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Abstract We consider a class of simulation-based optimization problems using
optimality in probability, an approach which yields what is termed a “champion
solution”. Compared to the traditional optimality in expectation, this approach fa-
vors the solution whose actual performance is more likely better than that of any
other solution; this is an alternative complementary approach to the traditional
optimality sense, especially when facing a dynamic and nonstationary environ-
ment. Moreover, using optimality in probability is computationally promising for
a class of simulation-based optimization problems, since it can reduce computa-
tional complexity by orders of magnitude compared to general simulation-based
optimization methods using optimality in expectation. Accordingly, we have devel-
oped an “Omega Median Algorithm” in order to effectively obtain the champion
solution and to fully utilize the efficiency of well-developed off-line algorithms to
further facilitate timely decision making. An inventory control problem with non-
stationary demand is included to illustrate and interpret the use of the Omega
Median Algorithm, whose performance is tested using simulations.

Keywords Simulation-based Optimization · Optimality in Probability ·
Nonstationary Inventory Control

The authors’ work is supported in part by NSFC under grant U1733102, by CUHK(SZ) under
grant PF.01.000404, by ATMRI under grant M4061216.057, by NTU under grant M58050030,
by AcRF under grant RG 33/10 M52050117, by NSF under grants CNS-1239021, ECCS-
1509084, CNS-1645681, and IIP-1430145, by AFOSR under grant FA9550-15-1-0471, by ONR
under grant N00014-09-1-1051, and by Bosch and the MathWorks.

Jianfeng Mao
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
518172
E-mail: jfmao@cuhk.edu.cn

Christos G. Cassandras
Division of Systems Engineering, Boston University, Brookline, MA 02446, USA
E-mail: cgc@bu.edu



2 Jianfeng Mao, Christos G. Cassandras

1 Introduction

In discrete event systems, we are often faced with a class of stochastic optimization
problems that involve only parametric optimization and no structural changes
to the underlying systems. In such cases, optimality in expectation is commonly
adopted with problems formulated as

min
u∈Φ

E[J(u, ω)] (1)

where u is the decision variable, Φ is the feasible decision space of u, and ω is
used to index sample paths resulting from different realizations of a collection of
random variables that affect the performance J(u, ω).

In the context of discrete event systems, we commonly face a dynamic stochas-
tic process, in which u is an event-triggered online control action and J(u, ω) is the
actual performance of u over a certain sample path ω. For example, in the on-line
inventory control problem later considered in Section 3, u is the order quantity
decided at the beginning of each period, ω is a sample path constructed by a
sequence of demands, and J(u, ω) is the corresponding operating cost, including
setup cost, holding cost and shortage cost.

Since it is typically impossible to derive the closed form of E[J(u, ω)] in (1),
simulation-based optimization methods need to be employed to obtain a near-
optimal solution. In what follows, we define an “evaluation” as an operation of
calculating the value of J(u, ω) for a specific u over a specific sample path ω. In
general, simulation-based optimization methods include two major operations:

1. Solution Assessment: Implement M evaluations for a specific u over M
sample paths and estimate the expected performance of solution u, E[J(u, ω)],

by sample average approximation, i.e.,
∑M
i=1 J(u, ωi)

/
M ;

2. Search Strategy: Use the sample average approximation in 1) to rank solu-
tions and search for better solutions in promising areas according to gradient
information (if possible) or certain partition structures.

Let I denote the total number of solutions explored in a simulation-based
method and C denote the complexity of an evaluation. Then, the total complexity
can be measured by the computational effort of implementing M · I evaluations,
that is, O(M · I ·C) (M is not necessarily a constant throughout the entire search
process). To get a near optimal (or good enough) solution, we need to imple-
ment more evaluations to refine solution assessment, i.e., larger M , and explore
a greater number of solutions, i.e., larger I. Since both M and I can be very
large in solving a general simulation-based optimization problem using optimality
in expectation, this approach is computationally intensive or even intractable for
many applications in practice.

A number of simulation-based optimization methods have been developed over
the past few decades. Computational effort can be reduced by either using a smaller
number M of evaluations in assessment, such as Ordinal Optimization [18] and
Optimal Computing Budget Allocation [9], or by reducing I in search, such as
Nested Partitions [29] and COMPASS [20], or by both ways, such as Perturbation
Analysis [17] and Retrospective Optimization [10,23]. Moreover, to further improve
computational efficiency, these methods may be applied to certain approximations
of the original systems with little loss of accuracy in the optimization solutions,
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such as the use of Stochastic Flow Models [8,37] and Hindsight Optimization [11,
36]. Since these methods still need to employ sample average approximations to
assess every explored solution (or estimate its performance gradient), their com-
plexity can still be approximated as O(M · I ·C) with either smaller M or smaller
I or both. In practice, timely decision making is usually preferable or required in
a dynamic environment. The heavy computational burden of those methods using
optimality in expectation limits their applications in such situations.

Moreover, we argue that optimality in expectation is not truly “optimal” in
certain cases since the expected performance is not exactly the actual perfor-
mance, but only a promising guess. This kind of optimality is generally suitable
for a stationary environment, in which probability distributions remain unchanged
over time and the objective value is the average performance over the long term.
However, in practice we often face a nonstationary environment, as in the inven-
tory control problem included in the paper, in which nonstationary demand is a
common occurrence in industries with short product life cycles, seasonal patterns,
varying customer behavior, or other factors [27]. When we continually or periodi-
cally make decisions, the probability distributions used are only valid for a short
term and need to be occasionally updated. Clearly, optimality in expectation does
not necessarily lead to the “best” solution in this case.

In this paper, we propose an alternative sense of optimality, “optimality in
probability”, which favors a solution that has a higher chance to get a better actual
performance. The best solution using optimality in probability, termed “Champion
Solution”, is defined as the one whose actual performance is more likely better than
that of any other solution. Optimality in probability is an alternative complemen-
tary approach to optimality in expectation, especially when facing a dynamic and
nonstationary environment. Moreover, using optimality in probability is computa-
tionally promising for a class of simulation-based optimization problems, since it
can reduce computational complexity by orders of magnitude compared to general
simulation-based optimization methods using optimality in expectation. Accord-
ingly, we develop an “Omega Median Algorithm” to obtain the champion solution
without iteratively searching for better solutions based on sample average approx-
imations, a process which is computationally intensive and commonly required
when seeking optimality in expectation. Furthermore, although it is quite chal-
lenging to solve many stochastic optimization problems, their corresponding de-
terministic versions, which can be regarded as optimization problems defined over
a single sample path, have been efficiently solved by certain off-line algorithms.
The Omega Median Algorithm is able to fully utilize the efficiency of these well-
developed off-line algorithms to further facilitate timely decision making, which is
clearly preferable in a dynamic environment with limited computational resources.
It should be noted that, although an analytical solution of single sample path op-
timization problems is quite helpful in improving computational efficiency, it is
not required for the implementation of the Omega Median Algorithm.

In the rest of the paper, we first introduce the champion solution and then
develop an efficient simulation-based optimization method, termed Omega Median
Approximation in Section 2. We then consider a nonstationary inventory control
problem in Section 3. Numerical results are given in Section 4 to demonstrate the
performance of the champion solution. We close with conclusions in Section 5.
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2 Champion Solution

The “Champion Solution” is the best solution using optimality in probability and
defined for general stochastic minimization problems as follows, where Pr[·] is the
usual notation for “probability”:

Definition 1 The champion solution is a solution uc such that

Pr [J(uc, ω) ≤ J(u, ω)] ≥ 0.5, ∀ u ∈ Φ, (2)

where J(u, ω) is the actual performance of u over a certain sample path ω.

Remark: A natural question which immediately arises is “why do we select 0.5?”
rather than some q > 0.5 and define the champion solution as u′ below such that

Pr
[
J(u′, ω) ≤ J(u, ω)

]
≥ q, ∀ u ∈ Φ, (3)

which looks even better than uc in (2). However, a definition using q > 0.5 is not
meaningful for the large majority of stochastic problems with continuous random
variables. Generally speaking, if the sample path ω is constructed with continuous
random variables ω and continuous functions J(u, ω), we can have for u′ 6= uc:

Pr
[
J(u′, ω) < J(uc, ω)

]
= Pr

[
J(u′, ω) ≤ J(uc, ω)

]
. (4)

From (3), we have Pr
[
J(u′, ω) ≤ J(uc, ω)

]
≥ q. Combining it with (4), we have

Pr
[
J(uc, ω) ≤ J(u′, ω)

]
≤ 1− q,

which contradicts (2) if q > 0.5. Even if there might exist some u′ that satisfies
(3), it will be still the same as uc defined in (2). Therefore, we will set 0.5 instead
of some q > 0.5 in the definition of champion solution.

The NBA Finals can be used as an example to illustrate the champion solution.
The champion team (the champion solution) will be determined from two teams
(solutions) based on the results in 7 games (sample-paths). The champion solution
is the team (solution) that wins more games (performs better in more sample-
paths). Ideally, if there is an infinite number of games (sample-paths), then the
champion solution is the team with winning ratio of more than 50%.

For cases with more than two solutions, we interpret the champion solution
through the example of presidential elections originally used for Arrow’s Impos-
sibility Theorem in social choice theory [1]. Imagine we have three candidates
(solutions) A, B and C. Each voter (sample-path) will rank the three candidates
according to his or her own preference. Now, we randomly pick three voters’ pref-
erence lists (sample-paths) as shown in the following table, where A � B means
A is preferred over B.

Voter 1 Voter 2 Voter 3

Preference A � B � C B � C � A C � B � A

Based on the the three voters’ preferences, we can estimate that
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– A : Pr[A � B] = 33%, Pr[A � C] = 33%;
– B : Pr[B � A] = 67%, Pr[B � C] = 67%;
– C : Pr[C � A] = 67%, Pr[C � B] = 33%.

Clearly, B should be the president (the champion solution) because B gets a
higher preference (performs better) than all the other candidates (solutions) from
the majority of voters (sample-paths).

2.1 Optimality in Expectation vs. Optimality in Probability

The champion solution favors the winning ratio instead of the winning scale. That
is why we call it “Champion Solution”. We can still use the example of NBA Finals
to illustrate the new sense of optimality and compare it with the traditional one.
Imagine it was finished in 6 games and the results are shown in the following table.

Game 1 Game 2 Game 3 Game 4 Game 5 Game 6

A 107 103 84 106 90 98

B 100 97 103 104 101 95

Team A is the champion (the champion solution) because Team A won more
games than Team B. However, we can also find out that the average score of
Team B, 100, is higher than 98, the one of Team A, which implies that Team
B is actually better than Team A in the sense of “Optimality in Expectation”
commonly adopted in the literature.

Clearly, the champion solution is the best solution in a different sense of opti-
mality, termed “Optimality in Probability” here, which may be a better optimality
sense than the traditional “Optimality in Expectation” in some applications, such
as the NBA Finals.

Generally, the champion solution and the traditional optimal solution are not
the same, but they coincide under the following “Non-singularity Condition”
as shown in [25]:

Pr
[
J(u′, ω) ≤ J(u′′, ω)

]
≥ 0.5 =⇒ E

[
J(u′, ω)

]
≤ E

[
J(u′′, ω)

]
, ∀u′, u′′ ∈ Φ

The interpretation of the Non-singularity Condition is that if u′ is more likely bet-
ter than u′′ (in the sense of resulting in lower cost), then the expected cost under
u′ will be lower than the one under u′′. This is consistent with common sense in
that any solution A more likely better than B should result in A’s expected per-
formance being better than B’s. Only “singularities” such as J(u′, ω)� J(u′′, ω)
with an unusually low probability for some (u′, u′′) can affect the corresponding
expectations so that this condition may be violated. It is straightforward to verify
this Non-singularity Condition for several common cases. For example, consider
J(u, ω) = (u−ω)2, where ω is a uniform random variable over [a, b]. The function
satisfies the Non-singularity Condition and the solution (a + b)/2 achieves both
optimality in probability and in expectation.



6 Jianfeng Mao, Christos G. Cassandras

In addition, even though decision makers may prefer “optimality in expecta-
tion” in their applications, the champion solution still has a very promising per-
formance if the corresponding problem does not exhibit significant singularities
because it can beat all the other solutions with a probability greater than 0.5.

2.2 A Condition for the Existence of a Champion Solution

A champion solution may not always exist for a general stochastic optimization
problem. If there are only two feasible solutions, as in the NBA Finals, a champion
solution can be obviously guaranteed. However, this is not the case even for as few
as three feasible solutions. Recalling the example of presidential elections, what if
Voter 3 changes his or her preference as shown in the following table?

Voter 1 Voter 2 Voter 3

Preference A � B � C B � C � A C � A � B

This time we have

– A : Pr[A � B] = 67%, Pr[A � C] = 33%;
– B : Pr[B � A] = 33%, Pr[B � C] = 67%;
– C : Pr[C � A] = 67%, Pr[C � B] = 33%.

No candidate can be elected as president (the champion solution) because no one
can be preferred over all the other candidates (solutions) from the majority of
voters (sample-paths); this is in fact the case addressed in Arrow’s paradox [1].

In the following, we will establish a sufficient existence condition, which can
be utilized later in the inventory problem considered in the next section. To ac-
complish that, we first define the concepts of “ω-problem”, “ω-solution” and “ω-
median” for the class of stochastic optimization problems in (1). (As these defini-
tions are based on or related to a single sample-path ω, we name their initials as
ω-.)

Definition 2 An ω-problem is the deterministic optimization problem defined
over a single sample-path ω, i.e.,

min
u∈Φ

J(u, ω).

where Φ ⊆ R is the constraint set of u and J(·, ω) : Φ 7→ R is a scalar function of
u.

Definition 3 The ω-solution is the solution uω such that

uω = min
û

{
û : J(û, ω) = min

u∈Φ
J(u, ω)

}
. (5)

Remark: Although û is a minimizer of J(u, ω) and may not be unique. uω is
defined as the smallest one picked from these minimizers to guarantee the unique-
ness of uω. We will impose the regularity assumptions that the minimizer û of
J(u, ω) exists and uω is measurable. Then uω is a random variable related to
sample-path ω.
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Definition 4 An ω-median is a median of the probability distribution of ω-
solution uω, i.e., the solution um such that

Pr[uω ≤ um] ≥ 0.5 and Pr[uω ≥ um] ≥ 0.5 (6)

Remark: The two probabilities in (6) are the cumulative distribution function
(cdf ) and complementary cumulative distribution function (ccdf ) of uω respec-
tively. Both probabilities can be strictly more than 0.5 at the same time if uω is
not continuous. Moreover, the ω-median may not be unique for cases such that
the pdf or pmf of uω is 0 for some values of uω.

Theorem 1 If J(u, ω) is a scalar unimodal function of u for any ω, then an
ω-median is a champion solution.

Proof Since J(u, ω) is a scalar unimodal function of u for any ω, we have

J(u′, ω) ≤ J(u′′, ω), for any u′′ < u′ < uω; (7)

and

J(u′, ω) ≤ J(u′′, ω), for any uω < u′ < u′′. (8)

Assume um is the ω-median. For any solution u > um, we have

Pr[J(um, ω) ≤ J(u, ω)]

= Pr[J(um, ω) ≤ J(u, ω)|uω ≤ um] Pr[uω ≤ um]

+ Pr[J(um, ω) ≤ J(u, ω)|uω > um] Pr[uω > um]

(9)

From (8), if u > um and um ≥ uω, then J(um, ω) ≤ J(u, ω), which implies that

Pr[J(um, ω) ≤ J(u, ω)|uω ≤ um] = 1 (10)

Since um is the ω-median, we have Pr[uω ≤ um] ≥ 0.5. Combining it with (9) and
(10), we have

Pr[J(um, ω) ≤ J(u, ω)]

≥0.5 + Pr[J(um, ω) ≤ J(u, ω)|uω > um] Pr[uω > um]

≥0.5

The case of u < um can be similarly proved. Therefore, um satisfies the defi-
nition of champion solution

Pr[J(um, ω) ≤ J(u, ω)] ≥ 0.5, for any u ∈ Φ.

which implies um is a champion solution. ut
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2.3 A Condition for the Uniqueness of a Champion Solution

The champion solution may not be unique in general. The uniqueness can be
guaranteed if the following conditions can be satisfied as shown in Theorem 2.

Theorem 2 Let J(u, ω) be a scalar strictly unimodal function of u for any ω, i.e.,

J(u′, ω) < J(u′′, ω), ∀uω < u′ < u′′ and J(u′, ω) < J(u′′, ω), ∀u′′ < u′ < uω,

where uω = arg minu∈Φ J(u, ω). If there exists some um such that

Pr[uω ≤ um − ε] < 0.5 and Pr[uω ≥ um + ε] < 0.5 for every ε > 0 (11)

then the champion solution is um and unique.

Proof We will only prove the result for cases such that uω is a continuous random
variable. The discrete case can be similarly proved. The uniqueness of a champion
solution can be shown by proving the following two parts: [a] the champion solution
must be some um satisfying (11); [b] the solution um satisfying (11) is unique.
Part [a] : Assume on the contrary that there exists some champion solution u′ such
that

Pr[uω ≤ u′ − ε] ≥ 0.5 or Pr[uω ≥ u′ + ε] ≥ 0.5 for some ε > 0; (12)

which implies that

Pr[uω ≥ u′] < 0.5 or Pr[uω ≤ u′] < 0.5 . (13)

From (13), without loss of generality, assume Pr[uω ≥ u′] < 0.5. Then there exists
some δ > 0 such that

Pr[uω ≥ u′ − δ] < 0.5 (14)

It holds that

Pr[J(u′, ω) ≤ J(u′ − δ, ω)]

= Pr[J(u′, ω) ≤ J(u′ − δ, ω)|uω ≥ u′ − δ] Pr[uω ≥ u′ − δ]
+ Pr[J(u′, ω) ≤ J(u′ − δ, ω)|uω < u′ − δ] Pr[uω < u′ − δ]

(15)

From the definition of uω and J(u, ω) is a scalar strictly unimodal function of u
for any ω, it must satisfy that J(u′, ω) > J(u′ − δ, ω) if uω < u′ − δ < u′, which
implies that

Pr[J(u′, ω) ≤ J(u′ − δ, ω)|uω < u′ − δ] = 0

Combining this with (14) and (15), we have

Pr[J(u′, ω) ≤ J(u′ − δ, ω)]

= Pr[J(u′, ω) ≤ J(u′ − δ, ω)|uω ≥ u′ − δ] Pr[uω ≥ u′ − δ]
≤Pr[uω < u′ − δ] < 0.5

(16)

Since u′ is a champion solution that should have

Pr[J(u′, ω) ≤ J(u, ω)] ≥ 0.5, for any u ∈ Φ. (17)
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which contradicts (16). Therefore, the champion solution must be some um satis-
fying (11).

Part[b] : Without loss of generality, assume on the contrary that there exists some
u′ > um that also satisfies (11). From (11), we have

Pr[uω < um + ε] ≥ 0.5 for every ε > 0.

Combining this with u′ > um, there exists some ε > 0 such that

Pr[uω < u′ − ε] ≥ Pr[uω < um + ε] ≥ 0.5

which contradicts the assumption that u′ also satisfies (11). Thus, the solution um

that satisfies (11) is unique.

The result follows from Part [a] and Part [b] above. ut

2.4 Multinomial Optimal Solution vs. Champion Solution

From Theorems 1 and 2, the champion solution can be obtained using the ω-median
if the corresponding conditions are satisfied. For example, if uω is integer-valued
and satisfies the probability mass function (pmf) and cumulative density function
(cdf) as shown in Figure 1, then the champion solution is 49, the ω-median marked
as the bold line labeled with “CS” in this case.

Probability Mass Function of u

MOS = 41
CS = 49

20 30 40 50 60 70 80 90
0%

1%

2%

3%

4%

5%

Cumulative Distribution Function of u

MOS = 41
CS = 49

20 30 40 50 60 70 80 90
u

0%

20%

40%

60%

80%

100%

Fig. 1 The pmf and cdf of uω
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Another interesting solution with a different optimality type can also be de-
rived based on the pmf of uω, that is, the solution obtained using multinomial
selection [16,26,34]. For convenience, this solution is termed as Multinomial Opti-
mal Solution (MOS) in the rest of paper. The MOS is a solution with the highest
probability of being the actual best among all the solutions, that is, the solution
uMOS such that

uMOS = arg max
û∈Φ

{
Pr [J(û, ω) ≤ J(u, ω), ∀u ∈ Φ]

}
(18)

According to the definition of ω-solution uω in (5), if uω is a discrete random
variable and J(u, ω) is strictly unimodal, we have

Pr [uω = û] = Pr [J(û, ω) ≤ J(u, ω), ∀u ∈ Φ]

Combining it with (18), we have

uMOS = arg max
û∈Φ

Pr [uω = û] . (19)

As shown in Figure 1, since uω can only be integer-valued and it achieves the
highest probability of 4.2% at uω = 41, the MOS is 41 (marked as the bold line
labeled with “MOS”). Clearly, MOS is not the same as CS for general cases. Their
performance difference will be demonstrated in the section of numerical results
below for the inventory control problem.

Furthermore, it should be noted that the pdf and cdf of uω in Figure 1 can
only be estimated through many replications. More replications is needed for a
more accurate estimation of MOS and CS. Since MOS is the solution with the
highest probability of Pr [uω] as in (19), a good estimation of MOS requires a
good estimation of entire probability distribution of uω, which consume a great
number of Monte Carlo simulations. Moreover, the estimation of MOS is sensitive
and may vary considerably as the number of replications increases.

The champion solution can be estimated through the median of the proba-
bility distribution of uω if the conditions in Theorem 1 can be satisfied. A good
estimation of CS does not require a good estimation of the entire pdf of uω. Be-
sides, the estimation of CS is not sensitive and gradually changes as the number
of replications increases. In the following section, we will develop an algorithm to
obtain an estimation of CS and prove that this estimation can approach an actual
CS exponentially fast as the number of replications increases.

2.5 Omega Median Algorithm

Theorem 1 provides a sufficient existence condition for a champion solution for a
class of simulation-based optimization problems. If it is satisfied, then a champion
solution is guaranteed and can be efficiently obtained by computing the ω-median.
We can efficiently obtain an estimate of the ω-median using the Omega Median
Algorithm (OMA) in Table 1 even though the closed form of the cdf and ccdf of
uω cannot be derived in the class of stochastic optimization problems in (1).
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Table 1 Omega Median Algorithm

Step 1: Randomly generate M sample-paths ω1, ..., ωM ;

Step 2: Obtain the ω-solutions, uωi , by solving the deterministic
ω-problems minu∈Φ J(u, ωi) for i = 1, ...,M ;

Step 3: Find the median solution ûm from uω1 , ..., uωM .

The median solution ûm derived in Step 3 of OMA is an estimator of the
ω-median. Let 1(·) denote an indicator function and

GM (u) ≡ 1

M

∑M

j=1
1(uωj ≤ u);

ḠM (u) ≡ 1

M

∑M

j=1
1(uωj ≥ u).

Then, GM (u) and ḠM (u) are the unbiased estimates of the cdf and ccdf of uω

respectively. It can be easily verified that the median solution ûm is the solution
that satisfies

GM (ûm) ≥ 0.5 and ḠM (ûm) ≥ 0.5 .

For any given u, based on the strong law of large numbers, GM (u) and ḠM (u)
converge to Pr[uω ≤ u] and Pr[uω ≥ u] respectively w.p.1 (with probability 1) as
M → +∞. Thus, ûm also converges to an ω-median um w.p.1 as M → +∞.

Furthermore, ûm can approach an ω-median um exponentially fast as M in-
creases as shown in Theorems 3 and 4 below, which enables us to estimate the
ω-median with a smaller number M of sample paths.

Let Um denote the set of ω-medians satisfying (6) and ÛmM denote the set of
medians based on estimated cdf and ccdf as shown below:

Um = {um : Pr[uω ≤ um] ≥ 0.5, Pr[uω ≥ um] ≥ 0.5}

ÛmM = {ûm : GM (ûm) ≥ 0.5, ḠM (ûm) ≥ 0.5}

Theorem 3 If infum∈Um Pr(uω = um) > 0, then there always exists some con-
stant C such that

Pr[ÛmM ∩ Um 6= ∅] ≥ 1− 2e−CM

Proof Without loss of generality, assume infum∈Um Pr(uω = um) = c > 0, Pr(uω <
um) = p1 and Pr(uω > um) = p2. From the definition of ω-median, we have
p1 + c ≥ 0.5 and p2 + c ≥ 0.5 for any um ∈ Um. Combining it with p1 + c+ p2 = 1
and c > 0, we have

p1 < 0.5, p2 < 0.5.

The event [ÛmM∩Um 6= ∅] is equivalent to the event [GM (um) ≥ 0.5 and ḠM (um) ≥
0.5 | um ∈ Um], which can be further equivalently reduced to [LM (um) < 0.5 and L̄M (um) <
0.5 | um ∈ Um], where

LM (u) =
1

M

M∑
j=1

1(uωj < u),

L̄M (u) =
1

M

M∑
j=1

1(uωj > u).
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Therefore, we have

Pr[ÛmM ∩ Um 6= ∅]

= Pr[LM (um) < 0.5 and L̄M (um) < 0.5 | um ∈ Um]

=1− Pr[LM (um) > 0.5 or L̄M (um) > 0.5 | um ∈ Um]

=1−
(

Pr[LM (um) > 0.5 | um ∈ Um] + Pr[L̄M (um) > 0.5 | um ∈ Um]
) (20)

Clearly, 1(uωj < um), j = 1, ...,M are i.i.d. 0-1 random variables and E[1(uωj <
um) | um ∈ Um] = p1. Then, based on the Chernoff-Hoeffding Theorem [19], we
have for any ε > 0

Pr[LM (um) ≥ p1 + ε | um ∈ Um] ≤ e−D(p1+ε||p1)M

where D(x||y) = x log x
y + (1− x) log 1−x

1−y . Similarly, we can also have

Pr[L̄M (um) ≥ p2 + ε | um ∈ Um] ≤ e−D(p2+ε||p2)M

Combining the two inequalities above with p1 < 0.5 and p2 < 0.5, we further have

Pr[LM (um) > 0.5 | um ∈ Um] ≤ Pr[LM (um) ≥ 0.5 | um ∈ Um] ≤ e−D(0.5||p1)M

Pr[L̄M (um) > 0.5 | um ∈ Um] ≤ Pr[L̄M (um) ≥ 0.5 | um ∈ Um] ≤ e−D(0.5||p2)M

Combining them with (20), we can finally have

Pr[ÛmM ∩ Um 6= ∅] ≥ 1− e−D(0.5||p1)M − e−D(0.5||p2)M

≥ 1− 2e−CM

where C = min
(
D(0.5||p1), D(0.5||p2)

)
ut

Theorem 4 If Pr(uω = um) = 0 for um ∈ Um, then for any ε > 0, there always
exists C > 0 such that

Pr
[
|GM (um)− 0.5| < ε

∣∣ um ∈ Um] ≥ 1− 2e−CM ,

Pr
[
|ḠM (um)− 0.5| < ε

∣∣ um ∈ Um] ≥ 1− 2e−CM .

Proof From Pr(uω = um) = 0 and the definition of Um, we have

Pr[uω ≤ um | um ∈ Um] = 1− Pr[uω ≥ um | um ∈ Um] = 0.5

which implies that

E
[
GM (um) | um ∈ Um

]
= 0.5

Since 1(uωj ≤ um), j = 1, ...,M are i.i.d. 0-1 random variables and E[1(uωj <
um) | um ∈ Um] = 0.5, based on the Chernoff-Hoeffding Theorem [19], we have
for any ε > 0

Pr[GM (um) ≥ 0.5 + ε | um ∈ Um] ≤ e−D(0.5+ε||0.5)M and

Pr[GM (um) ≤ 0.5− ε | um ∈ Um] ≤ e−D(0.5−ε||0.5)M
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where D(x||y) = x log x
y + (1− x) log 1−x

1−y . Therefore, we have

Pr
[
|GM (um)− 0.5| < ε

∣∣ um ∈ Um]
=1− Pr[GM (um) ≥ 0.5 + ε | um ∈ Um]− Pr[GM (um) ≤ 0.5− ε | um ∈ Um]

≥1− e−D(0.5+ε||0.5)M − e−D(0.5−ε||0.5)M

≥1− 2e−CM .

where C = min
(
D(0.5 + ε||0.5), D(0.5− ε||0.5)

)
.

It can be similarly proved that Pr
[
|ḠM (um) − 0.5| < ε

∣∣ um ∈ Um
]
≥

1− 2e−CM . ut

Theorem 3 corresponds to the case that uω is discrete and Theorem 4 is mainly
for the case that uω is continuous. Theorem 3 has a stronger sense of convergence
than Theorem 4, which implies that ûm converges faster in discrete cases than in
continuous ones.

3 An Application: Inventory Control with Nonstationary Demand

To illustrate and interpret the use of the Omega Median Algorithm, we consider
an on-line periodic review inventory control problem with nonstationary demand
as depicted in Figure 2 as a discrete event system (DES), in which fixed setup cost
and full backlogging are adopted. The following notation will be used in the rest
of the paper:

– xi = Inventory level in period i;
– di = Demand in period i;
– ui = Order quantity in period i;
– h = Holding cost rate for inventory;
– p = Penalty cost rate for backlog;
– K = Fixed setup cost per order;

– δ(ui) =

{
1 ui > 0
0 ui = 0

.

The one-period demand di is nonstationary, i.e., its corresponding probability
distribution is arbitrary and allowed to vary and correlate over periods i.

Fig. 2 On-line Inventory Control Process
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An ordering event may be triggered at the beginning of a period, namely, an
order of ui items may be placed in period i. A fixed setup cost K will be triggered
if ui > 0. The inventory level xi is counted after the one-period demand di, i.e.,
xi = xi−1 + ui − di, which results in the maintenance cost of period i (either
holding or shortage cost) defined below,

H(xi) = h ·max(xi, 0) + p ·max(−xi, 0). (21)

The average operating cost in each period, including both maintenance cost and
setup cost, determines the system performance.

The static (s, S) policy is an optimal policy for the cases with stationary de-
mands using optimality in expectation, which has been extensively studied for
the inventory systems with setup cost [28,22,32,40,5,3]. Once the two thresholds
(s, S) are optimally determined, the corresponding optimal ordering quantity can
be simply derived as ui = S − xi−1 if xi−1 ≤ s and ui = 0 otherwise. Several effi-
cient methods have been developed in [33,39,14] to find the optimal static (s, S)
policy for the stationary cases. When nonstationary demand processes arise, the
static (s, S) policy is not optimal [3]: the optimal order decisions cannot be simply
derived by optimizing the two static thresholds (s, S). Even though for several
special classes of nonstationary demand in [41,15], the two-threshold policy can
still be optimal but no more static, i.e., the optimal policy becomes (si, Si) varying
over period i. The specialty and computational inefficiency limit the application
of the two-threshold policy for the nonstationary cases.

Some efforts have been made towards the nonstationary inventory control with
fixed setup cost [2,7,6,21] and without setup cost [31,24,27]. A heuristic similar
to Silver-Meal heuristics [30] is proposed in [2] and requires to explicitly com-
pute the probability distributions of cumulative demands, which is not plausible
for demands with complicated patterns. In [7,21], static-dynamic uncertainty ap-
proaches were developed for a class of nonstationary demand that still require the
assumption of mutually independent demands over periods. In [6], nonstationary
cases are approximated by averaging demands over periods and then a stationary
policy is computed by utilizing the algorithm in [39], which will be benchmarked
against the proposed Omega Median Algorithm in the numerical results section
below.

Although general simulation-based methods can still be utilized to determine
the best order decision using optimality in expectation, they are computation-
ally intensive or even intractable as analyzed in Section 3.3. Instead, we pursue
the best solution in the sense of optimality in probability, namely, the “Cham-
pion Solution”, which is a very attractive alternative when facing a nonstationary
environment.

In the on-line inventory control process depicted in Fig 2, we make an order
decision at the beginning of each period. The rolling horizon method can be ap-
plied, in which we look ahead N periods and the actual performance over a specific
N -period sample path ω = {d1, d2, ..., dN} can be defined as the total cost:

JN (u1, u2, ..., uN , ω) =
∑N

i=1

(
H(xi) +K · δ(ui)

)
s.t. xi = xi−1 − di + ui, i = 1, ..., N.

(22)

where H(xi) + K · δ(ui) is the operating cost in period i, including maintenance
cost and setup cost.



Title Suppressed Due to Excessive Length 15

Since only the immediate-period order decision, u1, is required each time, we
will focus on u1 and optimally determine u2, ..., uN based on the choice of u1.
Then, the actual performance over a specific N -period sample path ω becomes
solely associated with u1 as follows:

JN (u1, ω) =
(
H(x1) +K · δ(u1)

)
+ min
u2,...,uN

∑N

i=2

(
H(xi) +K · δ(ui)

)
s.t. xi = xi−1 − di + ui, i = 1, ..., N.

(23)

In the ideal case of looking ahead for an infinite horizon, the actual performance
over a specific sample path ω can be formulated as the infinite-horizon average
cost:

J(u1, ω) ≡ lim
N→+∞

1

N

{
JN (u1, ω)

}
(24)

We aim at the champion solution using the actual (as opposed to expected) per-
formance function in (24).

3.1 Existence of Champion Solution

The inventory control problem can be solved by sequentially answering the two
questions below:

Question 1: Whether to order (Yes or No);

Question 2: How many items to order if “Yes” to Question 1.

Since Question 1 has only two options, its champion solution can be guaranteed
and easily obtained as follows,{

Yes if Pr[uω1 > 0] ≥ 50%
No otherwise.

where uω1 is the ω-solution of minimizing J(u1, ω) in (24) and Pr[uω1 > 0] is the
probability to place a positive order.

Question 2 is conditioned on “Yes” to Question 1, which implies that u1 > 0
in Question 2. In the following, we will verify the existence of a champion solution
for u1 > 0 with the help of the lemma below.

Lemma 1 JN (u1, ω) in (23) is strictly K-convex in u1 for u1 > 0, that is, for
any 0 < u1 < u′1 < u′′1 , it holds that

K + JN (u′′1 , ω) > JN (u′1, ω) + (
u′′1 − u′1
u′1 − u1

)(JN (u′1, ω)− JN (u1, ω)).
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Proof It can be proved that LN (x1, ω) is K-convex in x1 using a similar way as
shown in Section 4.2 in [4] (The definition of K-convex can be found in [4,28]).
Combining it with x1 = u1 + x0− d1, LN (u1 + x0− d1, ω) is also K-convex in u1.

From the definition of H(x) in (21), H(x1) is strictly convex in x1, which
implies H(u1 + x0 − d1) is also strictly convex in u1.

Recalling the definition of JN (u1, ω) in (23). From u1 > 0, we have

JN (u1, ω) = H(u1 + x0 − d1) +K + LN (u1 + x0 − d1, ω)

Combining it with the fact that H(u1 + x0 − d1) is strictly convex in u1 and
LN (u1 + x0 − d1, ω) is K-convex in u1, we have JN (u1, ω) is strictly K-convex in
u1 for u1 > 0. ut

Based on Lemma 1 and the definition of J(u1, ω) in (24), we prove the following
theorem.

Theorem 5 J(u1, ω) is strictly convex in u1 for u1 > 0.

Proof From Lemma 1, JN (u1, ω) is strictly K-convex in u1 for u1 > 0, that is, it
satisfies that for any 0 < u1 < u′1 < u′′1

K + JN (u′′1 , ω) > JN (u′1, ω) + (
u′′1 − u′1
u′1 − u1

)(JN (u′1, ω)− JN (u1, ω)).

Then we apply limit operator at both sides and can have

lim
N→+∞

K + JN (u′′1 , ω)

N
> lim
N→+∞

JN (u′1, ω)

N
+ (

u′′1 − u′1
u′1 − u1

) lim
N→+∞

(JN (u′1, ω)− JN (u1, ω))

N

which implies that for any 0 < u1 < u′1 < u′′1 ,

J(u′′1 , ω) > J(u′1, ω) + (
u′′1 − u′1
u′1 − u1

)(J(u′1, ω)− J(u1, ω)).

The inequality above is equivalent to the definition of strictly convex function,
that is, J(u1, ω) is strictly convex in u1 for u1 > 0. ut

Theorem 5 implies that J(u1, ω) is strictly unimodal for u1 > 0, which satisfies
the sufficient existence condition identified in Theorem 1 and paves the way to
the uniqueness of a champion solution using Theorem 2. Therefore, a champion
solution can be guaranteed to address Question 2 and can be obtained using OMA,
which may be also unique if the probabilistic condition in (11) can be verified in
the simulation results.

3.2 Implementation of OMA

Although di, i = 1, 2, . . ., is nonstationary, we can still estimate their probability
distributions based on the most recently updated information. Sample paths can
then be randomly generated in Step 1 of OMA using these estimates.

Step 2 of OMA determines the major portion of its computational complexity,
which can be largely reduced if we manage to find an efficient algorithm to solve
the corresponding ω-problems. In the context of this inventory control problem,
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the ω-problem is to find the ω-solution uω1 of minimizing J(u1, ω) in (24). This ω-
solution uω1 can be well approximated by minimizing JN (u1, ω) in (23) with a large
enough N . Furthermore, it can be easily verified that, if u∗1, ...u

∗
N can minimize

JN (u1, ..., uN , ω) in (22), then u∗1 can also minimize JN (u1, ω) in (23). Therefore,
we can finally obtain the ω-solution uω1 by minimizing JN (u1, ..., uN , ω) in (22)
with a sufficiently large N .

The problem of minimizing JN (u1, ..., uN , ω) in (22) is closely related to the
following problem in (25), which is a dynamic lot-sizing problem with backlogging
as defined in the literature. Several methods have been developed to solve this
type of problems. The seminal work was the one developed in [35] to solve the
case without backlogging. Then in [38], although backlogging is considered, it is
required to generate dominant set and its size grows exponentially with respect
to N . Finally, in [12,13], highly efficient algorithms were developed to solve the
dynamic lot-sizing problem for both cases without and with backlogging.

min
u1,...,uN

∑N

i=1

{
H(xi) +K · δ(ui)

}
s.t. xi = xi−1 − di + ui, i = 1, ..., N ;∑N

i=1
ui + x0 =

∑N

i=1
di.

(25)

The only difference between the two problems results from the second constraint,
which can be interpreted as the condition of “zero inventory at last”. Since profits
earned from sales are not included in the objective, it would never be optimal to
place a new order at the last period which would mostly end up with a negative
inventory level. The terminal effect of “ordering nothing at last” and “ending with
negative inventory” are quite undesirable. Solving the problem in (25) instead with
the extra second constraint can be very helpful in approximating the ω-solution
when using a relatively small N . Since the problem in (25) has been well studied
in [13], we can efficiently solve each ω-problem with complexity O(N logN) for
general cases.

The remaining Step 3 of OMA can be trivially fulfilled once we have M ω-
solutions.

3.3 Complexity Analysis

Clearly, the complexities of Step 1 and 3 of OMA are O(MN) and O(M) re-
spectively. With the help of the algorithm in [13], the complexity of Step 2 is
O(M ·N logN). Thus, we can finally efficiently obtain a champion solution of the
nonstationary inventory control problem in complexity O(M ·N logN) by applying
OMA.

If we try a general simulation-based optimization method using optimality in
expectation, then we need to solve the following stochastic optimization problem
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(26) at each decision point:

min
u1

J̄N (u1) = E

{(
H(x1) +K · δ(u1)

)
+ min
µ2,...,µN

E
{∑N

i=2

(
H(xi) +K · δ(ui)

)}}
s.t. xi = xi−1 − di + ui, i = 1, ..., N ;

ui = µi(xi−1), i = 2, ..., N.

(26)

where µi(·) is the feedback control policy to determine ui based on the state xi−1.
Clearly, even for a given u1, computing J̄N (u1) is a notoriously hard dynamic
programming problem. Although a heuristic termed “Hindsight Optimization”
[11] can be employed to approximate the second term in the objective of (26) as
the expected hindsight-optimal value below,

E

{
min

u2,...,uN

∑N

i=2

(
H(xi) +K · δ(ui)

)}
,

still requires a complexity of O(M · N logN) to assess a specific choice of u1.
Moreover, it needs to go through a search process to get a near optimal u1. If
there are a total of I solutions explored in the process, then the total computational
complexity is O(M · I ·N logN), which is an order of magnitude higher than that
of OMA.

4 Numerical Results

We illustrate the performance of champion solution through numerical examples.
The following parameters are identical to those used in [40]:

– Fixed Setup Cost K = 64;
– Holding Cost Rate h = 1;
– Penalty Cost Rate p = 9.

The mean value µi will be randomly picked from a set of numbers between 10 and
75 in increments of 5, that is, {10, 15, 20, ..., 70, 75}. The champion solution will be
benchmarked against the (s, S) policy and the multinomial optimal solution for
both stationary and nonstationary cases. Before proceeding to the comparisons,
we will first demonstrate the approximation of ω-median and its convergence rate
with respect to the number of replications.

4.1 ω-median Approximation

An example of estimating the ω-median is shown in Figure 3, in which M = 200
sample-paths are generated. The ω-solutions are obtained by solving 200 corre-
sponding ω-problems through the algorithm in [13]. The solid line in Figure 3 is
the cdf function of the ω-solution constructed based on these sample-paths. The
estimate of the ω-median is um = 78, which is indicated through the dashed line.
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Fig. 3 ω-median Approximation

4.2 Convergence of ω-median in M

The convergence of the ω-median in the number of sample-paths M is shown in
Figure 4, in which M varies from 10 to 1000 in increments of 10. It can be seen
that the estimate of the ω-median quickly converges within 100 replications, which
supports the result in Theorem 3.
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Fig. 4 Convergence of ω-median in M

4.3 Stationary Cases

We set µ = 20 to simulate stationary cases. Then the optimality in expectation
can be achieved using the optimal static policies (s∗, S∗), which have been exactly
derived by using the algorithm in [39] for stationary cases with different µ. This
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provides us an opportunity to benchmark the performance of the champion solu-
tion against the best solution in the sense of “optimality in expectation”. In the
following, we will compare the actual performance of the three methods described
below in 1000 randomly generated instances.

1. Method SS: Order decisions are directly obtained according to the optimal
static policy (s∗ = 14, S∗ = 62) as obtained in [39];

2. Method MS: Order decisions are derived by using multinomial selection with
M = 1000 sample paths at the beginning of each period, namely, the estimates
of multinomial optimal solutions;

3. Method CS: Order decisions are obtained by using the ω-median approxima-
tion with M = 1000 sample paths at the beginning of each period, namely, the
estimates of champion solutions.
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Fig. 5 Stationary Cases: CS vs. SS

Pairwise comparisons are carried out between these methods. The comparison
between CS and SS is depicted in Figure 5. The upper plot shows the percentage of
instances that CS is no worse than SS changes as more instances are simulated.
The percentage is 55.30% after finishing 1000 instances. The lower plot shows
that the mean fractional actual cost difference changes along with more instances
simulated. The fractional actual cost difference is calculated as (Ccs−Css)

Css
, where

Css and Ccs are the costs of using the methods SS and CS respectively. Within
1000 instances, the mean cost of CS is 1.51% less than the one of SS. Based on
the numerical results above, the performance difference between CS and SS is
very small and the champion solution can perform as well as the optimal (s∗, S∗)
policy in the stationary cases.
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Fig. 6 Stationary Cases: CS vs. MS

The comparison between CS and MS is depicted in Figure 6. Its upper and
lower plots and the ones in the following figures are similarly defined as in Figure
5. Based on the 1000 instances simulated, the percentage of instances that CS is
no worse than MS is 68.80% and the mean cost of CS is 5.21% less than the one of
MS. Therefore, the champion solution (CS) more likely performs better than the
multinomial optimal solution (MOS) and CS is also about 5% better than MOS
in cardinal value.

We can zoom in on a certain instance to get a more detailed analysis about
the performance difference between MOS and CS. Figure 1 is actually an example
of the estimated pmf and cdf of uω based on 1000 replications for the inventory
control problem. As shown before, CS is 49 and MOS is 41 in this case. We start
with the comparison between the MOS, i.e., 41 and its neighboring solution of 42.
Since the inventory control problem satisfies the condition in Theorems 1 and 2,
we can use the similar reasoning adopted in the proof of theorems to derive the
following two probability:

Pr
[
J(uMOS , ω) < J(42, ω)

]
= Pr

[
uω ≤ uMOS = 41

]
= 31.6%

Pr
[
J(42, ω) < J(uMOS , ω)

]
= Pr [uω ≥= 42] = 68.4%

which means that the solution of 42 is better than MOS with a probability of 68.4%
and worse than MOS with a probability of 31.6%. However, Pr [uω = 42] = 2.1%,
which is a lot smaller than Pr

[
uω = uMOS = 41

]
= 4.2% as shown in Figure 1.

Therefore, the solution û with inferior performance based on the probability of
Pr [J(û, ω) ≤ J(u, ω), ∀u ∈ Φ] may still be better than MOS in the majority of
cases. The comparisons can be furthered. Although 42 seems better than MOS in
more cases, we can similarly derive that

Pr [J(42, ω) < J(43, ω)] = Pr [uω ≤ 42] = 33.7%

Pr [J(43, ω) < J(42, ω)] = Pr [uω ≥ 43] = 66.3%
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Pr
[
J(43, ω) < J(uMOS , ω)

]
≥ Pr [uω ≥ 43] = 66.3%

which implies that the solution of 43 is better than both MOS and 42 with prob-
ability greater than or equal to 66.3%. Similar comparison results can be derived
until the champion solution of 49, which can be better than all of these solutions
in more cases.
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Fig. 7 Stationary Cases: MS vs. SS

The comparison between MS and SS is depicted in Figure 7. Based on the
1000 instances simulated, the percentage of instances that MS is no worse than SS
is 39.80% and the mean cost of MS is 3.91% higher than the one of SS. Therefore,
the (s∗, S∗) policy more likely performs better than MOS and MOS is also about
4% worse than the (s∗, S∗) policy in cardinal value.

To summerize, for the stationary cases, the (s∗, S∗) policy and the champion
solution perform similarly and they are all better than the multinomial optimal
solution.

4.4 Nonstationary Cases

Based on historical data, practitioners can usually observe and estimate some de-
mand pattern over periods, that is, a sequence of different expected demand µi for
period i, before placing orders. We set different µi for each period to simulate the
situation in the nonstationary cases. In particular, to reflect different demand pat-
tern observed, we randomly select µi from the values listed in {10, 15, 20, ..., 70, 75}.
We again generate 1000 instances to compare the three methods:

1. Method SS: Order decisions are directly obtained according to a heuristic
nonstationary policy (si, Si) for each period i. A common heuristic method is
to determine (si, Si) according to µi in the corresponding period i as if demands
are stationary with the mean value of µi. For example, if µ1 = 15, µ2 = 30, µ3 =
20, ..., then we can look up the table obtained in [39] to find their corresponding
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optimal values, choose (s1 = 10, S1 = 49), (s2 = 23, S2 = 66), (s3 = 14, S3 =
62), ..., to apply in period 1, 2, 3, ..., respectively. Clearly, this heuristic (si, Si)
policy is not optimal for the nonstationary case.

2. Method MS: Order decisions are similarly obtained based on the multinomial
solutions as the MS used for stationary cases.

3. Method CS: Order decisions are similarly obtained based on the champion
solutions as the CS used for stationary cases.

The comparison between CS and SS is shown in Figure 8. Based on the 1000
instances simulated, the percentage of instances that CS is no worse than SS is
95.30% and the mean cost of CS is 16.43% less than the one of SS. Therefore, the
champion solution performs better than the heuristic (s, S) policy in almost all of
the instances and CS is also about 16% better than the heuristic (s, S) policy in
cardinal value.
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Fig. 8 Nonstationary Cases: CS vs. SS

The comparison between CS and MS is depicted in Figure 9. Based on the
1000 instances simulated, the percentage of instances that CS is no worse than MS
is 72.40% and the mean cost of CS is 5.03% less than the one of SS. Therefore,
CS much more likely performs better than MOS and it is also about 5% better
than MOS in cardinal value.
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Fig. 9 Nonstationary Cases: CS vs. MS

The comparison between MS and SS is depicted in Figure 10. Based on the
1000 instances simulated, the percentage of instances that MS is no worse than SS
is 88.40% and the mean cost of MS is 12.00% less than the one of SS. Therefore,
MOS performs better than the heuristic (s, S) policy in most of the instances and
MOS is also about 12% better than the heuristic (s, S) policy in cardinal value.

0 100 200 300 400 500 600 700 800 900 1000
 80%

 85%

 90%

 95%

100%

 M
S 

<=
 S

S

 Nonstationary Cases --- MS vs. SS

0 100 200 300 400 500 600 700 800 900 1000
 Number of Instances

-15%

-14%

-13%

-12%

-11%

 ( 
M

S-
SS

 ) 
/ S

S

Fig. 10 Nonstationary Cases: MS vs. SS

To summarize, for the nonstationary cases, the champion solution still performs
better than the multinomial optimal solution and they are all much better than
the heuristic (s, S) policy.
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5 Conclusion

An alternative optimality sense, optimality in probability, is proposed in this pa-
per. The best solution using optimality in probability is termed a “Champion
Solution” whose actual performance is more likely better than that of any other
solution. A sufficient existence and uniqueness condition for the champion solu-
tion are proved for a class of simulation-based optimization problems. A highly
efficient method, the Omega Median Algorithm (OMA), is developed to compute
the champion solution without iteratively exploring better solutions based on sam-
ple average approximations. OMA can reduce the computational complexity by
orders of magnitude compared to general simulation-based optimization methods
using optimality in expectation.

The champion solution becomes particularly meaningful when facing a non-
stationary environment. As shown in the application of inventory control with
nonstationary demand, the solution using optimality in expectation is not nec-
essarily optimal and is computationally intractable in a dynamic environment.
The champion solution is a good alternative and computationally promising. Its
corresponding solution algorithm, OMA, can fully utilize the efficiency of exist-
ing well-developed off-line algorithms to further facilitate timely decision making,
which is preferable in a dynamic environment with limited computing resources.
Moreover, even for some stationary scenarios as shown in the numerical results,
the “Champion Solution” can still achieve a performance comparable to the one
using optimality in expectation.

It is nontrivial to show the existence of a champion solution and OMA can-
not be directly applied when facing general cases with multiple decision variables.
Some partial decomposition methods can be utilized to reduce the original problem
into scalar optimization problems, which is quite common for dynamic program-
ming problems with separable cost functions. Nonetheless, the existence issue is
still troublesome and limits the application of champion solutions. A possible gen-
eralized version of champion solution is one defined as the solution uc that achieves
the maximum of q(·):

q(uc) = max
û

{
q(û) = max

q

{
q : Pr [J(û, ω) ≤ J(u, ω)] ≥ q, ∀ u ∈ Φ

}}
or equivalently,

q(uc) = max
û

{
q(û) = min

u∈Φ

{
Pr [J(û, ω) ≤ J(u, ω)]

}}
It can be easily verified that the champion solution defined in (2) is a special case
of this generalized version. Moreover, the existence of this generalized champion
solution can be guaranteed for general cases. We will aim at generalizing the
concept of champion solution and extend it to a wider class of multidimensional
stochastic optimization problems in future work.
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