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Abstract 27
Rapid advancement of mobile sensing and Internet-of-Things (IoT) 28
technology provides an unprecedented opportunity to realize smart 29
and connected health. However, large-scale IoT systems lead to big 30
data. Realizing the full potential of big data depends on a great 31
extent on the development of new human-centered computing 32
methodologies for real-time health monitoring, on-the-fly disease 33
diagnosis, and timely delivery of life-saving treatments. Thus far, 34
very little has been done to develop advanced IoT technologies for
smart monitoring and control of heart health. This chapter presents gé
Xy
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1 a new IoT technology of Mobile and E-Network Smart Health

2 (MESH) specific to the heart, also called the Internet of Hearts

3 (IoH), to advance the cardiac mHealth with IoT sensing, stochastic

4 modeling and network analytics. The MESH technology will ena-

5 ble and assist (1) the acquisition of electrocardiogram (ECG) sig-

6 nals pertinent to space-time cardiac dynamics anytime, anywhere;

7 (2) real-time management and compact representation of multi-
lead ECG signals; (3) big data analytics in large-scale IoT contexts.

8 In particular, we first developed a spatiotemporal approach to

9 visualize the real-time motion of 3D VCG cardiac vectors. Then, an

10 optimal model-based representation algorithm was developed to

11 facilitate the compression of ECG signals and the extraction of

12 features pertinent to disease-altered signal patterns. Further, we

13 developed stochastic network models for real-time patient-centered

14 monitoring, modeling, and analysis of stochastic variations between

15 heartbeats from an individual and among human subjects. The

16 MESH technology shows a great potential in providing an indis-

17 pensable and enabling tool for realizing smart heart health and

18 wellbeing for the population worldwide.

19

3(1) 9.1. Introduction

22 Cardiac diseases are the leading cause of death in the world. About

23 30% of global deaths (17.3 million) are due to cardiac diseases.

24 According to the report from World Health Organization (WHO),

25 this number will increase to 23 million by 2030. In United States,

26 heart diseases are responsible for one in every four deaths, amount-

27 ing to an annual loss of $448.5 billion [1]. Cardiac diseases claim

28 more lives each year than the next four leading causes of death

29 combined — cancer, chronic lower respiratory diseases, accidents,

30 and diabetes mellitus. As opposed to chronic ones, most of the car-

31 diac diseases are acute and can occur at any time in daily life [2]. For

32 example, a heart attack is caused by the blockage in coronary arter-

33 ies, which results in insufficient blood and oxygen supply to cardiac

34 muscles. When a heart attack occurs, every minute counts. Patients

35 who experience acute heart attacks are required to receive the treat-

36xy ment within 90 minutes after the onset of the symptom. A delay
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could result in permanent heart muscle damage and increased risk
of death. However, if the sign of heart attack is detected early, life-
saving medications or treatments can be delivered to avoid hospi-
talization and even reduce the mortality rate. Therefore, the optimal
management and treatment of cardiac diseases hinge on the identi-
fication of cardiac disorders in the early stage and the delivery of
timely medical interventions.

In the past decade, mobile health (mHealth) has gained increas-
ing attention from the health-care research community. Advances in
sensing technology and the rapid expansion of mobile networks
have made remotely monitoring of patient’s condition and provision
of timely feedback possible and affordable. mHealth technologies, 12
therefore, offer a great opportunity to improve diagnosis, treatment, 13
and adherence; increase access to health services, and lower health- 14
care costs. The applications of cardiac mHealth have increased dur- 15
ing the recent years. Wireless sensors are readily available to measure 16
single-lead electrocardiogram (ECG). Patients can forward recorded 17
ECG signals to physicians and receive feedbacks remotely. However, 18
the existing mHealth technologies are limited in their ability to ana- 19
lyze complex patterns of ECG signals for the identification of cardiac 20
diseases. This is mainly because the spatiotemporal cardiac electrical 21
activity manifests significant stochastic behaviors. It poses significant 22
challenges on the existing mHealth systems, which implement simple 23
algorithms to recognize disease patterns. It is well known that ECG 24
signals are initiated at the sinoatrial (SA) node, then conducted in 25
both atria, relayed through the atrioventricular (AV) node to further 26
propagate through the bundle of His and Purkinje fibers toward 27
ventricular depolarization and repolarization [3, 4]. Such electrical 28
conduction, nevertheless, is a stochastic process and can be influ- 29
enced by various types of uncertainties. For example, the excitation 30
of SA node may too slow or too fast, may pause, or fail to exit the 31
SA region. To investigate the underlying mechanisms, researchers 32
developed multiscale recurrence models [5-8] that revealed nonlinear 33
stochastic dynamics in vectorcardiogram (VCG) signals. Furthermore, 34
the process of orchestrated depolarization and repolarization of 35
cardiac muscle cells are controlled by the orchestrated function of 36xy
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1 individual ion channels in the cell membrane and are, thereby, cou-
2 pled with real-world uncertainties [9, 10]. Notably, cardiac electro-
3 mechanical function is closely related to cyclic changes in the
4 differences between intracellular and extracellular concentration of
5 ions. The potential difference increases as multiple ions travel across
6 the cell membrane through ion channels. Ions flow through these
7 channels and, thus, change the action potential across the cell mem-
8 brane [11, 12]. The rate at which ionic channels open and close is in
9 a stochastic manner and is based largely on the potential difference
10 across the membrane.

11 The stochastic behavior of the cardiac electrical activity consists
12 of two aspects: within-a-patient and between-patient stochastic
13 dynamics. On the one hand, cardiac electrical activity within a patient
14 demonstrates temporal dynamics. As shown in Fig. 9.1a, a 10-second
15 ECG signal is generated from continuous monitoring. It may be noted
16 that the amplitude of the 4th cycle of the ECG signal is smaller than
17 the first three, so as the 8th cycle. Furthermore, the 6th cycle shows a
18 significant S wave and an elevated T wave. Moreover, apparent vari-
19 ability can be identified even among those cycles that look similar, for
20 example, cycle #1, #2, #3, #9, and #10. The stochastic behavior of
21 cardiac activity for an individual patient is critical to the identification
22 of arrhythmic events. Taking consideration of historical variabilities
23 in cardiac activity is conducive to the delivery of personalized treat-
24 ment planning. On the other hand, the cardiac activity is different
25 between patients. As shown in Fig. 9.1b, 2-second ECG signals of six
26 patients demonstrate big variability. For example, the heart rate is
27 apparently different among these patients. Patient P1, P3, and P6
28 have only two ECG cycles, but the others have 2.5-3 cycles within
29 2 seconds. Also, the morphology of these ECG signals shows signifi-
30 cant dissimilarities. Patient P3 shows inverted T wave (i.e., T wave is
31 pointing downward instead of upward). P3 has an abnormal wave
32 before the onsite of Q wave, and the R peak of P6 is notched.
33 Notably, between-patient stochastic behaviors are closely pertinent to
34 the disease-altered cardiac patterns. The detection and differentiation

35 of cardiac diseases hinge on the effective characterization of both
36xy within-a-patient and between-patient stochastic behaviors.
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1 In the present investigation, we developed a new technology of
2 Mobile and E-Network Smart Health (MESH) to advance the car-
3 diac mHealth with stochastic modeling and network analytics [13].
4 The MESH technology is developed in the world’s most widely used
5 iOS mobile operating system, which is compatible with iPhone, iPad,
6 and iPod Touch devices). In addition, it supplies in-situ information
7 processing capabilities and enables physicians to access the patients’
8 ECG signals in real time, remotely interact with the patients, and
9 rapidly respond to life-threatening cardiac disorders. The MESH
10 system is composed of three components: real-time visualization of
11 three-dimensional (3D) VCG trajectory and feature detection, opti-
12 mal model-based representation of ECG signals, and stochastic net-
13 work modeling and online diagnosis.

14 The remainder of this chapter is organized as follows: Section 9.2
15 presents the background of ECG sensing and signal patterns;
16 Section 9.3 throws light on the present analytical modules for large-
17 scale ECG sensing systems; Section 9.4 provides the design of the
18 MESH system, including the wearable sensor, MESH database, and
19 smart phone applications; Section 9.5 presents marketing research,
20 and Section 9.6 concludes this chapter.

21

;g 9.2. Background

24 The human heart is essentially an autonomous electro-mechanical
25 blood pump that operates near-periodically to maintain vital living
26 organs. The heart consists of four compartments: right and left atria
27 and right and left ventricles. This autonomous pump circulates
28 blood in the body and constantly produces a sequence of electrical
29 activities within every heartbeat. It is well known that an electrical
30 activity begins in a specified pacemaker region, called the SA node,
31 to excite the atrial muscle contraction. Then, the activity spreads
32 through the upper chambers of the heart (the atria) and reaches the
33 AV node. The AV node propagates the stimulus through bundle of
34 His and Purkinje fibers toward the ventricles [3, 4]. The ordered
35 stimulation, starting from the SA node, leads to the orchestrated
36xy
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contraction of the heart, thereby, pumping the blood throughout 1
the body. 2
The ECG system, designed by Augustus Waller in 1889 and fur- 3
ther improved by Willem Einthoven in 1901, has been used for over 4
100 years for the monitoring of cardiac electrical activity and clinical §
diagnosis of cardiovascular disorders [14]. One lead ECG captures 6
one-dimensional (1D) temporal view of a space-time cardiac electri- 7
cal activity. Multi-lead ECG systems provide multi-directional views 8
of such space-time dynamics [15]. A normal ECG tracing is often 9
segmented into P wave, QRS complex, and T wave (see Fig. 9.2a 10
[16]). Atrial depolarization (and systole) is represented by the P 11
wave, ventricular depolarization (and systole) is represented by the 12
QRS complex, and ventricular repolarization (and diastole) is repre- 13
sented by the T wave [17, 18]. It may be noted that ECG signals 14
contain a wealth of dynamic information pertinent to cardiac opera- 15
tions, which is indispensable for cardiac care — from monitoring 16
and diagnosis to treatment planning to smart health management. 17
Existing time-domain algorithms were developed to quantify the 18
characteristics of ECG wave deflections (i.e., P, QRS, and T waves) 19
for the identification of cardiac diseases. Examples of ECG features 20
21
22
N w 23
. PWave_ ) l (Ventricular Depolarization) 24
(Atrial Depolarization) QRS Loops 2 5
' 26
::n ! P Loops 27
tial os ~N 28
0 : - 29
as 30
~ TLoops 31
Time - Beats I
(a) (d) 33
Figure 9.2. Two types of cardiac signals: (a) 2D ECG cycles and (b) 3D VCG 34
loops. 35
36xy
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1 include PR interval, RR interval, ST elevation/depression, QT inter-
2 val, and R amplitude.

3 However, time-domain projections of space-time cardiac electri-
4 cal activity will diminish important spatial information of cardiac
5 pathological behaviors. As such, medical decisions that are made can
6 be significantly influenced by such an information loss [3]. Therefore,
7 3-lead vector cardiogram (VCG) is designed to provide multi-
8 directional views of space-time electrical activity. VCG observes the
9 heart potentials as a cardiac vector in three orthogonal components
10 instead of the scalar amplitude (ECG curve) [19]. In VCGs, the
11 mutually orthogonal bipolar measurements are taken by placing
12 parallel electrodes on the opposite sides of the torso. As shown in
13 Fig. 9.2b, VCG signals contain P loops, QRS loops, and T loops,
14 which correspond to P wave, QRS complex, and T wave in the ECG,
15 respectively. Dower et al. and our previous studies [20-22] have
16 demonstrated that 3-lead VCG can be linearly transformed to
17 12-lead ECG by multiplying a generalized transformation matrix.
18 Thus, the information in 12-lead ECG is redundant and the 3-lead
19 VCG surmounts not only the information loss in 1-lead ECG but
20 also the redundant information in 12-lead ECG.

21 In clinical practice, the 12-lead ECG is widely used because phy-
22 sicians are trained and are accustomed to using them. It has, thus,
23 proven its value, time-tested, and considered as the gold standard. It
24 is generally difficult for physicians to interpret disease patterns via
25 the high-dimensional VCGs. However, VCGs capture important
26 space-time information of cardiac electrical activity, which is not
27 contained in ECG signals. The methodologies developed in our pre-
28 vious research were proved to be efficient and effective for identify-
29 ing disease patterns in VCG signals. Those algorithms have fueled
30 increasing interests in VCG signals. However, they have not been
31 applied to clinical practice due to lack of user-friendly software.
32 Therefore, there is a need to develop software that implements those
33 advanced algorithms. MESH incorporates novel pattern recognition
34 algorithms that will serve as a tool to enable and assist physicians in
35 characterizing VCG patterns and identifying early signs of cardiac

36xy disorders. The MESH system not only enables access to patients’
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data anywhere and anytime but also extracts valuable diagnostic
information from the signals to help physicians in the decision-
making process. MESH is designed to enable physicians and nurses
to access and visualize the patients’ ECG signals in real time, as
well as timely analysis of patient’s data and rapidly respond to life-
threatening cardiac disorders.

9.3. Analytical Modules

NO 0 I O\ »n A W N =

As shown in Fig. 9.3, the proposed MESH system consists of three 10
analytical modules. We first develop a spatiotemporal representa- 11
tion approach to visualize the real-time dynamics of 3D VCG tra- 12
jectories. This enables physicians and nurses to easily interpret the 13
high-dimensional VCG patterns and extract space-time characteris- 14
tics. Second, an optimal model-based representation algorithm is 15
developed to facilitate the compression of cardiac signals and extrac- 16
tion of features pertinent to the disease-altered cardiac activity. Third, 17
a stochastic network model is designed for real-time patient-centered 18

19
20
Real-time space-time visualization and feature detection 21
—> Spatiotemporal R Space-time 22
visualization g features 23
24
Optimal model-based representation 25
Cardiac L ossi
Electrical Preprogessing - - Signal Predictive 26
Signals representation [ | modeling 27
28
Stochastic network modeling and online diagnosis 29
Spatiotemporal | Warping 30
warping " matrix 31
> |
5 32
Network | High-dimensional 33
embedding | network features 34
35
Figure 9.3. The overall structure of the proposed MESH system. 36xy
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1 monitoring of cardiac variations. The developed spatiotemporal
2 warping algorithm characterizes the patient-patient variations in a
3 warping matrix, which is further embedded into a high-dimensional
4 network to facilitate classification and prediction of patients’ cardiac
5 conditions.

6

7 . . e

g 9.3.1. Real-time spatiotemporal visualization

9 and feature extraction

10 ECG signals are recorded on body surface to track the continuous
11 dynamic details of cardiac functioning. Such valuable real-time
12 information is usually unavailable in static and discrete clinical labo-
13 ratory tests, for example, computer imaging, chest x-ray, and blood
14 enzyme test. Even if routine laboratory examinations are performed
15 multiple times per day, discontinuity often fails to prevent the lethal
16 consequences of acute cardiac disorders. The awareness about the
17 importance of real-time cardiac monitoring for the early identifica-
18 tion pathological patterns is increasing as it tracks cardiac dynamic
19 behaviors, as opposed to static screenshots.

20 However, lead ECG signals only capture one perspective tempo-
21 ral view of the space-time excitation and propagation of cardiac
22 electrical activities. Multiple lead ECG systems, for example, 12-lead
23 ECG and 3-lead VCG, are designed to capture the multi-directional
24 view of space-time cardiac electrical activities [23]. Time-domain
25 visualization is the traditional routine for representing cardiac elec-
26 tric signals. It is the major function of most of the existing cardiac
27 mHealth systems. The medical doctors are used to the time-domain
28 identification of cardiac disease patterns. Therefore, this module is
29 preserved in MESH. The characteristic points of cardiac signals, for
30 example, locations of R peak and the end of T wave, are automati-
31 cally detected by implementing the wavelet-based algorithm devel-
32 oped in our previous research.

33 However, cardiac electrical dynamics are initiated and propa-
34 gated spatiotemporally. The projection of spatiotemporal activity

35 into 1D time domain diminishes important spatial information
36Xy underlying cardiac electrical activities. In MESH, a novel dynamic
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spatiotemporal visualization of VCG signals is implemented [23]. 1
In the Frank XYZ lead system, VCG is represented as three orthogo- 2
nal scalar measurements with respect to time, which is given as: 3
4

v, =f(t) 5

v, = g(t). 6

7

v, =h(2) g

9

The dynamic VCG signal representation embeds the cardiac

vector, composed of three scalar measurements, in real time. As 10
shown in Fig. 9.4, three scalar x, y, and z components are plotted 1
12

in the top and the simultaneous 3D movement of cardiac vectors in
the bottom. 13

The top plot displays VCG signals in three-vector components as 14
a function of time, and the bottom part shows the real-time cardiac 15
vector movement in the 3D space. Head (green) gives the current 16
position of cardiac vector. Body (red) indicates the direction and 17

rotation of cardiac vector movements [23]. 18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Figure 9.4. Real-time spatiotemporal VCG representation. 36xy
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1 This explicitly real-time spatiotemporal VCG representation
2 makes it easier to integrate with prior knowledge and experiences of
3 time-based ECG. As shown in Fig. 9.4, this representation consists
4 of three components, namely, head (green), body (red), and tail
5 (blue). Head gives the current position of the cardiac vector. Body
6 records a short history of the cardiac vector movements, which
7 clearly indicates where the current vector is from. It avoids the con-
8 fusion regarding the group of heart activity to which the current
9 cardiac vector belongs as they usually intersect at the isoelectric
10 points. The tail provides full history pertinent to the complete topo-
11 logical shape of VCG state space. By following the cardiac vector
12 movement with respect to time, the P, QRS, and T waves will be
13 easily located in the VCG state space [23].

14 The real-time visualization of spatiotemporal ECG signals is an
15 enabling tool that can be used in clinical practices of cardiac care.
16 This approach incorporates additional dynamical properties of car-
17 diac vector movements (such as curvature, velocity, octant, and
18 phase angle) with the color coding scheme, which can be used for the
19 interpretation of high-dimensional cardiac vectors by physicians or
20 nurses. Our prior research [23] showed that the proposed dynamic
21 VCG surmounts some drawbacks of time-domain representation
22 and provides critical spatial, as well as temporal information of the
23 heart dynamics. The cardiovascular pathological patterns are found
24 to be effectively captured by this new 3D dynamic representation
25 approach. The presence of both spatial and temporal characteristics
26 in dynamic representation improves the automatic assessment of
27 cardiovascular diseases with the use of VCG signals.

28

29 , .

30 9.3.2. Optimal model-based representation

31 The proposed MESH system enables long-term continuous cardiac
32 monitoring. However, continuous sensing in days, months, and even
33 years generates enormous amount of data, which contains multifac-
34 eted information pertinent to the evolving dynamics of process opera-

35 tions. As such, it provides physicians with a spatially and temporally
36xy data-rich environment in the process of medical decision-making.
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Big data poses significant challenges for human experts (e.g., physi-
cians, nurses, and quality technicians) to accurately and precisely
examine all the generated high-dimensional sensor signals for fault
diagnosis and quality inspection. Moreover, the proliferation of sens-
ing data also provides an unprecedented opportunity to develop
sensor-based methodologies for realizing the full potential of multi-
dimensional sensing capabilities toward real-time process monitoring
and disease diagnosis.

In MESH, a new model-driven parametric monitoring strategy
[16, 24] is developed for the detection of dynamic fault patterns in 10
high-dimensional functional profiles that are non-linear and non- 11
stationary. Specifically, a sparse basis function model is developed 12
to represent high-dimensional functional profiles, which mini- 13
mizes the number of basis functions involved but maintains suffi- 14
cient explanatory power. As such, large amount of data is reduced 15
to a parsimonious set of model parameters (i.e., weight, shifting, 16
and scaling factors in basis functions) while preserving the signal 17
information. 18

The 3D VCG is represented as the superposition of M multiscale 19
basis functions: 20

NO 0 I O\ »n A W N =

M
b(t,w) =10y + DG, ((t =) o))+, 53
j=1

where (¢) is the general basis function form, which is not limited to 25
Gaussian function, y;is the shifting factor, and o; is the scaling factor. 26
The objective is to minimize the representation error, that is, 27

argmin[f/(t) —w, — zj\; w9, (t)2 ,w, M, ¢(t)}:| , between VCG signals

and basis function models. In a matrix form, the basis function 30

model is rewritten as V= W' ¢, where W is the weight matrix and ¢ 31

is the basis function matrix. 32
An iterative procedure, that is, matching pursuit algorithms [25], 33

was developed to search the suboptimal solution based on character- 34

istic wave patterns in the VCG/ECG signals. The VCG matching 35

pursuit method is started from an initial approximation S = 0, 36xy
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1 residual R” = 17(1f), and dictionary D= {gai (t), j= 1,2,...,N}.
2 The first step identifies the basis function in the dictionary that best
3 correlates with the residual, that is, finding 0 such that
: ‘R(O),Qp(”o) = maX‘R(O)M(V’) , veN and ¢"%eD. Then, the current
6 approximation will be ) = 5 4 g 60,60, and the residual is
7 defined as R® = RO — RO ,09,0% If the orthogonal wavelet
8 bases are used, it may be noted that ©"% is orthogonal to R
9 because:
10
11 00 RO = ,00 RO _RO) ,60),60)
E = ,00 RO _ 00 RO) ,60),60)
14 =00 RO _RO) 60 _
15
1e Hence, R© 09,09 is also orthogonal to R so that
17
12 RO2 _ g2 o R(O)’@(WO)(P(WO)Z
20 At step j + 1, the residual R0V is treated as R'”) in the first step,
21 yielding
22 , , . N
23 RUF — RU) _ R(/)’w(w)@(w)
24 ;
25 (+1) N RG) (7))

s =) R0
26 ,:21
27
28 After M such steps, one has a representation of the form of addi-
29 tive decomposition:
30 M1
31 u(t) = ZR(i)’@(vi)@(vi) + RM)
32 i=1
3i The adaptive algorithm will stop when the residual sum of
35 squares is less than a small threshold at step M (i.e., R™ <¢). An

36 intrinsic feature of matching pursuit algorithm is that when the
XY dictionary has orthogonal bases, it works perfectly after a few steps

b2922_Ch-09.indd 226 @ 5/4/2017 6:00:28 PM



“6x9” b2922  Stochastic Modeling and Aytics in Healthcare Delivery Systems  1st Reading

9. Internet of Hearts — Large-Scale Stochastic Network Modeling 227

yielding a sparse adaptive representation using only a few basis 1
functions. An example of fitting high-dimensional nonlinear profile 2
using the superposition of basis functions is shown in Fig. 9.5. It 3
may be noted that the basis function model (red/solid) effectively 4
represents the original data (blue/dashed). 5
It may be noted that optimal representation of 3D VCG topology 6
in the MESH system will lead to the following benefits: 7
8
o Feature extraction: The model parameters such as weights, shift- 9
ing, and scaling factors in the basis functions can be potentially 10
used as features for the diagnostic application. As a result, large 11
amount of VCG and ECG data is reduced to a limited amount 12
of features (i.e., model parameters) while preserving the same 13
information. 14
e Data compression: It is well known that hundreds of gigabytes 15
of VCG and ECG data will be stored in the real-time cardiac 16
monitoring. Since the basis function model yields a good repre- 17
sentation (>99%) of real-world VCG signals, model parameters 18
can be saved instead of long-term VCG signals. 19
o Algorithm evaluation: This proposed basis function model is 20
data-driven and can be fitted to ECG signals from different kinds 21
of cardiovascular diseases. The fitted model for different pathol- 22
ogies can generate large amount of VCG/ECG signals that can be 23
24
3 25
0.4 26
27
0.2 28
o 29
30
0.2 31
0.4 ] 32
0.50\‘ ] . ] . 33
05 04 02 o 02 04 34
. . : . : . 35
Figure 9.5. 3D trajectory of VCG signals from basis function model (red/solid) and 36xy

real-world data (blue/dashed) [16].
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1 used to test the algorithms of QRST cancellation, adaptive filter-
2 ing, and classification.

3 o Disease prognostics: Because the basis function model captures
4 all the characteristics from actual data, real-time ECG monitor-
5 ing signals can be compared with the model representation
6 trained in healthy condition. The differences of pattern similar-
7 ity can be used as a performance measure for the prognostic
8 purpose.

9

10 The model parameters and their derivatives can be used as fea-
11 tures for the detection of process faults. However, the dimensionality
12 of these features is high and can potentially lead to sensitive predic-
13 tive models. Thus, we further utilize lasso-penalized logistic regres-
14 sion model [16] to investigate the “redundancy” and “relevancy”
15 properties between these parameter-based features and fault patterns
16 to identify a sparse set of sensitive predictors from a large number of
17 features for fault diagnostics.

18 Let p(x, B) be the probability for y to be a success (y = 1) and,
19 thus, 1 — p(x, B) is the probability for y to be a fault (y = 0), where
20 B= (B, 51, ,62,...,BP)T is the coefficient vector. The logistic regression
21 model is:

22

23 log(—1 P (;(’ f '),J,) ) =p'x

24 ’

25 The likelihood function of = (8, 61,...,BP)T, given the observa-
26 tion data X = (%1, Xpyees®,y) Ly ¥ = (Y1seesy,,) | is:

27 .,

28 Hp(xiaﬂ)yi (1 - p(x;‘aﬂ)))l_yi

29 i=1

30 - .

31 As such, the log likelihood function becomes:

32 "

33 L(BX,y)= Y[ v log(p(x, B))+(1-)log(1- p(x,, B))]

34 i1

;ny = I:ylﬂTx,. —log (1+eﬂ i )]

i=1
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The lasso-penalized logistic regression is formulated to minimize 1
the following objective function with the constraint that the upper 2
limit of L;-norm of Bis less than C, 3
] 4
rn/}n—L(,BIX,y) 5
6
subject to B, < C 7
8
This is equivalent to solve the following unconstrained optimiza- 9
tion problem, with X be the regularization parameter: 10
. 11
min—L (81X, y)+ B, 12
13
The optimal solution B of the unconstrained optimization prob- 14
lem given ) also solves the constrained minimization problem with 15
C=p= 2;|ﬂi| . To solve this constrained optimization problem, let 16
us first obtain the solution to the general logistic regression model. The 1;
objective function of general logistic regression model is as follows: 19
min— L(B1X,y 20
A 21
From the Newton-Raphson algorithm, it may be noted that the 22
. . . . . 23
update of parameters is obtained by approximating the objective 4
function with the second-order Taylor expansion. Let %) be the cur- 55
rent parameters, then Newton—Raphson method finds the new set of by
parameters ¥ based on the quadratic approximation: 57
(k) _ (xT 1 T 28
) = (X WX) X"z, 59
where z=XB+W (y—p) and W is the diagonal matrix with g(l)
W), = ;D(xi,ﬂ) (1 - p(xi,ﬂ)). As such, solving for y(k) is equal to
g . . . 32
finding the solution to the following weighted least squares problem: 33
1 1 34
7y =argmin| W2X |y -w2z3 35
1
36xy
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1 For lasso-penalized logistic regression, there is a need to add the
2 L, constraint to the unregularized logistic regression to ensure ¥ < C,
3 that is,

4 1 1

5 min[WzX)y—szzz

6 7

7 .

g subject to 5 < C

? 0 As a result, the lasso-penalized logistic regression is transformed
11 to an iteratively r?weighted l?ast square problem. At each iteration,
12 we update the W2X and W2z, based on the new estimate of coef-
13 ficients. After ¥ is obtained, we update 8% by:

14

15 BE = (1-¢ ),B(k) +0a"~

16

17 where 6 €[0,1] is the learning rate for the parameter update. In this
18 study, we adopted the coordinate descent algorithm to solve the
19 regularized problem. If we write p2y _ }V( and p2 1= Y only
20 one ﬂ/- is changed at each time, while the other parameters g, (k # j)
21 stay the same.

22 The lasso penalized logistic regression model is implemented in
23 MESH to investigate the “redundancy” and “relevancy” properties
24 between features and fault patterns, thereby identifying a sparse set
25 of sensitive predictors for fault diagnostics. This model was evalu-
26 ated in our previous study, and the experimental results showed that
27 more than 60% of features had the KS statistic greater than the
28 critical value 0.17, indicating significant differences between control
29 and fault conditions. Furthermore, the lasso-penalized logistic
30 regression model yields a superior accuracy of 97.13%, with a par-
31 simonious set of 81 features. The proposed approach facilitates the
32 modeling and characterization of high-dimensional nonlinear pro-
33 files and provides effective predictors for real-time fault detection,
34 thereby promoting the understanding of fault-altered spatiotemporal
35 patterns in the complex cardiovascular systems.

36xy
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9.3.3. Stochastic network modeling and online diagnosis 1
A remarkable feature of MESH is its information-processing capabil- g
ity to perform spatiotemporal recognition of disease patterns using 4
3D trajectories of cardiac electric signals. As shown in Fig. 9.6, there S
is spatiotemporal dissimilarity between the 3-lead VCGs of MI (red P
dashed loops) and HC (blue solid loops) subjects. The quantification -
of such dissimilarity will provide a great opportunity for the identi- g
fication of cardiovascular diseases. However, it is challenging to 9
measure the spatiotemporal dissimilarity between two functional
. . ) : : 10
signals in both space and time. Due to phase shift and discrete sam- 11
pling, two VCG signals can be misaligned, for example, both signals 1
show a typical pattern and yet there are variations in shape, ampli- 13
tude, and phase between them. In the clinical practice, various meth- 14
ods are developed to measure the dissimilarities between misaligned 15
signals. Figure 9.7 illustrates some of them using simple two- 16
dimensional (2D) ECG signals. To compare the ECG signals (blue
N . . ) 17
and red), the intuitive way is to directly take the difference between 18
them (see Fig. 9.7a). As such, the difference may be huge even for 19
similar signal patterns because of the misalignment. For example, the 20
QRS wave (ventricular depolarization) of the blue ECG may be com- 7
pared to the P wave (atrial depolarization) of the red ECG, which 2
23
24
25
26
27
28
29
30
31
32
33
Figure 9.6. Spatiotemporal VCG signals of control (blue/solid) and diseased 34
subjects (red/dashed). 35
36xy
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1 Direct measuring difference Offset-based alignment  Dynamic time warping

5 I

3 )

4

5 |

6 I

7

9

10 (a) (b) (o)

11 Figure 9.7. Measuring dissimilarities between misaligned ECG cycles: (a) Direct
12 difference, (b) Offset based alignment, and (c¢) Dynamic time warping.

13

14 . . .

15 generates misleading results. For years, physicians used offset-based
16 alignment to improve the solution. In other words, R peaks from
17 two ECGs are first aligned together and then take the difference (see
13 Fig. 9.7b). In this way, the ventricular depolarization of two subjects
19 are compared together, but the atrial depolarization (P wave) and
20 ventricular repolarization (T wave) are still misaligned. Finally,
21 dynamic time warping [26, 27] is a viable method that may help
29 optimally align two ECG signals (see Fig. 9.7c). Such an alignment
3 is critical to compare the corresponding electrical activity of heart
24 chambers. For example, we are comparing the ventricular depolari-
25 zation (i.e., QRS complex) for two subjects, as opposed to the incor-
2% rect comparison between atrial depolarization (P waves) from one
27 subject and ventricular depolarization from the other subject.

78 Importantly, the first step of stochastic network modeling is to
9 implement our dynamic spatiotemporal warping approach to
30 measure the dissimilarities between space-time functional record-
31 ings [3, 28]. As opposed to traditional time-domain warping (see
3 Fig. 9.7¢), spatiotemporal warping is innovatively created to solve
33 the problem of misalignment in both space and time. As shown in
34 Fig. 9.8, P, QRS, and T loops are aligned for two subjects in both
35 space and time. Notably, little work has been done to measure the
36xy differences between VCG loops by means of dynamic time warping.

However, 3-lead VCG signals are analogous to the voice from the heart.
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Figure 9.8. Spatiotemporal alignment of 3-lead VCG signals [3]. 15
16
17
. ) . . . ) ) 18
Our algorithm is the first of its kind to utilize space-time warping of 19
VCG signal patterns for the identification of disease patterns and has 20
been granted two patents [29, 30]. 21

Given two 3D VCG signals v, (¢) and v, (¢), the time-normalized 27
spatial distance between  (#) and () is calculated as 3

Z(t,,mep Z(t,’) - E(t/) by alignment p. The warping path p(i, j) con- 24

nects (1, 1) and (N, N;) in a 2D square lattice as well as satisfying 25
constraints such as monotonicity condition and step size condi- 26
tion. To find the optimal path, an exhaustive search of alignment 27
path is intractable and computationally expensive. However, this 28
problem is solved efficiently using dynamic programming (DP) 29
methods. The DP algorithm is started at the initial condition: 30
g,1)=d1,1)=v,(t,)—v,(t,) and the warping window li—jl<r. 31
The algorithm is searching forward as follows: ;?
gli, j=1) + d(, j) 34

glisj) = min| gli=1, j=1)+ di, ) 35

36xy

gli—1,j)+ d, j)
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1 Finally, the time-normalized spatial distance is calculated as
2 follows:

3

4 A(‘Tl,g):g(leNz)

S I\I1 + Nz

g where Ny and N, are the length of E(t) and E(t) , respectively. The
g A(;,g) represents the spatiotemporal dissimilarity between two
9 multidimensional functional recordings. Therefore, disease-altered
10 characteristics of 3-lead VCG signals are obtained in the warping
11 matrix.

0 However, it may be noted that the warping matrix itself cannot
13 be used as features for the identification of disease properties in
14 classification models. In addition, the measure of Euclidean dis-
15 tance is not directional and can mix the distances that are equal in
16 magnitudes but along different spatial directions. A novel method
17 needs to be developed to transform the warping matrix into feature
18 vectors that preserve the warping distances among functional
19 recordings. The spatial embedding method represents the func-
20 tional recordings as the points in a high-dimensional space. These
21 points can be used as feature vectors that recover not only the
2 distance matrix but also directional differences between functional
73 recordings [28].

24 This is similar to a network problem, that is, how to reconstruct
25 the location of nodes in a high-dimensional space if the node-to-
2% node distance matrix is known. As shown in Fig. 9.8, a network
27 comprises a number of nodes that are connected by edges. Each
)8 node stands for an individual component in the system, and the
79 edges show the relationship (e.g., distances or causal relationships)
30 between nodes. As given in Fig. 9.9a, assume the distance matrix A
31 for five nodes is known. If the network is reconstructed in the 3D
3 space, this is analogous to optimally identify the coordinate vector
33 X;= (X;,%5,%3), i=1,2,...,5 for five nodes that can preserve the
34 distance matrix A. As shown in Fig. 9.9b, all the nodes and their
35 connections preserve the dissimilarities matrix A. The matrix D is the
3ggy Pairwise distances between reconstructed nodes in the 3D space.
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Figure 9.9. (a) Original distance matrix A, (b) reconstructed network and nodes in 12
the 3D space, and (c) reconstructed distance matrix D [3]. 13
14
It may be noted that we are bridging from functional signals to the 15
distance matrix to feature vectors (nodes in the network). The fea- 16
ture vectors will approximately preserve the distance matrix A 17
between functional signals. 18
Let u assume that ¢; denotes the dissimilarity between i and j 19
functional recordings in 7 X # warping matrix A, x;, and x; denotes 20
the /™ and j™ feature vectors in a high-dimensional space. Then, the 21
objective function of feature embedding algorithm can be formulated 22
as follows: 23
24
minZ(xi —x; —0,); i,je[l,n] 25
i<j 26
27

where A is the Euclidean norm. To solve this optimization problem, 28§
the Gram Matrix B is firstly reconstructed from the # x n distance 29

(dissimilarity) matrix A:

where the centering matrix H=1 -7 '117 and 1 is a column vector
with 7 ones. The A is a squared matrix and each element in A is
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1 Py 5 (i.e., the squares of ¢; in the matrix A). The element b,-j in matrix
2 B is:

3 1 1 n 1 n 1 n n

: bj=-7 55‘;;5i_;;5§/+n_z;;5§h

6

7 It is known that the Gram Matrix B is defined as the scalar prod-
8 uct B = XX', where the matrix X minimizes the aforementioned
9 objective function. The Gram Matrix B can be further decomposed
10 as B=VAVT =VJAJAV", where V = [vy, v,, ..., v,] is a matrix of
11 eigenvectors and A = diag (A, Mys..., ) is a diagonal matrix of eigen-
12 values. Then, the matrix of feature vectors is obtained as X = V/A.
13 The algorithm embeds each functional recording as a feature vector
14 in the d-dimensional space (d = 2, 3, 4, ...).

15 To this end, a network is optimally constructed in the high-
16 dimensional space. Notably, such network is not static. It is a
17 dynamic network that contains both within-a-patient and between-
18 patient stochastic behaviors. For example, each cycle of the
19 10-second ECG signal from an individual patient (see Fig. 9.1a) is
20 represented as a node in the network. It may be noted that the
21 node location is changing over time due to the cycle-to-cycle sto-
22 chastic dynamics. As shown in Fig. 9.10, network nodes are located
23 closely when ECG cycles have similar morphology. However, when
24 there is a significant change, for example, cycle #6, the node moves
25 far away from the previous cycles. Such stochastic network reveals
26 the cycle-to-cycle dynamics and provides physicians useful informa-
27 tion pertinent to the underlying changing of cardiac conditions of
28 an individual patient.

29 Figure 9.11 demonstrates the stochastic network for different
30 patients. Like Fig. 9.10, two nodes are distributed closely when two
31 patients share similar cardiac conditions. The positions of nodes are
32 changing if cardiac conditions vary with respect to time. For exam-
33 ple, when patient P1 also gets myocardial infarction symptoms as
34 P3, the corresponding node will move toward P3. As such, physi-
35 cians are quickly alerted and deliver life-saving therapies in time.
36xy
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Figure 9.10. Stochastic network for monitoring cycle-to-cycle dynamics of an 1e
individual patient. 17
18
19
The proposed stochastic network model can be readily used for 20
online diagnosis. As shown in Fig. 9.12, when a new VCG recording 21
is presented, the pattern dissimilarity will be measured against the 22
database of N patients. Then, a new row and column will be obtained 23
in the warping matrix, and a new feature vector will be embedded in 24
the high-dimensional space. Finally, the classification model will pre- 25
dict cardiac conditions with this feature vector [31]. 26
However, the large number of patients in MESH poses great 27
challenges for real-time analytics and management. On one hand, 28
MESH is aimed at integrating patients all over the world to reduce 29
the risk of cardiac diseases and improve the quality of life. More 30
than 17.5 million people die from cardiac diseases every year, 31
and this number is expected to grow to over 23.6 million by 2030. 32
It is extremely expensive to process millions and billions of patients 33
and provide feedbacks within a reasonably short time. On the other 34
hand, MESH is aimed at long-term monitoring of patients’ cardiac 35

36xy
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Figure 9.12.  The flowchart of stochastic network modeling and online diagnosis. ~ q §

conditions for personalized cardiac care. Continuous monitoring of 17
an individual patient generates a large amount of data when per- 18
formed in hours, days, months, and years. There is lack efficient 19
tools to handle such ever-increasing volume of data. 20

Therefore, we further have developed a new map-reduce frame- 21
work in MESH for large-scale computing. That is, we have decom- 22
posed the large-scale stochastic network optimization problem into 23
local networks and resolved them in a parallel manner [32]. By 24
applying stochastic gradient descent, local networks are optimally 25
casted. Then, the global stochastic network is built by optimally 26
piecing together the local ones. Notably, the proposed strategy 27
facilitates the implementation of parallel computing on a multitude 28
of processors and significantly improve the computation efficiency of 29
the MESH system. 30

9.4. MESH Design

As shown in Fig. 9.13, the proposed MESH system integrates wear- 34
able ECG sensors and mobile computing with network analytics for 33
smart heart health management. The wearable sensing device will 36xy
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13 Figure 9.13. The overall framework of the designed MESH prototype [32].
14

15 continuously monitor cardiac conditions. Patients will be able to
16 install the MESH App onto their smartphones and tablets to register
17 and get connected to the system. After proper authorization, physi-
18 cians will be able to access patients’ data, review results in each
19 analytical module, and communicate with patients and other physi-
20 cians for timely cardiac care.

21 In the past decade, the Internet of Things (IoT) was hailed as a
22 revolution in health care. The IoT system deploys a multitude of
23 wireless sensors, mobile computing units, and physical objects in an
24 Internet-like infrastructure. This provides an unprecedented oppor-
25 tunity to realize a smart automated system that consists of medical
26 devices and analytical modules to advance connected cardiac care.
27 Connected care has been advocated by the Office of the National
28 Coordinator for Health Information Technology for years. As
29 opposed to traditionally isolated care, a highly connected cardiac
30 care system resembles a large-scale network, which seamlessly con-
31 nects physicians, patients, devices, databases, and other entities.
32 Optimizing the connectivity in cardiac care provides a data-rich
33 environment for medical decision-making, enables smart cardiac
34 telehealth, facilitates personalized patient-centered care, and dimin-
35 ishes care disparities.

36xy
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However, most of the existing products focus on wearable sens- 1
ing and fitness applications while being limited in the capability for 2
cardiac sensing and clinical applications. Very little work has been 3
done to develop advanced IoT technologies for smart monitoring 4
and maintain heart health. Therefore, the proposed MESH system is 5
developed to fill this gap. MESH is a new IoT technology specific to 6
the heart, and it is aimed at realizing the next-generation of the car- 7
diac mobile health system (namely the Internet of Hearts), proposed 8
by our research group. 9

10

; . 11

9.4.1. Wearable sensing device 1
The existing electrodes are foam-made, fixed-shape, and attached to 13
the skin by electrolyte gel. They do not adhere well to the irregular 14
body surface, thereby, resulting in artifacts during body movement. 15
In this study, we have exploited microdevices assembled on stretch- 16
able substrates to develop a new generation of ECG sensors that can 17
stretch, fold, twist, and wrap around the complex surface of the skin. 18
Furthermore, we embedded wireless module (e.g., Bluetooth LE) into 19
the ECG sensor. Thin film circuits of the wireless module were pat- 20
terned on the soft material so that they can accommodate to large 21
deformations. Moreover, the skin-like substrate architecture quanti- 22
tatively reproduces mechanics of the non-linear property of the real 23
skin. This, in turn, significantly improved the wearability and facili- 24
tate unobtrusive long-term monitoring. As shown in Fig. 9.14a, 25
stretchable sensors have been developed to measure EMG signals in 26
the state of the art [33, 34]. Also, we have developed an ECG sensing 27
board with Bluetooth LE module (Fig. 9.14b) to wirelessly transmit 28
sensing data to mobile devices [13]. 29

Furthermore, the sensor-skin contact can be oftentimes influ- 30
enced by sweating, motion, among other factors. Thus, the contact 31
is not only static but also dynamic. Notably, the performance of 32
ECG sensors with microelectrodes deteriorates significantly in 33
dynamic contact. As such, the segments of ECG signals or even an 34
entire lead can be missing. In other words, it is not uncommon to 35

36xy
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9 Figure 9.14. (a) Stretchable bio-sensors [33, 34], (b) Wireless ECG sensing board.

10

1 encounter sensor failures in body area sensor networks. For example,

12 . . .

13 a subset of sensors often loses contact with the slsm su'rface in ECG

14 sensor networks because of body movements. Maintaining strict skin
contacts for hundreds of sensors is not only challenging but also

15 . .

16 greatly deteriorates the wearability of ECG sensor networks.

1 Therefore, we have proposed a novel strategy, named stochastic sen-

/ sor network, which allows a subset of sensors at varying locations

18 within the network to transmit dynamic information intermittently

23 [35]. Notably, the new strategy of stochastic sensor networks is gen-
erally applicable in many other domains. For example, a wireless

;; sensor network is often constrained by finite energy resources.

53 Hence, optimal scheduling of activation and inactivation of sensors
is imperative to realize long-term survivability and reliability of sen-

;4 sor networks. This information-theoretic approach is integrated with

22 sparse particle filtering to impute missing ECG segments and com-
pensate missing lead(s). In our previous study, we implemented

;7 sparse particle filtering for modeling space-time dynamics in an car-

22 diac activity with stochastic sensor networks. The wearable sensing
device of MESH will yield an efficient hardware-software solution to

3(1) ensure the extraction of sufficient diagnostic information from ECG

; 5 sensor networks.

33

34 9.4.2. MESH database

ggxy An advanced cloud database, that is, MESHDB, is developed to

store user data of the proposed MESH system. The cloud platform
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optimally allocates the memory among the cluster of servers, which 1
enable nearly unlimited space for storage. At the same time, the 2
MESH system will protect the information stored in the MESHDB. 3
The objective of data management is to specifically focus on optimal 4
management and handling of cyber security issues of cloud database. 5
Notably, the MESH system will only allow the use of MESH app 6
(please refer to Section 9.4.3 for details) and the cloud database from 7
registered users. The users will also be allowed to add notes for each 8
patient and send alert information to the care group. In addition, 9
MESH is designed to connect to ECG data management systems 10
hosted in each hospital. For example, GE MUSE system is a central 11
database that stores all the patients’ data and information in the 12
cardiology unit at hospitals. The GE MUSE system provides rich 13
information on cardiology assessments, making administrative 14
workflow and sharing and securing information. 15
The MESH technology will realize smart and connected cardiac 16
health, once it is available to everyone in the world. It is well-known 17
that the large-scale database is critical to big data analytics, which 18
has the potential to transform the next-generation health care [36]. 19
Big data presents a “gold mine” of this era (21st century). Toward 20
this end, cardiac health care in the future is envisioned to be equipped 21
with the mobile technology, mobile-based data acquisition and cloud 22
database and big data analytics. With new wearable ECG sensing 23
devices, users can directly collect and upload cardiac signals to the 24
MESH system. Each recording will be automatically analyzed by 25
MESH and stored in a cloud database. The more users involved, the 26
bigger the database is, the more powerful the MESH will be. 27
Notably, low-dimensional embedding of a large-scale network can 28
include millions of patients around the world. 29
Figure 9.15 shows the data flow in the MESH system. Note the 30
arrows indicate the direction of data flows. Primary physicians and 31
care providers in hospitals and home care services have access to 32
their assigned patients in the GE MUSE database hosted by hospitals 33
and home care facilities, as well as in the cloud database hosted by 34
MESH. They can review real-time cardiac recordings for analysis 35

and send back instant feedbacks and care alerts. This will greatly 36xy
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1 Hospitals
2 Hospital ECG Data
3 Homecare ;ervices Management Systems
p ¥
S
6
7
8 Individual users
9 Smart health
10
11
12
13
14
15
16 Figure 9.15. Database design of the proposed MESH system.
17
18 promote early identification and diagnosis of life-threatening cardiac
19 events (e.g., heart attacks and cardiac arrest). Furthermore, if the
20 . . . .
patient wants to seek diagnosis results and treatment advice from
21 cardiac experts all around the world, the MESH system can also
22 A . n
enable remote physicians to review and analyze the patient’s data.
23 In this way, better treatments of cardiovascular diseases can be
24 achieved by teamed efforts from physicians with different background
25 and expertise. Individual users worldwide will be able to monitor
26 their cardiac electric activity in real time, upload data into the cloud
27 database, and consult the physician online. It should be noted that
28 MESH realizes the patient-centered cardiac care anywhere and any-
29 time with the mobile technology and the internet. It is expected that
30 the MESH system will provide an indispensable enabling tool for real-
;; izing smart health and wellbeing for the population worldwide.
33
34 9.4.3. MESH smartphone application
;ny We have developed a mobile application to implement partial func-

tions of the proposed MESH system. This application is developed
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in the world’s most widely used iOS mobile operating system (which
is compatible with iPhone, iPad, and iPod Touch devices). It enables
physicians to access the patients’ ECG signals in real time, remotely
interact with patients, and rapidly respond to life-threatening cardiac
disorders.

Screenshots of designed MESH application are shown in Fig. 9.16.
Figure 9.16a— guide the user through login and patient selection.
First, the Login page allows the authorized users to enter their user-
name and password to log into the MESH system. This guarantees
the security of the data stored in MESH and protects the privacy of
the users. Then, the users such as physicians will be directed to the
Sites page that lists hospitals and homecare services. The patients’
profiles and data are categorized by the hospital or homecare service.
The user can select one site to list his/her assigned patients associated
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1 with that site. On the Patients page, all patients associated with the
2 selected healthcare site are listed. Patients are organized by their
3 categories. If a patient is not shown in the list, the doctor needs to
4 go back and select the correct healthcare site. This can be done by
5 clicking on the Sites button on the navigation bar.

6 Figure 9.16d-f demonstrate three major functions of the MESH
7 system, that is, dynamic visualization of space-time VCG signals,
8 optimal model-based representation, and stochastic network analyt-
9 ics. On “3D visualization” page, dynamic space-time VCG signals
10 are displayed on the upper panel. The red point gives the current
11 position of the cardiac vector. The cyan loops record the full history
12 pertinent to complete the topological shape of the VCG state space.
13 The plot is automatically rotating counter-clockwise on the z-axis. The
14 rotation facilitates a 360" view of spatiotemporal signals.
15 Spatiotemporal features are updated in real time in the lower panel,
16 including the percentage of data points in each of the eight octants,
17 and the angle of P, QRS, and T axis.

18 On “Model Representation” page, multiple cycles are collected
19 from each of the three VCG channels and displayed on the upper
20 panel (blue — X channel, yellow — Y channel, and green — Z chan-
21 nel). The red curves (with large line width) are the basis function
22 models obtained from the summation of six adaptive Gaussian func-
23 tions. It is noteworthy that the models effectively capture the mor-
24 phology of signals. The parameters of basis functions, including
25 center, standard deviation, and weight, are listed in the lower panel
26 for basis 1 (B1) to basis 6 (B6).

27 On the last page, that is, dynamic network analytics, 3D visuali-
28 zation of VCG loops are shown in the upper panel. The blue trajec-
29 tory is from a normal subject, and the red trajectory is from
30 myocardial infarction. The yellow indicator moving along the VCG
31 cycles represents the current cycle we are looking at. The plot is
32 automatically rotating counter-clockwise on the z-axis, providing a
33 360" view of spatiotemporal cardiac patterns. The embedded net-
34 work is displayed on the lower panel. Nodes are the patients in the
35 database: red nodes are myocardial infarction patients and blue

36xy nodes are healthy subjects. The yellow node in the network indicates
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the current position of the patient (e.g., Kevin Chamber in this 1
screenshot). When the yellow indicator in the upper panel is moving 2
along the blue cycles, the yellow node on the lower panel is within 3
the group of healthy subjects (i.e., blue nodes). However, when the 4
yellow indicator in the upper panel moves into the red cycles, the 5
yellow node in the network is switched to the cluster of myocardial 6
infarction patients (i.e., red nodes). 7
8
. . 9
9.5. Discussion 10
The developed MESH system is aimed at a large market for patient- 11
centered cardiac care. In 2013, more than 83.3 million American 12
adults (>1 in 3) had heart diseases. The increasing prevalence of 13
cardiac disease calls for smarter cardiac care services. The growing 14
presence of smartphones and tablets provides an unprecedented 15
opportunity to advance cardiac telemedicine and realize the smart 16
cardiac care anytime anywhere, which is not only responsive but also 17
cost effective. 18
In the NSF I-Corps program, which aimed at developing entre- 19
preneurial skills to translate research results from academic labora- 20
tories, we did an extensive marketing research regarding the 21
developed MESH system. We interviewed over 100 cardiac patients, 22
physicians, and cardiac nurses; identified unprecedented marketing 23
opportunities; and found the following;: 24
25
(1) There is a lack of wireless sensing devices for continuous moni- 26
toring of multi-channel ECG signals. The existing companies are 27
developing portable cardiac monitors, which can only monitor 28
a single-channel ECG and are limited in their ability to facilitate 29
the diagnosis of complex cardiac disorders in the clinical prac- 30
tice. Furthermore, most of the existing monitors adopt dry elec- 31
trodes. It is uncomfortable to take daily activity with them, and 32
they may result in skin irritation. The proposed MESH system 33
is not only able to record hospital-grade multi-lead ECG, but 34
also comfortable, flexible, and reliable to facilitate long-term 35
continuous monitoring. 36xy
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1 (2) Currently, there is a great shortage of physicians in the United
2 States, and this situation will worsen in the next decade. Patients
3 with acute cardiac disorders need 24/7 monitoring, but physi-
4 cians cannot stay in hospitals or with the patients all the time.
5 Currently, when doctors are outside hospitals, they ask nurses
6 to take pictures of ECG signals and send them through the
7 phone. This is apparently not an efficient approach because cer-
8 tain delays are unavoidable, and the resolution of pictures is
9 limited. Equipped with advanced cloud database, the proposed
10 MESH system can be ready to help physicians access patients’
11 data anywhere and anytime to give a timely diagnosis and
12 medical intervention.

13 (3) There is a lack of enabling tools to extract useful information
14 from big data that is generated from continuous cardiac moni-
15 toring. Early identification of disease patterns hinges on
16 information-processing and data mining algorithms. The exist-
17 ing devices are only capable of extracting simple ECG character-
18 istics or transferring data to physicians for visual inspection.
19 MESH innovatively adopts stochastic network analytics for
20 disease pattern recognition. Unlike traditional warping that can
21 only be used to align signals in time domain, the proposed
22 method is able to quantify the space-time dissimilarities between
23 3D trajectories of cardiac signals. One remarkable feature of the
24 MESH system is that it considers both within-a-patient and
25 between-patient stochastic dynamics for network-based pattern
26 recognition of cardiac diseases. This will assist and enable physi-
27 cians in the decision-making process.

28

éi 9.6. Summary

31 Cardiovascular diseases are the leading cause of death around the
32 world. According to WHO, cardiac diseases contribute to more than
33 30% of the global deaths each year. Optimal management and treat-
34 ment of cardiac diseases hinge on the development of advanced car-
35 diac telemedicine system for the detection of fatal disease patterns in
36xy
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the early stage and timely delivery of life-saving therapies. However, 1
the cardiac electrical activity manifests significant stochastic prop- 2
erties in both space and time. The existing approaches are either not 3
concerned with underlying changes of cardiac conditions for an indi- 4
vidual patient or not capable to effectively differentiate different 3§
cardiac conditions among patients. There is an urgent need to fully 6
address underlying stochastic properties and uncertainties in the car- 7
diac electrical activity. 8
This chapter presents new visualization and data analytics 9
tools for stochastic modeling and analysis of cardiac electrical sig- 10
nals, which advance cardiac telehealth-care service with excep- 11
tional features such as personalization, responsiveness, and superior 12
quality. Specifically, we first developed a spatiotemporal approach 13
to capture space-time heart dynamics by displaying the real-time 14
motion of 3D VCG cardiac vectors. Then, an optimal model-based 15
representation algorithm was developed to facilitate the compres- 16
sion of cardiac signals and the extraction of features pertinent to the 17
disease-altered cardiac activity. Then, a stochastic network model 18
was designed for real-time patient-centered monitoring, modeling, 19
and analysis of cardiac variations. Finally, we leveraged the devel- 20
oped algorithms and built the next-generation cardiac mHealth 21
system, MESH. 22
MESH bridges gaps in the current cardiac telemedicine systems 23
and serves as an enabling tool to reduce the risk of life-threatening 24
cardiac disorders and deliver personalized therapies. 25
We expect that this chapter will spur further investigations in 26
stochastic modeling and analysis of spatiotemporal ECG signals to 27
accelerate the discovery of knowledge in cardiovascular research. 28
29
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