ECG data will be stored in the real-time cardiac 
monitoring. Since the basis function model yields a good repre-
sentation (>99%) of real-world VCG signals, model parameters 
can be saved instead of long-term VCG signals. 

• Algorithm evaluation: This proposed basis function model is 
data-driven and can be fitted to ECG signals from different kinds 
of cardiovascular diseases. The fitted model for different pathol-
ogies can generate large amount of VCG/ECG signals that can be 

-0.4 -0.2 0 0.2 0.4-0.5
0

0.5
-0.4

-0.2

0

0.2

0.4

Figure 9.5.  3D trajectory of VCG signals from basis function model (red/solid) and 
real-world data (blue/dashed) [16].
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228 Stochastic Modeling and Analytics in Healthcare Delivery Systems

used to test the algorithms of QRST cancellation, adaptive filter-
ing, and classification.

• Disease prognostics: Because the basis function model captures 
all the characteristics from actual data, real-time ECG monitor-
ing signals can be compared with the model representation 
trained in healthy condition. The differences of pattern similar-
ity can be used as a performance measure for the prognostic 
purpose.

The model parameters and their derivatives can be used as fea-
tures for the detection of process faults. However, the dimensionality 
of these features is high and can potentially lead to sensitive predic-
tive models. Thus, we further utilize lasso-penalized logistic regres-
sion model [16] to investigate the “redundancy” and “relevancy” 
properties between these parameter-based features and fault patterns 
to identify a sparse set of sensitive predictors from a large number of 
features for fault diagnostics. 

Let p(x, β ) be the probability for y to be a success (y = 1) and, 
thus, 1 − p(x, β ) is the probability for y to be a fault (y = 0), where 
β = (β0, β1, β2,...,βp)T is the coefficient vector. The logistic regression 
model is:

 
⎛ ⎞

=⎜ ⎟−⎝ ⎠
( , ) 

log
1 ( , ) 

Tp
p
x x

x
β β

β  

The likelihood function of β = (β0, β1,...,βp)T, given the observa-
tion data X = (x1, x2,...,xn)T, y = (y1,...,yn)T is:

 ( ) −

=

−∏ 1

1

( , ) 1 ( , ) )i i

n
y y

i i
i

p px xβ β  

As such, the log likelihood function becomes:

 
( ) ( )( ) ( )( )

( )
=

=

⎡ ⎤= + − −⎣ ⎦

⎡ ⎤= − +⎢ ⎥⎣ ⎦

∑

∑
1

1

| , log , (1 )log 1 ,

log 1
T

n

i i i i
i

n
T

i
i

L y p y p

y e ix
i

X y x x

x β

β β β

β
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The lasso-penalized logistic regression is formulated to minimize 
the following objective function with the constraint that the upper 
limit of L1-norm of β is less than C,

 ( )−min | ,L
β

β X y  

subject to β1 ≤ C

This is equivalent to solve the following unconstrained optimiza-
tion problem, with λ be the regularization parameter:

 ( )
λ

λ− + 1
,

min | ,L
β

β βX y  

The optimal solution β of the unconstrained optimization prob-
lem given λ also solves the constrained minimization problem with 

β
=

= = ∑1 1

p

ii
C β . To solve this constrained optimization problem, let 
us first obtain the solution to the general logistic regression model. The 
objective function of general logistic regression model is as follows:

 ( )−min | ,L
β

β X y  

From the Newton-Raphson algorithm, it may be noted that the 
update of parameters is obtained by approximating the objective 
function with the second-order Taylor expansion. Let β(k) be the cur-
rent parameters, then Newton–Raphson method finds the new set of 
parameters γ(k) based on the quadratic approximation:

 ( ) ( ) 1
,k T T−

= X WX X Wzγ  

where 1( )−= + −z X W y pβ  and W is the diagonal matrix with 
( ) ( )( )( ) , 1 ,ii i ip p= −W x xβ β . As such, solving for γ(k) is equal to 

finding the solution to the following weighted least squares problem:

 
⎛ ⎞

= −⎜ ⎟⎝ ⎠

1 1
( ) 22 2

2 arg mink

γ
γ γW X W z  
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For lasso-penalized logistic regression, there is a need to add the 
L1 constraint to the unregularized logistic regression to ensure γ1 ≤ C, 
that is,

 
⎛ ⎞

−⎜ ⎟⎝ ⎠

1 1
22 2
2min

γ
γW X W z  

subject to γ1 ≤ C

As a result, the lasso-penalized logistic regression is transformed 
to an iteratively reweighted least square problem. At each iteration, 

we update the 
1
2W X  and 

1
2W z , based on the new estimate of coef-

ficients. After γ (k) is obtained, we update β(k) by:

 ( ) ( )( 1) ( )1 kk kθ θ+ = − + ãβ β  

where [0,1]θ ∈  is the learning rate for the parameter update. In this 
study, we adopted the coordinate descent algorithm to solve the 
regularized problem. If we write =

1
2 

V

W X  X  and =
1
2

V

 W z y , only 
one βj is changed at each time, while the other parameters ( )k k jβ ≠  
stay the same.

The lasso penalized logistic regression model is implemented in 
MESH to investigate the “redundancy” and “relevancy” properties 
between features and fault patterns, thereby identifying a sparse set 
of sensitive predictors for fault diagnostics. This model was evalu-
ated in our previous study, and the experimental results showed that 
more than 60% of features had the KS statistic greater than the 
critical value 0.17, indicating significant differences between control 
and fault conditions. Furthermore, the lasso-penalized logistic 
regression model yields a superior accuracy of 97.13%, with a par-
simonious set of 81 features. The proposed approach facilitates the 
modeling and characterization of high-dimensional nonlinear pro-
files and provides effective predictors for real-time fault detection, 
thereby promoting the understanding of fault-altered spatiotemporal 
patterns in the complex cardiovascular systems.
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9.3.3.  Stochastic network modeling and online diagnosis

A remarkable feature of MESH is its information-processing capabil-
ity to perform spatiotemporal recognition of disease patterns using 
3D trajectories of cardiac electric signals. As shown in Fig. 9.6, there 
is spatiotemporal dissimilarity between the 3-lead VCGs of MI (red 
dashed loops) and HC (blue solid loops) subjects. The quantification 
of such dissimilarity will provide a great opportunity for the identi-
fication of cardiovascular diseases. However, it is challenging to 
measure the spatiotemporal dissimilarity between two functional 
signals in both space and time. Due to phase shift and discrete sam-
pling, two VCG signals can be misaligned, for example, both signals 
show a typical pattern and yet there are variations in shape, ampli-
tude, and phase between them. In the clinical practice, various meth-
ods are developed to measure the dissimilarities between misaligned 
signals. Figure 9.7 illustrates some of them using simple two- 
dimensional (2D) ECG signals. To compare the ECG signals (blue 
and red), the intuitive way is to directly take the difference between 
them (see Fig. 9.7a). As such, the difference may be huge even for 
similar signal patterns because of the misalignment. For example, the 
QRS wave (ventricular depolarization) of the blue ECG may be com-
pared to the P wave (atrial depolarization) of the red ECG, which 

Vz

Vy

Vx

Figure 9.6.  Spatiotemporal VCG signals of control (blue/solid) and diseased 
 subjects (red/dashed).
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generates misleading results. For years, physicians used offset-based 
alignment to improve the solution. In other words, R peaks from 
two ECGs are first aligned together and then take the difference (see 
Fig. 9.7b). In this way, the ventricular depolarization of two subjects 
are compared together, but the atrial depolarization (P wave) and 
ventricular repolarization (T wave) are still misaligned. Finally, 
dynamic time warping [26, 27] is a viable method that may help 
optimally align two ECG signals (see Fig. 9.7c). Such an alignment 
is critical to compare the corresponding electrical activity of heart 
chambers. For example, we are comparing the ventricular depolari-
zation (i.e., QRS complex) for two subjects, as opposed to the incor-
rect comparison between atrial depolarization (P waves) from one 
subject and ventricular depolarization from the other subject.

Importantly, the first step of stochastic network modeling is to 
implement our dynamic spatiotemporal warping approach to 
measure the dissimilarities between space-time functional record-
ings [3, 28]. As opposed to traditional time-domain warping (see 
Fig. 9.7c), spatiotemporal warping is innovatively created to solve 
the problem of misalignment in both space and time. As shown in 
Fig. 9.8, P, QRS, and T loops are aligned for two subjects in both 
space and time. Notably, little work has been done to measure the 
differences between VCG loops by means of dynamic time warping. 
However, 3-lead VCG signals are analogous to the voice from the heart. 

(a) (b) (c)

Figure 9.7.  Measuring dissimilarities between misaligned ECG cycles: (a) Direct 
difference, (b) Offset based alignment, and (c) Dynamic time warping.
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Our algorithm is the first of its kind to utilize space-time warping of 
VCG signal patterns for the identification of disease patterns and has 
been granted two patents [29, 30].

Given two 3D VCG signals 
���

1( )tv  and 
���

2( )tv , the time-normalized 
spatial distance between 

���
1( )tv  and 

���
2( )tv  is calculated as 

∈
−∑

��� ���
1 2( , )
( ) ( )

i jt t p j jt tv v  by alignment p. The warping path p(i, j) con-

nects (1, 1) and (N1, N2) in a 2D square lattice as well as satisfying 
constraints such as monotonicity condition and step size condi-
tion. To find the optimal path, an exhaustive search of alignment 
path is intractable and computationally expensive. However, this 
problem is solved efficiently using dynamic programming (DP) 
methods. The DP algorithm is started at the initial condition: 

= = −
��� ���

1 1 2 1(1,1) (1,1) ( ) ( )g d t tv v  and the warping window − <| |i j r . 
The algorithm is searching forward as follows:

 

+⎛ ⎞
⎜ ⎟= − − +
⎜ ⎟

− +⎝ ⎠

( ,  – 1)  ( ,  )

( , ) ( 1,  1)  ( ,  ) 

( 1,  )  ( ,  ) 

g i j d i j

g i j min g i j d i j

g i j d i j

 

Figure 9.8.  Spatiotemporal alignment of 3-lead VCG signals [3].
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Finally, the time-normalized spatial distance is calculated as 
 follows:

 ( ) ( )1 2
1 2

1 2

,
,

g N N

N N
Δ =

+

��� ���
v v  

where N1
 and N2 are the length of 

���
1( )tv  and 

���
2( )tv , respectively. The 

( )1 2,Δ
��� ���
v v  represents the spatiotemporal dissimilarity between two 

multidimensional functional recordings. Therefore, disease-altered 
characteristics of 3-lead VCG signals are obtained in the warping 
matrix. 

However, it may be noted that the warping matrix itself cannot 
be used as features for the identification of disease properties in 
classification models. In addition, the measure of Euclidean dis-
tance is not directional and can mix the distances that are equal in 
magnitudes but along different spatial directions. A novel method 
needs to be developed to transform the warping matrix into feature 
vectors that preserve the warping distances among functional 
recordings. The spatial embedding method represents the func-
tional recordings as the points in a high-dimensional space. These 
points can be used as feature vectors that recover not only the 
distance matrix but also directional differences between functional 
recordings [28].

This is similar to a network problem, that is, how to reconstruct 
the location of nodes in a high-dimensional space if the node-to-
node distance matrix is known. As shown in Fig. 9.8, a network 
comprises a number of nodes that are connected by edges. Each 
node stands for an individual component in the system, and the 
edges show the relationship (e.g., distances or causal relationships) 
between nodes. As given in Fig. 9.9a, assume the distance matrix Δ 
for five nodes is known. If the network is reconstructed in the 3D 
space, this is analogous to optimally identify the coordinate vector 

= = …1 2 3  ( , , ),   1, 2,  ,5i i i ix x x ix  for five nodes that can preserve the 
distance matrix Δ. As shown in Fig. 9.9b, all the nodes and their 
connections preserve the dissimilarities matrix Δ. The matrix D is the 
pairwise distances between reconstructed nodes in the 3D space. 
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It may be noted that we are bridging from functional signals to the 
distance matrix to feature vectors (nodes in the network). The fea-
ture vectors will approximately preserve the distance matrix Δ 
between functional signals.

Let u assume that δij denotes the dissimilarity between ith and jth 
functional recordings in n × n warping matrix Δ, xi, and xj denotes 
the ith and jth feature vectors in a high-dimensional space. Then, the 
objective function of feature embedding algorithm can be formulated 
as follows: 

 δ
<

− − ∈∑min ( );  ,  [1, ]i j ij
i j

i j nx x  

where Δ is the Euclidean norm. To solve this optimization problem, 
the Gram Matrix B is firstly reconstructed from the n × n distance 
(dissimilarity) matrix Δ:

 ( )21
  

2
B H H= Δ−  

where the centering matrix H = I − n−111T and 1 is a column vector 
with n ones. The Δ(2) is a squared matrix and each element in Δ(2) is 

(a)

(b) (c)

Figure 9.9.  (a) Original distance matrix Δ, (b) reconstructed network and nodes in 
the 3D space, and (c) reconstructed distance matrix D [3].
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2
ijδ  (i.e., the squares of δij in the matrix Δ). The element bij in matrix 

B is:

 
2 2 2 2

2
1 1 1 1

1 1 1 1
 

2

n n n n

ij ij ik kj gh
k k g h

b
n n n

δ δ δ δ
= = = =

⎡ ⎤
= − − − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑∑  

It is known that the Gram Matrix B is defined as the scalar prod-
uct B = XXT, where the matrix X minimizes the aforementioned 
objective function. The Gram Matrix B can be further decomposed 
as T TB V V V V= Λ = Λ Λ , where V = [v1, v2, … , vn] is a matrix of 
eigenvectors and Λ = diag (λ1, λ2,..., λn) is a diagonal matrix of eigen-
values. Then, the matrix of feature vectors is obtained as .X V= Λ  
The algorithm embeds each functional recording as a feature vector 
in the d-dimensional space (d = 2, 3, 4, …).

To this end, a network is optimally constructed in the high-
dimensional space. Notably, such network is not static. It is a 
dynamic network that contains both within-a-patient and between-
patient stochastic behaviors. For example, each cycle of the 
10-second ECG signal from an individual patient (see Fig. 9.1a) is 
represented as a node in the network. It may be noted that the 
node location is changing over time due to the cycle-to-cycle sto-
chastic dynamics. As shown in Fig. 9.10, network nodes are located 
closely when ECG cycles have similar morphology. However, when 
there is a significant change, for example, cycle #6, the node moves 
far away from the previous cycles. Such stochastic network reveals 
the cycle-to-cycle dynamics and provides physicians useful informa-
tion pertinent to the underlying changing of cardiac conditions of 
an individual patient.

Figure 9.11 demonstrates the stochastic network for different 
patients. Like Fig. 9.10, two nodes are distributed closely when two 
patients share similar cardiac conditions. The positions of nodes are 
changing if cardiac conditions vary with respect to time. For exam-
ple, when patient P1 also gets myocardial infarction symptoms as 
P3, the corresponding node will move toward P3. As such, physi-
cians are quickly alerted and deliver life-saving therapies in time.
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Figure 9.10.  Stochastic network for monitoring cycle-to-cycle dynamics of an 
individual patient.

The proposed stochastic network model can be readily used for 
online diagnosis. As shown in Fig. 9.12, when a new VCG recording 
is presented, the pattern dissimilarity will be measured against the 
database of N patients. Then, a new row and column will be obtained 
in the warping matrix, and a new feature vector will be embedded in 
the high-dimensional space. Finally, the classification model will pre-
dict cardiac conditions with this feature vector [31].

However, the large number of patients in MESH poses great 
challenges for real-time analytics and management. On one hand, 
MESH is aimed at integrating patients all over the world to reduce 
the risk of cardiac diseases and improve the quality of life. More 
than 17.5 million people die from cardiac diseases every year, 
and this number is expected to grow to over 23.6 million by 2030. 
It is extremely expensive to process millions and billions of patients 
and provide feedbacks within a reasonably short time. On the other 
hand, MESH is aimed at long-term monitoring of patients’ cardiac 
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conditions for personalized cardiac care. Continuous monitoring of 
an individual patient generates a large amount of data when per-
formed in hours, days, months, and years. There is lack efficient 
tools to handle such ever-increasing volume of data. 

Therefore, we further have developed a new map-reduce frame-
work in MESH for large-scale computing. That is, we have decom-
posed the large-scale stochastic network optimization problem into 
local networks and resolved them in a parallel manner [32]. By 
applying stochastic gradient descent, local networks are optimally 
casted. Then, the global stochastic network is built by optimally 
piecing together the local ones. Notably, the proposed strategy 
facilitates the implementation of parallel computing on a multitude 
of processors and significantly improve the computation efficiency of 
the MESH system.

9.4.  MESH Design

As shown in Fig. 9.13, the proposed MESH system integrates wear-
able ECG sensors and mobile computing with network analytics for 
smart heart health management. The wearable sensing device will 

Figure 9.12.  The flowchart of stochastic network modeling and online diagnosis.
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continuously monitor cardiac conditions. Patients will be able to 
install the MESH App onto their smartphones and tablets to register 
and get connected to the system. After proper authorization, physi-
cians will be able to access patients’ data, review results in each 
analytical module, and communicate with patients and other physi-
cians for timely cardiac care.

In the past decade, the Internet of Things (IoT) was hailed as a 
revolution in health care. The IoT system deploys a multitude of 
wireless sensors, mobile computing units, and physical objects in an 
Internet-like infrastructure. This provides an unprecedented oppor-
tunity to realize a smart automated system that consists of medical 
devices and analytical modules to advance connected cardiac care. 
Connected care has been advocated by the Office of the National 
Coordinator for Health Information Technology for years. As 
opposed to traditionally isolated care, a highly connected cardiac 
care system resembles a large-scale network, which seamlessly con-
nects physicians, patients, devices, databases, and other entities. 
Optimizing the connectivity in cardiac care provides a data-rich 
environment for medical decision-making, enables smart cardiac 
telehealth, facilitates personalized patient-centered care, and dimin-
ishes care disparities. 

Figure 9.13.  The overall framework of the designed MESH prototype [32].

b2922_Ch-09.indd   240 5/4/2017   6:00:36 PM



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems“6x9” 1st Reading

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36xy

 9. Internet of Hearts — Large-Scale Stochastic Network Modeling 241

However, most of the existing products focus on wearable sens-
ing and fitness applications while being limited in the capability for 
cardiac sensing and clinical applications. Very little work has been 
done to develop advanced IoT technologies for smart monitoring 
and maintain heart health. Therefore, the proposed MESH system is 
developed to fill this gap. MESH is a new IoT technology specific to 
the heart, and it is aimed at realizing the next-generation of the car-
diac mobile health system (namely the Internet of Hearts), proposed 
by our research group. 

9.4.1.  Wearable sensing device

The existing electrodes are foam-made, fixed-shape, and attached to 
the skin by electrolyte gel. They do not adhere well to the irregular 
body surface, thereby, resulting in artifacts during body movement. 
In this study, we have exploited microdevices assembled on stretch-
able substrates to develop a new generation of ECG sensors that can 
stretch, fold, twist, and wrap around the complex surface of the skin. 
Furthermore, we embedded wireless module (e.g., Bluetooth LE) into 
the ECG sensor. Thin film circuits of the wireless module were pat-
terned on the soft material so that they can accommodate to large 
deformations. Moreover, the skin-like substrate architecture quanti-
tatively reproduces mechanics of the non-linear property of the real 
skin. This, in turn, significantly improved the wearability and facili-
tate unobtrusive long-term monitoring. As shown in Fig. 9.14a, 
stretchable sensors have been developed to measure EMG signals in 
the state of the art [33, 34]. Also, we have developed an ECG sensing 
board with Bluetooth LE module (Fig. 9.14b) to wirelessly transmit 
sensing data to mobile devices [13].

Furthermore, the sensor-skin contact can be oftentimes influ-
enced by sweating, motion, among other factors. Thus, the contact 
is not only static but also dynamic. Notably, the performance of 
ECG sensors with microelectrodes deteriorates significantly in 
dynamic contact. As such, the segments of ECG signals or even an 
entire lead can be missing. In other words, it is not uncommon to 

b2922_Ch-09.indd   241 5/4/2017   6:00:36 PM



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems1st Reading “6x9”

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36xy

242 Stochastic Modeling and Analytics in Healthcare Delivery Systems

encounter sensor failures in body area sensor networks. For  example, 
a subset of sensors often loses contact with the skin surface in ECG 
sensor networks because of body movements. Maintaining strict skin 
contacts for hundreds of sensors is not only challenging but also 
greatly deteriorates the wearability of ECG sensor networks. 
Therefore, we have proposed a novel strategy, named stochastic sen-
sor network, which allows a subset of sensors at varying locations 
within the network to transmit dynamic information intermittently 
[35]. Notably, the new strategy of stochastic sensor networks is gen-
erally applicable in many other domains. For example, a wireless 
sensor network is often constrained by finite energy resources. 
Hence, optimal scheduling of activation and inactivation of sensors 
is imperative to realize long-term survivability and reliability of sen-
sor networks. This information-theoretic approach is integrated with 
sparse particle filtering to impute missing ECG segments and com-
pensate missing lead(s). In our previous study, we implemented 
sparse particle filtering for modeling space-time dynamics in an car-
diac activity with stochastic sensor networks. The wearable sensing 
device of MESH will yield an efficient hardware-software solution to 
ensure the extraction of sufficient diagnostic information from ECG 
sensor networks.

9.4.2.  MESH database

An advanced cloud database, that is, MESHDB, is developed to 
store user data of the proposed MESH system. The cloud platform 

(a) (b)

Figure 9.14.  (a) Stretchable bio-sensors [33, 34], (b) Wireless ECG sensing board.
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optimally allocates the memory among the cluster of servers, which 
enable nearly unlimited space for storage. At the same time, the 
MESH system will protect the information stored in the MESHDB. 
The objective of data management is to specifically focus on optimal 
management and handling of cyber security issues of cloud database. 
Notably, the MESH system will only allow the use of MESH app 
(please refer to Section 9.4.3 for details) and the cloud database from 
registered users. The users will also be allowed to add notes for each 
patient and send alert information to the care group. In addition, 
MESH is designed to connect to ECG data management systems 
hosted in each hospital. For example, GE MUSE system is a central 
database that stores all the patients’ data and information in the 
cardiology unit at hospitals. The GE MUSE system provides rich 
information on cardiology assessments, making administrative 
workflow and sharing and securing information. 

The MESH technology will realize smart and connected cardiac 
health, once it is available to everyone in the world. It is well-known 
that the large-scale database is critical to big data analytics, which 
has the potential to transform the next-generation health care [36]. 
Big data presents a “gold mine” of this era (21st century). Toward 
this end, cardiac health care in the future is envisioned to be equipped 
with the mobile technology, mobile-based data acquisition and cloud 
database and big data analytics. With new wearable ECG sensing 
devices, users can directly collect and upload cardiac signals to the 
MESH system. Each recording will be automatically analyzed by 
MESH and stored in a cloud database. The more users involved, the 
bigger the database is, the more powerful the MESH will be. 
Notably, low-dimensional embedding of a large-scale network can 
include millions of patients around the world.

Figure 9.15 shows the data flow in the MESH system. Note the 
arrows indicate the direction of data flows. Primary physicians and 
care providers in hospitals and home care services have access to 
their assigned patients in the GE MUSE database hosted by hospitals 
and home care facilities, as well as in the cloud database hosted by 
MESH. They can review real-time cardiac recordings for analysis 
and send back instant feedbacks and care alerts. This will greatly 
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promote early identification and diagnosis of life-threatening cardiac 
events (e.g., heart attacks and cardiac arrest). Furthermore, if the 
patient wants to seek diagnosis results and treatment advice from 
cardiac experts all around the world, the MESH system can also 
enable remote physicians to review and analyze the patient’s data. 
In this way, better treatments of cardiovascular diseases can be 
achieved by teamed efforts from physicians with different background 
and expertise. Individual users worldwide will be able to monitor 
their cardiac electric activity in real time, upload data into the cloud 
database, and consult the physician online. It should be noted that 
MESH realizes the patient-centered cardiac care anywhere and any-
time with the mobile technology and the internet. It is expected that 
the MESH system will provide an indispensable enabling tool for real-
izing smart health and wellbeing for the population worldwide.

9.4.3.  MESH smartphone application

We have developed a mobile application to implement partial func-
tions of the proposed MESH system. This application is developed 

MESH

Database

Homecare services

Individual users
Smart health

Remote Physicians

Hospitals
Hospital ECG Data 

Management Systems

…

Figure 9.15.  Database design of the proposed MESH system.
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in the world’s most widely used iOS mobile operating system (which 
is compatible with iPhone, iPad, and iPod Touch devices). It enables 
physicians to access the patients’ ECG signals in real time, remotely 
interact with patients, and rapidly respond to life-threatening cardiac 
disorders. 

Screenshots of designed MESH application are shown in Fig. 9.16. 
Figure 9.16a–c guide the user through login and patient selection. 
First, the Login page allows the authorized users to enter their user-
name and password to log into the MESH system. This guarantees 
the security of the data stored in MESH and protects the privacy of 
the users. Then, the users such as physicians will be directed to the 
Sites page that lists hospitals and homecare services. The patients’ 
profiles and data are categorized by the hospital or homecare service. 
The user can select one site to list his/her assigned patients associated 

Figure 9.16.  Screenshots of designed MESH APP on iPhone.
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with that site. On the Patients page, all patients associated with the 
selected healthcare site are listed. Patients are organized by their 
categories. If a patient is not shown in the list, the doctor needs to 
go back and select the correct healthcare site. This can be done by 
clicking on the Sites button on the navigation bar.

Figure 9.16d–f demonstrate three major functions of the MESH 
system, that is, dynamic visualization of space-time VCG signals, 
optimal model-based representation, and stochastic network analyt-
ics. On “3D visualization” page, dynamic space-time VCG signals 
are displayed on the upper panel. The red point gives the current 
position of the cardiac vector. The cyan loops record the full history 
pertinent to complete the topological shape of the VCG state space. 
The plot is automatically rotating counter-clockwise on the z-axis. The 
rotation facilitates a 360° view of spatiotemporal signals. 
Spatiotemporal features are updated in real time in the lower panel, 
including the percentage of data points in each of the eight octants, 
and the angle of P, QRS, and T axis. 

On “Model Representation” page, multiple cycles are collected 
from each of the three VCG channels and displayed on the upper 
panel (blue → X channel, yellow → Y channel, and green → Z chan-
nel). The red curves (with large line width) are the basis function 
models obtained from the summation of six adaptive Gaussian func-
tions. It is noteworthy that the models effectively capture the mor-
phology of signals. The parameters of basis functions, including 
center, standard deviation, and weight, are listed in the lower panel 
for basis 1 (B1) to basis 6 (B6).

On the last page, that is, dynamic network analytics, 3D visuali-
zation of VCG loops are shown in the upper panel. The blue trajec-
tory is from a normal subject, and the red trajectory is from 
myocardial infarction. The yellow indicator moving along the VCG 
cycles represents the current cycle we are looking at. The plot is 
automatically rotating counter-clockwise on the z-axis, providing a 
360° view of spatiotemporal cardiac patterns. The embedded net-
work is displayed on the lower panel. Nodes are the patients in the 
database: red nodes are myocardial infarction patients and blue 
nodes are healthy subjects. The yellow node in the network indicates 
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the current position of the patient (e.g., Kevin Chamber in this 
screenshot). When the yellow indicator in the upper panel is moving 
along the blue cycles, the yellow node on the lower panel is within 
the group of healthy subjects (i.e., blue nodes). However, when the 
yellow indicator in the upper panel moves into the red cycles, the 
yellow node in the network is switched to the cluster of myocardial 
infarction patients (i.e., red nodes).

9.5.  Discussion

The developed MESH system is aimed at a large market for patient-
centered cardiac care. In 2013, more than 83.3 million American 
adults (>1 in 3) had heart diseases. The increasing prevalence of 
cardiac disease calls for smarter cardiac care services. The growing 
presence of smartphones and tablets provides an unprecedented 
opportunity to advance cardiac telemedicine and realize the smart 
cardiac care anytime anywhere, which is not only responsive but also 
cost effective.

In the NSF I-Corps program, which aimed at developing entre-
preneurial skills to translate research results from academic labora-
tories, we did an extensive marketing research regarding the 
developed MESH system. We interviewed over 100 cardiac patients, 
physicians, and cardiac nurses; identified unprecedented marketing 
opportunities; and found the following:

(1) There is a lack of wireless sensing devices for continuous moni-
toring of multi-channel ECG signals. The existing companies are 
developing portable cardiac monitors, which can only monitor 
a single-channel ECG and are limited in their ability to facilitate 
the diagnosis of complex cardiac disorders in the clinical prac-
tice. Furthermore, most of the existing monitors adopt dry elec-
trodes. It is uncomfortable to take daily activity with them, and 
they may result in skin irritation. The proposed MESH system 
is not only able to record hospital-grade multi-lead ECG, but 
also comfortable, flexible, and reliable to facilitate long-term 
continuous monitoring.
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(2) Currently, there is a great shortage of physicians in the United 
States, and this situation will worsen in the next decade. Patients 
with acute cardiac disorders need 24/7 monitoring, but physi-
cians cannot stay in hospitals or with the patients all the time. 
Currently, when doctors are outside hospitals, they ask nurses 
to take pictures of ECG signals and send them through the 
phone. This is apparently not an efficient approach because cer-
tain delays are unavoidable, and the resolution of pictures is 
limited. Equipped with advanced cloud database, the proposed 
MESH system can be ready to help physicians access patients’ 
data anywhere and anytime to give a timely diagnosis and 
medical intervention. 

(3) There is a lack of enabling tools to extract useful information 
from big data that is generated from continuous cardiac moni-
toring. Early identification of disease patterns hinges on 
 information-processing and data mining algorithms. The exist-
ing devices are only capable of extracting simple ECG character-
istics or transferring data to physicians for visual inspection. 
MESH innovatively adopts stochastic network analytics for 
disease pattern recognition. Unlike traditional warping that can 
only be used to align signals in time domain, the proposed 
method is able to quantify the space-time dissimilarities between 
3D trajectories of cardiac signals. One remarkable feature of the 
MESH system is that it considers both within-a-patient and 
between-patient stochastic dynamics for network-based pattern 
recognition of cardiac diseases. This will assist and enable physi-
cians in the decision-making process.

9.6.  Summary

Cardiovascular diseases are the leading cause of death around the 
world. According to WHO, cardiac diseases contribute to more than 
30% of the global deaths each year. Optimal management and treat-
ment of cardiac diseases hinge on the development of advanced car-
diac telemedicine system for the detection of fatal disease patterns in 
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the early stage and timely delivery of life-saving therapies. However, 
the cardiac electrical activity manifests significant stochastic prop-
erties in both space and time. The existing approaches are either not 
concerned with underlying changes of cardiac conditions for an indi-
vidual patient or not capable to effectively differentiate different 
cardiac conditions among patients. There is an urgent need to fully 
address underlying stochastic properties and uncertainties in the car-
diac electrical activity. 

This chapter presents new visualization and data analytics 
tools for stochastic modeling and analysis of cardiac electrical sig-
nals, which advance cardiac telehealth-care service with excep-
tional features such as personalization, responsiveness, and superior 
quality. Specifically, we first developed a spatiotemporal approach 
to capture space-time heart dynamics by displaying the real-time 
motion of 3D VCG cardiac vectors. Then, an optimal model-based 
representation algorithm was developed to facilitate the compres-
sion of cardiac signals and the extraction of features pertinent to the 
disease-altered cardiac activity. Then, a stochastic network model 
was designed for real-time patient-centered monitoring, modeling, 
and analysis of cardiac variations. Finally, we leveraged the devel-
oped algorithms and built the next-generation cardiac mHealth 
system, MESH.

MESH bridges gaps in the current cardiac telemedicine systems 
and serves as an enabling tool to reduce the risk of life-threatening 
cardiac disorders and deliver personalized therapies.

We expect that this chapter will spur further investigations in 
stochastic modeling and analysis of spatiotemporal ECG signals to 
accelerate the discovery of knowledge in cardiovascular research.
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