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Smart Cities are examples of Cyber-Physical Systems whose goals include improvements in transporta-
tion, energy distribution, emergency response, and infrastructure maintenance, to name a few. When it
comes to mobility, the availability of large amounts of data, ubiquitous wireless connectivity, and the
critical need for scalability open the door for new control and optimization methods with the aim of
automating all aspects of mobility, from interconnected self-driving vehicles to sharing transportation re-
sources. We address two key questions: can control and optimization methods enable this automation
and, if so, how can we quantify its benefits to justify the challenging technological, economic, and social
transitions involved? An optimal control framework is presented to show how Connected Automated Ve-
hicles (CAVs) can operate in a dynamic resource contention environment, primarily urban intersections
without any traffic lights. We also describe how large amounts of actual traffic data can be harnessed and
drive inverse optimization methods to quantify the value of CAVs in terms of eliminating the prevailing
Price of Anarchy: the gap between current “selfish” user-centric and optimal “social” system-centric traffic
equilibria which are achievable with automated mobility.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As of 2014, 54% of the earth’s population resides in urban ar-
eas, a percentage expected to reach 66% by 2050. This increase
would amount to 2.5 billion people added to urban populations
(World’s Population, 2014). At the same time, there are now 28
mega-cities (with 10M people or more) worldwide, accounting for
22% of the world’s urban population and projections are for more
than 41 mega-cities by 2030. It stands to reason that the man-
agement and sustainability of urban areas have become one of
the most critical challenges our society faces today. Consequently,
cities are looking for ways that ensure a sustainable, comfortable,
economically viable future for their citizens by becoming “smart.”
The emerging prototype for a “Smart City” is one of an urban en-
vironment with a new generation of innovative services for trans-
portation, energy distribution, healthcare, environmental monitor-
ing, business, commerce, emergency response, and social activi-
ties. The term Smart City is broadly used to capture the over-
all vision outlined above, as well as the intellectual content that
supports it. The technological infrastructure of a Smart City is
based on a network of sensors and actuators embedded through-
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out the urban terrain, interacting with wireless mobile devices
(e.g., smartphones). The data collected and flowing through such a
Cyber-Physical System (CPS) may involve traffic conditions, the oc-
cupancy of parking spaces, air/water quality information, the struc-
tural health of bridges, roads, or buildings, and the location and
status of city resources. Enabling such a Smart City setting requires
a cyber-physical infrastructure combined with new software plat-
forms and strict requirements for mobility, security, safety, privacy,
and the processing of massive amounts of information.

It is worth emphasizing that the ultimate value of a Smart City’s
infrastructure lies in “closing the loop” that consists of sensing,
communicating, decision making, and actuating - rather than sim-
ply collecting and sharing data (see Fig. 1). As also discussed in
Lamnabhi-Lagarrigue et al. (2017), this requires a balanced under-
standing of both “physical” and “cyber” components taking into ac-
count the important issues of privacy, security, and safety; proper
energy management necessitated by the wireless nature of most
data collection and actuation mechanisms involved; and the devel-
opment of new control and optimization methods suitable for this
environment.

Among the multitude of functions a Smart City must support,
transportation dominates in terms of resource consumption, strain
on the environment, and citizen frustration. Based on the 2011 Ur-
ban Mobility Report, the cost of commuter delays has risen by
260% over the past 25 years and 28% of U.S. primary energy is now
used in transportation Shrank, Lomax, and Eisele (2011). A report
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Fig. 1. Cyber-physical infrastructure for a Smart City.

by INRIX (2015) focusing on the U.S., the UK, France and Germany
projects the combined annual cost of gridlock to these countries to
reach $293B by 2030 - a 50% increase from 2013. Traffic conges-
tion also leads to an increase in vehicle emissions; in large cities,
as much as 90% of CO emissions are due to mobile sources. On the
safety side, according to the US National Highway Traffic Safety Ad-
ministration (NHTSA) in 2012 there were 5,615 million crashes in
the U.S. leading to 33,561 deaths

Core disruptive technologies include vehicle connectivity and
automation, and the notion of shared personalized transportation
infrastructure enabled by mobility-on-demand systems. Connected
Automated (or Autonomous) Vehicles (CAVs) provide the most in-
triguing opportunity for enabling users to better monitor trans-
portation network conditions and make better operating decisions
to improve safety and reduce pollution, energy consumption, and
travel delays. Intuitively, there are simple arguments for automated
vehicles: (i) Humans are bad drivers (data indicate that 94% of
accidents are due to human error). (ii) In contrast to humans,
computers can maintain steady cruising speeds which improves
fuel efficiency. (iii) Computers are also better at processing data
whose abundance is now overwhelming humans. (iv) Computers
are able to make fast and accurate driving adjustments. (v) Com-
puters assisting drivers do not get distracted like humans do, they
do not blink and they do not sleep. There are of course numerous
counter-arguments regarding moral and legal issues, security, pri-
vacy, and the question of integrating CAVs with normal vehicles.
One could also expect that, while safety would be generally en-
hanced through the use of CAVs, accidents, though rare, may be
very serious. Finally, there are of course many technical challenges
which provide the main motivation for the work described in this
paper.

In what follows, we address two key questions related to
CAVs along with relevant emerging analytical frameworks. First, in
Section 2, we consider the question of quantifying the benefits of a
transportation system which, at least partially, involves a network
of CAVs, so as to justify the challenging technological, economic,
and social transitions involved. This quantification is based on the
Price of Anarchy (PoA) concept often used in game theory to mea-
sure the gap between the performance attained by a team con-
sisting of cooperating players (“social” optimality) as opposed to
the performance attained by a collection of noncooperating players
(“selfish” optimality). We will show that based on actual data from

the transportation system in the area around the city of Boston, the
PoA can be significant, thus justifying the effort towards the devel-
opment of CAVs. Next, in Section 3, we present an optimal con-
trol framework as a starting point to enable CAV-based automated
mobility in urban settings with preliminary experimental results
showing substantial improvements in terms of both lower traffic
congestion metrics and energy consumption.

2. Estimating the price of anarchy

A transportation network as it functions today is a system with
non-cooperative agents (drivers) in which each driver seeks to
minimize his/her own cost by choosing the best route to reach
a destination without taking into account the overall system per-
formance. In such a non-cooperative setting, one often observes
convergence to a Nash equilibrium. However, it is known that the
Nash equilibrium is often not the best strategy from the system’s
point of view and results in a suboptimal behavior compared to
the socially optimal policy. In today’s transportation network, each
selfish agent (driver) follows the path derived from a user optimal
policy. In order to quantify the suboptimality under selfish driving,
we use the Price of Anarchy (PoA) mentioned in the previous sec-
tion as a measure to compare system performance under a user-
optimal policy vs. a system-optimal policy.

We begin by reviewing a model introduced in
Zhang, Pourazarm, Cassandras, and Paschalidis (2016). We
consider a transportation network (V,A), where V de-

notes the set of nodes and A the set of links. The set
W= {w; :w; = (Ws;,W;), i=1,...,R} indicates the set of all
Origin-Destination (OD) pairs. Assume the graph (V, A) is strongly
connected and let N e {0, 1, =1}"*I4I be its node-link incidence
matrix. Denote by e, the vector with an entry being 1 correspond-
ing to link a and all the other entries being 0. For any OD pair
w = (ws, w;), denote by dW >0 the amount of the flow demand
from ws to w;. Let dW ¢ RVl be the vector which is all zeros,
except for two entries —dW and dW corresponding to nodes ws and
w; respectively.

The basic transportation optimization problem can be formu-
lated as a Variational Inequality (VI) problem (Dafermos & Spar-
row, 1969; LeBlanc, Morlok, & Pierskalla, 1975; Patriksson, 2015)
seeking to determine x* € F such that

t(x*) (x—x*) >0, VxerF

where x, is the total flow on link a € A and x the vector of these
flows. The cost function t(x) consists of link costs tg(X) : R‘f' —
R.. Given € > 0, an €-approximate solution X  F (the set of feasible
flow vectors) solves the problem

tX)(x—X) > —€, VXeF.

A fundamental difficulty involved with solving this problem is that
the cost functions t4(x) are unknown since they depend on indi-
vidual driver behavior, i.e., how different drivers make routing de-
cisions which, in turn, affect the link flows. On the other hand, the
extensive availability of traffic data provides an opportunity to use
these data as the input to an “inverse optimization” problem for-
mulation through which one can obtain cost functions which best
fit the data.

2.1. Inverse optimization

Let us consider flow data (x,, %), k=1,...,K, X € 7. Then,
the inverse VI problem amounts to seeking a function t such that ¢,
is an € -approximate solution to the optimization problem above
for each k:
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min  [le]| (M
L€

st t(X) (X —X) > —€, VXeF, Vk=1,...,K

Thus, we seek to estimate the cost functions used by the selfish
drivers leading to a Nash equilibrium based on observed traffic
data which provide the given flows x; € F,. We solve this prob-
lem using a nonparametric estimation approach which expresses
the cost function in a reproducing kernel Hilbert space #. A de-
tailed technical development is provided in Zhang, Pourazarm, Cas-
sandras, and Paschalidis, so we limit ourselves here to an outline
of the overall approach. We assume that the cost functions have
the form

ta(Xq) = tEf(%), (2)

where t0 is the free-flow travel time of ae A, f(0) =1, f{.) is
strictly increasing and continuously differentiable on R, and m, is
the flow capacity of a € A. Aiming at recovering such a cost func-
tion that has both good data reconciling and generalization prop-
erties (i.e., ty(xq) should fit “old” data well but should not be over-
fitting; it must also have the ability to predict “new” data), we re-
formulate the inverse VI problem (1) as follows:

min e[|+ y | f]% (3)
f.y.e€
st. e;Ny" < tgf(%) (4)
Ywe W® ae A® k=1,.. K
X
> @nf(2)- 2 @)y <a, )
ae Ak a wew®
Vk=1,...,K,
Xq Xg
f(ma)5f<mﬁ>’ (6)
Va, de AW st —a<xa,
U Mg mg
€>0, feH,
f(0) =1 (7)

where y, € are decision vectors (y is a dual variable which can be
interpreted as the “price” of dW). Note also that y >0 is a reg-
ularization parameter: a smaller y should result in recovering a
“tighter” f{-) in terms of data reconciling, while a larger y would
lead to a “better” f{-) in terms of generalization properties. More-
over, ||f||3, denotes the squared norm of f{-) in #, (4) is needed
for dual feasibility, (5) is the suboptimality (primal-dual gap) con-
straint, (6) enforces f(-) to be non-decreasing, and (7) is a normal-
ization constraint.

It is clear that the above formulation is too abstract to explic-
itly solve, since it is an optimization problem over functions f. To
make it tractable, we specify H by selecting its reproducing kernel
(Evgeniou, Pontil, & Poggio, 2000) to be a polynomial

ot =3 (e

i=0

Py =

for some choice of c>0 and n € N (see Zhang, Pourazarm, Cassan-
dras, & Paschalidis, 2017b). We can now rewrite this problem as

min |[€]| +y
By.e i=0 (1)

n i
X
st e;NyY <t ,B,-(rn—”) ,
i=0 a

Ywe WH, aeA® k=1,... K,

X /
2 t%Zﬁn( a) - @)y =e
ac Ak wew®)
Vk=1,...,K

n i n i
Xa Xg
A — < A —
Z'B’<ma> _Zﬂ’<ma>’
i=0 i=0
K X
Va, d k) gf 22 < 24
’ eUkZlA mg = mg
Bo=1

where the function f{:) in (3) is parameterized by S =
(Bi; i=0,1,..., n). Assuming an optimal g* = (B;: i=0,1,..., n)
is obtained by solving this problem, our estimator for f{-) is

€>0,

feo = ZﬂX’—HZﬁxl (8)
i=0

The input to this problem are the observed traffic data x;; these

are also used in order to estimate an OD demand matrix W which

is an integral part of the problem. This is a separate equally chal-

lenging task which we have addressed in Zhang, Pourazarm, Cas-

sandras, and Paschalidis (2017a) and Zhang et al.

2.2. Forward optimization

Given a transportation network (V, A), with O-D demand ma-
trix W, we define its total travel latency cost as

L(x) = Zxata (Xa).

aeA

The socially optimal flow vector, denoted by xsocial — (xsocial; q ¢
A), is the solution to the following system-centricforward problem,
which is a Non-Linear Program (NLP) (Patriksson, 2015; Pourazarm,
Cassandras, & Wang, 2016):

min gxata(xa)

where the functions t4(-) are the ones obtained through the so-

lution of the inverse optimization problem, i.e., the values from

(2) using (8) to estimate f based on the observed traffic data x.
We can now explicitly define the PoA as

L(xuser) Zae.A ngertu (nger> , 9
L(xsocial) = Z XZOCialt (xsocial) - ( )

where x"¢T = (x4°¢; a € A) is the Nash equilibrium flow vector
(also referred to as Wardrop equilibrium in transportation systems)
which is directly observable or indirectly inferable. By the defini-
tion of xs°ial we always have PoA>1 and, clearly, the larger the
PoA, the larger the inefficiency induced by selfish drivers. Thus,
PoA quantifies the inefficiency that a societal group has to deal
with due to non-cooperative behavior of its members.

PoA =

2.3. Price of Anarchy experimental results

In our experimental study, x“' is inferred from actual
data from the Eastern Massachusetts (EMA) road network
(Transportation Networks for Research, 2017; Zhang et al., 2017b).
Details of how this inference is made from the raw data are pro-
vided in Zhang et al. In particular, we process data from two
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Fig. 2. Price of Anarchy (PoA) for a subset of the Eastern Massachusetts road network in April 2012.

datasets: (i) The speed dataset, made available to us by the Boston
Region Metropolitan Planning Organization (MPO), includes the
spatial average speeds for more than 13,000 road segments (with
an average length of 0.7 miles of EMA), providing the average
speed for every minute of the year 2012. For each road segment,
identified with a unique tmc (traffic message channel) code, the
dataset provides information such as speed data (instantaneous,
average and free-flow speed) in miles per hour, date and time, and
traveling time (in minutes) through that segment. (ii) The flow ca-
pacity (in vehicles per hour) dataset, also provided by the MPO,
includes capacity data for more than 100,000 road segments (with
an average length of 0.13 miles) in EMA.

The actual values of the PoA may be obtained by network link
and time of day. In most cases, we have found the PoA to be sig-
nificantly higher that 1 and, in many cases, PoA > 2. An example
is shown in Fig. 2 for a subset of the EMA road network over days
(PM period) in April 20,102 (higher PoA values observed certain
days can usually be associated with specific circumstances such as
bad weather conditions or road construction; in general, they mo-
tivate closer scrutiny of the data to provide interpretations).

The implication of results such as those in Fig. 2 is that if
drivers could be induced to follow paths in accordance to the so-
cial optimal flows x5°¢i?l, then congestion levels could be decreased
by a factor of 2 or more. This is precisely what a CAV-based trans-
portation system can accomplish, since routing decisions would be
automatically made and implemented; at the very least, human
drivers would be advised to follow a set of recommended routes
evaluated to be socially optimal.

This PoA-based analysis results in a quantifiable measure of the
benefits of automated urban mobility based on actual data. Obtain-
ing results such as PoA > 2 is a clear motivating force for further
exploring how CAVs can be deployed in a transportation system.

3. Reducing the price of anarchy through automation

Automating mobility through the use of CAVs has the poten-
tial of achieving a social optimum by exploiting the ability to di-
recty control the movement of vehicles and enforcing routing de-
cisions when a CAV is assigned a particular origin-destination pair.
Recall, however, that the PoA is based on a congestion metric. Go-
ing a step further, we propose an optimal control framework which
combines energy and congestion as performance criteria, while also
guaranteeing safety in the form of avoiding lateral and rear-end
collisions. The most challenging parts of an urban setting where
such a framework needs to operate flawlessly are intersections. In

the intersections envisioned by this framework there are no traffic
lights and there is a perpetual flow of vehicles, thus eliminating
the most time-consuming and energy-intensive aspects of a traffic
network, i.e., the need for vehicles to stop and restart.

One of the very early efforts in using some form of autonomous
connected vehicles was proposed in Athans (1969) and Levine and
Athans (1966) where the merging problem was formulated as a
linear optimal regulator to control a single string of vehicles. The
key features of an automated intelligent vehicle-highway system
(IVHS) were extensively discussed in Varaiya (1993) where a re-
lated control system architecture is also proposed. In what follows,
we focus on the problem of optimally controlling CAVs crossing
an urban intersection without any explicit traffic signaling so as to
minimize energy consumption subject to a throughput maximiza-
tion requirement and to hard safety constraints. A recent study
Tachet et al. (2016) has in fact suggested that transitioning from in-
tersections with traffic lights to autonomous ones has the potential
of doubling capacity and reducing delays, which is consistent with
our own early findings. Several related research efforts have been
reported in the literature proposing either centralized (if there is at
least one task in the system that is globally decided for all vehicles
by a single central controller) or decentralized approaches for co-
ordinating CAVs at intersections. A centralized reservation scheme
is proposed in Dresner and Stone (2004) to control a single inter-
section of two roads with no turns allowed. Since then, numerous
centralized approaches have been reported in the literature (e.g.,
de La Fortelle, 2010; Dresner & Stone, 2008; Huang, Sadek, & Zhao,
2012), to achieve safe and efficient control of traffic through in-
tersections. Some approaches have focused on coordinating vehi-
cles to improve the travel time (e.g., Yan, Dridi, and El Moudni,
2009; Zhu and Ukkusuri, 2015; Zohdy, Kamalanathsharma, and
Rakha, 2012). Others, such as Lee, Park, Malakorn, and So (2013),
have considered minimizing the overlap in the position of vehi-
cles inside the intersection rather than arrival time. In Kim and
Kumar (2014), an approach is proposed based on Model Predictive
Control (MPC) that allows each vehicle to optimize its movement
locally with respect to any objective of interest. Queuing theory is
used in Miculescu and Karaman (2014) to model the problem as a
polling system that determines the sequence of times assigned to
the vehicles on each road. In decentralized approaches, each vehi-
cle determines its own control policy based on the information re-
ceived from other vehicles on the road or from a coordinator. Two
conflict resolution schemes are proposed in Alonso et al. (2011) in
which an autonomous vehicle can make a decision about the ap-
propriate order of crossing the intersection to avoid collision with

Please cite this article as: C.G. Cassandras,
https://doi.org/10.1016/j.arcontrol.2017.10.001

Automating mobility in

smart cities, Annual Reviews in Control (2017),



https://doi.org/10.1016/j.arcontrol.2017.10.001

JID: JARAP

[m5G;October 11, 2017;19:53]

C.G. Cassandras/Annual Reviews in Control 000 (2017) 1-8 5

Control
Zone

Fig. 3. Model of an intersection with CAVs.

other manually driven vehicles, whereas in Colombo and Del Vec-
chio (2014) the invariant set for the control inputs that ensure
lateral collision avoidance is constructed. A detailed discussion of
research efforts in this area can be found in Rios-Torres and Ma-
likopoulos (2016).

3.1. Intersection model

Our analysis is based on a model introduced in Zhang, Ma-
likopoulos, and Cassandras (2016) and is provided in full detail in
Malikopoulos, Cassandras, and Zhang (2017). An intersection con-
sists of a region at its center called Merging Zone (MZ) where po-
tential lateral collision of vehicles may occur and a Control Zone
(CZ) of length L within which all CAVs can communicate and co-
ordinate their motion (see Fig. 3). Let N(t) e N be the number of
CAVs inside the CZ at time t e RT and N'(t) ={1,...,N(t)} be a
queue which designates the order in which these vehicles will be
entering the MZ. Thus, letting t/ be the assigned time for vehicle
i to enter the MZ, we require that /" > ¢", for all i e N'(¢), i>1.
The policy through which the order (schedule) is specified may be
the result of a higher level optimization problem as long as the
condition

>t YieN(), i>1 (10)

is preserved in between CAV arrival events at the CZ.
The dynamics of each CAV ie A/ (t) moving along a specified
lane are assumed to satisfy

pi=vi(t), pit)) =0

) . (11)
U =ui(t), v;(t?) given

where tl.o is the time when CAV i enters the CZ, and p;(t) €
Pi, vi(t) € V;, u;(t) e Y; denote the position, speed and accelera-
tion/deceleration (control input) of each CAV i inside the CZ with
pi(t?) = 0 (upon entering the CZ at time t?) and a given v;(t?) =
v?. To ensure that the control input and vehicle speed are always
within a given admissible range, the following constraints are im-
posed:

where U; min, Ujmax are the minimum and maximum control inputs
(maximum deceleration/acceleration) for each vehicle ie N (t),
and Vi, Vmax are the minimum and maximum speed limits re-
spectively. For simplicity, in the sequel we set uj i, = Upi, and
Ui max = Umax-

Depending on its physical location inside the CZ, CAV i—1 ¢
N (t) belongs to only one of the following four subsets of A/(t)
with respect to CAV i: (i) R;(t) contains all CAVs traveling on the
same road as i and towards the same direction but on different
lanes, (ii) £;(t) contains all CAVs traveling on the same road and
lane as vehicle i, (iii) C;(t) contains all CAVs traveling on differ-
ent roads from i and having destinations that can cause collision
at the MZ, (e.g., Cg(t) contains CAVs 3,4,5 in Fig. 3), and (iv) O;(t)
contains all CAVs traveling on the same road as i and opposite des-
tinations that cannot, however, cause collision at the MZ.

Based on this definition, it is clear that a rear-end collision can
only arise if CAV k e £;(t) is directly ahead of i. Thus, to ensure
the absence of any rear-end collision, we assume a predefined safe
distance 6 <S and impose the rear-end safety constraint
si(t) = pi(t) — pi(t) > 8, Ve e [t0.t]], ke £;(t) (13)

17

where tif is the time that CAV i e N (t) exits the MZ. Henceforth,
we reserve the symbol k to denote the CAV which is physically
immediately ahead of i in the same lane. On the other hand, a lat-
eral collision involving CAV i may occur only if some CAV j=#i be-
longs to C;(t). This leads to the following definition for each CAV
ie N(t):

r;2 {t | te[tlm,tif]}A

Consequently, to avoid a lateral collision for any two vehicles i, j €
N (t) on different roads, the following constraint should hold

Ve e[t t], jecit). (14)

This constraint implies that no two CAVs from different roads
which may lead to a lateral collision are allowed to be in the MZ
at the same time. If the length of the MZ is too large, making this
constraint overly conservative, then it can be modified appropri-
ately.

In this modeling framework, we assume that each CAV i has
proximity sensors and can measure local information without er-
rors or delay and that none of the constraints (12) and (13) is ac-
tive at tlp. We also assume that the speed of the CAVs inside the
MZ is constant, ie, v;(t) = v;(t™) = v;(t)). ¥t € [t™. t/]. This im-
plies that

FiﬂFJ':@,

S
vi(th)’
For simplicity of notation in the remainder of the paper, we will
write v;(t%) = 19, v;(t™) = v and vl»(tl.f) = vl.f.

th=tm 4

1 1

(15)

3.2. Energy minimization and throughput maximization problems

We begin by considering the controllable accelera-
tion/deceleration u;(t) of each CAV i which minimizes the following
cost functional:

fr
B = [ G, (16)

subject to : (11), (12), (13), (14), p;(t?) =0, pi(t™) =L,
and given t2, 19, tI"

where Cj(-) is a monotonically increasing function of its argu-

Ui min < Ui () < Ujmax, and ment. We view Cj(u;(t)) as a measure of the energy, which is
' ) 0 .m (12) a monotonically increasing function of the control input (accel-
0 < Umin < Vi) < Umax, Yt e[t "], eration/deceleration) consumed by CAV i in traveling between
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p,~(tl.0) =0 and p;(t") =L (a special case arises when G;(y;(t)) =
%ul.z (t)). Thus, we minimize transient engine operation leading to
direct benefits in fuel consumption and emissions. In this prob-
lem, 2, v? are known upon arrival of CAV i at the CZ and t" is
also specified. Clearly, not all ¢ can satisfy the safety constraints
(13) and (14). Moreover, in general, a value of ¢ that satisfies
(13) and (14) may depend on other CAVs j+#i; therefore, it may
not be possible for CAV i to solve (16) in a decentralized manner,
i.e., based only on local information. We address the question of
specifying appropriate t/ for each instance of (16) in what follows.

Before proceeding, we note that the obvious unconstrained so-
lution to (16) is u;(t) =0 for all te [tio,t;”] since Gj(u;(t)) is a
monotonically increasing function with respect to u;(t). This ap-
plies to i =1 in which case (13) and (14) are inactive, since CAV
1 is not constrained by an any prior CAV in the queue. This also
implies that v (t) = v? for all t  [t?,t™] and " = L/19.

We now turn our attention to the problem of maximizing
the traffic throughput at the intersection, in terms of minimiz-
ing the gaps between the vehicles in a given queue N(t), under
the hard safety constraints (13) and (14). Thus, setting t.n¢)) =
[er... t,’j;(t)], we define the following optimization problem:

N(®)

min tm " ) = min (t’” — t’“),
toine) ; < ! i1 LIYES) N®) !

subject to : (10), (12), (13), (14) (17)

where t{! is not included since it is obtained from the solution of
(16) when i =1, ie, tI" = L/v?. The equivalence between the two
expressions in (17) (due to the cancellation of all terms in the sum
except the first and last) reflects the equivalence between minimiz-
ing the total time to process all CAVs in the queue and the average
interarrival time of CAVs at the MZ.

As stated in (17), the problem does not incorporate constraints
onth i=2,..., N(t), that are imposed by the CAV dynamics. In
other words, we should write /" =t/ (u;(t)) where u;)(t) =
[ur & ¢ ... u;(t; tM)] denotes the controls applied to all CAVs i =
1,....N(t) over [t2, t™] for any given t, M. Let < denote a set of
feasible controls:

o 2 {u;(t; t") € U subject to:

(10), (11), (12), (13), (14). pi(t?) =0, p;(t") =L,
and given t, v?, t"}. (18)

i it
Then, we rewrite (17) as

N
min (flm (ug: () -t (ll(1:i71)(t))) (19)

tano) 5

= min (f&"@) (W) () =t (U(1)(t))),
N(t)

subject to : u;(t; t") € o4, VYie N(t), (10), (12), (13), (14).

The solution of (19) provides a sequence {t™*, ..., t,(,”(*t)} which des-
ignates the MZ arrival times of all CAVs in the current queue so
as to minimize the total time needed for them to clear the in-
tersection, hence maximizing the throughput over the current N(t)
CAVs. This solution may then be used in (16) to specify the termi-
nal time of each energy minimization problem. As formally shown
in Malikopoulos et al. (2017), it turns out that this solution has a
simple iterative structure and depends only on the hard safety con-
straints (13) and (14), as well as the state and control constraints
(12):

(m ifi=1
5
max ", 6" + o tf} if i—1eR;i(t)uoit)
k
m— . 8 s
b max M 4+ —— . tf ifi—1es; (20)
V!
i—1
. S s
max M 4+ ——. tf ifi—-1e¢
V!
i-1
where tf = t] Ly + t2(1- Lym_ypny,) and
L Vmax — 19)2
til - tio + M (21)
VUmax 2U; maxVmax
2Lu; ax + (V9)2]1/2 — 10
tiz _ ti0+ [ i,max ( ,) ] i (22)

Uj max
It follows that t,.m* is always recursively determined from t,"jl

and v"; and possibly t;f*,v;? where /", and v}' depend on the
specific controls used when solving problem (19). However, note
that there is no guarantee that there exist feasible controls sat-
isfying all constraints in (18) over all t e [tio,tl?“]. In fact, it is
easy to see that the safety constraint (13) may not hold depend-
ing on the initial conditions (t2,v?) for CAV i. It is shown in
Malikopoulos et al. (2017), however, that there exists a nonempty
feasible region F; c R? of initial conditions (t2,1?) such that
si(t)=>6 for all t e (tlp, t") so that all safety constraints are guar-
anteed to hold throughout [t?, t™].

3.3. Decentralized optimal control framework

We are now in a position to return to the energy minimization
problem (16) with the value of ¢ for any i =1,..., N(t) specified
through (20) in a recursive manner. This allows us to solve these
problems in a decentralized manner with the optimal control prob-
lem for each CAV i formulated as follows:

tm

minlf’ w2(t) dt (23)
ui(t) 2 t0

subject to the vehicle dynamics described earlier, the speed and
acceleration constraints, the lateral and rear-end safety constraints,
and p;(t?) =0, p;(t™) =L with given t?, 19. This quadratic cost
functional captures the energy consumption over [tio,ti’"] so that
(23) is an energy minimization problem for each CAV with the
value of ¢[" selected through (20) so as to maximize the through-
put of the intersection over a given queue A/ (t) subject to the re-
quirement ¢ > t,. Thus, a solution of (23), if it exists, combines
energy minimization with throughput maximization while guaran-
teeing all safety constraints. Alternatively, a terminal cost of the
form [v?(t™) — #?] may be added, where #; is a desired terminal
speed selected as a target vehicle throughput rate.

There are several questions to address regarding the optimal
control problem (23), starting with the existence of feasible solu-
tions and including the ability for each CAV to solve its own prob-
lem in a decentralized fashion and within a manageable computa-
tion time for real-time operation.

3.3.1. Feasibility

As mentioned above, it is shown in
Malikopoulos et al. (2017) that there always exist initial con-
ditions (t?,1?) which guarantee a solution of (23) satisfying all
safety constraints. This defines a feasibility region F; c R? for
solving the optimal control problem (23). Enforcing such feasible
initial conditions requires a “pre-control zone” within which a
CAV is subject to a controller aiming to adjust its (t2,v?) so
that (t2,19) e 7. In practice, if this becomes difficult to enforce,
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optimal control may be foregone for any CAV that fails to satisfy
(t2,19) € ;. This is possible due to the decentralized nature of
the problems in (23).

3.3.2. Computational complexity

The complete solution of the optimal control problem (23) can
be analytically derived (see Malikopoulos et al. (2017)) and leads
to ui(t) =ait +b, vi(t) = Jait? +bit +¢, and pi(t) = fa;t® +
%bitz + ¢t + d; as long as none of the problems constraints are ac-
tive. The four coefficients a;, b;, ¢;, d; can also be explicitly evalu-
ated as the solution of four linear algebraic equations. When the
constraints are active, it is still possible to obtain exact expressions
for the optimal control as detailed in Malikopoulos et al. (2017).
This relatively simple solution structure requires minimal compu-
tational effort. Moreover, a new solution is required only whenever
an event, such as a new CAV arrival at the CZ, takes place.

Returning to the PoA estimated as described earlier based on
actual traffic data, the ability to automate the movement of ve-
hicles allows a Smart City to at least reduce the PoA by con-
trolling routing decisions when a CAV is assigned a particular
origin-destination pair. The optimal control framework based on
(23) goes beyond a congestion-based PoA metric by combining en-
ergy and throughput as performance criteria, while also guaran-
teeing the enforcement of safety requirements at the most vulner-
able component of an urban transportation network, i.e., intersec-
tions. Explicit numerical results obtained to date and included in
Malikopoulos et al. (2017) show that, compared to an intersection
operating under traffic light control, it is possible to reduce the
average energy consumption of vehicles by about 40% while also
reducing the average travel time by about 40%.

The model in Fig. 3 can be extended to two or more intersec-
tions (see Zhang et al., 2016) and may also include left and right
turns as described in Zhang, Malikopoulos, and Cassandras (2017).
Clearly, one important aspect not included in this model is the
presence of pedestrians. This needs to be accounted for as an ad-
ditional traffic flow which is combined with that of vehicles and
presents several additional challenges for integrating CAVs into
current transportation systems.

4. Towards shared automated mobility using CAVs

We have addressed two key questions related to the path to-
wards automated mobility in Smart Cities. First, we have quanti-
fied at least some of the potential benefits of introducing CAVs
into a transportation system with the objective of justifying the
technological, economic, and social transitions involved. This was
accomplished through an estimation of the Price of Anarchy (PoA)
measuring the gap between the performance attained by a system-
centric approach with cooperating drivers (“social” optimality) as
opposed to the performance attained by the current noncooper-
ative transportation environment. Explicit results based on traffic
data from the area around the city of Boston indicate that the PoA
can be significant, thus justifying the effort towards the develop-
ment of CAVs. Second, with this motivation in mind, we have pre-
sented an optimal control framework developed so as to enable
CAV-based automated mobility in urban settings combining both
energy and congestion as the performance metrics of interest.

The proposed optimal control framework is merely a first step
which has established the feasibility of a mobility automation ap-
proach while paving the way for a multitude of related questions
and open research directions. Examples include: How do CAVs co-
exist with regular vehicles? What is the minimal fraction of CAVs
within a transportation system which justifies the benefits of au-
tomated mobility? How are pedestrians accommodated if traffic
lights no longer exist? What is the role of Electric Vehicles (EVs)

Interestingly, it has been argued that if “self-driving cars” are
effective, then users who are now shying away from car owner-
ship and who opt for public transportation will eventually grav-
itate back to them, ironically causing additional congestion, fuel
consumption and undesirable emissions to the environment. The
ultimate solution, therefore, may be automated shared on-demand
mobility: a CAV provided to a user (or group of users) where and
when he/she needs it. This encompasses a public transportation
system where vehicles operate on a dynamic on demand basis
rather than inefficient static predetermined schedules. The ulti-
mate goal of such an approach is to maintain a sufficiently low to-
tal number of vehicles in the system and reap the joint sustainable
benefits of automation in terms of lower congestion, lower energy
consumption with less wasted fuel, and a cleaner environment.
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