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a b s t r a c t 

Smart Cities are examples of Cyber-Physical Systems whose goals include improvements in transporta- 

tion, energy distribution, emergency response, and infrastructure maintenance, to name a few. When it 

comes to mobility, the availability of large amounts of data, ubiquitous wireless connectivity, and the 

critical need for scalability open the door for new control and optimization methods with the aim of 

automating all aspects of mobility, from interconnected self-driving vehicles to sharing transportation re- 

sources. We address two key questions: can control and optimization methods enable this automation 

and, if so, how can we quantify its benefits to justify the challenging technological, economic, and social 

transitions involved? An optimal control framework is presented to show how Connected Automated Ve- 

hicles (CAVs) can operate in a dynamic resource contention environment, primarily urban intersections 

without any traffic lights. We also describe how large amounts of actual traffic data can be harnessed and 

drive inverse optimization methods to quantify the value of CAVs in terms of eliminating the prevailing 

Price of Anarchy: the gap between current “selfish” user-centric and optimal “social” system-centric traffic 

equilibria which are achievable with automated mobility. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

As of 2014, 54% of the earth’s population resides in urban ar-

as, a percentage expected to reach 66% by 2050. This increase

ould amount to 2.5 billion people added to urban populations

 World’s Population, 2014 ). At the same time, there are now 28

ega-cities (with 10M people or more) worldwide, accounting for

2% of the world’s urban population and projections are for more

han 41 mega-cities by 2030. It stands to reason that the man-

gement and sustainability of urban areas have become one of

he most critical challenges our society faces today. Consequently,

ities are looking for ways that ensure a sustainable, comfortable,

conomically viable future for their citizens by becoming “smart.”

he emerging prototype for a “Smart City” is one of an urban en-

ironment with a new generation of innovative services for trans-

ortation, energy distribution, healthcare, environmental monitor-

ng, business, commerce, emergency response, and social activi-

ies. The term Smart City is broadly used to capture the over-

ll vision outlined above, as well as the intellectual content that

upports it. The technological infrastructure of a Smart City is

ased on a network of sensors and actuators embedded through-
� Supported in part by NSF under grants CNS-1239021 , ECCS-1509084 , and IIP- 

430145 , by AFOSR under grant FA9550-15-1-0471 , and by grants from the Math- 
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ut the urban terrain, interacting with wireless mobile devices

e.g., smartphones). The data collected and flowing through such a

yber-Physical System (CPS) may involve traffic conditions, the oc-

upancy of parking spaces, air/water quality information, the struc-

ural health of bridges, roads, or buildings, and the location and

tatus of city resources. Enabling such a Smart City setting requires

 cyber-physical infrastructure combined with new software plat-

orms and strict requirements for mobility, security, safety, privacy,

nd the processing of massive amounts of information. 

It is worth emphasizing that the ultimate value of a Smart City’s

nfrastructure lies in “closing the loop” that consists of sensing,

ommunicating, decision making, and actuating - rather than sim-

ly collecting and sharing data (see Fig. 1 ). As also discussed in

amnabhi-Lagarrigue et al. (2017) , this requires a balanced under-

tanding of both “physical” and “cyber” components taking into ac-

ount the important issues of privacy, security, and safety; proper

nergy management necessitated by the wireless nature of most

ata collection and actuation mechanisms involved; and the devel-

pment of new control and optimization methods suitable for this

nvironment. 

Among the multitude of functions a Smart City must support,

ransportation dominates in terms of resource consumption, strain

n the environment, and citizen frustration. Based on the 2011 Ur-

an Mobility Report, the cost of commuter delays has risen by

60% over the past 25 years and 28% of U.S. primary energy is now

sed in transportation Shrank, Lomax, and Eisele (2011) . A report
ility in smart cities, Annual Reviews in Control (2017), 
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Fig. 1. Cyber-physical infrastructure for a Smart City. 
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by INRIX (2015) focusing on the U.S., the U.K., France and Germany

projects the combined annual cost of gridlock to these countries to

reach $293B by 2030 – a 50% increase from 2013. Traffic conges-

tion also leads to an increase in vehicle emissions; in large cities,

as much as 90% of CO emissions are due to mobile sources. On the

safety side, according to the US National Highway Traffic Safety Ad-

ministration (NHTSA) in 2012 there were 5,615 million crashes in

the U.S. leading to 33,561 deaths 

Core disruptive technologies include vehicle connectivity and

automation, and the notion of shared personalized transportation

infrastructure enabled by mobility-on-demand systems. Connected

Automated (or Autonomous ) Vehicles (CAVs) provide the most in-

triguing opportunity for enabling users to better monitor trans-

portation network conditions and make better operating decisions

to improve safety and reduce pollution, energy consumption, and

travel delays. Intuitively, there are simple arguments for automated

vehicles: ( i ) Humans are bad drivers (data indicate that 94% of

accidents are due to human error). ( ii ) In contrast to humans,

computers can maintain steady cruising speeds which improves

fuel efficiency. ( iii ) Computers are also better at processing data

whose abundance is now overwhelming humans. ( iv ) Computers

are able to make fast and accurate driving adjustments. ( v ) Com-

puters assisting drivers do not get distracted like humans do, they

do not blink and they do not sleep. There are of course numerous

counter-arguments regarding moral and legal issues, security, pri-

vacy, and the question of integrating CAVs with normal vehicles.

One could also expect that, while safety would be generally en-

hanced through the use of CAVs, accidents, though rare, may be

very serious. Finally, there are of course many technical challenges

which provide the main motivation for the work described in this

paper. 

In what follows, we address two key questions related to

CAVs along with relevant emerging analytical frameworks. First, in

Section 2 , we consider the question of quantifying the benefits of a

transportation system which, at least partially, involves a network

of CAVs, so as to justify the challenging technological, economic,

and social transitions involved. This quantification is based on the

Price of Anarchy (PoA) concept often used in game theory to mea-

sure the gap between the performance attained by a team con-

sisting of cooperating players (“social” optimality) as opposed to

the performance attained by a collection of noncooperating players

(“selfish” optimality). We will show that based on actual data from
Please cite this article as: C.G. Cassandras, Automating mob
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he transportation system in the area around the city of Boston, the

oA can be significant, thus justifying the effort towards the devel-

pment of CAVs. Next, in Section 3 , we present an optimal con-

rol framework as a starting point to enable CAV-based automated

obility in urban settings with preliminary experimental results

howing substantial improvements in terms of both lower traffic

ongestion metrics and energy consumption. 

. Estimating the price of anarchy 

A transportation network as it functions today is a system with

on-cooperative agents (drivers) in which each driver seeks to

inimize his/her own cost by choosing the best route to reach

 destination without taking into account the overall system per-

ormance. In such a non-cooperative setting, one often observes

onvergence to a Nash equilibrium. However, it is known that the

ash equilibrium is often not the best strategy from the system’s

oint of view and results in a suboptimal behavior compared to

he socially optimal policy. In today’s transportation network, each

elfish agent (driver) follows the path derived from a user optimal

olicy. In order to quantify the suboptimality under selfish driving,

e use the Price of Anarchy (PoA) mentioned in the previous sec-

ion as a measure to compare system performance under a user-

ptimal policy vs. a system-optimal policy. 

We begin by reviewing a model introduced in

hang, Pourazarm, Cassandras, and Paschalidis (2016) . We

onsider a transportation network ( V, A ) , where V de-

otes the set of nodes and A the set of links. The set

 = { w i : w i = ( w si , w ti ) , i = 1 , . . . , R } indicates the set of all

rigin-Destination (OD) pairs. Assume the graph ( V, A ) is strongly

onnected and let N ∈ { 0 , 1 , −1 } | V | ×| A | be its node-link incidence

atrix. Denote by e a the vector with an entry being 1 correspond-

ng to link a and all the other entries being 0. For any OD pair

 = ( w s , w t ) , denote by d w ≥ 0 the amount of the flow demand

rom w s to w t . Let d 

w ∈ R 

| V | be the vector which is all zeros,

xcept for two entries −d w and d w corresponding to nodes w s and

 t respectively. 

The basic transportation optimization problem can be formu-

ated as a Variational Inequality (VI) problem ( Dafermos & Spar-

ow, 1969; LeBlanc, Morlok, & Pierskalla, 1975; Patriksson, 2015 )

eeking to determine x ∗ ∈ F such that 

 ( x 

∗) ′ ( x − x 

∗) ≥ 0 , ∀ x ∈ F 

here x a is the total flow on link a ∈ A and x the vector of these

ows. The cost function t ( x ) consists of link costs t a (x ) : R 

| A | 
+ →

 + . Given ε > 0, an ε-approximate solution ˆ x ∈ F (the set of feasible

ow vectors) solves the problem 

 ( ̂ x ) ′ (x − ˆ x ) ≥ −ε, ∀ x ∈ F . 

 fundamental difficulty involved with solving this problem is that

he cost functions t a ( x ) are unknown since they depend on indi-

idual driver behavior, i.e., how different drivers make routing de-

isions which, in turn, affect the link flows. On the other hand, the

xtensive availability of traffic data provides an opportunity to use

hese data as the input to an “inverse optimization” problem for-

ulation through which one can obtain cost functions which best

t the data. 

.1. Inverse optimization 

Let us consider flow data (x k , F k ) , k = 1 , . . . , K, x k ∈ F k . Then,

he inverse VI problem amounts to seeking a function t such that εk 

s an εk -approximate solution to the optimization problem above

or each k : 
ility in smart cities, Annual Reviews in Control (2017), 
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t ,ε
‖ ε‖ (1) 

s.t. t (x k ) 
′ (x − x k ) ≥ −εk , ∀ x ∈ F k , ∀ k = 1 , . . . , K. 

hus, we seek to estimate the cost functions used by the selfish

rivers leading to a Nash equilibrium based on observed traffic

ata which provide the given flows x k ∈ F k . We solve this prob-

em using a nonparametric estimation approach which expresses

he cost function in a reproducing kernel Hilbert space H. A de-

ailed technical development is provided in Zhang, Pourazarm, Cas-

andras, and Paschalidis , so we limit ourselves here to an outline

f the overall approach. We assume that the cost functions have

he form 

 a ( x a ) = t 0 a f 

(
x a 

m a 

)
, (2) 

here t 0 a is the free-flow travel time of a ∈ A , f (0) = 1 , f ( ·) is

trictly increasing and continuously differentiable on R + , and m a is

he flow capacity of a ∈ A . Aiming at recovering such a cost func-

ion that has both good data reconciling and generalization prop-

rties (i.e., t a ( x a ) should fit “old” data well but should not be over-

tting; it must also have the ability to predict “new” data), we re-

ormulate the inverse VI problem (1) as follows: 

min 

f, y , ε
‖ 

ε‖ 

+ γ ‖ f‖ 

2 
H 

(3) 

.t. e ′ a N 

′ 
k y 

w ≤ t 0 a f 

(
x a 

m a 

)
, (4) 

∀ w ∈ W 

(k ) , a ∈ A 

(k ) , k = 1 , . . . , K, ∑ 

a ∈A (k ) 

t 0 a x a f 

(
x a 

m a 

)
−

∑ 

w ∈ W 

(k ) 

(
d 

w 

)′ 
y w ≤ εk , (5) 

∀ k = 1 , . . . , K, 

f 

(
x a 

m a 

)
≤ f 

(
x ˜ a 

m ˜ a 

)
, (6) 

∀ a, ˜ a ∈ 

⋃ K 

k =1 
A 

(k ) s.t. 
x a 

m a 
≤ x ˜ a 

m ˜ a 

, 

ε ≥ 0 , f ∈ H, 

f (0) = 1 (7) 

here y, ε are decision vectors ( y is a dual variable which can be

nterpreted as the “price” of d 

w ). Note also that γ > 0 is a reg-

larization parameter: a smaller γ should result in recovering a

tighter” f ( ·) in terms of data reconciling, while a larger γ would

ead to a “better” f ( ·) in terms of generalization properties. More-

ver, ‖ f‖ 2 H 

denotes the squared norm of f ( ·) in H, (4) is needed

or dual feasibility, (5) is the suboptimality (primal-dual gap) con-

traint, (6) enforces f ( ·) to be non-decreasing, and (7) is a normal-

zation constraint. 

It is clear that the above formulation is too abstract to explic-

tly solve, since it is an optimization problem over functions f . To

ake it tractable, we specify H by selecting its reproducing kernel

 Evgeniou, Pontil, & Poggio, 20 0 0 ) to be a polynomial 

( x, y ) = ( c + xy ) 
n = 

n ∑ 

i =0 

(
n 

i 

)
c n −i x i y i , 

or some choice of c ≥ 0 and n ∈ N (see Zhang, Pourazarm, Cassan-

ras, & Paschalidis, 2017b ). We can now rewrite this problem as 
Please cite this article as: C.G. Cassandras, Automating mob
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min 

β, y , ε
‖ 

ε‖ 

+ γ
n ∑ 

i =0 

β2 
i (

n 
i 

)
c n −i 

s.t. e ′ a N 

′ 
k y 

w ≤ t 0 a 

n ∑ 

i =0 

βi 

(
x a 

m a 

)i 

, 

∀ w ∈ W 

(k ) , a ∈ A 

(k ) , k = 1 , . . . , K, 

∑ 

a ∈A (k ) 

t 0 a x a 

n ∑ 

i =0 

βi 

(
x a 

m a 

)i 

−
∑ 

w ∈ W 

(k ) 

(
d 

w 

)′ 
y w ≤ εk , 

∀ k = 1 , . . . , K, 
n ∑ 

i =0 

βi 

(
x a 

m a 

)i 

≤
n ∑ 

i =0 

βi 

(
x ˜ a 

m ˜ a 

)i 

, 

∀ a, ˜ a ∈ 

⋃ K 

k =1 
A 

(k ) s.t. 
x a 

m a 
≤ x ˜ a 

m ˜ a 

, 

ε ≥ 0 , β0 = 1 

here the function f ( ·) in (3) is parameterized by β =
( βi ; i = 0 , 1 , . . . , n ) . Assuming an optimal β∗ = 

(
β∗

i 
; i = 0 , 1 , . . . , n 

)
s obtained by solving this problem, our estimator for f ( ·) is 

ˆ f ( x ) = 

n ∑ 

i =0 

β∗
i x 

i = 1 + 

n ∑ 

i =1 

β∗
i x 

i . (8) 

he input to this problem are the observed traffic data x k ; these

re also used in order to estimate an OD demand matrix W which

s an integral part of the problem. This is a separate equally chal-

enging task which we have addressed in Zhang, Pourazarm, Cas-

andras, and Paschalidis (2017a) and Zhang et al. 

.2. Forward optimization 

Given a transportation network ( V, A ) , with O-D demand ma-

rix W, we define its total travel latency cost as 

 (x ) = 

∑ 

a ∈A 
x a t a (x a ) . 

he socially optimal flow vector, denoted by x social = (x social 
a ; a ∈

 ) , is the solution to the following system-centric forward problem ,

hich is a Non-Linear Program (NLP) ( Patriksson, 2015; Pourazarm,

assandras, & Wang, 2016 ): 

in 

x ∈ F 

∑ 

a ∈A 
x a t a (x a ) 

here the functions t a ( ·) are the ones obtained through the so-

ution of the inverse optimization problem, i.e., the values from

2) using (8) to estimate f based on the observed traffic data x k . 

We can now explicitly define the PoA as 

oA = 

L (x 

user ) 

L (x 

social ) 
= 

∑ 

a ∈A x 
user 
a t a (x user 

a ) ∑ 

a ∈A x 
social 
a t a (x social 

a ) 
≥ 1 , (9) 

here x user = (x user 
a ; a ∈ A ) is the Nash equilibrium flow vector

also referred to as Wardrop equilibrium in transportation systems)

hich is directly observable or indirectly inferable. By the defini-

ion of x social , we always have PoA ≥ 1 and, clearly, the larger the

oA, the larger the inefficiency induced by selfish drivers. Thus,

oA quantifies the inefficiency that a societal group has to deal

ith due to non-cooperative behavior of its members. 

.3. Price of Anarchy experimental results 

In our experimental study, x user is inferred from actual

ata from the Eastern Massachusetts (EMA) road network

 Transportation Networks for Research, 2017; Zhang et al., 2017b ).

etails of how this inference is made from the raw data are pro-

ided in Zhang et al . In particular, we process data from two
ility in smart cities, Annual Reviews in Control (2017), 
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Fig. 2. Price of Anarchy (PoA) for a subset of the Eastern Massachusetts road network in April 2012. 
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datasets: ( i ) The speed dataset, made available to us by the Boston

Region Metropolitan Planning Organization (MPO), includes the

spatial average speeds for more than 13,0 0 0 road segments (with

an average length of 0.7 miles of EMA), providing the average

speed for every minute of the year 2012. For each road segment,

identified with a unique tmc (traffic message channel) code, the

dataset provides information such as speed data (instantaneous,

average and free-flow speed) in miles per hour, date and time, and

traveling time (in minutes) through that segment. ( ii ) The flow ca-

pacity (in vehicles per hour) dataset, also provided by the MPO,

includes capacity data for more than 10 0,0 0 0 road segments (with

an average length of 0.13 miles) in EMA. 

The actual values of the PoA may be obtained by network link

and time of day. In most cases, we have found the PoA to be sig-

nificantly higher that 1 and, in many cases, PoA > 2. An example

is shown in Fig. 2 for a subset of the EMA road network over days

(PM period) in April 20,102 (higher PoA values observed certain

days can usually be associated with specific circumstances such as

bad weather conditions or road construction; in general, they mo-

tivate closer scrutiny of the data to provide interpretations). 

The implication of results such as those in Fig. 2 is that if

drivers could be induced to follow paths in accordance to the so-

cial optimal flows x social , then congestion levels could be decreased

by a factor of 2 or more. This is precisely what a CAV-based trans-

portation system can accomplish, since routing decisions would be

automatically made and implemented; at the very least, human

drivers would be advised to follow a set of recommended routes

evaluated to be socially optimal. 

This PoA-based analysis results in a quantifiable measure of the

benefits of automated urban mobility based on actual data. Obtain-

ing results such as PoA > 2 is a clear motivating force for further

exploring how CAVs can be deployed in a transportation system. 

3. Reducing the price of anarchy through automation 

Automating mobility through the use of CAVs has the poten-

tial of achieving a social optimum by exploiting the ability to di-

recty control the movement of vehicles and enforcing routing de-

cisions when a CAV is assigned a particular origin-destination pair.

Recall, however, that the PoA is based on a congestion metric. Go-

ing a step further, we propose an optimal control framework which

combines energy and congestion as performance criteria, while also

guaranteeing safety in the form of avoiding lateral and rear-end

collisions. The most challenging parts of an urban setting where

such a framework needs to operate flawlessly are intersections. In
Please cite this article as: C.G. Cassandras, Automating mob

https://doi.org/10.1016/j.arcontrol.2017.10.001 
he intersections envisioned by this framework there are no traffic

ights and there is a perpetual flow of vehicles, thus eliminating

he most time-consuming and energy-intensive aspects of a traffic

etwork, i.e., the need for vehicles to stop and restart. 

One of the very early effort s in using some form of autonomous

onnected vehicles was proposed in Athans (1969) and Levine and

thans (1966) where the merging problem was formulated as a

inear optimal regulator to control a single string of vehicles. The

ey features of an automated intelligent vehicle-highway system

IVHS) were extensively discussed in Varaiya (1993) where a re-

ated control system architecture is also proposed. In what follows,

e focus on the problem of optimally controlling CAVs crossing

n urban intersection without any explicit traffic signaling so as to

inimize energy consumption subject to a throughput maximiza-

ion requirement and to hard safety constraints. A recent study

achet et al. (2016) has in fact suggested that transitioning from in-

ersections with traffic lights to autonomous ones has the potential

f doubling capacity and reducing delays, which is consistent with

ur own early findings. Several related research effort s have been

eported in the literature proposing either centralized (if there is at

east one task in the system that is globally decided for all vehicles

y a single central controller) or decentralized approaches for co-

rdinating CAVs at intersections. A centralized reservation scheme

s proposed in Dresner and Stone (2004) to control a single inter-

ection of two roads with no turns allowed. Since then, numerous

entralized approaches have been reported in the literature (e.g.,

e La Fortelle, 2010; Dresner & Stone, 2008; Huang, Sadek, & Zhao,

012 ), to achieve safe and efficient control of traffic through in-

ersections. Some approaches have focused on coordinating vehi-

les to improve the travel time (e.g., Yan, Dridi, and El Moudni,

009; Zhu and Ukkusuri, 2015; Zohdy, Kamalanathsharma, and

akha, 2012 ). Others, such as Lee, Park, Malakorn, and So (2013) ,

ave considered minimizing the overlap in the position of vehi-

les inside the intersection rather than arrival time. In Kim and

umar (2014) , an approach is proposed based on Model Predictive

ontrol (MPC) that allows each vehicle to optimize its movement

ocally with respect to any objective of interest. Queuing theory is

sed in Miculescu and Karaman (2014) to model the problem as a

olling system that determines the sequence of times assigned to

he vehicles on each road. In decentralized approaches, each vehi-

le determines its own control policy based on the information re-

eived from other vehicles on the road or from a coordinator. Two

onflict resolution schemes are proposed in Alonso et al. (2011) in

hich an autonomous vehicle can make a decision about the ap-

ropriate order of crossing the intersection to avoid collision with
ility in smart cities, Annual Reviews in Control (2017), 

https://doi.org/10.1016/j.arcontrol.2017.10.001
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Fig. 3. Model of an intersection with CAVs. 

o  

c  

l  

r  

l

3

 

l  

M  

s  

t  

(  

o  

C  

q  

e  

i  

T  

t  

c

t  

i

 

l

w  

P  

t  

 

v  

w  

p

u

w  

(  

a  

s  

u

 

N  

w  

s  

l  

l  

e  

a  

c  

t

 

o  

t  

d

s  

w  

w  

i  

e  

l  

i

�

C  

N

�  

T  

w  

a  

c  

a

 

p  

r  

t  

M  

p

t  

F  

w

3

 

t  

c

J

s

a

w  

m  

a  
ther manually driven vehicles, whereas in Colombo and Del Vec-

hio (2014) the invariant set for the control inputs that ensure

ateral collision avoidance is constructed. A detailed discussion of

esearch efforts in this area can be found in Rios-Torres and Ma-

ikopoulos (2016) . 

.1. Intersection model 

Our analysis is based on a model introduced in Zhang, Ma-

ikopoulos, and Cassandras (2016) and is provided in full detail in

alikopoulos, Cassandras, and Zhang (2017) . An intersection con-

ists of a region at its center called Merging Zone (MZ) where po-

ential lateral collision of vehicles may occur and a Control Zone

CZ) of length L within which all CAVs can communicate and co-

rdinate their motion (see Fig. 3 ). Let N(t) ∈ N be the number of

AVs inside the CZ at time t ∈ R 

+ and N (t) = { 1 , . . . , N(t) } be a

ueue which designates the order in which these vehicles will be

ntering the MZ. Thus, letting t m 

i 
be the assigned time for vehicle

 to enter the MZ, we require that t m 

i 
≥ t m 

i −1 
for all i ∈ N (t) , i > 1.

he policy through which the order (schedule) is specified may be

he result of a higher level optimization problem as long as the

ondition 

 

m 

i ≥ t m 

i −1 , ∀ i ∈ N (t) , i > 1 (10)

s preserved in between CAV arrival events at the CZ. 

The dynamics of each CAV i ∈ N (t) moving along a specified

ane are assumed to satisfy 

˙ p i = v i (t) , p i (t 0 i ) = 0 

˙ v i = u i (t) , v i (t 0 i ) given 

(11) 

here t 0 
i 

is the time when CAV i enters the CZ, and p i (t) ∈
 i , v i (t) ∈ V i , u i (t) ∈ U i denote the position, speed and accelera-

ion/deceleration (control input) of each CAV i inside the CZ with

p i (t 0 
i 
) = 0 (upon entering the CZ at time t 0 

i 
) and a given v i (t 0 

i 
) =

 

0 
i 
. To ensure that the control input and vehicle speed are always

ithin a given admissible range, the following constraints are im-

osed: 

 i, min � u i (t) � u i, max , and 

0 � v min � v i (t) � v max , ∀ t ∈ [ t 0 i , t 
m 

i ] , 
(12) 
e  
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here u i, min , u i, max are the minimum and maximum control inputs

maximum deceleration/acceleration) for each vehicle i ∈ N (t) ,

nd v min , v max are the minimum and maximum speed limits re-

pectively. For simplicity, in the sequel we set u i, min = u min and

 i, max = u max . 

Depending on its physical location inside the CZ, CAV i − 1 ∈
 (t) belongs to only one of the following four subsets of N (t)

ith respect to CAV i : ( i ) R i (t) contains all CAVs traveling on the

ame road as i and towards the same direction but on different

anes, ( ii ) L i (t) contains all CAVs traveling on the same road and

ane as vehicle i , ( iii ) C i (t) contains all CAVs traveling on differ-

nt roads from i and having destinations that can cause collision

t the MZ, (e.g., C 6 (t) contains CAVs 3,4,5 in Fig. 3 ), and ( iv ) O i (t)

ontains all CAVs traveling on the same road as i and opposite des-

inations that cannot, however, cause collision at the MZ. 

Based on this definition, it is clear that a rear-end collision can

nly arise if CAV k ∈ L i (t) is directly ahead of i . Thus, to ensure

he absence of any rear-end collision, we assume a predefined safe

istance δ < S and impose the rear-end safety constraint 

 i (t) = p k (t) − p i (t) � δ, ∀ t ∈ [ t 0 i , t 
f 

i 
] , k ∈ L i (t) (13)

here t 
f 

i 
is the time that CAV i ∈ N (t) exits the MZ. Henceforth,

e reserve the symbol k to denote the CAV which is physically

mmediately ahead of i in the same lane. On the other hand, a lat-

ral collision involving CAV i may occur only if some CAV j 
 = i be-

ongs to C i (t) . This leads to the following definition for each CAV

 ∈ N (t) : 

i � 

{ 

t | t ∈ [ t m 

i , t f 
i 

] 

} 

. 

onsequently, to avoid a lateral collision for any two vehicles i, j ∈
 (t) on different roads, the following constraint should hold 

i ∩ � j = ∅ , ∀ t ∈ [ t m 

i , t f 
i 

] , j ∈ C i (t) . (14)

his constraint implies that no two CAVs from different roads

hich may lead to a lateral collision are allowed to be in the MZ

t the same time. If the length of the MZ is too large, making this

onstraint overly conservative, then it can be modified appropri-

tely. 

In this modeling framework, we assume that each CAV i has

roximity sensors and can measure local information without er-

ors or delay and that none of the constraints (12) and (13) is ac-

ive at t 0 
i 

. We also assume that the speed of the CAVs inside the

Z is constant, i.e., v i (t) = v i (t m 

i 
) = v i (t 

f 
i 
) , ∀ t ∈ [ t m 

i 
, t 

f 
i 

] . This im-

lies that 

 

f 
i 

= t m 

i + 

S 

v i (t m 

i 
) 
. (15)

or simplicity of notation in the remainder of the paper, we will

rite v i (t 0 
i 
) ≡ v 0 

i 
, v i (t m 

i 
) ≡ v m 

i 
and v i (t 

f 
i 
) ≡ v f 

i 
. 

.2. Energy minimization and throughput maximization problems 

We begin by considering the controllable accelera-

ion/deceleration u i ( t ) of each CAV i which minimizes the following

ost functional: 

 i (u i (t ) , t m 

i , v m 

i ) = 

∫ t m 
i 

t 0 
i 

C i (u i (t )) dt , (16) 

ubject to : (11) , (12) , (13) , (14) , p i (t 0 i ) = 0 , p i (t m 

i ) = L, 

nd given t 0 i , v 
0 
i , t 

m 

i 

here C i ( ·) is a monotonically increasing function of its argu-

ent. We view C i ( u i ( t )) as a measure of the energy, which is

 monotonically increasing function of the control input (accel-

ration/deceleration) consumed by CAV i in traveling between
ility in smart cities, Annual Reviews in Control (2017), 
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p i (t 0 
i 
) = 0 and p i (t m 

i 
) = L (a special case arises when C i (u i (t)) =

1 
2 u 

2 
i 
(t) ). Thus, we minimize transient engine operation leading to

direct benefits in fuel consumption and emissions. In this prob-

lem, t 0 
i 
, v 0 

i 
are known upon arrival of CAV i at the CZ and t m 

i 
is

also specified. Clearly, not all t m 

i 
can satisfy the safety constraints

(13) and (14) . Moreover, in general, a value of t m 

i 
that satisfies

(13) and (14) may depend on other CAVs j 
 = i ; therefore, it may

not be possible for CAV i to solve (16) in a decentralized manner,

i.e., based only on local information. We address the question of

specifying appropriate t m 

i 
for each instance of (16) in what follows.

Before proceeding, we note that the obvious unconstrained so-

lution to (16) is u ∗
i 
(t) = 0 for all t ∈ [ t 0 

i 
, t m 

i 
] since C i ( u i ( t )) is a

monotonically increasing function with respect to u i ( t ). This ap-

plies to i = 1 in which case (13) and (14) are inactive, since CAV

1 is not constrained by an any prior CAV in the queue. This also

implies that v ∗
1 
(t) = v 0 

i 
for all t ∈ [ t 0 

i 
, t m 

i 
] and t m 

1 
= L/ v 0 

i 
. 

We now turn our attention to the problem of maximizing

the traffic throughput at the intersection, in terms of minimiz-

ing the gaps between the vehicles in a given queue N (t) , under

the hard safety constraints (13) and (14) . Thus, setting t (2: N(t)) =
[ t m 

2 
. . . t m 

N(t) 
] , we define the following optimization problem: 

min 

t (2: N(t)) 

N(t) ∑ 

i =2 

(
t m 

i − t m 

i −1 

)
= min 

t N(t) 

(
t m 

N(t) − t m 

1 

)
, 

subject to : (10) , (12) , (13) , (14) (17)

where t m 

1 
is not included since it is obtained from the solution of

(16) when i = 1 , i.e., t m 

1 
= L/ v 0 

i 
. The equivalence between the two

expressions in (17) (due to the cancellation of all terms in the sum

except the first and last) reflects the equivalence between minimiz-

ing the total time to process all CAVs in the queue and the average

interarrival time of CAVs at the MZ. 

As stated in (17) , the problem does not incorporate constraints

on t m 

i 
, i = 2 , . . . , N(t) , that are imposed by the CAV dynamics. In

other words, we should write t m 

i 
= t m 

i 
(u (1: i ) (t)) where u (1: i ) (t) =

[ u 1 (t ; t m 

1 
) . . . u i (t ; t m 

i 
)] denotes the controls applied to all CAVs i =

1 , . . . , N(t ) over [ t 0 
i 
, t m 

i 
] for any given t 0 

i 
, t m 

i 
. Let A i denote a set of

feasible controls: 

A i � 

{
u i (t ; t m 

i ) ∈ U i subject to: 

(10) , (11) , (12) , (13) , (14) , p i (t 0 i ) = 0 , p i (t m 

i ) = L, 

and given t 0 i , v 
0 
i , t 

m 

i 

}
. (18)

Then, we rewrite (17) as 

min 

t (2: N(t)) 

N(t) ∑ 

i =2 

(
t m 

i (u (1: i ) (t)) − t m 

i −1 (u (1: i −1) (t)) 
)

(19)

= min 

t N(t) 

(
t m 

N(t) (u (1: N(t)) (t)) − t m 

1 (u (1) (t)) 
)
, 

subject to : u i (t ; t m 

i ) ∈ A i , ∀ i ∈ N (t ) , (10) , (12) , (13) , (14) . 

The solution of (19) provides a sequence { t m ∗
2 

, . . . , t m ∗
N(t) 

} which des-

ignates the MZ arrival times of all CAVs in the current queue so

as to minimize the total time needed for them to clear the in-

tersection, hence maximizing the throughput over the current N ( t )

CAVs. This solution may then be used in (16) to specify the termi-

nal time of each energy minimization problem. As formally shown

in Malikopoulos et al. (2017) , it turns out that this solution has a

simple iterative structure and depends only on the hard safety con-

straints (13) and (14) , as well as the state and control constraints

(12) : 
Please cite this article as: C.G. Cassandras, Automating mob
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m 

∗
i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

t m 

∗
1 if i = 1 

max 

{
t m 

∗
i −1 

, t m 

∗
k 

+ 

δ

v m 

k 

, t c 
i 

}
if i − 1 ∈ R i (t) ∪ O i (t) 

max 

{
t m 

∗
i −1 

+ 

δ

v m 

i −1 

, t c 
i 

}
if i − 1 ∈ L i 

max 

{
t m 

∗
i −1 

+ 

S 

v m 

i −1 

, t c 
i 

}
if i − 1 ∈ C i 

(20)

here t c 
i 

= t 1 
i 
1 v m 

i 
= v max 

+ t 2 
i 
(1 − 1 v m 

i 
= v max 

) and 

 

1 
i = t 0 i + 

L 

v max 
+ 

(v max − v 0 
i 
) 2 

2 u i, max v max 
(21)

 

2 
i = t 0 i + 

[2 Lu i, max + (v 0 
i 
) 2 ] 1 / 2 − v 0 

i 

u i, max 

(22)

It follows that t m 

∗
i 

is always recursively determined from t m 

∗
i −1 

nd v m 

i −1 
and possibly t m 

∗
k 

, v m 

k 
where v m 

i −1 
and v m 

k 
depend on the

pecific controls used when solving problem (19) . However, note

hat there is no guarantee that there exist feasible controls sat-

sfying all constraints in (18) over all t ∈ [ t 0 
i 
, t m 

i 
] . In fact, it is

asy to see that the safety constraint (13) may not hold depend-

ng on the initial conditions (t 0 
i 
, v 0 

i 
) for CAV i . It is shown in

alikopoulos et al. (2017) , however, that there exists a nonempty

easible region F i ⊂ R 

2 of initial conditions (t 0 
i 
, v 0 

i 
) such that

 i ( t ) ≥ δ for all t ∈ (t 0 
i 
, t m 

i 
) so that all safety constraints are guar-

nteed to hold throughout [ t 0 
i 
, t m 

i 
] . 

.3. Decentralized optimal control framework 

We are now in a position to return to the energy minimization

roblem (16) with the value of t m 

i 
for any i = 1 , . . . , N(t) specified

hrough (20) in a recursive manner. This allows us to solve these

roblems in a decentralized manner with the optimal control prob-

em for each CAV i formulated as follows: 

in 

u i (t) 

1 

2 

∫ t m 
i 

t 0 
i 

u 

2 
i (t) dt (23)

ubject to the vehicle dynamics described earlier, the speed and

cceleration constraints, the lateral and rear-end safety constraints,

nd p i (t 0 
i 
) = 0 , p i (t m 

i 
) = L with given t 0 

i 
, v 0 

i 
. This quadratic cost

unctional captures the energy consumption over [ t 0 
i 
, t m 

i 
] so that

23) is an energy minimization problem for each CAV with the

alue of t m 

i 
selected through (20) so as to maximize the through-

ut of the intersection over a given queue N (t) subject to the re-

uirement t m 

i 
≥ t m 

i −1 
. Thus, a solution of (23) , if it exists, combines

nergy minimization with throughput maximization while guaran-

eeing all safety constraints. Alternatively, a terminal cost of the

orm 

1 
2 [ v 

2 
i 
(t m 

i 
) − v̄ 2 

i 
] may be added, where v̄ i is a desired terminal

peed selected as a target vehicle throughput rate. 

There are several questions to address regarding the optimal

ontrol problem (23) , starting with the existence of feasible solu-

ions and including the ability for each CAV to solve its own prob-

em in a decentralized fashion and within a manageable computa-

ion time for real-time operation. 

.3.1. Feasibility 

As mentioned above, it is shown in

alikopoulos et al. (2017) that there always exist initial con-

itions (t 0 
i 
, v 0 

i 
) which guarantee a solution of (23) satisfying all

afety constraints. This defines a feasibility region F i ⊂ R 

2 for

olving the optimal control problem (23) . Enforcing such feasible

nitial conditions requires a “pre-control zone” within which a

AV is subject to a controller aiming to adjust its (t 0 
i 
, v 0 

i 
) so

hat (t 0 
i 
, v 0 

i 
) ∈ F i . In practice, if this becomes difficult to enforce,
ility in smart cities, Annual Reviews in Control (2017), 
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ptimal control may be foregone for any CAV that fails to satisfy

(t 0 
i 
, v 0 

i 
) ∈ F i . This is possible due to the decentralized nature of

he problems in (23) . 

.3.2. Computational complexity 

The complete solution of the optimal control problem (23) can

e analytically derived (see Malikopoulos et al. (2017) ) and leads

o u ∗
i 
(t) = a i t + b i , v ∗

i 
(t) = 

1 
2 a i t 

2 + b i t + c i , and p ∗
i 
(t ) = 

1 
6 a i t 

3 +
1 
2 b i t 

2 + c i t + d i as long as none of the problems constraints are ac-

ive. The four coefficients a i , b i , c i , d i can also be explicitly evalu-

ted as the solution of four linear algebraic equations. When the

onstraints are active, it is still possible to obtain exact expressions

or the optimal control as detailed in Malikopoulos et al. (2017) .

his relatively simple solution structure requires minimal compu-

ational effort. Moreover, a new solution is required only whenever

n event, such as a new CAV arrival at the CZ, takes place. 

Returning to the PoA estimated as described earlier based on

ctual traffic data, the ability to automate the movement of ve-

icles allows a Smart City to at least reduce the PoA by con-

rolling routing decisions when a CAV is assigned a particular

rigin-destination pair. The optimal control framework based on

23) goes beyond a congestion-based PoA metric by combining en-

rgy and throughput as performance criteria, while also guaran-

eeing the enforcement of safety requirements at the most vulner-

ble component of an urban transportation network, i.e., intersec-

ions. Explicit numerical results obtained to date and included in

alikopoulos et al. (2017) show that, compared to an intersection

perating under traffic light control, it is possible to reduce the

verage energy consumption of vehicles by about 40% while also

educing the average travel time by about 40%. 

The model in Fig. 3 can be extended to two or more intersec-

ions (see Zhang et al., 2016 ) and may also include left and right

urns as described in Zhang, Malikopoulos, and Cassandras (2017) .

learly, one important aspect not included in this model is the

resence of pedestrians. This needs to be accounted for as an ad-

itional traffic flow which is combined with that of vehicles and

resents several additional challenges for integrating CAVs into

urrent transportation systems. 

. Towards shared automated mobility using CAVs 

We have addressed two key questions related to the path to-

ards automated mobility in Smart Cities. First, we have quanti-

ed at least some of the potential benefits of introducing CAVs

nto a transportation system with the objective of justifying the

echnological, economic, and social transitions involved. This was

ccomplished through an estimation of the Price of Anarchy (PoA)

easuring the gap between the performance attained by a system-

entric approach with cooperating drivers (“social” optimality) as

pposed to the performance attained by the current noncooper-

tive transportation environment. Explicit results based on traffic

ata from the area around the city of Boston indicate that the PoA

an be significant, thus justifying the effort towards the develop-

ent of CAVs. Second, with this motivation in mind, we have pre-

ented an optimal control framework developed so as to enable

AV-based automated mobility in urban settings combining both

nergy and congestion as the performance metrics of interest. 

The proposed optimal control framework is merely a first step

hich has established the feasibility of a mobility automation ap-

roach while paving the way for a multitude of related questions

nd open research directions. Examples include: How do CAVs co-

xist with regular vehicles? What is the minimal fraction of CAVs

ithin a transportation system which justifies the benefits of au-

omated mobility? How are pedestrians accommodated if traffic

ights no longer exist? What is the role of Electric Vehicles (EVs)

n an automated mobility setting? 
Please cite this article as: C.G. Cassandras, Automating mob
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Interestingly, it has been argued that if “self-driving cars” are

ffective, then users who are now shying away from car owner-

hip and who opt for public transportation will eventually grav-

tate back to them, ironically causing additional congestion, fuel

onsumption and undesirable emissions to the environment. The

ltimate solution, therefore, may be automated shared on-demand

obility : a CAV provided to a user (or group of users) where and

hen he/she needs it. This encompasses a public transportation

ystem where vehicles operate on a dynamic on demand basis

ather than inefficient static predetermined schedules. The ulti-

ate goal of such an approach is to maintain a sufficiently low to-

al number of vehicles in the system and reap the joint sustainable

enefits of automation in terms of lower congestion, lower energy

onsumption with less wasted fuel, and a cleaner environment. 
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