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Abstract: In data-intensive real-time applications, e.g., cognitive assistance and mobile health

(mHealth), the amount of sensor data is exploding. In these applications, it is desirable to extract

value-added information, e.g., mental or physical health conditions, from sensor data streams in

real-time rather than overloading users with massive raw data. However, achieving the objective is

challenging due to the data volume and complex data analysis tasks with stringent timing constraints.

Most existing big data management systems, e.g., Hadoop, are not directly applicable to real-time

sensor data analytics, since they are timing agnostic and focus on batch processing of previously

stored data that are potentially outdated and subject to I/O overheads. Moreover, embedded sensors

and IoT devices lack enough resources to perform sophisticated data analytics. To address the

problem, we design a new real-time big data management framework to support periodic in-memory

real-time sensor data analytics at the network edge by extending the map-reduce model originated in

functional programming, while providing adaptive sensor data transfer to the edge server based on

data importance. In this paper, a prototype system is designed and implemented as a proof of concept.

In the performance evaluation, it is empirically shown that important sensor data are delivered in

a preferred manner and they are analyzed in a timely fashion.

Keywords: real-time big sensor data analytics architecture; internet of things; edge computing

1. Introduction

The Internet of Things (IoT) is emerging fast. The number of IoT devices is expected to exceed

8 billion and 20 billion in 2017 and 2020, respectively [1]. This rapid deployment is due to a number

of IoT applications of utmost socio-economic importance, such as cognitive assistance, mobile health

(mHealth), and smart transportation. Ideally, it is desirable to extract value-added information from

big sensor data in a timely fashion to support real-time IoT applications, such as navigation help

for vision-impaired pedestrians wearing IoT devices and real-time detection of an abnormal health

conditions of patients with wearable or implanted sensors.

However, achieving this goal faces several challenges: (1) the volume of sensor data is big and

increasing rapidly; (2) extracting valuable information from big sensor data requires complex data

analysis tasks that are often computationally intensive; and (3) a number of important IoT applications,

e.g., cognitive assistance, mHealth, and traffic control, are associated with stringent timing constraints.

Typical IoT devices are low-end embedded devices, e.g., sensors and micro-controllers, which lack

enough computational resources for real-time sensor data analytics. Although hardware technology is

advancing fast, IoT devices are not expected to be provisioned with significantly more resources for

cost reasons critical in embedded IoT devices. Although cloud can provide virtually infinite resources,

uploading all sensor data to the cloud suffers from the limited upload bandwidth of the Internet,

incurring substantial latency. Edge or fog computing is an emerging paradigm to bridge the gap
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between IoT devices and cloud [2,3]. By supporting compute-intensive tasks at the network edge,

edge computing could significantly decrease the latency and mitigate the upload bandwidth bottleneck.

In this paper, we propose an overarching framework for soft real-time sensor data analytics at the

network edge that consists of (1) adaptive sensor data transfer from IoT devices to the edge server based

on their data importance and (2) periodic in-memory real-time analytics of sensor data in the edge

server via real-time scheduling and map-reduce, which is originated in functional programming [4]

but not tied to a specific implementation, e.g., Hadoop. MapReduce [5] and Hadoop [6] greatly simplify

the development of parallel big data analysis applications. (Even though there is no single definition

of big data on which everybody agrees, the notion of five Vs of big data [7]—volume, velocity, variety,

veracity, and value—is broadly accepted; that is, the volume, variety, and velocity of data generation

are increasing fast. Also, from big data that may involve uncertainties, valuable information needs to

be extracted.) A user only has to write serial map() and reduce() functions. The underlying runtime

system divides massive data into smaller chunks and schedules map/reduce tasks to process the

data chunks in parallel on the user’s behalf. However, they are not readily applicable to real-time

sensor data analytics for several reasons. First, they are timing agnostic. As a result, they may miss

many deadlines, diminishing the value of the derived information. They only support one-time batch

processing of the data at rest stored in the distributed file system. Thus, the data could be outdated.

Any information derived late or derived using stale sensor data has little value in real-time sensor data

analytics applications, e.g., cognitive assistance, mHealth, traffic control, or location-based services.

Despite the increasing demand for real-time sensor data analytics, related work is relatively

scarce. Advanced data stream management systems, e.g., Storm [8], S4 [9], and Spark Streaming [10],

support near real-time stream data processing; however, they do not consider explicit deadlines or

real-time scheduling to ensure the timeliness of data processing. Even though the problem of meeting

deadlines in Hadoop has been investigated [11–17], they inherit the shortcomings of Hadoop optimized

for batch processing of the data in the secondary storage. Further, these systems mainly focus on

data analytics in the back-end cloud without considering how to efficiently transfer sensor data to the

data analytics system, which is critical in key real-time IoT applications, e.g., cognitive assistance and

mHealth. Although packet scheduling and medium access control has been investigated for real-time

wireless sensor-actuator networks [18,19], most existing work does not consider data importance

for efficient sensor data transfer. To address the problem, we design a new real-time map-reduce

framework, called RTMR (Real-Time Map-Reduce), that provide several unique features not readily

provided by advanced big data management systems including [5,6,8–17,20]:

• We support dynamic rate adaptation for the periodic sensor data transfer from IoT devices to

the edge server based on the relative data importance provided by different sensors/IoT devices

to optimize the total utility, i.e., the sum of the importance values of the sensor data transferred

from sensors to the edge server, subject to the total rate upper bound. The proposed transfer rate

adaptation scheme is generic in that it can support a different data importance metric depending

on a specific real-time sensor data analytics application.

• Using the API (Application Programming Interface) of RTMR, an application developer can write

serial map() and reduce() functions for a specific real-time data analysis application, and specify

the data analysis task parameters, e.g., the deadlines and periods.

• A non-preemptive periodic real-time task model is supported for periodic real-time analysis

of sensor data. Moreover, a schedulability test for the EDF (Earliest Deadline First) scheduling

algorithm is provided to support timing constraints considering both the computation and data

access delay.

• Several mechanisms for efficient in-memory sensor data analysis are supported. First, sensor data

are directly streamed into main memory to let RTMR derive information from them on the fly.

Second, intermediate data generated in a map/reduce phase is pipelined straight to the next

phase, if any, without being staged in the local disk or distributed file system unlike Hadoop and
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its variants. Further, memory reservation is supported to ensure enough space is allocated to store

the input, intermediate, and output data for each real-time sensor data analysis task.

In addition, we have implemented adaptive wireless transfer of sensor data based on their

importance and built an RTMR prototype by extending Phoenix [20], a state-of-the-art open source

multicore/multiprocessor map-reduce framework, to support the key RTMR features for real-time

data analytics rather than retrofitting Hadoop.

For performance evaluation, we take a stepwise approach. In the first step, we perform a case

study modeled after face detection that is a core technology to support, for example, tracking, crowd

counting, and face recognition for social interaction assistance. In the case study, a few smartphones

are set up to capture different numbers of faces and our adaptive transfer rate allocation scheme is

tuned to assign higher importance to the smartphone that captures more faces. We observe that our

approach effectively assigns the sensor data transfer rate to the smartphones according to the ground

truth (the actual number of faces) to optimize the utility, while meeting the data transfer and analytics

deadline. Also, our approach based on data importance enhances the utility by 38% compared to the

baseline unaware of data importance.

In the second step, we assume that big sensor data streams are periodically delivered into

RTMR in a timely fashion. Given sensor data streams, we evaluate whether RTMR can meet data

analytics deadlines by leveraging real-time task scheduling and in-memory map-reduce computing

for significantly bigger sensor data than the case study considers. To this end, we generate synthetic

periodic workloads using four micro-benchmarks to model real-time data analysis tasks: k-means

clustering, linear regression, histogram, and matrix multiplication that can be applied to support,

for example, cognitive assistance, mobile user-clustering for location-based services, sensor data

value or financial market prediction, and traffic control. Using the benchmarks, we design several

real-time data analysis task sets and analyze their schedulability. For the task set with the tightest

deadlines, the performance evaluation results empirically verify the schedulability test by showing

that all deadlines are actually met. On the other hand, Phoenix used as the baseline fails to do it.

Further, for the task set, RTMR processes over 0.72 TB of sensor data in each 1000 s experimental run,

which translates to more than 2.59 TB/h and 62 TB/day.

An initial result of this work was published in a conference [21]. This paper significantly

extends [21] as follows. We support adaptive sensor data transfer from IoT devices to the edge server,

which performs real-time analysis of the sensor data, based on data importance. (In the conference

paper [21], data transfer issues were not considered.) We have extended the system architecture to

support efficient sensor data transfer as discussed in Section 2. In Section 3, we discuss the notion

of data importance and formulate the problem of efficient sensor data transfer as an optimization

problem. Further, we propose a lightweight algorithm for efficient sensor data transfer from IoT devices

to the real-time edge server and analyze the algorithm in terms of time complexity and optimality.

The effectiveness of the adaptive transfer methodology described in Section 3 is empirically verified,

via a case study, in Section 5.1. We discuss more related work in Sections 1, 5, and 6. Overall, the paper

is substantially reorganized and rewritten to enhance the clarity of the presentation too.

The remainder of this paper is organized as follows. In Section 2, an overview of the RTMR

architecture and problem formulation is given. In Section 3, the adaptive transfer rate allocation

algorithm based on sensor data importance is discussed. In Section 4, the real-time task model and

scheduling for real-time data analytics are described. In Section 5, the performance of our approach is

evaluated step by step. Related work is discussed in Section 6. Finally, Section 7 concludes the paper

and discusses future work.

2. System Overview

In this section, background for this work and the overall system design are discussed.
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2.3. Adaptive Data Transfer Rate Allocation to IoT Devices based on Data Importance

Figure 3 shows the overall structure of the RTMR front-end that supports data transfer rate

adaptation from IoT devices to the edge server based on sensor data importance. The Transfer Rate

Allocation Manager runs on the RTMR and allocates the transfer rates to the connected IoT devices

relying on three components: Device Manager, Data Importance Analyzer, and Rate Selection Engine.

The Device Manager manages the embedded IoT devices connected to the RTMR, while controlling

devices that join or leave the network. The Data Importance Analyzer analyzes the importance of the

data collected from the embedded devices based on data analytics results. The rate selection algorithm

running in the Rate Selection Engine dynamically adapts the sensor data transfer rates of the embedded

devices based on the data importance information derived by the Data Importance Analyzer and the

device information provided by the Device Manager. In each IoT device, the Device Controller consists

of the Rate Controller, Application Manager, and Data Pre-processor to transfer sensor data according

to the assigned transfer rate, interacts with the application to generate the sensing data based on the

given rate, and to pre-process data, e.g., compress data, to reduce the bandwidth usage.

RTMR

Data Importance 

Analyzer

IoT Device
Device Controller

Device Manager
Rate Selecion 

Engine

Applicaion 

Manager

Data 

Pre-processor
Rate Controller

Transfer Rate Allocaion Manager

To Other IoT DevicesFrom Other IoT Devices

RatesData

Figure 3. RTMR Front-End: Data and Rate Control Message Flows for Transfer Rate Adaptation Based

on Data Importance.

2.4. Real-Time Sensor Data Analytics

Given real-time sensor data streams from the front-end, the RTMR back-end schedules and

executes periodic real-time data analytics tasks to extract information from sensor data as depicted in

Figure 4. The periodic instances of the data analysis tasks, called jobs in real-time literature [24], are

scheduled via the EDF scheduler. The job dispatched by the scheduler is processed by the map-reduce

(MR) engine until the completion without being preempted to avoid large overheads for preemption

and context switching in real-time data analytics. Although it is often assumed that the context switch

overhead is ignorable in real-time scheduling, this may not be the case for real-time data analytics

dealing with big sensor data. As illustrated in Figure 4, sensor data are directly streamed into main

memory and intermediate data are pipelined to the next map/reduce phase, if any, until the job is

completed. Finally, the derived information is provided to the user(s).

In RTMR, a user has to write two serial functions, map() and reduce(), and specify the period

and deadline for each real-time data analysis task. For example, the map and reduce functions in

Figures 5 and 6 can be used to periodically monitor the number of the active mobile phones in each

cell in a local cellular network as a basis to analyze customers’ mobility and network usage patterns.

Given the user-specified map() and reduce() functions with deadlines and periods, the MR engine

of RTMR in Figure 4 that processes real-time sensor data analysis tasks based on the map-reduce

model [4] (illustrated in Figure 1). More specifically, the the MR engine processes the earliest deadline

job dispatched by the scheduler as follows.
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Figure 4. RTMR Back-End: Scheduling and Sensor Data Analytics in Real-Time In-Memory Map-Reduce.

1 // input: (CellID , PhoneNum) pairs

2 // output: intermediate (key , value) pairs

3 map(void *input) {

4 for each CellID in input {

5 emitIntermediate(CellID ,1);

6 }

7 }

Figure 5. Map Function for Cell Phone Count.

1 // input: intermediate (CellID , 1) pairs

2 // output: (CellID , count)

3 reduce(int key , iterator value) {

4 int count = 0;

5 for each v in value {

6 count = count + v;

7 }

8 emit(key , count);

9 }

Figure 6. Reduce Function for Cell Phone Count.

1. In RTMR, each input sensor datum is expressed as a (key, value) pair, e.g., (cell ID, phone number)

for location-based services, and streamed into memory. The input (key, value) pairs are evenly

divided into chunks by the MR engine and assigned to mappers, i.e., worker threads.

2. The mappers independently execute the user-specified map() function on different data chunks

in parallel. For example, each mapper executes the map() function for cellphone count in Figure 5,

producing intermediate (key, value) pairs as a result.

3. The map phase is completed when all the mappers finish processing the assigned data chunks.

If there is no reduce phase, which is optional, the (key, value) pairs produced by the mappers are

returned as the final result and the job is terminated.

4. If there is a reduce phase, the intermediate (key, value) pairs produced by the mappers are directly

pipelined to one or more reducers and sorted based on their keys. Specifically, the pointers to the

intermediate results in memory are passed to the reducers with no expensive data copies.
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5. The reducers execute the user-defined reduce() function in parallel to produce the final (key, value)

pairs by processing the assigned non-overlapping intermediate (key, value) pairs. When all the

reducers complete, the final (key, value) pairs are returned and the job is terminated. In an iterative

application that consists of multiple pairs of map and reduce phases, the output of the reduce

phase is directly pipelined to the map phase of the next iteration by passing the pointers to

the data.

In RTMR, all input, intermediate, or final (key, value) pairs are stored in memory unlike

MapReduce [5], Hadoop [6], or their variants. Phoenix [20] effectively utilizes the memory hierarchy

to process map-reduce tasks in memory using multiple CPU cores. However, it does not support

a periodic task model, real-time scheduling, direct streaming of sensor data into memory, or memory

reservation. Instead, it only supports FIFO scheduling. Further, it reads input data from and

writes output to the disk. RTMR extends Phoenix by supporting: (1) input sensor data streaming;

(2) intermediate data pipelining; (3) a non-preemptive periodic task model; (4) memory reservation;

and (5) an EDF-based schedulability test and scheduling required for real-time data analytics.

3. Adaptive Rate Allocation

In this section, the notion of data importance is discussed. Based on that, a problem formulation

is given. Also, our dynamic rate allocation method is described.

3.1. Data Importance

Due to the variety of real-time wireless sensing and sensor data analytics applications, the data

importance concept can be defined in different ways. In this paper, we do not argue any of them is

the most appropriate or applicable to all big sensor data analytics in IoT. Instead, we aim to design

a generic framework that can dynamically assign wireless bandwidth (data transfer rates) to IoT

devices based on a specific data importance metric chosen by an application designer aware of the

semantics of a particular IoT application, e.g., cognitive assistance or traffic control.

In this paper, we classify data importance into two categories: (1) application-specific and

(2) application-agnostic metrics.

• Application-specific data importance: The relative importance levels of the sensor data sources

can be determined using predefined criteria to describe events of interest in a specific application.

For example, in visual surveillance, the number of detected human faces or objects of interest

(e.g., weapons) can be used as the data importance metric to support crowd counting or tracking.

In [25], data related to abnormal events are considered important in an underwater wireless

sensor network. Zhag et al. [26] apply the data importance concept to eliminate redundant

observations made by multiple surveillance cameras. In [27], visual data in a squash game

is analyzed. The frequency of future events, where an event is defined to be the squash ball

hitting a specific segment of the walls, is predicted to allocate more bandwidth to the cameras

expected to observe more events. Also, in [28], data generating more profits are considered more

important and further replicated in a cloud data storage system. Although these approaches

leverage the data importance concept, none of them leverages edge computing to mitigate the

challenges for real-time sensor data analytics critical in the emerging IoT era. To bridge the

gap, RTMR running on the edge server dynamically allocates data transfer rates to IoT devices

based on data importance, while scheduling real-time data analytics tasks to meet their timing

constraints at the edge.

• Application-agnostic data importance: The data similarity concept [25,29] is not tied to a specific

application. In general, consecutive sensor data, e.g., temperature/pressure readings or

surveillance images, might be similar. Usually, a data similarity check is inexpensive in terms

of computation; therefore, an IoT device can perform it for itself and transfers the data only if

the difference between the current and previous data is more than a specified threshold, e.g., 5%.
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In addition, Hu et al. [30] propose a novel method, called offload shaping, to allow an IoT device to

drop blurry images, i.e., low quality data, via some additional cheap computation. Other metrics,

e.g., image resolution or sensor calibration, could be used to estimate the sensor data quality and

importance accordingly.

Notably, these data importance metrics are generic and can be utilized to enhance the effectiveness

of sensor data transfer in several ways: (1) higher transfer rates can be assigned to the sensor data

sources providing important data, e.g., sensor data indicating abnormal health conditions or images

with many human faces. In this way, important events, e.g., abnormal health conditions of sensor

wearers, can be tracked more closely subject to the total available bandwidth bound; (2) less important

data, e.g., blurry images or sensor data similar to the previous readings, can be simply dropped to

reduce the bandwidth consumption; or (3) a hybrid approach can drop unimportant sensor data

and reassign unused fraction of the total available rate to the other sensor data sources providing

more important data. In Section 5.1, we consider the first approach for the clarity of the presentation.

A thorough investigation of the second and third approaches is reserved for future work.

3.2. Problem Formulation

In this paper, the total utility is defined to be the inner product between the sensor data transfer

rates and data importance levels provided to the edge server by the IoT devices. Suppose that n

embedded IoT devices periodically transfer sensor data to the edge server. When the transfer rate of

embedded device Ei is ri (the number of data objects transferred per unit time) and the importance of

the data provided by Ei is oi, the total system-wide utility for sensor data transfer and analytics is:

u =~o ·~r (1)

where~o = [o1, ..., on],~r = [r1, . . . , rn]T , and · is the inner product between the two vectors.

As the importance of data transferred from Ei to the edge server may vary in time, the edge server

computes the smoothed importance of data provided by Ei by taking the exponentially weighted

moving average (EWMA) as follows. (Alternatively, Ei itself can compute the importance depending

on the computational complexity as discussed before. In that case, it can piggyback the importance

information to the data transferred to the edge server.)

oi(j) = α × ôi(j) + (1 − α)× oi(j − 1) (2)

where oi(j) is the smoothed importance value, ôi(j) is the importance of the jth data object of Ei, and α

is the exponential forgetting factor such that 0 ≤ α ≤ 1.

In this paper, we use the EWMA because the future importance of sensor data can be affected by

the importance of the current data. For example, suppose that sensors worn by a person indicate an

abnormal health condition at a point in time. This condition may continue in time although it may

gradually disappear due to a treatment or natural self-recovery. In such applications, an EWMA can

gracefully represent the data importance varying in time. A system administrator aware of application

semantics can easily set the α value, i.e., the forgetting factor, in (2) to specify the impact of the previous

data values provided by sensor i on the sensor’s importance. For example, she can set α = 0.3 to ensure

that the impact of ôi(j) is less than 3% after three sensing periods by recursively solving (2). However,

if the importance of only the current data is relevant in a certain application, a system administrator

can simply set α = 1 in (2).

Given (1), our objective is to maximize u subject to:

rmin ≤ ri ≤ ri,max (3)

r1 + . . . + rn ≤ R (4)

`i ≤ D (5)
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where ri is the current sensor data transfer rate of Ei; that is, Ei transfers ri sensor data objects per

second to the edge server, and ri,max is the maximum transfer rate that can be supported by Ei. rmin

is the minimum transfer rate of sensor data, e.g., ECG data or camera images. R in (4) is the upper

bound of the total data transfer rate from all IoT devices to the edge server. For example, R can be

determined by the cellular data plan or the minimum of the available wireless bandwidth and the total

data transfer rate reserved for real-time data analytics at the network edge. `i in (5) represents the E2E

latency in the network edge, i.e., the sum of the latency for the sensor data transfer from Ei to the edge

server and that for the data analytics in the server. Further, D is the E2E deadline for the data transfer

and analytics.

In fact, our utility optimization problem can be solved via integer linear programming (ILP).

However, we do not take the approach, since solving the ILP problem may take exponential time in

the worst case. Instead, we propose a cost-effective algorithm with linear time complicity in terms of

the number of IoT devices in the next subsection.

3.3. Dynamic Transfer Rate Allocation

In our algorithm for adaptive transfer rate allocation summarized in Algorithm 1, ri for Ei

(1 ≤ i ≤ n) is adjusted at each control period in proportion to the relative importance of the sensor

data stream provided by Ei, if necessary, to optimize the total utility of the system. At the kth control

period, the Rate Selection Engine in Figure 3 initially computes the new rate ri(k) for Ei based on Ei’s

relative data importance:

ri(k) = rmin +
⌊ oi(k)

∑
n
j=1 oj(k)

× (R − rmin × n)
⌋

(6)

Algorithm 1: Dynamic Transfer Rate Allocation at the kth Control Period

f ull = 0;

for i = 1; i <= n; i++ do

ri(k) = rmin + b oi(k)
∑

n
j=1 oj(k)

× (R − n × rmin)c;

if ri(k) ≥ ri,max then

ri(k) = ri,max;

f ull++;

end

end

slack = R − ∑
n
i=1 ri(k);

if slack > 0 and n > f ull then

inc = b slack
n− f ull c;

if inc > 0 then

for i = 1; i <= n; i++ do

if ri(k) + inc <= ri,max then

ri(k) = ri(k) + inc;

end

else

ri(k) = ri,max;

end

end

end

end
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It then adjusts ri(k), if necessary, to ensure that ri(k) ≤ ri,max:

ri(k) =

{

ri(k) i f ri(k) ≤ ri,max

ri,max otherwise
(7)

After this step, it evenly divides any unused fraction of R to every node subject to the constraint

that ri(k) ≤ ri,max. Therefore, our dynamic rate allocation method (1) adjusts the transfer rate of each

embedded device in proportion to the importance of the sensor data stream provided by the device

and (2) utilizes R as fully as possible subject to the constraints specified in (3)–(5).

The time complexity of Algorithm 1 is O(n) for n IoT devices. Note that our algorithm is

lightweight in that the lower bound of rate allocation to n devices is Ω(n). Also, it takes the edge

server less than 20 µs to run our rate adaptation algorithm in the commodity desktop PC used as a

relatively low-end edge server in our case study. (The system configuration is described in Section 5).

Further, Algorithm 1 is optimal in terms of the total utility defined in (1).

Theorem 1. Theorem 1. The utility defined in (1) is maximized when the rate ri of Ei is assigned in proportion

to oi where 1 ≤ i ≤ n.

Proof. According to Cauchy-Schwarz inequality [31], the absolute value of the utility

|u| = |~o ·~r| ≤ ||~o|| × ||~r||. ||~o|| =
√

o2
1 + o2

2 + . . . o2
n and ||~r|| =

√

r2
1 + r2

2 + . . . r2
n, since ~o,~r ∈ IRn in

this paper. Cauchy-Schwarz inequality also states that |u| is maximized; that is, |~o ·~r| = ||~o|| × ||~r||

only when~r = c~o where c is a constant, which is achieved in Algorithm 1 by assigning the transfer rate

ri of Ei in proportion to oi. Therefore, Algorithm 1 can optimize the total utility on the condition that

data importance prediction based on history via (2) is accurate.

4. Real-Time Task Model and Scheduling

In this section, the task model, memory reservation, and scheduling supported by RTMR

are discussed.

4.1. Task Model and Memory Reservation

In this paper, we assume that a real-time sensor data analysis system needs to execute a set

of n independent periodic map-reduce tasks Γ = (τ1, τ2, ..., τn) that are not self-suspending. In the

system, there are m ≥ 1 cores available for real-time data analytics. In this paper, an arbitrary real-time

map-reduce task τi ∈ Γ is associated with the period Pi and relative deadline Di = Pi (implicit deadline).

If a job of τi, i.e., a periodic instance of τi, is released at time t, its absolute deadline by which the job

should complete is t + Di.

τi is a real-time data analysis task that consists of si (≥ 1) parallel execution segments, i.e.,

map/reduce phases, defined as follows:

τi : ((< e1
i , m1

i >, ...,< e
si
i , m

si
i >), Ci, Di)

where si = 1, if τi only consists of a map phase. si = 2, if it has both map and reduce phases. si > 2

if it consists of multiple pairs of parallel map and reduce phases iteratively executed in sequence.

In addition, e
j
i and m

j
i are the estimated maximum execution time of segment j and the number of cores

used in the segment, respectively. The (estimated) maximum execution time of τi is: Ci = ∑
si
j=1 e

j
i .
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Using the API of RTMR, a user needs to specify the map() and reduce() functions as well as si and

Di in Section 4.1 for τi considering the application semantics. For the clarity of presentation, we assume

that the data partitioning and shuffle steps in Figure 1 are included in the map and reduce phases,

respectively. Also, their latencies are added to the execution times of the map and reduce phases.

In RTMR, Ci is estimated offline considering not only the CPU time but also the memory access

delay, because the data access delay may not be ignorable in real-time data analytics. In this paper,

τi ∈ Γ is run multiple times offline. For each run of τi, the latency from reading the first input

(key, value) pair to producing the last output (key, value) pair is used as the estimated execution time

to consider both the computation and data access latency. The maximum observed execution time

acquired from the prespecified number of runs is used as Ci. In general, the analysis of worst-case

execution times in a multicore processor is an open problem. Analyzing the execution times of real-time

data analysis tasks is even more challenging due to the increasing size and volatility of sensor data.

A thorough investigation of more advanced approaches to analyze the execution times of real-time

data analysis tasks is reserved for future work.

In RTMR, input sensor data are streamed into memory as discussed before. Further, we assume

that the size of input sensor data is predetermined. At the end of a segment, τi produces intermediate

data that is input for the next segment executed consecutively. If there is no following segment, they are

the final output of a job of τi. Given that, RTMR analyzes the maximum intermediate/output data sizes

and reserves enough memory for τi, which typically consists of a few common operations, such as

filtering, aggregation, or prediction of physical phenomena (e.g., the traffic speed in a road segment).

If unimportant input data are filtered out or sensor data are aggregated in a phase, the size of the

output or intermediate data produced at the end of the phase is not bigger than the input. Prediction

via, for example, linear (or nonlinear) regression usually produces a small predefined number of model

parameters considerably smaller than the input. Even when a join, one of the most expensive operator

for data processing, is performed between a pair of input sensor data of sizes N and M, the maximum

output size is limited to NM in the worst-case. Also, N and M are relatively small compared to data

sizes considered in batch data analysis systems, e.g., Hadoop, because only the current sensor data are

processed per period for real-time data analytics in RTMR.

4.2. Schedulability Test

In the jth segment of τi, where 1 ≤ j ≤ si, mj threads are used to run the user-specified map() or

reduce() function of τi in a parallel segment depending on whether τi is currently in the map or reduce

phase. In this paper, each core runs a single map or reduce thread at a time. However, mj threads

run in parallel in the jth segment, following the data-parallel, single-instruction-multiple-data (SIMD)

model. In parallel real-time data analytics, there is a trade-off between data and task parallelism.

If more cores are used by an individual task to process more data simultaneously in a SIMD manner,

fewer tasks can run in parallel or vice versa. As scheduling in multiprocessor real-time systems is

NP-hard in the strong sense [32], we devise a heuristic to schedule real-time data analysis tasks in this

paper. More specifically, we intend to maximize the data parallelism subject to the available hardware

parallelism by setting m
j
i = m for τi, where m is the total number of the cores available for real-time

data analytics in the system. In this way, we finish a job of a real-time data analysis task as early as

possible, while avoiding context switches due to preemptions.

In this paper, we apply non-preemptive uniprocessor EDF scheduling to meet timing constraints

of real-time data analysis tasks using the schedulability test for non-preemptive periodic tasks with

no idle time insertion [33], because m cores are used as if they are a faster uniprocessor for data and

compute intensive real-time data analytics. Specifically, the task set Γ = (τ1, τ2, ..., τn) is schedulable,

if the two following necessary and sufficient conditions are met:
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Condition 1.
n

∑
i=1

Ci

Pi
≤ 1 (8)

Condition 2. ∀i, 1 < i ≤ n; ∀L, P1 < L < Pi:

L ≥ Ci +
i−1

∑
j=1

⌊

L − 1

Pj

⌋

Cj (9)

Condition 1 requires the processor is not overloaded. In Condition 2, the tasks in Γ are sorted

in non-descending order of periods. The right hand side of the inequality in Condition 2 is a least

upper bound on the processor demand realizable in an interval of length L that starts when τi’s job

is scheduled and ends sometime before the deadline of the job. The two conditions are unrelated in

that conceiving of both schedulable task sets with the total utilization of 1 and unschedulable task sets

having arbitrarily small utilization are possible [33].

If Γ is schedulable subject to (8) and (9), and the memory constraint, RTMR schedules the periodic

data analysis tasks. Otherwise, it provides feedback to the user so that the user can adjust the task

parameters, such as the task periods, or provide faster map() and reduce() functions that may produce

approximate results. After an adjustment, the schedulability test is repeated for the modified task set.

We acknowledge that alternative scheduling methods could be applicable. For example,

the average execution times rather than the maximum ones can be used, if occasional deadline

misses are acceptable to a certain degree. τi can use fewer than m cores such that more than one

tasks can run together, similar to [34,35], if the maximum memory access delay and contention for

shared resources, e.g., the system bus and memory controller, between concurrent data analysis tasks

can be quantified in terms of timing. In a many-core system, the real-time data analysis tasks can be

partitioned into multiple sets of the cores using a bin-packing heuristic [32]. In each partition, the

tasks statically assigned to the partition can be scheduled using the method described in this paper.

However, partitioned scheduling of real-time data analysis tasks is challenging, since bin-packing is

NP-complete. A thorough investigation of these issues is beyond the scope of this paper and reserved

for future work.

5. Performance Evaluation

In this section, we implement a prototype RTMR system and evaluate the performance in

a stepwise manner. We evaluate the performance of (1) the dynamic transfer rate allocation algorithm

based on sensor data importance and (2) the timeliness of real-time data analytics tasks.

5.1. Cost-Effective Rate Allocation to IoT Devices

In this subsection, we implement and evaluate our dynamic service rate allocation algorithm

(Algorithm 1) using several smartphones and a desktop PC equipped with a quad core Intel processor

i7-4790 (3.6 GHz) and 16 GB main memory to emulate a low-end edge server specialized for image

processing [36] to demonstrate the real-world applicability of our system. To evaluate the E2E

timeliness on different devices, we use 5 different smartphones: Huawei Honor 6, Galaxy S6, LG G3,

Google Nexus 6, and Google Nexus 3 that transfer images to the edge server across busecure [37],

which is the public WiFi network on our campus with the nominal bandwidth of 144 Mbps. We have

no privilege to reserve any channel or bandwidth, since busecure is the public WiFi network on our

campus. Thus, providing any hard or soft real-time guarantee is impossible. Instead, we focus on

optimizing the utility for sensor data transfer and analytics.
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In this experiment, we set R = 12 fps (frames per second), rmin = 1 fps, and rmax = 5 fps. None of

the smartphone we used can support more than 5 fps to take pictures and compress and transmit them.

The control period for transfer rate adaptation is set to 10 s. All the smartphones transfer images to

the edge server for 2 min. The image resolution is 720 × 486. (The image resolution instead of the

transfer rate could be adjusted to enhance the total utility subject to our constraints specified in (3)–(5).

This is reserved for future work.) The size of each image ranges between 4.9−10.2 KB after JPEG

compression. The average face detection accuracy is 97.3%. Although our approach is not limited

to a specific sensing and analytics application, we consider face detection as a case study. In that

context, oi is defined to be the number of human faces detected in the sensor data stream provided by

embedded IoT device Ei. In this subsection, the E2E deadline for sensor data (i.e., image) transfer and

analytics (i.e., face detection in this case study) is set to 100 ms.

To verify the feasibility of dynamic rate adaptation based on data importance, we have created

an experimental scenario such that each camera captures a certain number of faces in certain time

intervals as depicted in the upper half of Figure 7a. As shown in the lower half of Figure 7a, the transfer

rates of the embedded devices (smartphones) are dynamically adapted in proportion to their data

importance values (the numbers of detected faces) effectively tracking the changes in the ground truth.

Initially, embedded devices 4 and 5 (EB4 and EB5 in the figure) are assigned the highest transfer rate,

because each of them is configured to continuously take one face throughout the 2 min experiment.

On the other hand, the other devices detect no face at the beginning. However, the rate of EB4 and EB5

is reduced as the edge server detects an increasing number of faces in the image stream provided by

EB1, and accordingly increases EB1’s rate. The rate of EB4 and EB5 is increased again as EB1 detects

fewer faces later in the experiment. Therefore, from Figure 7, we observe that our rate allocation

effectively reflects the data importance changes by dynamically adapting the transfer rates assigned

to the embedded IoT devices in proportion to their relative data importance to optimize the utility.

In this case study, our approach enhances the utility, i.e., the total number of faces delivered to the

edge server, by 38% compared to the baseline approach unaware of data importance and assigns the

same transfer rate to all the smartphones, which is the de facto standard in visual surveillance [38,39].

In this case study, the 95 percentile E2E latency of the slowest smartphone is 100 ms (equal to the

E2E deadline) as plotted in Figure 7 and summarized in Table 1. The network latency ranges between

14 –36 ms. The rest of the latency is caused by real-time data analytics. Separate from the performance

results in Figure 7 and Table 1, we have also executed the face detection task 100 times on the fastest

smartphone that we have (Galaxy S6) without offloading the task to the edge server, in which we have

found the 95 percentile latency is 309 ms. Based on this result and Table 1, we observe that our approach

leveraging the edge server decreases the 95 percentile E2E latency by 3.09x−3.59x compared to another

baseline, in which each smartphone performs data analytics on its own with no offloading. In fact, a

majority of IoT devices could be much less powerful than smartphones. Also, real-time data analytics

may need to deal with bigger sensor data and more complex data analysis; therefore, embedded IoT

devices may suffer from considerably longer latency, if compute-intensive tasks are executed on them.

These observations further motivate real-time data analytics in the edge server.

Table 1. 95 percentile of E2E Latency for different Smartphones.

Smart Phone Model E2E Latency (ms)

Huawei Honor 6 100
Galaxy S6 86

LG G3 98
Google Nexus 6 93
Google Nexus 3 98
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Figure 7. Case Study (R = 12 fps, rmin = 1 fps, rmax = 5 fps). (a) Frame rate changes according to the

ground truth (the actual number of faces); (b) CDF of End-to-End Latency.

5.2. Scheduling Real-Time Data Analysis Tasks

In this subsection, we assume that sensor data are efficiently delivered to RTMR at the network

edge. (For example, our approach based on data importance can be integrated with the emerging

5 G or Gbps WiFi technology that significantly decreases the latency, enhancing the throughput.)
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In fact, it is possible to configure a real-time data analytics system such that a relatively low-end edge

server handles specific tasks, e.g., face detection, within short deadlines, while a more powerful edge

server performs more comprehensive, in-depth data analytics. (Efficient partitioning of real-time data

analytics tasks among IoT devices and edge servers is beyond the scope of this paper. An in-depth

research is reserved for future work.) Therefore, we evaluate the real-time performance of RTMR by

running benchmarks associated with timing constraints for much bigger input sensor data than those

used in Section 5.1.

For performance evaluation, the following popular data analytics benchmarks [20] are adapted to

model periodic real-time data analysis tasks.

• Histogram (HG): A histogram is a fundamental method for a graphical representation of any data

distribution. In this paper, we consider image histograms that plot the number of pixels for

each tonal value to support fundamental analysis in data-intensive real-time applications, e.g.,

cognitive assistance, traffic control, or visual surveillance. (HG is not limited to image data but

generally applicable to the other types of data, e.g., sensor readings.) The input of this periodic

task is a large image with 4.7 × 108 pixels per task period. The input data size processed per

period is approximately 1.4 GB.

• Linear Regression (LR): Linear regression is useful for real-time data analytics. For example, it can

be applied to predict sensor data values via time series analysis. In LR, 2.7 × 107 (x, y) points

in two dimensional space, totaling 518 MB, are used as the input per task period to model the

approximately linear relation between x and y via LR.

• Matrix Multiplication (MM): MM is heavily used in various big data and IoT applications, such as

cognitive assistance, autonomous driving, and scientific applications. In this paper, MM multiplies

two 2048 × 2048 matrices together per task period. Each input matrix is 16 MB. The output matrix

is 16 MB too.

• K-means clustering (KM): This is an important data mining algorithm for clustering. For example,

it can be used to cluster mobile users based on their locations for real-time location-based services.

It partitions ` observations into k clusters (usually ` � k) such that each observation belongs to

the cluster with the nearest mean. The input of the k-means task is 107 points in two dimensional

space, totaling 77 MB, per task period.

In this paper, we generate new data per period to maximize the workload to stress-test RTMR

under a worst-case setting. In fact, some histograms and sub-matrices may not change between

two consecutive periods when, for example, only part of images used for cognitive assistance or

autonomous driving changes. Also, linear regression and k-means clustering can be performed

incrementally between consecutive periods. We take this approach, since it is required to design a

real-time scheduling framework considering a worst-case scenario to support the predictability [24].

In the future, we could use, for example, average execution times for a probabilistic assurance of

timeliness. However, this is a complex issue and beyond the scope of this paper. It is reserved as a

future work.

All the benchmarks are reductive; that is, the size of the intermediate/output data of all the

benchmarks is not bigger than that of the input data. Among the tested benchmarks, only KM consists

of more than one pair of map-reduce phases. Specifically, it is implemented as a series of seven pairs

of iterative map and reduce phases. However, it generates no additional intermediate/output data;

it only finds new k means and updates the cluster membership of each point according to the new

means in each pair of the map and reduce phases. For the tested benchmarks, enough memory is

reserved as discussed in Section 4.
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Our system used for performance evaluation of RTMR is a Linux machine with two AMD Opteron

6272 processors, each of which has 16 cores running at 2.1 GHz. There is a 48 KB L1 cache and 1 MB

L2 cache per core. In addition, there is a 16 MB L3 cache shared among the cores. Out of the 32 cores,

one core is dedicated to the real-time scheduler and another core is exclusively used to generate

periodic jobs of the real-time data analysis tasks. The remaining 30 cores are used to process the

generated real-time data analysis jobs. The system has 32 GB memory.

Using the micro-benchmarks, we profile the maximum (observed) execution times of the tested

benchmarks including the computation and data access latency, perform the schedulability analysis

of real-time data management tasks offline based on the maximum execution times, and empirically

verify whether the deadlines can be met for several sets of real-time data analysis tasks generated using

the micro-benchmarks. Specifically, one benchmark is run 20 times offline using randomly generated

data. The maximum latency among the 20 runs is used for the schedulability test.

Table 2 shows the maximum execution times of the benchmarks derived offline. As the number

of cores to process real-time data analysis tasks, m, is increased from 1 to 30, the maximum execution

times of the HG, LR, MM, and KM are decreased by over 12, 4.1, 17.7, and 4.3 times, respectively. In HG

and MM, load balancing among the cores is straightforward. As a result, the maximum execution

time is decreased significantly for the increasing number of the cores used for real-time data analytics.

Notably, LR’s maximum execution time in Table 2 decreases substantially only after m ≥ 16. For m ≤ 8,

the hardware parallelism provided by the employed CPU cores is not enough to considerably speed

up LR. On the other hand, the decrease of KM’s maximum execution time in Table 2 becomes marginal

when m ≥ 8. In KM, individual points are often re-clustered and moved among different clusters until

clustering is optimized in terms of the distance of each point to the closest mean. Thus, the cluster

sizes may vary dynamically depending on the distribution of input points between the consecutive

map/reduce phases. As a result, threads may suffer from load imbalance. Thus, using more cores does

not necessarily decrease the maximum execution time of KM significantly.

Table 2. Maximum Execution Times in seconds.

m = 1 m = 2 m = 4 m = 8 m = 16 m = 30

HG 2.41 s 1.67 s 0.88 s 0.56 s 0.33 s 0.2 s
LR 1.49 s 1.3 s 1.18 s 0.95 s 0.62 s 0.37 s

MM 19.7 s 11.2 s 5.9 s 3.73 s 2.02 s 1.11 s
KM 10.2 s 7.5 s 3.72 s 3.09 s 2.54 s 2.36 s

For performance evaluation, we intend to design a task set with as short deadlines as possible.

We have considered the six task sets in Table 3 where the relative deadlines become shorter from

Γ1 to Γ6. We consider these task sets to analyze their schedulability for different numbers of cores

subject to the two conditions specified in (8) and (9). In each task set, a longer deadline is assigned to

a task with the larger maximum execution time. Also, in each task set, we have picked task periods

(i.e., relative deadlines) such that the longest period in each task set is no more than twice longer

than the shortest period in the task set to model real-time data analysis tasks that need to be executed

relatively close to each other. In Γ6, the tightest possible relative deadlines are picked subject to these

constraints in addition to (8) and (9). The maximum execution times and relative deadlines of Γ6 for

30 cores are shown in the last column and row in Tables 2 and 3, respectively. The maximum total

utilization of Γ6 for 30 cores is set to 1 in (8). Assigning shorter deadlines or bigger data to the tasks in

Γ6 incurs deadline misses.
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Table 3. Relative Deadlines (seconds) of the Task Sets (Γ1–Γ6).

HG LR MM KM

Γ1 23 s 22 s 30 s 25 s
Γ2 13 s 15 s 22 s 18 s
Γ3 7 s 8 s 12 s 10 s
Γ4 4.5 s 5 s 7 s 6 s
Γ5 3 s 4 s 5 s 6 s
Γ6 2.6 s 3 s 4 s 5 s

Table 4 shows the results of the schedulability tests for Γ1–Γ6). In Table 4, ‘yes’ means a task set is

schedulable (i.e., all deadlines will be met) for a specific number of cores used to run HG, LR, MM,

and KM. We present the performance results for Γ6 that has the shortest deadlines and, therefore, it is

only schedulable when m = 30 as shown in Table 4. All four periodic benchmark tasks, i.e., HG, LR,

KM, and MM tasks in Γ6, simultaneously release their first jobs at time 0 and continue to generate jobs

according to their periods specified in the last row of Table 3 for 1000 s. As shown in Figures 8–11,

all deadlines of the periodic real-time data analysis tasks in Γ6 are met. In total, more than 0.72 TB of

data are processed in a 1000 s experimental run, which is projected to be over 62 TB/day.

Table 4. Schedulability of the Task Sets.

m = 1 m = 2 m = 4 m = 8 m = 16 m = 30

Γ1 yes yes yes yes yes yes
Γ2 no yes yes yes yes yes
Γ3 no no yes yes yes yes
Γ4 no no no yes yes yes
Γ5 no no no no yes yes
Γ6 no no no no no yes

In this paper, Phoenix [20] is used as the baseline. It is closest to RTMR in that it is a state-of-the-art

in-memory, multi-core map-reduce system unlike the other approaches mainly based on Hadoop

(discussed in Section 6). However, it has missed most deadlines of Γ6 for several reasons (although it

meets the deadlines for light workloads, such as Γ1 using 30 cores). First, it is timing agnostic and

only supports FIFO scheduling as discussed before. Further, it reads input data from and writes

output to secondary storage without supporting input sensor data streaming into memory. Neither

does it support in-memory pipelining of intermediate data for iterative tasks. As a result, a single

operation to read input data from disk (write output to disk) takes 38 ms–1.35 s (71 ms–1.14 s) for the

tested benchmarks.

In Figures 8–11, we also observe that the periodic real-time data analysis jobs finish earlier than

the deadlines due to the pessimistic real-time scheduling needed to meet the timing constraints.

Notably, simply using advanced real-time scheduling techniques that support intra-task parallelism,

e.g., [34,35], does not necessarily enhance the utilization. For example, the best known capacity

augmentation bound of any global scheduler for tasks modeled as parallel directed acyclic graphs is

2.618 [35]. Hence, the total utilization of the task set should be no more than m/2.618 and the worst-case

critical-path length of an arbitrary task τi (i.e., the maximum execution time of τi for an infinite number

of cores) in the task set cannot exceed 1/2.618 of Di to meet the deadlines.

Overall, our system design and experimental results serve as proof of concept for real-time

big sensor data analytics. Our work presented in this paper opens up many research issues, e.g.,

more advanced scheduling, load balancing, execution time analysis, and real-time data analysis

techniques, to efficiently extract value-added information from big sensor data in a timely manner.
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Figure 8. Response Times of Histogram (HG) Jobs. The blue horizontal bar is the deadline (2.6 s).

Each red dot represents the response time of one periodic HG job.
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6. Related Work

A comprehensive review of earlier work on real-time communication in wireless networks is given

in [19]. Recently, a good survey of real-time wireless scheduling for industrial cyber-physical systems

is given in [18]. Also, novel approaches for medium access control and scheduling, e.g., [18,40–44],

have been investigated to support real-time wireless sensing and control. However, none of these
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projects considered optimizing the total utility for sensor data transfer from IoT devices to the edge

server based on data importance.

Although notion of data importance has been considered in various contexts [2,25–28,30],

our work is different from them in that we (1) enhance the total utility via adaptive sensor data transfer

from IoT devices to the edge server based on data importance and (2) provide a real-time sensor data

analytics framework at the network edge, while supporting generic data importance metrics.

Hadoop [6] is extensively used for big data analytics. A lot of work has been done to enhance

Hadoop too [45]. Unfortunately, these approaches based on batch processing of the data stored

in the distributed file system neither consider timing constraints nor support periodic in-memory

processing of sensor data streams in real-time. HaLoop [46] supports iterative applications in Hadoop;

however, Hadoop and most of its variants are unaware of timing constraints for real-time data analytics.

The problem of meeting real-time deadlines in Hadoop is investigated in [11–16]. Also, in [17],

admission control is applied to deadline-driven batch data analysis tasks. However, these approaches

focus on batch processing of archived data, providing little support for sensor data streaming or

intermediate data pipelining. Thus, they are subject to significant I/O overheads and substantially

longer latency and deadlines (e.g., tens of minutes). In [47], a fixed priority real-time scheduling

framework based on the rate monotonic algorithm [24] and several real-time data analytics patterns

are supported. It is complementary to our work in that EDF adopted in this paper is a dynamic priority

scheduling method. Moreover, we support cost-effective transfer and streaming of sensor data from

IoT devices to the edge server on which RTMR runs as well as memory reservation and pipelining

of intermediate data between map-reduce phases different from [11–17,47]. Phoenix [20] supports

efficient in-memory execution of map/reduce tasks in a multicore system. There are other in-memory

MapReduce systems such as [48,49]; however, they are neither aware of timing constraints for real-time

data analytics nor support sensor data streaming or pipelining. In this paper, we extend the notion

of in-memory map-reduce via real-time scheduling, memory reservation, and data streaming and

pipelining to support real-time data analytics, while supporting adaptive sensor data transfer based on

data importance. Because there is no standard real-time big data framework and different approaches

(e.g., [11–17,47]) use different frameworks, deadlines, and scheduling algorithms, it is very hard (if at

all possible) for us to implement and empirically compare all related approaches to RTMR on our own.

Instead, we compare the performance of RTMR to that of Phoenix [20] that is most closely related

to our work as a proof of concept, while qualitatively comparing our approach to advanced related

methodologies [11–17,47] as discussed above.

Real-time databases (RTDBs) have been studied extensively to process user transactions using

fresh temporal data representing the current real world status. However, sophisticated data analysis

based on, for example, machine learning or data mining has rarely been considered in RTDBs.

Neither do they provide an easy-to-use parallel programming model, e.g., the map-reduce model [4].

Leading-edge data stream management systems, e.g., Storm [8], Spark Streaming [10], and C-MR [50],

support near real-time stream data processing. RAMCloud [51] always stores entire data in distributed

memory and provides high speed networking to support reads/writes 1000 times faster than

disk-based storage. However, they do not consider timing constraints for real-time data analytics.

In the future, our approach could be combined with it to handle bigger sensor data in real-time.

In multiprocessor real-time scheduling, it is a common practice to schedule serial tasks

concurrently using multiple processors or cores [52]. Novel scheduling algorithms, e.g., [34,35],

are developed to support intra-task parallelism such that a single real-time task can use multiple

cores (or processors) at a time. In this way, compute-intensive tasks can meet stringent deadlines

that cannot be met otherwise. However, these studies do not consider real-time data analytics issues,

e.g., the real-time map-reduce model, data streaming/pipelining, and memory reservation for timely

analysis of sensor data.
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7. Conclusions and Future Work

Supporting real-time sensor data analytics is desirable yet challenging. Most existing big data

management systems, e.g., Hadoop, are timing agnostic and only focus on batch processing of

previously stored data in the cloud rather than dealing with real-time sensor data transfer from IoT

devices to the edge server and real-time analytics at the network edge on the fly. To address the problem,

we design a new framework for cost-effective sensor data transfer and real-time analytics. We have

also implemented a prototype system and evaluated the performance. In the performance evaluation,

our approach for adaptive transfer rate allocation effectively tracks the ground truth, while considerably

enhancing the utility. Also, we support schedulability analysis of real-time data analytics tasks and

empirically verify timing constrains are met in the prototype real-time map-reduce framework (RTMR).

In the future, we will explore more efficient scheduling and resource management techniques such as

load balancing among edge servers, while providing more advanced data importance estimation and

real-time data analytics.
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ECG Electrocardiogram

EDF Earliest Deadline First

E2E End-to-End
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fps frames per second

ILP Integer Linear Programming

IoT Internet of Things
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mHealth mobile Health
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