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Photochemical alteration of organic carbon draining
permafrost soils shifts microbial metabolic
pathways and stimulates respiration
Collin P. Ward 1,2, Sarah G. Nalven3, Byron C. Crump3, George W. Kling 4 & Rose M. Cory 1

In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the

microbial respiration of DOC to CO2. This coupled photochemical and biological degradation

of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils

increase opportunities for DOC oxidation to CO2 in surface waters, thereby reinforcing global

warming. Here we show how and why sunlight exposure impacts microbial respiration of

DOC draining permafrost soils. Sunlight significantly increases or decreases microbial

respiration of DOC depending on whether photo-alteration produces or removes molecules

that native microbial communities used prior to light exposure. Using high-resolution

chemical and microbial approaches, we show that rates of DOC processing by microbes are

likely governed by a combination of the abundance and lability of DOC exported from land to

water and produced by photochemical processes, and the capacity and timescale that

microbial communities have to adapt to metabolize photo-altered DOC.
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C limate change is rapid in the Arctic, thawing large areas of
permafrost1 that contain nearly half of the world’s soil
organic carbon2, 3. As much as 40% of the net

land–atmosphere C exchange in the Arctic is mediated by surface
waters4, 5, where dissolved organic carbon (DOC) flushed from soils
is oxidized to CO2 by sunlight and microbes6–25. Photochemical
processing of DOC likely supplies about one-third of the CO2

released from Alaskan arctic surface waters6, by either directly
mineralizing DOC to CO2 or indirectly altering DOC chemical
composition and, in turn, rates of microbial respiration13, 24. CO2

emissions from the coupled photochemical and biological
degradation of DOC may change as newly thawed DOC from
deeper, permafrost soils is exported to surface waters. Permafrost
DOC is photochemically labile13–17, has a different chemical
composition compared to DOC currently exported to surface waters
from the annually thawed “active layer” of soil13, 18–22, and DOC
chemical composition is known to influence the rate of DOC
degradation by sunlight and microbes13, 14, 19–25.

We know that sunlight and microbes interact to degrade DOC
in surface waters, but at present we cannot predict the rate and
extent of this degradation either in the dark or in the light10, 11.
This is because the many thousands of organic molecules within
soil DOC vary in lability to microbes, and even the more inclusive
chemical classes of DOC (e.g., “aromatics” or “aliphatics”) may
fuel microbial respiration at different rates25–28. The general
expectation is that smaller (i.e., lower molecular weight),
more aliphatic (i.e., higher H/C elemental ratios), and less
oxidized (i.e., lower O/C) DOC is easier for microbes to degrade
(i.e., more labile) than larger, more aromatic, and more oxidized
DOC29, 30. For example, DOC leached from permafrost across the
Arctic is relatively enriched in smaller, more aliphatic and less
oxidized DOC compared to DOC draining the upper active,
organic soil layer20–22. This observation is consistent with
findings that permafrost DOC supports relatively higher bacterial
growth efficiencies and respiration rates on a per C basis,
compared to DOC draining the thawed layer19–22. However,
when labile molecules comprise too little of the DOC pool, the
more abundant but less labile DOC may primarily fuel respiration
to CO2

26–28. In the active, organic layer of arctic soils, the most
abundant DOC compounds are supposedly low lability, larger,
aromatic, and more oxidized20–22. Despite this lower lability,
natural microbial communities in arctic soils have the genomic
potential to metabolize this more aromatic and more oxidized
DOC31–33, and evidence suggests that these compounds are
degraded by soil microbes13, 18, 25. It is likely that microbes
degrade DOC spanning a wide range of labilities, with more
abundant compounds accounting for the majority of the DOC
degraded. Therefore, understanding the effect of sunlight
on DOC degradation by microbes requires knowledge of how
sunlight alters the pools of both labile and abundant DOC.
Explanations for why sunlight alters rates of DOC degradation

by microbes have focused mainly on the photochemical
production or loss of small pools of labile DOC, rather than the
production or loss of the abundant DOC that may fuel the bulk of
respiration. The current model of understanding is that more of
the larger, more aromatic, and more oxidized DOC leads to a
greater positive effect of sunlight exposure on rates of microbial
consumption of DOC because sunlight converts this less labile C
to more labile C34, 35. However, there are some key exceptions to
this generalized model. For example, the opposite relationship has
been observed for DOC draining Alaskan permafrost soils13,
where permafrost DOC was depleted in larger, more aromatic,
and more oxidized DOC compared to DOC draining the active
organic layer22. Nevertheless, sunlight exposure enhanced
microbial respiration of this permafrost DOC by > 40%
compared to permafrost DOC held in the dark13. In another

example, sunlight exposure of aromatic-rich DOC draining the
annually thawed soil layer slowed microbial respiration by up to
70%13, 24. In these Alaskan soils, sunlight exposure of DOC lea-
ched from either permafrost or organic layer converted less labile
DOC (i.e., larger, more aromatic, and more oxidized) into more
labile DOC (i.e., smaller, more aliphatic, and less oxidized)13, 14.
Thus, while photo-exposure of DOC draining permafrost soils in
the Arctic may consistently produce labile C, variability in the
microbial response to photochemically altered DOC suggests that
photo-production of labile DOC is only one factor controlling the
effect of sunlight on microbial degradation of DOC.
Here we show that the effect of sunlight on rates of microbial

degradation of permafrost DOC depends on photochemical
production or removal of the most abundant DOC primarily
fueling microbes. We use short-term photochemical experiments,
high-resolution mass spectrometry, and measures of microbial
activity, community composition, and gene expression to show
that in the dark, microbes native to the deep permafrost or
surface organic layer soils degraded the DOC that was most
abundant in either soil, and sunlight exposure either produced or
removed the abundant DOC used by microbes, which induced
changes to key metabolic steps taken by the native microbial
communities to adapt to and degrade the light-altered DOC.
Alteration of permafrost DOC by sunlight to compounds used
by microbes results in a two-fold increase in respiration rates,
suggesting that when permafrost DOC is exported to sunlit
surface waters it can be rapidly respired to CO2.

Results
Overview. Here we explain how and why the photo-alteration of
DOC draining the deep permafrost layer stimulates microbial
activity13, but photo-alteration of DOC draining the shallow,
annually thawed organic layer suppresses microbial activity13, 24.
We compare the chemical formulas altered by sunlight14 to the
formulas used by microbes (Fig. 1), and relate these changes in
DOC chemistry caused by sunlight and microbes to the rates of
microbial activity in the light and dark (Fig. 2) and to the shifts in
microbial gene expression and community composition (Fig. 3).

Characterization of DOC consumed by microbes in the dark.
Microbes in each soil layer (the deep permafrost and shallow
organic layer) consumed the DOC that was most abundant in
that layer. High-resolution mass spectrometry showed that
permafrost DOC was enriched in smaller, more aliphatic, and less
oxidized formulas compared to organic layer DOC (referred
to here as aliphatic-like DOC)22. The subset of aliphatic-like
formulas initially enriched in permafrost DOC was consumed
(Fig. 1a), and supported higher activity rates and growth
efficiencies for microbes native to permafrost compared to
microbial activity in the organic layer. These findings support the
idea that the aliphatic-like DOC is easier for microbes to degrade
and yields more energy (i.e., higher lability) than larger, more
aromatic, and more oxidized DOC (referred to here as aromatic-
like)29, 30. In contrast, organic layer DOC was enriched in
aromatic-like formulas compared to permafrost DOC22. Soil
microbes native to the organic layer consumed these aromatic-
like formulas (Fig. 1b) at lower rates of respiration and growth
efficiency compared to rates and efficiencies in permafrost.
There are three plausible explanations why microbes in the

organic layer consumed aromatic-like DOC (i.e., lower lability),
rather than the aliphatic-like DOC expected to be most labile.
First, the concentration of higher-lability, aliphatic-like DOC in
the organic layer may have been too low to sustain microbial
populations. However, the concentration of aliphatic-like DOC in
the organic layer was at least 600 μM C, about three to four times
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greater than the concentration of DOC respired to CO2 or fixed
into biomass during the relatively short (5 days) incubation
(Supplementary Table 3; based on 13C-NMR and mass spectro-
metry showing that 20–30% of the DOC in the organic layer
was aliphatic-like, defined as aliphatic DOC resonating from 0 to
60 ppm or aliphatic C with an O/C< 0.5)29, 30. These data suggest
that microbial use of aliphatic-like DOC in the organic layer was
likely not limited by the concentration of this DOC. Alternatively,
the second explanation for lack of consumption of aliphatic-like
DOC by microbes native to the organic layer is that this DOC
may have lower lability than expected. Each molecular formula
detected by high-resolution mass spectrometry likely corresponds
to many different structural- and stereo-isomers with distinct
bonding environments and activation energies for microbes to
overcome during metabolism36. Thus, there might be critical
differences in structure between the aliphatic-like DOC in the
organic layer vs. that in permafrost, thereby limiting microbial
consumption of this C. Third, microbes with the metabolic
capacity to degrade aliphatic-like DOC were either absent or too

rare in the initial organic layer community to degrade this
DOC, especially given the tight coupling between microbial
community composition and the degradation of specific types
of DOC23, 24, 37–39. The relative likelihood of these three
explanations can be tested by examining shifts in microbial
activities, community compositions, and gene expressions in
response to photochemically-altered DOC.

Characterization of photo-altered DOC consumed by
microbes. Light exposure altered the chemical compositions of
permafrost and organic layer DOC, and increased or decreased
rates of microbial respiration depending on whether light
produced or removed the formulas that fueled native microbes in
the dark (Fig. 1a). For permafrost DOC, the main effect of light
exposure was to produce more of the same aliphatic-like DOC
that permafrost microbes consumed in the dark (Fig. 1a). For
example, 26% of photo-produced permafrost DOC formulas had
the same exact masses as formulas degraded by permafrost
microbes in the dark (Supplementary Fig. 1), and the remaining
photo-produced formulas had labile characteristics (i.e., aliphatic-
like; Fig. 1a and Supplementary Table 1). Therefore, the effect of
sunlight on permafrost DOC was to convert less labile, aromatic-
like DOC into compounds labile to the microbes native to
permafrost; the lability of these photo-produced compounds was
demonstrated by a doubling of respiration rates (CO2 production)
compared to dark-controls (Fig. 2 and Supplementary Table 2). In
contrast, light exposure of organic layer DOC removed the for-
mulas that were consumed by organic layer microbes in the dark
(i.e., removal of aromatic-like DOC; Fig. 1b). For example, 39% of
formulas removed by sunlight had the same exact masses as for-
mulas consumed by microbes in the dark (Supplementary Fig. 1),
and there was strong overlap in the composition of formulas
removed by sunlight and formulas consumed by microbes (Fig. 1b
and Supplementary Table 1). The photochemical removal of
organic layer DOC used by microbes was consistent with lower
microbial respiration and especially production and growth
efficiency of light-exposed organic layer DOC compared to dark-
controls (Fig. 2 and Supplementary Table 2).

Alternatively, the amount of unsaturated hydrocarbons
produced by photo-alteration of organic layer DOC was
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insufficient to stimulate the microbial community. A small
fraction of the organic layer DOC produced by sunlight could be
categorized as unsaturated hydrocarbons (2% of formulas and
summed formula intensity, a chemical class expected to stimulate
microbial activity)29, 30. A similarly small pool of these formulas
categorized as unsaturated hydrocarbons was degraded by
organic layer microbes (4% of the formula intensity). This result
suggests that photo-production of unsaturated hydrocarbons

could have stimulated the activity of a small subset of the
microbial community that was genetically equipped to metabolize
these compounds. However, the net effect of light exposure on
the microbes in the organic layer was suppression (relative to
dark-controls), likely resulting from the degradation of the much
larger pool of tannin-like formulas that the microbes were
consuming (Fig. 1). Others have reported that photo-degradation
of DOC in northern humic lakes suppressed microbial activity
despite production of labile DOC readily consumed by
microbes40. Together, findings from this and previous studies
suggest that the net effect of photo-altered DOC on microbial
activity depends not only on the lability of the photo-products but
also on the types of DOC that the microbial communities were
equipped to degrade prior to light exposure.

Effects of DOC photo-alteration on microbial communities.
Photochemical production or removal of formulas fueling native
microbes in the dark caused microbial communities to change in
both magnitude and direction. The magnitude of community
composition change from the initial inoculum in permafrost and
organic layer DOC incubations was highest for the treatments
that had higher growth rates (i.e., light-exposed permafrost DOC
and dark-control organic layer DOC; Fig. 3a). In treatments
with lower growth rates (i.e., dark-control permafrost DOC and
light-exposed organic layer DOC), the communities changed less
over time (Fig. 3a). This suggests that changes in microbial
community composition depend on the abundance of DOC that
the communities were equipped to degrade. In the permafrost
incubations, the large shift in microbial community composition
after 4 h, especially for microbes incubated with light-exposed
DOC (Fig. 3b), likely reflected the rapid growth of taxa that were
adapted to consume newly produced DOC (aliphatic-like DOC
produced by light; Fig. 1a). This consumption of labile DOC is
consistent with the higher rates of respiration in the light-exposed
treatment, where photo-exposure increased the abundance of
labile formulas (Fig. 1a) compared to the dark-control (Fig. 2). In
the organic layer incubations, shifts in community composition
over time were greater for microbes incubated with dark-control
DOC (Fig. 3c), likely because there was no shortage of aromatic-
like DOC that microbes were equipped to metabolize (Fig. 1b).
In contrast, for microbes incubated with light-exposed DOC
from the organic layer, the much smaller shift in community
composition may be explained by the photo-removal of the
aromatic-like DOC most used by this community (Fig. 1b).
The directions of change in community composition were

different for permafrost and organic layer communities and for
light and dark treatments (directions of arrows in Fig. 3b vs. 3c).
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In the permafrost layer incubations, after 7 days the microbial
community incubated with light-exposed DOC shifted to a
community that resembled the dark-control community at 4 h
(Fig. 3b), likely reflecting the depletion of sunlight-produced
DOC and the growth of taxa that were genetically adapted to
consume the less labile dark-control DOC. This result suggests
strong overlap in the composition of DOC consumed by microbes
between the dark treatment at 4 h and the DOC remaining in the
light treatment after 7 days, because DOC chemistry is a principle
control on microbial community composition23, 24, 37–39. Such an
overlap in composition is consistent with our suggestion that
photo-exposure of permafrost DOC increased the abundance of
compounds fueling microbes in the dark. In the organic layer
incubations, after 5 days the community in the light-exposed
treatment had changed little and, unlike in the permafrost
incubations, this change was to a community that was different
than the dark-control (Fig. 3c), suggesting that sunlight removed
the compounds that were consumed by the dark-control
community (Fig. 1b). These shifts in community composition
are consistent with the reduction in activity levels in the light-
exposed treatment (Fig. 2), and suggest that populations with
different metabolic potentials must be required to degrade the
new, photo-produced aliphatic-like DOC. Overall, the magnitude
and direction of these shifts in permafrost and organic layers
likely reflect the adaptation of microbial communities to the
chemistry of the organic matter they are consuming, both over
the short term (hours) due to metabolic (physiological) responses
of individual cells, and over the long term (days, as shown in the
16S results of Fig. 3) due to selection for microbial populations
(species) with better-suited metabolic machinery.
The suggestion that microbes adapt their metabolic machinery

in response to photo-altered DOC was tested using metatran-
scriptomic measurements. Four hours into the incubation the
expression of genes coding for the degradation of aromatic
molecules (KEGG Tier IV Category) was significantly lower for
the organic layer community incubated with photo-altered DOC
compared to the dark-control community, regardless of whether
expression was normalized to all KEGG gene expression or
to Metabolism gene expression (KEGG Tier II Category; paired
t-test, P≤ 0.05)41. Moreover, 15 of the 16 differentially expressed
aromatic-degradation genes had lower expression in the light
treatment than in the dark-control41. This result suggests that
microbes incubated with photo-altered organic layer DOC
re-tooled their metabolic machinery to degrade the labile,
aliphatic-like DOC that was produced in the light (Fig. 1b).
Consistent with this interpretation, prior to light exposure of
DOC the metabolic pathways of microbes native to the organic
layer were more focused on consuming lower lability aromatic-
like DOC rather than the less abundant aliphatic-like DOC
(Fig. 1b and Supplementary Table 1). Over time, this initial
metabolic response would lead to a competitive advantage for
populations with the metabolic potential to degrade the aliphatic-
like DOC that was produced by sunlight (Fig. 1b). Together, the
differential gene expression and changes in community composi-
tion (Fig. 3b, c) suggest that sunlight exposure either produced
(in the permafrost layer) or removed (in the organic layer) the
abundant DOC that the microbial community was equipped to
degrade, thereby inducing changes to key metabolic pathways
used by the native microbial communities to consume DOC.

Synthesis of microbial responses to photo-altered DOC. The
results of this study provide a mechanistic interpretation for the
reported suppression of microbial activity when DOC from the
upper, organic soil layer in the Alaskan tundra is exposed to
sunlight (Fig. 2)13, 24. The net negative effect of light exposure on

microbial activity and consumption of organic layer DOC is
likely due to photo-removal of DOC that organic-mat
microbial communities were metabolically equipped to degrade
(i.e., aromatic-like DOC; Fig. 1b). In addition, our findings
may explain reported lags in rates of microbial respiration
(i.e., DOC consumption) of photo-altered DOC, that, after longer
incubation (i.e., weeks)24, eventually reach or exceed rates of
respiration for dark-controls24, 42, 43. Photochemical alteration
converts larger, more aromatic, more oxidized DOC into smaller,
more aliphatic, less oxidized DOC that can be consumed faster
and with greater efficiencies in the presence of a microbial
community adapted to degrade this DOC (Fig. 1). Thus, the
negative effect of light on microbial processing of organic
layer DOC may be temporary given that aquatic microbial
communities can adapt to changes in DOC chemical composition
on timescales of weeks (Fig. 3)13, 23, 24, 44. In the headwater
stream draining the organic layer of soils studied here, we
consistently observe a net positive effect of sunlight exposure on
rates of microbial DOC respiration45. Given that the DOC in this
headwater stream is similar in chemical composition to the DOC
leached from the organic layer in this study22, 45, the difference
in the effect of light on microbial activity may be the time
that microbial communities in the stream have to adapt to
photo-altered DOC.
An alternative to the explanation that microbial communities

need time to adapt to photo-altered organic layer DOC is that
photochemically produced reactive oxygen species (ROS) that
can be harmful to microbes suppressed the consumption of
photo-altered DOC. Photochemical production of ROS has been
proposed to account for the lag in microbial growth or respiration
from photo-altered DOC given that ROS decay over time
following light exposure46. However, our experimental design
likely minimized any direct effect from ROS on microbes because
the light exposure portion of our experiment was conducted
without microbes (Supplementary Table 5), and there was a
period of about 12 h between light exposure and addition of
inoculum to organic layer and permafrost DOC treatments. Thus,
photochemically produced ROS in the light-exposed DOC may
have decayed to dark-control levels prior to addition of the
bacterial inoculum by reacting with DOC or other constituents in
the soil waters47. Furthermore, others have concluded that the
effects of light exposure of DOC on microbial growth rates were
more likely due to changes in DOC composition than to harmful
effects of ROS on microbes42. While it is possible that
photochemical production of ROS alters microbial communities
and their activities, both our experimental design and evidence
from the literature suggest that the primary control on the
microbial response observed in this study is the photochemical
alteration to DOC chemical composition.

Implications for DOC fate in the Arctic. Our findings on the
controls of coupled photochemical–biological processing of DOC
likely apply to pan-arctic sunlit waters. This is because most
surface waters of the Arctic are shallow and unshaded, DOC is
the primary light absorbing constituent6, 48, 49, and DOC draining
permafrost soils in many arctic regions has a high susceptibility to
photo-degradation6–9, 12–17, 24, 25. Over a wide range of Alaskan
Arctic soil types, representative of pan-arctic soil types50, the
composition of permafrost and organic layer DOC produced and
removed by sunlight followed a similar pattern; larger, more
aromatic-like formulas were converted into smaller, more
aliphatic-like formulas (Supplementary Tables 3 and 4 and
Supplementary Fig. 3). Furthermore, across the six largest
rivers of the pan-arctic watershed, DOC chemical composition
was one of the strongest predictors of microbial community
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composition38, and together DOC chemical composition and
microbial community composition drive rates of DOC
consumption by microbes. These results suggest that rates
of microbial processing of DOC in pan-arctic inland waters
are controlled by the abundance of more labile, smaller, more
aliphatic, and less oxidized DOC exported from land to water
or produced photochemically, and the capacity and timescale
that microbial communities have to adapt to and then degrade
this photo-altered DOC.
Given the consistently large impact of sunlight on microbial

respiration of permafrost DOC in this and previous work
(i.e., increases of > 40%; Fig. 2)13, the coupled photochemical
and biological degradation of permafrost DOC may be an
increasingly important component of the arctic C budget as the
climate warms. Independent of the rates of permafrost degrada-
tion and of the future water balance of northern basins, all newly
thawed soils will experience leaching and loss of DOC via
drainage into surface waters where this DOC, which is susceptible
to both photochemical and biological degradation, will be
exposed to sunlight51, 52. Photochemical alteration of DOC
draining from permafrost soils into small streams and ponds may
be most often limited by the amount of light available45. Earlier
ice-out on lakes in a warmer world could decrease light limitation
of photochemistry by increasing UV exposure. This is because
solar radiation is highest and clear-sky days are more common in
early summer compared to mid-summer and fall6. We suggest
that a large fraction of permafrost DOC may be rapidly converted
to CO2 or microbial biomass when exported to surface waters due
to the rapid photo-production of DOC used by microbes.

Methods
Experimental design. Thawed surface soil and frozen deep soil (permafrost) were
sampled from three replicate pits in moist acidic tussock tundra within the
Imnavait Creek watershed on the North Slope of Alaska (68.62° N, 149.29°W).
Deionized water was added to soil from two layers of each pit, the annually
thawed, shallow organic layer (5–15 cm depth) and the deeper permafrost layer
(95–105 cm), in order to generate the triplicate samples used in each experiment22.
The dissolved organic carbon fraction of the leachates was isolated using 0.45 μm
filters (Geotech Environmental Equipment, Inc.)22. Organic and permafrost layer
DOC from each pit was placed in UV-transparent Whirl-Pak bags (Nasco, Inc.)
and exposed to natural sunlight for 24 h alongside dark-controls13, 14. Light-
exposed and dark-control DOC from each soil layer was incubated with an
inoculum of native microbial communities at 6–7 °C. The inoculum was composed
of leachate filtered through a Whatman GF/C (nominal pore size 1.2 µm) and
added to comprise 20% of the sample volume. We tested the effect of UV exposure
and filtering with GF/F filters (nominal pore size 0.7 µm) and sterile 0.2 µm filters
on carryover of bacteria into sample incubations by measuring bacterial production
on filtered water compared to whole water controls (Supplementary Table 5).
Results indicate that even GF/F filters reduced bacterial contamination (measured
as bacterial production) consistently in dark minus control samples (93± 2%,
mean± 1 SD), and UV exposure in the light treatment plus filtering reduced
production even more (99± 1%, mean± 1 SD; Supplementary Table 5). The effect
of sunlight exposure of DOC on microbial community composition and gene
expression was assessed 4 h into the incubation. At the end of the incubation
(5–7 days), microbial activity (i.e., respiration, production, and growth efficiency)
and community composition were quantified6, 13, 22. The chemical composition
of the initial DOC (i.e., not exposed to sunlight) consumed by microbes was
characterized using high-resolution Fourier transform-ion cyclotron resonance
mass spectrometry (FT-ICR MS14, 22, 27, 42). The relatively short incubation times
were chosen to ensure the detection of a change in DOC chemical composition,
microbial activity, and microbial community composition, while minimizing the
amount of time the DOC and microbes spent in a bottle (i.e., bottle effects).

Quantifying responses of microbes to DOC. Measurements of microbial
respiration and production have been previously described in detail6, 13, 22. Briefly,
respiration was quantified as dissolved inorganic carbon production (AS-C3 DIC
Analyzer; Apollo SciTech, Inc.) or dissolved oxygen consumption (membrane-inlet
mass spectrometry, Bay Instruments)53 compared to killed controls (1% HgCl2).
Microbial production was quantified as 14C-labeled L-leucine incorporation into
the cold trichloroacetic acid (TCA)-insoluble fraction of macromolecules in
viable samples compared to a TCA-killed control. Microbial growth efficiency was
calculated as production divided by the sum of production and respiration.

Changes in microbial community composition during incubation with light-
exposed or dark-control organic and permafrost layer DOC (Fig. 3 and
Supplementary Fig. 4) were quantified using amplicon Illumina sequencing
(MiSeq 2 × 150 bp paired-end) of the V4 region of bacterial 16S rRNA genes39, 54.
Amplicon sequences were paired using make.contigs (MOTHUR v.1.32.1)55, and
converted to QIIME format with split.groups from MOTHUR and
add_qiime_labels.py from QIIME54. Sequences were quality filtered with an
expected error rate of 0.5, dereplicated (derep_fulllength), and abundance sorted
(sortbysize) using USEARCH (v.7.0.1001_i86linux64)56. Singleton sequences were
removed, and reads were clustered (cluster_otus) at 97% similarity. Chimeras were
removed with the de novo chimera check inherent in the cluster_otus, and
with reference-based chimera filtering (uchime_ref) using the Gold Database
(www.genomesonline.org) as reference. Reads (including singletons) were
subsequently mapped back to the operational taxonomic unites (OTUs) using
UPARSE (usearch_global). Taxonomy of the representative sequences was assigned
in QIIME (assign_taxonomy.py) using the RDP classifier trained to the SILVA
database (v.111 database clustered to 97% OTUs). Patterns in beta-diversity,
calculated as weighted Unifrac distance57, were based on a rarefied OTU table
(3800 sequences per sample) and displayed in non-metric multidimensional scaling
diagrams58 using PRIMER-E software (V 7.0) to show the magnitude and direction
of change in microbial community composition.

Metatranscriptome sequences were generated from RNA samples filtered after
4 h incubation onto 0.22 μm filters (Supor; Pall Corp.), preserved with RNAlater
(Qiagen), and extracted and purified59. Ribosomal RNA removal, cDNA synthesis,
and Illumina HiSeq sequencing were performed at the Joint Genome Institute (JGI)
in Walnut Creek, CA, with either standard or low-input RNASeq protocols, using
Ribo-Zero rRNA Removal Kits for Bacteria (Epicentre), and Truseq Stranded RNA
LT kits (Illumina). RNA sequences were quality-controlled using BBDuk and
BBMap, and assembled using MEGAHIT60. Coding sequences (CDS) were
annotated to the KEGG database61 and a custom phylogenetic database62. Quality
controlled reads were mapped to CDS using Bowtie263, and counts, CDS lengths,
and alignment lengths were extracted with SAMtools64. Counts per CDS were
normalized to transcripts per million (TPM)65. Transcript abundances of genes
within the KEGG Degradation of Aromatic Compounds Category (Tier IV) were
reported as percentages of total Metabolism (KEGG Tier II Category).

Characterizing DOC consumed by microbes. The chemical composition of
permafrost or organic layer DOC consumed by native microbes in each layer was
characterized using high-resolution FT-ICR MS14, 22. Pre- and post-incubated
DOC was extracted using PPL solid-phase (SPE) to remove impurities in
preparation for FT-ICR MS analysis66. DOC recovery for all samples, including the
photochemical experiments described below, ranged from 48 to 75% and averaged
63± 1% (± 1 SE). Methanol SPE eluates were diluted to ~50 mg C per L prior to
introduction to the electrospray ionization source of a 12T Bruker SolariX FT-ICR
mass spectrometer. All spectra were acquired in negative mode. Formula
assignment criteria have previously been described in detail22. Formulas were
categorized as consumed by or resistant to microbes if their intensity decreased or
remained unchanged after incubation with the native microbial community,
respectively. The 95% confidence intervals calculated across experimental replicates
were used to determine if a change in formula intensity after incubation with
microbes was significantly greater than zero (N= 3).

Characterizing DOC altered by sunlight. Photochemical alterations of DOC
leached from the thawed and permafrost layer of three dominant soil types on the
North Slope of Alaska were characterized using FT-ICR MS. Chemical attributes
of waters leached from all soils are provided in Supplementary Table 3.
Photochemical changes to the chemical composition of DOC leached from
Imnavait moist acidic tundra (Fig. 1) were previously reported14. Photochemical
changes to the chemical composition of DOC leached from the other four soil types
were determined following previously described protocols14, 22. Filtered leachates
(< 0.45 µm) were transferred to UV-transparent Whirl-Pak bags (Nasco, Inc.) and
exposed to 18 h of simulated sunlight at 20 °C alongside dark-controls (Atlas
Suntest XLS+). The simulated sunlight had a similar spectral shape, but was
2.4-fold more intense than average June sunlight at Toolik Field Station, AK
(Supplementary Fig. 2). Therefore, 18 h of simulated sunlight is equivalent to
approximately 2 days of natural light in June at the field station. Formulas were
categorized as photo-degraded or photo-produced if their intensity decreased or
increased after light exposure, respectively. The 95% confidence intervals calculated
across experimental replicates were used to determine if a change in formula
intensity after light exposure was significantly greater than zero. Experimental
replicates were not available for Toolik tussock permafrost DOC. Therefore, a
change in peak intensity was considered significant if the intensity change was
> 20% after sunlight exposure, which is equivalent to twice the coefficient of
variation of instrumental replicates. Shifts in compound class distributions for
photo-degraded and photo-produced formulas across all soil types are presented in
Supplementary Table 4 and Supplementary Fig. 3.

Data availability. 16S rRNA gene amplicon sequences are deposited in the NCBI
Sequence Read Archive (SRA) under the bioproject accession number
PRJNA356108. Metatranscriptome sequences and assembled contigs are publicly
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available via IMG under GOLD study ID Gs0114298. All other data presented in
this study have been made publicly available online within the Arctic Long Term
Ecological Research database.
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