

The role of iron and reactive oxygen species in the production of CO₂ in arctic soil waters

Adrianna Trusiak¹, Lija A. Treibergs¹, George W. Kling², Rose M. Cory^{1*}

¹Department of Earth and Environmental Sciences, 1100 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA

²Department of Ecology and Evolutionary Biology, 1100 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA

* Corresponding author: phone: +1 734-615-3199; fax: +1 734-763-4690; email: rmcory@umich.edu

Abstract

Hydroxyl radical ($\cdot\text{OH}$) is a highly reactive oxidant of dissolved organic carbon (DOC) in the environment. $\cdot\text{OH}$ production in the dark was observed through iron and DOC mediated Fenton reactions in natural environments. Specifically, when dissolved oxygen (O_2) was added to low oxygen and anoxic soil waters in arctic Alaska, $\cdot\text{OH}$ was produced in proportion to the concentrations of reduced iron ($\text{Fe}(\text{II})$) and DOC. Here we demonstrate that $\text{Fe}(\text{II})$ was the main electron donor to O_2 to produce $\cdot\text{OH}$. In addition to quantifying $\cdot\text{OH}$ production, hydrogen peroxide (H_2O_2) was detected in soil waters as a likely intermediate in $\cdot\text{OH}$ production from oxidation of $\text{Fe}(\text{II})$. For the first time in natural systems we detected carbon dioxide (CO_2) production from $\cdot\text{OH}$ oxidation of DOC. More than half of the arctic soil waters tested showed production of CO_2 under conditions conducive for production of $\cdot\text{OH}$. Findings from this study strongly suggest that DOC is the main sink for $\cdot\text{OH}$, and that $\cdot\text{OH}$ can oxidize DOC to yield CO_2 . Thus, this iron-mediated, dark chemical oxidation of DOC may be an important component of the arctic carbon cycle.

32 **1. Introduction**

Hydroxyl radical ($\cdot\text{OH}$) is one of the strongest oxidants in the environment and thus plays
34 important roles in the oxidation of organic carbon in the atmosphere and in surface waters (Faust
and Hoigné, 1990; Mopper and Zhou, 1990; Vaughan and Blough, 1998; Page et al., 2014).
36 Most research on $\cdot\text{OH}$ as an oxidant of organic carbon has been done in sunlit environments,
where $\cdot\text{OH}$ is produced by photochemical processes (e.g., Goldstone et al., 2002; Southworth
38 and Voelker, 2003; Vermilyea and Voelker, 2009; Page et al., 2014). Recent work has focused
on the light-independent ‘dark’ pathway for $\cdot\text{OH}$ production during redox reactions likely
40 involving reduced iron (Fe(II)) or dissolved organic carbon (DOC) as electron donors (Fig. 1;
Burns et al., 2010; Page et al., 2012, 2013; Minella et al., 2015; Tong et al., 2016). Oxidation of
42 Fe(II) or reduced DOC by oxygen (O_2) can produce hydrogen peroxide (H_2O_2 ; Fig. 1; Haber
and Weiss, 1932; Stumm and Lee, 1961; Page et al. 2012). Once produced, H_2O_2 can react with
44 remaining Fe(II) or reduced DOC to yield $\cdot\text{OH}$ (Fig. 1). Therefore, $\cdot\text{OH}$ is produced where
Fe(II) and reduced DOC are present, suggesting that $\cdot\text{OH}$ is an important oxidant in these
46 environments.

The predecessors to $\cdot\text{OH}$ production, Fe(II) and reduced DOC, are common products of
48 anaerobic microbial respiration in waterlogged soils or lake sediments (Klapper et al., 2002;
Lipson et al., 2010). When waterlogged soils are flushed with oxygenated water, or at the oxic-
50 anoxic boundary in soils or sediments, $\cdot\text{OH}$ may be produced (Burns et al., 2010; Page et al.,
2012, 2013; Minella et al., 2015; Tong et al., 2016). Prior research observed $\cdot\text{OH}$ production
52 from soil waters draining the dominant vegetation types of the low Arctic in proportion to
concentrations of reduced soil water constituents including Fe(II) and DOC (Page et al., 2013).
54 In addition, $\cdot\text{OH}$ production from aeration of soil waters increased along a gradient of low to

high reducing conditions from dry upland soils to wet lowland habitats in the Arctic (Page et al., 56 2013). Specifically, soil waters draining from wet sedge vegetation had the highest reducing conditions (i.e., highest electron donating capacities from high concentrations of reduced 58 constituents; Page et al., 2013). Upon introduction of O₂, wet sedge soil waters produced the greatest •OH compared to soil waters from dry upland areas low in reduced constituents (Page et 60 al., 2013). It was estimated that together Fe(II) and reduced DOC accounted for ~ 90% of the electron donating capacity of those soil waters, which contain low concentrations of other 62 potential reductants like sulfide (Page et al., 2013). Thus, Fe(II) and reduced DOC were inferred to be the main reductants of O₂ yielding •OH in arctic soil waters (Fig. 1; Page et al., 2013). 64 Studies in lake water and lake sediments have also concluded that Fe(II) and reduced DOC were the main electron donors upon introduction of O₂ in the production of •OH (Minella et al., 2015; 66 Tong et al., 2016). However, the relative importance of Fe(II) versus DOC as electron donors to yield •OH in natural systems is unknown, in part because concentrations of Fe(II) and DOC 68 often co-vary in soils or sediments (Page et al., 2013).

Determining the relative importance of Fe(II) versus reduced DOC as electron donors to 70 produce •OH requires quantifying the fraction of the total electron donating capacity *in-situ* in soils or sediments from the oxidation of Fe(II) versus the oxidation of reduced DOC. Total 72 electron donating capacity of Fe(II) (i.e., electrons released from Fe(II) oxidation) can be quantified, but the redox moieties within DOC are poorly characterized and thus difficult to 74 isolate and quantify in natural soils (Aeschbacher et al., 2012; Wallace et al., 2017). However, comparison of electrons released from the oxidation of Fe(II) to Fe(III) alone to the total electron 76 donating capacity (i.e., electrons released from all reduced constituents) may identify the relative importance of Fe(II) versus DOC as the electron donors to produce •OH; this method would be

78 particularly effective in environments where other potential reductants are present at much lower concentrations.

80 Once $\cdot\text{OH}$ is produced in soils or sediments, its fate and consequences for carbon cycling are poorly understood. From studies of $\cdot\text{OH}$ in simulated surface waters containing high 82 concentrations of $\cdot\text{OH}$ and DOC, $\cdot\text{OH}$ is expected to rapidly oxidize DOC (Voelker and Sulzberger, 1996). However, in natural waters, soils, or sediments, DOC may compete with 84 chloride, bromide, or carbonates as a sink for $\cdot\text{OH}$ (Buxton et al., 1988; Lipson et al., 2010; Page et al., 2013). Recent work showed that in high DOC surface waters low in salts or carbonates, 86 DOC was the main sink for $\cdot\text{OH}$ (Page et al., 2014). While DOC is expected to be the sink for $\cdot\text{OH}$ in surface waters or soils of the Arctic, the products of the oxidation of DOC by $\cdot\text{OH}$ can 88 yield several organic or inorganic compounds (Goldstone et al., 2002).

•OH reacts with DOC by addition (i.e., hydroxylation) or hydrogen atom abstraction 90 producing organic and hydroperoxyl radicals (Sulzberger and Durisch-Kaiser, 2009). Those radicals may initiate additional degradation of DOC, ultimately forming partially-oxidized or 92 degraded aromatic or aliphatic compounds (Westerhoff et al., 1999; Waggoner et al., 2015), low molecular weight organic acids, or CO_2 (Goldstone et al., 2002). Using artificially generated 94 •OH and simulated natural waters, Goldstone et al. (2002) reported a yield of 0.3 mole of CO_2 from the oxidation of DOC by 1 mole of •OH. Page et al. (2013) used this laboratory yield to 96 estimate that the amount of CO_2 produced from •OH in natural soil waters could be on the same order of magnitude as the amount of CO_2 produced by bacterial respiration of DOC in surface 98 waters of the Alaskan Arctic. Page et al. (2013) concluded that oxidation of DOC by •OH could be an important source of CO_2 in boreal and arctic regions given the vast stores of organic 100 carbon residing in waterlogged soils conducive to redox cycling. Similarly, Hall and Silver

(2013) suggested oxidation of DOC by •OH to CO₂ is important in tropical soils where they
102 observed a strong, positive correlation between Fe(II) oxidation and CO₂ production. However,
the effects of •OH on the fate of DOC in natural systems remain poorly understood because no
104 study has directly measured the CO₂ produced from oxidation of DOC by •OH in soils or soil
waters.

106 The objectives of this study were to (1) determine the relative importance of Fe(II) versus
reduced DOC in the production of •OH, and (2) determine whether oxidation of DOC by •OH
108 produces CO₂ in natural soil and surface waters. To address these knowledge gaps on the
controls of dark •OH production and its fate, we measured concentrations of •OH produced upon
110 introduction of air to low-O₂ and anoxic soil waters and to oxic surface waters in the Alaskan
Arctic. We also quantified production of H₂O₂, an expected key reactant produced from
112 oxidation of either Fe(II) or reduced DOC in low-O₂ and anoxic waters. To identify the relative
importance of Fe(II) versus DOC as electron donors (or other reductants present in natural
114 waters), we quantified the oxidation of Fe(II) to Fe(III) alongside changes in total electron
donating capacity upon introduction of O₂. Finally, we quantified production of CO₂ from the
116 oxidation of DOC by •OH in soil waters.

2. Study sites and sampling strategy

118 Soil and surface water samples were collected May – August 2015 and July – September
2016 near Toolik Lake Field Station on the North Slope of Alaska in the arctic tundra (Fig. 2).
120 The objective in sampling surface waters was to verify the conceptual model for dark •OH
production, i.e., that dark •OH is produced upon introduction of O₂ to low-O₂ waters (Fig. 1;
122 Page et al. 2013). Thus, we would not expect to detect high •OH production in the oxic surface
waters near Toolik Lake, in contrast to the low O₂ soil waters in this region. Study sites for soil

124 water sample collection represented the dominant land surface ages and vegetation types (Hobbie
and Kling, 2014; Table S1) and were expected to differ in soil water chemistry primarily due to
126 variability in calcium carbonate (Keller et al., 2007). Soil water samples were collected from
younger glacial surfaces (Itkillik I, ~60,000 yr BP (years Before Present) and Itkillik II, ~14,000
128 yr BP), and from an older glacial surface (Sagavanirktok, ~250,000 yr BP). In addition, soil
waters were collected on the Arctic Coastal Plain in northern Alaska and from areas adjacent to
130 glacial-fed rivers. Soil waters on younger surfaces were expected to have higher pH and
conductivity than waters on older surfaces due to weathering and depletion of calcium carbonate
132 over geologic time (Keller et al., 2007). Soil waters collected on the Arctic Coastal Plain or next
to glacial-fed rivers (the Sagavanirktok and Saviukviayak Rivers) were also expected to have
134 higher pH and conductivity than soil waters sampled near Toolik in this and prior work (Fig. S4;
Table S1; Page et al., 2013) due to calcareous loess deposits (Walker and Everett, 1991). Soil
136 waters sampled from the younger and older landscape ages were collected from the two
dominant ecosystem types: the upland tussock tundra and the lowland wet sedge tundra (Muller
138 et al., 1999). The dominant vegetation above all soil waters collected on the coastal plain and
near the Sagavanirktok River was wet sedge tundra. Soil waters collected near the Saviukviayak
140 River (*also spelled as Saviukviak*) were collected beneath birch-willow vegetation.

3. Methods

142 3.1. Soil and surface water collection and characterization

Soil water samples were collected below the ground surface using a stainless steel needle
144 attached to a plastic syringe with a 3-way valve. The needle and syringe were triple rinsed with
soil water before collection of bubble-free water to avoid introduction of oxygen (O₂) from air
146 into the syringe. Water was pulled from the ground through the needle slowly to minimize

collection of soil particles. Once the syringe was filled, soil water was transferred from the
148 syringe to black BOD bottles, overfilling the bottle to minimize introduction of O₂ from air, and
then stoppering. Surface waters were collected by dipping the BOD bottle into the water after
150 triple rinsing the bottle with sample. Temperature, pH, and conductivity on unfiltered soil or
surface water samples were measured in the field immediately after collection. For each soil or
152 surface water sample collected, a subset of the water was filtered in the field using pre-
combusted Whatman GF/F filters for analysis of dissolved organic carbon (DOC) concentrations.
154 Water for analysis of cation concentrations was also collected in the field by filtering a subset of
the sample through sample-rinsed Whatman 0.45 µm polypropylene filters. Subsamples for
156 DOC and cation analysis were preserved with 6 N HCl. Subsamples for DOC and cations were
stored in the dark at 4 °C until analysis. Filtered and preserved samples for DOC and cation
158 analysis were analyzed on a Shimadzu TOC-V analyzer (CV ~ 5% on duplicate samples or
standards; Kling et al., 2000) and a Perkin Elmer ICP (CV ~ 3% on duplicate samples or
160 standards), respectively.

After collection in the field, BOD bottles of surface and soil waters were transferred to an
162 anoxic glove box (97% ultrapure nitrogen, 3% ultrapure hydrogen atmosphere) at Toolik Field
Station (within 30 minutes to six hours after collection for sites farthest away from the station).
164 Dissolved oxygen (DO) concentrations were measured in the glove box using an optical DO
probe (YSI; 1% standard error). Soil and surface waters were analyzed for electron donating
166 capacity (EDC), total iron and Fe(II), •OH, H₂O₂, and CO₂ production at room temperature (Fig.
3, details *below*). For each analysis (EDC, iron, •OH, H₂O₂, CO₂) sample waters were split into
168 triplicates for initial, control, and treated subsamples. All values reported for EDC, iron, •OH,
H₂O₂, and CO₂ are mean ± standard error from the triplicate samples. The chemical

170 composition of unamended surface waters might have changed slightly if the waters were under-
saturated with O₂ before sampling. Unamended soil waters were likely close representations of
172 the chemical composition of water collected in the field, given the short duration between
collection and analysis and the limited exposure to the atmosphere or to light.

174 **3.2. Electron donating capacity and iron oxidation**

For quantification of initial electron donating capacity (EDC), total iron, and Fe(II) from
176 soil and surface waters, subsamples were analyzed immediately after filtration (0.2 µm Sterivex
filter) in the anoxic glove box (initial; Fig. 3). EDC, total iron, and Fe(II) were quantified again
178 after filtered subsamples were oxidized by O₂ for 24 hours (+air; Fig. 3). EDC was measured
colorimetrically using 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•; Page et
180 al., 2013). For the EDC measurements, soil waters were often diluted by 2 - 200 fold with
aerated MilliQ water (deionized water further purified to achieve a resistivity of 18.2 MΩ and
182 treated by UV to reduce residual organics). Total iron and Fe(II) concentrations were quantified
colorimetrically by the ferrozine method (Stookey, 1970). Soil waters often had to be diluted 2 -
184 80 fold in aerated MilliQ water due to high Fe(II) concentrations. Absorbance for both EDC and
iron were measured on spectrofluorometer (Aqualog, Horiba Scientific), at 734 nm and 562 nm,
186 respectively, using 1 cm pathlength cuvettes. Change in EDC and Fe(II) between initial and
oxidized waters represent electrons released from oxidation of all reduced constituents and
188 electrons released from oxidation of Fe(II), respectively, in surface and soil waters.

To test whether ABTS+• could detect electron donating capacity from the high
190 concentrations of Fe(II) in these soil waters, the EDC was measured over the range of Fe(II)
concentrations using ferrous iron solutions, in the form of ferrous ammonium sulfate. Ferrous
192 ammonium sulfate solutions were prepared in 0.01 N HCl at concentrations of Fe(II) observed in

these soil waters (Page et al., 2013; Fig. S1). At Fe(II) concentrations above 50 μM , ABTS $^{\bullet+}$ 194 did not detect all electrons that could be donated from Fe(II), leading to lower EDC than expected based on the Fe(II) concentration (Fig. S1). This underestimate in EDC was likely due 196 to complexation of Fe(II) with the high concentration of phosphate ($\sim 2.7 \text{ mM}$) in the ABTS $^{\bullet+}$ buffer, resulting in less Fe(II) available to donate electrons to ABTS $^{\bullet+}$. This test of ABTS $^{\bullet+}$ 198 with Fe(II) standard ferrous iron solutions suggests that ABTS $^{\bullet+}$ may underestimate electrons donated from Fe(II) in surface or soil waters with Fe(II) concentrations $> 50 \mu\text{M}$.

200 3.3. $\bullet\text{OH}$ production

Terephthalate (TPA) was used as a probe to quantify $\bullet\text{OH}$ production in this study, the 202 same probe as used previously in these soil waters (Page et al., 2013). During summer 2015, unfiltered subsamples of soil water were analyzed for $\bullet\text{OH}$ production following protocols 204 described in Page et al. (2013). Although Page et al. (2013) reported no difference in $\bullet\text{OH}$ production between unfiltered versus filtered soil waters, during the summer of 2016 soil waters 206 were filtered before $\bullet\text{OH}$ analysis ($0.2 \mu\text{m}$ Sterivex filters) to minimize potential biological $\bullet\text{OH}$ production. The initial $\bullet\text{OH}$ production was quantified upon addition of soil or surface water 208 samples to O_2 -free TPA, with TPA present in excess (initial; Fig. 3). O_2 -free TPA was prepared by bubbling with nitrogen. The solution was then stored in the dark in the glove box. Initial 210 $\bullet\text{OH}$ production was quantified after 24 hours to allow for any $\bullet\text{OH}$ initially present in the sample to react with TPA. Production of $\bullet\text{OH}$ from oxidation of reduced constituents by O_2 was 212 quantified by adding soil or surface waters to O_2 - free TPA that was then exposed to O_2 by adding air (+air; Fig. 3). These aerated samples were allowed to react for 24 hours (+air; Fig. 3) 214 and stirred every hour for 12 hours. After 24 hours the $\bullet\text{OH}$ concentrations in the initial and oxidized (+air) waters were determined using standard additions to the samples of 0, 25, and 50

216 nM 2-hydroxyterephthalic acid (hTPA, the product of TPA reaction with •OH; Page et al., 2010)
217 to account for matrix effects. hTPA was quantified on an Acquity Ultra High Performance H-
218 Class Liquid Chromatography (uPLC; Waters, Inc.) with fluorescence detection (excitation 250
219 nm, emission 410 nm) on an Acquity uPLC BEH C₁₈ column (2.1 x 50 mm; 1.7 μ m). The yield
220 for hTPA formation from •OH reaction with TPA was assumed to be 35% (Page et al., 2010).

3.4. Hydrogen peroxide production

222 During summer 2016, a subset of soil waters was analyzed for H₂O₂ using the Amplex
223 Red method (Burns et al., 2012, Cory et al., 2016) on the uPLC (excitation 565 nm, emission 587
224 nm). Undiluted, 0.2 μ m-filtered soil waters were added to aerated Amplex Red reagents (+air;
225 Fig. 3) to allow for oxidation of soil water. There was no control for the +air treatment for H₂O₂
226 production due to the inability to limit introduction of O₂ to the samples with addition of Amplex
227 Red reagents. However, verification of the presence of H₂O₂ was conducted by addition of
228 catalase to soil water, which rapidly decomposes H₂O₂ to water and O₂. Thus, soil water
229 containing 3 mg L⁻¹ catalase (+catalase, +air; Fig. 3) should yield no H₂O₂ upon introduction of
230 air. H₂O₂ produced during oxidation in the presence and absence of catalase was quantified one
231 hour after addition of soil water to the Amplex Red reagent. H₂O₂ was quantified using standard
232 additions (500 - 2500 nM of H₂O₂ added) with three replicates per concentration of added H₂O₂,
233 after subtraction of the background signal from Amplex Red alone.

234 3.5. CO₂ production

235 To quantify CO₂ production from the introduction of an oxidant to soil water, nitrogen-
236 sparged aliquots of H₂O₂ were added to soil waters to achieve a final concentration of 50 or 100
237 μ M H₂O₂ (+ H₂O₂; Fig. 3). Controls were amended with the same volume of O₂-free MilliQ
238 water to account for any change in dissolved CO₂ due to introduction of MilliQ water (control;

Fig. 3). Both controls and amended vials had no headspace. In addition, four different soil
240 waters were oxidized with a range of H₂O₂ concentrations (5 - 300 µM). After letting the
control or +H₂O₂ soil waters react for 24 hours at room temperature in the dark, soil waters were
242 analyzed for dissolved inorganic carbon (DIC) concentration using a DIC analyzer (Apollo,
Inc.). Change in DIC between oxidized and control soil waters represents CO₂ produced by
244 H₂O₂ during the 24 hour oxidation.

•OH production was also quantified from each soil water oxidized by H₂O₂ (Fig. 3) to
246 test the hypothesis that the production of CO₂ was due to oxidation of DOC by •OH. However,
absolute •OH production may have differed between the same +H₂O₂ soil water used to quantify
248 CO₂ versus to quantify •OH due to differences in methodological constraints for detection of
DIC versus •OH. The volume of soil water and thus concentration of Fe(II) exposed to the same
250 concentration of H₂O₂ differed between the undiluted subsample of soil water quantified for
CO₂ production, versus the diluted subsample of the same soil water quantified for •OH
252 production. This is because quantification of •OH requires soil water to be diluted (~17-fold)
with added TPA, to ensure that TPA is present in excess of other constituents that may scavenge
254 •OH (see *methods* above; Page et al., 2010). These methodological constraints resulted in the
same concentration of H₂O₂ added to higher concentrations of soil water constituents in the soil
256 waters used to test CO₂ production compared to the soil waters used to quantify •OH production
(Fig. 3, S3). The ratio of H₂O₂ added per mol Fe(II) in sample waters was higher in the
258 subsamples used to quantify •OH production compared to the subsamples used to quantify
changes in CO₂. Thus, it is possible that •OH production is higher in the subsample used to
260 quantify CO₂ production compared to the subsample used to measure •OH. However, we
assume that dilution does not affect trends in •OH production between soil waters; that is, a soil

262 water exhibiting relatively high •OH production compared to another soil water will do so
independent of dilution. When relating trends in CO₂ production versus •OH production from
264 soil waters amended with H₂O₂, •OH production is expressed as the “relative” •OH (Fig. 7, 9).

Because no study has directly measured CO₂ production from oxidation of DOC by •OH
266 in any natural water, we first tested this reaction by exposing a reference isolate of terrestrially-
derived DOC to •OH produced by the Fenton reaction (i.e., •OH was produced by reaction of
268 Fe(II) with H₂O₂). Suwannee River Fulvic Acid (SRFA), a reference DOC isolate obtained
from the International Humic Substances Society (IHSS), served as a terrestrial end-member of
270 DOC representing carbon derived from decomposed plant matter and soils ([http://humic-
substances.org](http://humic-substances.org)). SRFA solutions were prepared by dissolving freeze-dried solid SRFA in air-
272 equilibrated MilliQ water. The SRFA solution had a final pH of 5.2, a DOC concentration of
2310 µM, and 60 µM Fe(II) added in the form of ferrous ammonium sulfate. The pH of the
274 SRFA solution and the ratio of DOC to Fe(II) were similar to soil waters sampled in the field
(Table 1). A range of H₂O₂ concentrations was added to the SRFA + Fe(II) solution (5 to 300
276 µM H₂O₂), and compared to a control with no H₂O₂ added. After 24-hour oxidation, CO₂ and
relative •OH production were measured as described above.

278 **3.6. Soil core collection**

Soil cores were collected with a SIPRE coring auger from six different sites during
280 summer 2015. Seven cores were collected at each site (Fig. 2) to yield a minimum of 4 kg wet
soil per depth analyzed. Soils collected from cores were split by depth into the annually thawed,
282 shallow organic mat (5-50 cm; the “active layer”), and the deeper permafrost layer that included
both organic and mineral soil horizons (95-105 cm). Immediately after collection soils were
284 placed into Ziploc bags and frozen at -20 °C until thawed for further experiments.

3.7. Soil leachates

286 Frozen soil (250 grams) was added to 1 L of MilliQ water and allowed to incubate in the
dark at room temperature in an anoxic glove box for two weeks. The amount of soil added and
288 incubation time were chosen to generate soil leachates that contained similar chemistry (pH and
conductivity) and concentrations of Fe(II), EDC, and DOC comparable to soil waters collected in
290 the field. Following incubation, soil water leachates were 0.2 μm filtered (Sterivex), split into
initial, control, and treatment triplicate subsamples, and analyzed for EDC, total iron, Fe(II),
292 •OH, and CO_2 as described above. Soil water leachates were tested alongside soil waters
sampled in the field to increase the dataset of CO_2 and relative •OH production in this study.

294 4. Results

4.1. Surface and soil water chemistry

296 On average, soil waters were mildly acidic ($\text{pH} = 5.6 \pm 0.7$) and contained low O_2 (29 ± 5
 μM DO) (Table 1). The average specific conductivity in soil waters was $408 \pm 104 \mu\text{S cm}^{-1}$
298 (Table 1), and the average concentration of DOC was $1769 \pm 262 \mu\text{M}$ (Table 1). Average iron
concentrations were $245 \pm 57 \mu\text{M}$ for total iron and $225 \pm 56 \mu\text{M}$ for Fe(II) (Table 1). The
300 average EDC upon introduction of air to soil waters was $192 \pm 30 \mu\text{M}$ electrons released (Table
1). Waters leached from soils incubated in the lab (i.e., soil leachates) had lower conductivity,
302 but similar pH and similar concentrations of DOC, EDC, and iron as compared with soil waters
collected in the field (Table 1). On average, surface waters had higher pH (6.7 ± 1.7 ; Table 1),
304 higher DO concentrations, lower specific conductivity, and lower concentrations of DOC, EDC,
and iron compared to soil waters sampled in the field and soil water leached in the laboratory
306 (Table 1).

The change in EDC upon addition of O₂ to soil waters relative to the initial value was a
308 measure of electrons released from oxidation of reduced constituents (Fig. 4). Likewise, the
change in Fe(II) concentration upon introduction of air to soil waters relative to the initial value
310 was a measure of electrons released from Fe(II) oxidation (Fig. 4). There was a significant,
positive correlation between electrons released from Fe(II) oxidation and total number of
312 electrons released from oxidation of all reduced constituents (slope = 0.72 ± 0.02, p < 0.0001;
Fig. 4), suggesting that Fe(II) was the main source of electrons released upon oxidation.

314 **4.2. Trends in •OH production**

Production of •OH ranged from undetectable to 20 ± 7.9 µM (N = 77) for soil waters
316 oxidized by O₂ (air; Fig. 3), and from undetectable to 50 ± 0.3 µM (N = 93) for soil waters
oxidized with H₂O₂. •OH production was significantly, positively correlated with the initial
318 EDC ($R^2 = 0.70$, p < 0.0001; Fig. 5A) and initial Fe(II) in soil waters tested ($R^2 = 0.66$, p <
0.0001; Fig. 5B). However, there was no significant correlation between •OH production and
320 Fe(II) oxidation over the 24-hour aeration period (Fig. S2). There was also no significant
correlation between •OH production and other water chemistry parameter (e.g., conductivity,
322 carbonate; data not shown). •OH production was higher on average from soil waters sampled on
older or fluvial land surfaces compared to younger surfaces or the coastal plain (Table S1).
324 Surface water samples had low production of •OH upon introduction of O₂, consistent with the
relatively high dissolved O₂, low EDC, and low Fe(II) concentrations in these waters compared
326 to soil waters (Table 1; Fig. 5A, B).

4.3. H₂O₂ concentrations in soil waters

328 The average H₂O₂ concentration after one hour oxidation by O₂ in soil waters was 21 ±
11 µM. H₂O₂ concentration in soil waters after oxidation by O₂ was generally higher for soil

330 waters with low initial O₂ concentration (Fig. 6). As a qualitative confirmation of H₂O₂
332 production from aeration of soil waters, H₂O₂ concentrations were compared between a filtered
soil water leachate oxidized by O₂ in the presence and absence of catalase, an enzyme that
334 rapidly decomposes H₂O₂ to water and O₂. In the absence of catalase, the soil water produced
2.7 ± 0.40 µM H₂O₂ after one hour exposure to air (data not shown). In the presence of catalase,
there was no detectable H₂O₂ produced from the soil water.

336 **4.4. •OH and CO₂ production from soil waters amended with H₂O₂**

All soil waters amended with H₂O₂ showed significant production of relative •OH
338 compared to the control (no H₂O₂ addition; Figs. 3, 7A, 7B). For soil waters amended with a
range of H₂O₂ concentrations, relative •OH production was positively, linearly correlated with
340 the concentration of H₂O₂ added (Fig. 7A). The slope of the relationship between H₂O₂ added
and relative •OH produced varied between the soil waters and leachates tested, ranging from
342 0.08 ± 0.01 (p < 0.01) to 0.01 ± 0.002 (p < 0.01) (Fig. 7A). •OH production was significantly
higher in the soil water amended with H₂O₂ in the absence of catalase, compared to unamended
344 soil waters and to the soil water containing H₂O₂ and catalase (Fig. 8).

Most soil waters amended with H₂O₂ showed a significant increase in DIC (i.e., CO₂
346 produced) compared to control soil waters (65% of 92 soil waters tested, Fig. S3). The
remaining soil waters showed no detectable production of CO₂ (35% of soil waters tested). The
348 production of CO₂ from all soil waters was not significantly correlated with EDC, total iron and
Fe(II), or •OH production (Fig. S3). However, CO₂ produced was significantly, positively
350 correlated with increasing concentrations of H₂O₂ added to four soil waters (Fig. 7B). The slope
of the linear relationship between H₂O₂ added and CO₂ produced differed by soil water, ranging
352 from 0.39 ± 0.09 (p < 0.1) to 0.04 ± 0.002 (p < 0.0001) (Fig. 7B). There was no systematic

pattern between the slopes of the linear relationship of CO₂ produced and H₂O₂ added for soil
354 waters by date, site, or between soil water versus soil leachate. For the solution of Suwannee
River Fulvic Acid (SRFA) containing Fe(II), there was also a significant, positive correlation
356 between CO₂ produced and H₂O₂ added (Fig. 7B). The slope of the relationship for CO₂
produced and H₂O₂ added for SRFA + Fe(II) was within the range of slopes observed for the
358 natural soil waters containing similar concentrations of DOC and Fe(II) and amended with the
same range of H₂O₂ concentrations (Fig. 7B).

360 For any soil water amended with H₂O₂, both relative •OH production and CO₂
production increased with increasing H₂O₂ concentration added (Fig. 7A, 7B). Therefore, for all
362 sample types, sites, and dates, CO₂ production was significantly positively correlated with the
•OH produced by adding H₂O₂ (Fig. 9). The slopes of the relationship between CO₂ production
364 and relative •OH production varied between the soil waters and leachates, and SRFA + Fe(II)
solution, as did the slopes representing relative •OH production and H₂O₂ added to different soil
366 waters (Fig. 7A, 7B).

5. Discussion

368 5.1. Conditions favorable for dark •OH production in arctic soil waters

Overall, our main results (1) extend the findings of •OH production by aeration of soil or
370 surface water to a wider range of water chemistry, (2) demonstrate that Fe(II) is the dominant
electron donor supporting •OH production, and (3) provide direct, multiple lines of evidence for
372 the production of CO₂ from the oxidation of DOC by •OH in natural waters. The first main
result is consistent with prior work demonstrating that •OH is produced from aeration of soil or
374 lake waters containing reduced constituents (Page et al., 2013; Minella et al., 2015). These
findings support the conceptual model proposing •OH production from the oxidation of Fe(II) or

376 reduced DOC by dissolved O₂ (Fig. 1; Page et al., 2012). Consistent with this conceptual model
and prior work (Page et al., 2013), in this study there was little •OH production in oxic surface
378 waters containing lower EDC, lower Fe(II), and lower DOC, while in low-O₂ waters with higher
EDC, higher Fe(II), and higher DOC the •OH production was significantly, positively correlated
380 with initial EDC and Fe(II) (Fig. 5A, B).

Our first result demonstrates that reducing conditions (i.e., high EDC and thus high
382 concentrations of electron donors) that support •OH production can be found across a wider
range of pH and conductivity in anoxic and low-O₂ arctic soil waters than previously observed
384 (Page et al., 2013). In this study, the subset of soil waters sampled on the Arctic Coastal Plain
and adjacent to glacially-fed rivers (Fig. 1) had significantly higher pH and specific conductivity
386 than soil waters sampled near Toolik in this and prior work (Table S2; Fig. S4; Page et al. 2013).
Soil waters of the Coastal Plain and adjacent to glacial-fed rivers had higher pH and specific
388 conductivity due to calcareous loess deposits (Walker and Everett, 1991). Reducing conditions
are observed across a range of pH and conductivity in arctic soil waters due to the presence of
390 permafrost at a shallow depth and flat topography that prevents drainage of water and leads to
saturated, low-O₂ soils (Lipson et al., 2012; Lipson et al., 2013). Anoxic or low-O₂ soils lead to
392 strongly reducing conditions that accelerate the buildup of high concentrations of electron donors
such as Fe(II) in arctic soils. For example, previous work showed that arctic soil waters
394 spanning a wide range of pH and conductivity contain concentrations of reduced Fe(II) ranging
from 100 to 10,000 µM (Keller et al., 2007; Lipson et al., 2010; Pokrovsky et al., 2013; Page et.
396 2013; Herndon et al., 2015; Reyes and Lougheed, 2015).

The yield of •OH from the oxidation of reduced constituents such as Fe(II) or reduced
398 DOC may depend strongly on pH. At circumneutral pH, the oxidation of Fe(II) may yield

oxidants other than $\cdot\text{OH}$ (Remucal and Sedlack, 2011). For example, at pH 7, oxidation of Fe(II)
400 may result in production of ferryl iron (Fe(IV)) as well as $\cdot\text{OH}$, which would lower the ratio of
 $\cdot\text{OH}$ produced per mol Fe(II) oxidized (Vermilyea and Voelker, 2009; Remucal and Sedlack,
402 2011). Studies of the $\cdot\text{OH}$ production from Fe(II) oxidation suggest that at low pH (~5),
production of $\cdot\text{OH}$ from Fe(II) oxidation is more likely than production of Fe(IV) (Remucal and
404 Sedlack, 2011). In contrast to Fe(II) oxidation, the effect of pH on the yield of $\cdot\text{OH}$ from
oxidation of reduced DOC has not been studied. It has been shown that at high pH the oxidation
406 of reduced moieties within DOC is more favorable than at low pH (Aeschbacher et al., 2012),
suggesting that oxidation of DOC to produce $\cdot\text{OH}$ might be more likely at higher pH. Overall,
408 the yield of $\cdot\text{OH}$ from oxidation of Fe(II) or reduced DOC is expected to be higher in natural
waters with low pH than in waters with higher pH where there could be production of ferryl ion
410 in addition to $\cdot\text{OH}$. Consistently, in our study $\cdot\text{OH}$ production was generally higher in mildly
acidic soil waters (pH ~ 6; Fig. S4), while $\cdot\text{OH}$ production was generally lower in soil waters
412 with pH > 7.5 (Fig. S4).

5.2. Oxidation of Fe(II) controls $\cdot\text{OH}$ production in arctic soil waters

414 5.2.1. *Fe(II) was the main electron donor to O_2*

The second main result of this study provides strong evidence that Fe(II) was the main
416 electron donor to O_2 upon aeration of soil waters, and thus the main control on $\cdot\text{OH}$ production
in soil waters of the Alaskan Arctic. The significant, linear correlation between the total
418 electrons released and the electrons released from Fe(II) oxidation upon addition of air to soil
waters (Fig. 4) suggests the oxidation of Fe(II) accounts for the total electrons released during
420 the oxidation. Assuming one mole of Fe(II) oxidized contributes one mole of electrons, the
change in Fe(II) concentration should correspond 1:1 with the electrons released upon aeration.

422 The relationship between moles of electrons released from Fe(II) oxidation per moles of total
electrons released supported this expectation, and had a slope of 0.72 ± 0.02 ($p < 0.0001$) (Fig.
424 4), suggesting that 7 out of 10 moles of electrons released came from Fe(II).

5.2.2. Limitations of the EDC method to detect electrons released from Fe(II) oxidation

426 Some soil waters had a lower EDC than expected based on the amount of Fe(II) oxidized,
and plotted substantially below the 1:1 line in Figure 4. This is likely due to interference in the
428 EDC method that uses a phosphate buffer to minimize changes in pH (Aeschebacher et al.,
2012). In the presence of high concentrations of Fe(II) in soil waters, a greater proportion of
430 Fe(II) may complex with phosphate in the buffer solution, which may slow the oxidation of
Fe(II) (Van der Grift et al., 2016). Thus, complexation of Fe(II) with phosphate may result in a
432 lower EDC than expected based on the concentration of Fe(II) present. For example, when
Fe(II) as the electron donor was added to MilliQ water in the form of ferrous ammonium sulfate,
434 the EDC was lower than the concentration of Fe(II) when Fe(II) concentrations exceeded $50 \mu\text{M}$
(less than 1 mol of total electrons released per 1 mol of electrons released from Fe(II); see
436 *methods* and Fig. S1). This result suggests that at high Fe(II) concentrations some of the iron
complexes with phosphate, resulting in a lower EDC than expected based on the initial Fe(II)
438 concentration. Because phosphate buffer was used only for the subset of soil waters analyzed for
EDC, and was not used to quantify Fe(II) oxidation upon addition of air, there was no
440 interference for the quantification of the oxidation of Fe(II). Thus, together these results strongly
indicate that for the 78% of soil waters plotting on or below the 1:1 line for the electrons released
442 from Fe(II) oxidation versus total electrons released (Fig. 4), Fe(II) was the most important
electron donor upon oxidation of soil waters.

5.2.3. Contribution from other electron donors to $\bullet\text{OH}$ production

For the ~ 20% of soil waters plotting above the 1:1 line, electron donors other than Fe(II) 446 may have contributed to the EDC upon aeration of soil water (Fig. 4). While oxidized iron could be reduced and re-oxidized multiple times (*section 5.4.1.*), most of the soil waters that plotted 448 significantly above the 1:1 line had low Fe(II) concentrations suggesting the presence of electron donors other than iron (Fig. 4). Based on estimates of the fraction of DOC that may be reduced 450 and on the concentrations of total manganese (Mn) in these soil waters, previous work proposed that alternate electron donors may include reduced DOC or Mn (Table 1; Page et al., 2013). 452 Sulfide could be an additional electron donor (Wallace et al. 2017); however, concentrations of sulfide in the soil waters of this study are too low for sulfide to be a substantial source of 454 electrons to produce •OH (Page et al., 2013). The expected reductants within the DOC pool are reduced quinone moieties, which may produce •OH upon oxidation by air via an organic Fenton 456 reaction, with H₂O₂ expected to be an intermediate, similar to Fe(II) oxidation (Fig. 1; Page et al., 2012). Assuming the same fraction of reduced DOC in our samples as that determined for 458 similar samples by Page et al. (2013), DOC could have accounted for 25% of the EDC on average from the soil waters in this study. Concentrations of total Mn were on average five-fold 460 lower than total iron in these soil waters (Table 1; Page et al., 2013), suggesting that Mn was likely less important than Fe(II) or DOC as an electron donor to O₂ yielding •OH in most soil 462 waters. However, at one site, concentrations of Fe(II) were significantly lower than the EDC (Fig. 4) and lower than total dissolved Mn (49 µM), suggesting that the oxidation of reduced Mn 464 could have contributed to the EDC.

5.3. H₂O₂ production is consistent with a Fenton source of •OH

466 Here we show for the first time that H₂O₂ is produced upon introduction of O₂ to anoxic or low-O₂ soil waters (Fig. 6). H₂O₂ may be present in soils as a result of fungal activities that

468 may produce H₂O₂ to degrade lignin by the Fenton reaction (Baldrian and Valaskova, 2008).

While H₂O₂ has not been measured directly in soils before, others have reported dark H₂O₂ production or H₂O₂ concentrations in ponds, lakes, and coastal waters (Vermilyea et al., 2010; Cory et al., 2016; Zhang et al., 2016). Dark H₂O₂ production in low Fe(II), oxic surface waters was attributed to biological activity (Vermilyea et al., 2010; Cory et al. 2016; Zhang et al., 2016). H₂O₂ production in this study was not likely due to biological processes because soil waters were filtered to minimize microbial activity prior to oxidation (see *methods*). In addition, H₂O₂ likely reacts rapidly with the high Fe(II) concentrations in these soil waters (Table 1, Fig. 1), and thus any H₂O₂ biologically produced prior to filtration should not be stable. High concentrations of H₂O₂ similar to those in this study (μ M range; Table 1; Fig. 6) have been reported for aerated sediments amended to contain high concentrations of Fe(II), where production of up to \sim 4 μ M H₂O₂ in the amended sediments was attributed to the oxidation of Fe(II) by O₂ (Murphy et al., 2014). Thus, this direct evidence for the production of H₂O₂ upon aeration of soil waters rich in reduced constituents (Figs. 1, 6) is also evidence for an abiotic source of H₂O₂.

H₂O₂ production from aeration of soil waters was higher at low initial O₂ concentrations, suggesting that H₂O₂ production resulted from oxidation of reduced constituents such as Fe(II) or DOC (Fig. 6). This result is consistent with the well-studied production of H₂O₂ during the oxidation of Fe(II) or reduced DOC by O₂ (Haber and Weiss, 1932; Stumm and Lee, 1961; Voelker and Sulzberger, 1996; Page et al., 2012; Kluepfel et al., 2014). H₂O₂ produced by the oxidation of Fe(II) or reduced DOC likely subsequently oxidized Fe(II) in these high-iron soil waters, leading to production of •OH (Petigara et al., 2002).

5.4. Controls on the production of •OH from iron oxidation in arctic soil waters

490 5.4.1. The yield of •OH from Fe(II)

Evidence from this study strongly suggests that Fe(II) oxidation is the main source of
492 •OH produced upon aeration of soil waters (Fig. 4). However, the large variability in the amount
of •OH produced from soil waters with the same initial concentration of Fe(II), or the same
494 amount of Fe(II) oxidized upon aeration (Fig. 5, S2), suggests that factors other than the initial
amount of Fe(II) present can influence the production of •OH. Given that •OH production and
496 oxidation of Fe(II) were each measured over the same time period (24 hours) for all waters, we
interpret differences in •OH production per oxidation of Fe(II) to be due to differences in the
498 yield of •OH per mol Fe(II) oxidized. Differences in •OH yield per mol Fe(II) oxidized may be
due to the large variability in soil water chemistry (pH, initial Fe(II), DOC) that influenced both
500 the rate of Fe(II) oxidation and the production of specific intermediates and products formed
during Fe(II) oxidation (Voelker et al., 1996; Chang et al., 2008; Burns et al., 2010; Fuji et al.,
502 2010). In water containing only dissolved O₂ and iron, the expected (net) stoichiometry is one
mole •OH produced for every three moles Fe(II) oxidized (Fig. S2; Remucal and Sedlack, 2011),
504 because the oxidation of iron proceeds by a series of one electron transfer reactions to O₂
producing a suite of reactive oxygen species (Haber and Weiss, 1932). However, in natural
506 waters varying widely in chemistry, the molar yield of •OH per mol Fe(II) oxidized may be
substantially different than the expected 1:3 ratio because iron may undergo rapid redox cycling.

508 Previous work in simulated sediment pore waters reported that iron redox cycles varied
widely as a function of pore water chemistry. Burns et al. (2010) reported that the number of
510 Fe(II) / Fe(III) cycles may vary between 10 – 22000, resulting in 3 to 750 mol •OH produced per
mol Fe(II). Thus, in natural soil waters it may be possible to generate > 1 mol •OH per 3 mol
512 Fe(II) oxidized if there are many cycles of Fe(II) / Fe(III) (Burns et al., 2010).

The controls on the number of iron redox cycles yielding •OH in natural waters are not
514 yet well understood. In this study, few soil waters exhibited greater than the expected 1 mol •OH
produced per 3 mol Fe(II) oxidized (Fig. S2) if there were many cycles of Fe(II) / Fe(III). Most
516 soil waters exhibited less than 1 mol •OH produced per 3 mol Fe(II) oxidized (Fig. S2). We
expect in these DOC-rich soil waters for DOC to have the greatest influence on the iron redox
518 cycling (Table 1). DOC can influence the iron redox cycling and thus •OH production by (1)
forming complexes with iron and by (2) playing a role in iron oxidation and reduction.

520 *5.4.2. Complexation of Fe(II) with DOC*

Complexation of Fe(II) with DOC ligands has been suggested to affect the rate of Fe(II)
522 oxidation (Voelker and Sulzberger, 1996; Miller et al., 2009). In the predominately acidic to
mildly acidic soil waters in this study, organic ligands within DOC were most likely to form
524 complexes with Fe(II) given that these waters contain high DOC concentrations and low
concentrations of other ligands such as sulfide or carbonate (Table 1; Page et al., 2013). Given
526 that concentrations of Fe(II) and Fe(III) were much higher than expected based on equilibrium
with the amount of dissolved oxygen at the specific pH of the soil water (Table 1, Fig. S4), it is
528 likely that interactions between Fe(II) and DOC influenced the stability of Fe(II) (Pham and
Waite, 2008; Miller et al., 2009; Jones et al., 2015). Alternatively, DOC may influence iron
530 redox cycling by increasing rates of Fe(II) oxidation. For example, Voelker and Sulzberger
(1996) found faster oxidation of Fe(II) by H₂O₂ in the presence of DOC. Fe(II) and DOC
532 concentrations are strongly, positively correlated in soil waters in this study ($p < 0.05$; data not
shown), and there is evidence for an association between iron and DOC in soil waters (Sundman
534 et al., 2013; Herndon et al., 2015). However, it is currently not possible to predict the specific
effects of DOC on iron redox cycling, and thus on the •OH production during aeration of natural

536 waters, due to lack of information on the identity, abundance, and acidity of DOC ligands for
iron.

538 DOC in arctic soil waters is derived mostly from the degradation of plant and soil matter,
and thus this DOC pool contains abundant carboxyl and phenolic moieties (Drake et al., 2015;
540 Ward and Cory, 2015). Herndon et al. (2015, 2017) showed that both Fe(II) and Fe(III) present
in arctic soil waters were complexed with DOC, and Daugherty et al. (2017) suggested that
542 carboxyl ligands within DOC are most important for complexing Fe(II). These findings are
consistent with prior work suggesting that carboxyl and phenolic moieties may serve as ligands
544 to complex with both Fe(II) and Fe(III) (Voelker and Sulzberger, 1996; Miller et al., 2009;
Vermilyea and Voelker, 2009; Jones et al., 2015). In carboxyl and phenolic rich DOC soil
546 waters from our study, DOC is expected to complex with Fe(II), but how this complexation may
either speed up or slow down Fe(II) oxidation, or influence the number of Fe(II) / Fe(III) redox
548 cycles and thus influence •OH production, remains an open question.

5.4.3. The role of DOC in iron oxidation and reduction

550 In addition to the role of DOC in complexing with iron, DOC likely influences iron redox
cycling and •OH production by acting as a source of reactive oxygen species involved in iron
552 oxidation and reduction, or as a reductant of Fe(III). Oxidation of reduced DOC could produce
H₂O₂ (Page et al., 2012), the key reactant in Fenton-mediated Fe(II) oxidation that yields •OH
554 (Figs. 1, 6). Interactions of iron with DOC may also influence the balance of reactive
intermediates and products formed during iron redox cycling (Voelker and Sulzberger, 1996;
556 Remucal and Sedlack, 2011). For example, in the presence of terrestrially-derived DOC (e.g.,
SRFA), Voelker and Sulzberger (1996) found that •OH reacted with DOC to produce an organic
558 radical. The organic radical reduced O₂ to yield superoxide that then oxidized Fe(II) to Fe(III)

and regenerated H₂O₂. DOC can also reduce Fe(III) to Fe(II) (Voelker and Sulzberger, 1996;

560 Vermilyea and Voelker, 2009), thereby enhancing iron redox cycling by regenerating Fe(II) that
had been oxidized by O₂ or by reactive oxygen species. Thus, by acting as a source of reactive
562 oxygen species or as a reductant of Fe(III), DOC may have influenced the number of iron redox
cycles or rate of Fe(II) oxidation, affecting the range of •OH production per mol Fe(II) oxidized
564 in the study waters (Figs. 5, S2).

5.5. •OH oxidation of DOC and CO₂ production

566 *5.5.1. CO₂ production in soil waters*

The third main result is that more than half the soil waters tested showed production of
568 CO₂ within 24 hours after addition of H₂O₂. Increasing CO₂ production with increasing H₂O₂
(Fig. 7) and increasing relative •OH (Fig. 9) is consistent with the oxidation of DOC to CO₂ by
570 •OH (Voelker and Sulzberger, 1996; Burns et al., 2010; Hall and Silver, 2013). DOC is likely
the main sink for •OH in soil waters due to high DOC concentrations and low concentrations of
572 quenching anions like chloride and bromide (Page et al., 2013, 2014) that can scavenge •OH
(Qian et al., 2001). Carbonate can also scavenge •OH to produce low energy radicals at a slower
574 rate than •OH reacts with DOC (Buxton et al., 1988). However, while some of the soil waters or
soil leachates contained relatively high DIC (i.e., high carbonate alkalinity), at the pH of these
576 soil waters there were still too few carbonate ions to compete with DOC as a sink for •OH (Table
1; Buxton et al., 1988; Page et al., 2014). Therefore, oxidation of DOC by •OH in the soil waters
578 tested here is expected to be the main source of CO₂ produced.

The linear increase in both relative •OH and CO₂ production with increasing
580 concentrations of H₂O₂ added to soil waters containing Fe(II) strongly supports the model of
•OH oxidation of DOC as the source of the CO₂ (Fig. 9). Alternative pathways for CO₂

582 production from soil waters include aerobic microbial respiration of DOC or anaerobic
fermentation. However, soil waters were filtered to remove microbes prior to H₂O₂ addition,
584 thus minimizing CO₂ production from microbes.

Another line of evidence for oxidation of DOC by •OH as the source of CO₂ is the
586 experiments with SRFA + Fe(II). Previous work showed that addition of H₂O₂ to solutions of
SRFA + Fe(II) resulted in production of •OH (Voelker and Sulzberger, 1996), as we observed in
588 this study (Fig. 7). This •OH is expected to oxidize DOC to CO₂, as shown directly here with
CO₂ production increasing with increasing relative •OH in SRFA + Fe(II) solutions. Production
590 of CO₂ in microbe-free solutions of SRFA + Fe(II) comparable to production in soil waters
suggests that in both cases the source of CO₂ is oxidation of DOC by •OH (Fig. 9).

592 5.5.2. *Variability in CO₂ production*

The results suggest that for the same amount of •OH produced there can be large
594 variability in CO₂ production from the oxidation of DOC by •OH. For example, there were
differences in the yield of CO₂ produced per relative •OH produced between soil waters
596 amended with a range of H₂O₂ concentrations (Fig. 9). Consistently, there was high variability
in yield of CO₂ per relative •OH produced in all soil waters oxidized by H₂O₂ (Fig. S3).
598 Differences in DOC composition between the soil waters studied could influence whether CO₂
versus other products are formed from the oxidation of DOC by •OH (Zepp et al., 1992;
600 Brezonik and Fulkerson-Brekken, 1998; Westerhoff et al., 1999). It is expected that within the
broad range of aromatic and aliphatic fractions of DOC shown to react with •OH, the abundance
602 of the moieties that react most rapidly with •OH are expected to control the rate of DOC
oxidation and thus the rate of CO₂ production (Westerhoff et al., 1999; Waggoner et al., 2015).
604 In addition to DOC composition, other factors can influence the amount of CO₂ produced during

the series of iron oxidation reactions that yield $\cdot\text{OH}$, including the production of alternate
606 oxidants (i.e., ferryl iron; Vermilyea and Voelker, 2009; Remucal and Sedlack, 2011).

Therefore, the range in the concentrations of CO_2 produced by DOC in the presence of $\cdot\text{OH}$ (Fig.
608 9) is consistent with the variable chemistry and DOC composition between the soil waters tested
(Table 1; Ward and Cory, 2015).

610 *5.5.3. Underestimation of $\cdot\text{OH}$ production*

Greater yield of CO_2 produced from oxidation of DOC by $\cdot\text{OH}$ in this study than a
612 previously measured laboratory yield (Goldstone et al., 2002) may be evidence of
underestimation of $\cdot\text{OH}$ produced in our study. Two methodological constraints may have
614 contributed to an underestimation of $\cdot\text{OH}$. First, as described in the *methods and results*, CO_2
production was quantified from undiluted soil water exposed to the same concentration of H_2O_2
616 as diluted soil water used to quantify $\cdot\text{OH}$ production. Due to differences in the methodological
constraints for detection of CO_2 versus $\cdot\text{OH}$, there was a larger ratio of $\text{Fe}(\text{II})$ and DOC to H_2O_2
618 present in the subset of (undiluted) soil waters used to quantify CO_2 production versus the subset
of (diluted) soil waters used to quantify $\cdot\text{OH}$. Higher concentrations of $\text{Fe}(\text{II})$ and DOC in
620 undiluted soil waters could lead to a greater number of $\text{Fe}(\text{II})$ / $\text{Fe}(\text{III})$ redox cycles (Burns et al.,
2010), and thus more $\cdot\text{OH}$ and CO_2 produced compared to diluted waters. In contrast to
622 undiluted soil waters, in diluted soil waters containing low $\text{Fe}(\text{II})$ and DOC relative to the H_2O_2
present, $\text{Fe}(\text{II})$ may be unable to complete the redox cycle to produce $\cdot\text{OH}$, or $\cdot\text{OH}$ may react
624 with excess H_2O_2 (instead of DOC) to produce less reactive radicals (Ciotti et al., 2009). Thus,
the values of relative $\cdot\text{OH}$ produced reported here may be conservative, and there may have been
626 more $\cdot\text{OH}$ produced in the undiluted soil water used to quantify CO_2 produced versus the same
diluted soil water used to quantify $\cdot\text{OH}$ produced.

628 Second, assumptions about the yield for reaction of the TPA probe used to quantify $\cdot\text{OH}$
produced may lead to an underestimation of $\cdot\text{OH}$ produced from soil waters. Specifically, TPA
630 reacts with $\cdot\text{OH}$ to produce hTPA, with a yield of 35% demonstrated in simulated natural waters
(Page et al., 2010). However, Charbouillot et al. (2011) reported that the yield of hTPA
632 produced per mol $\cdot\text{OH}$ in aqueous solutions decreased with decreasing pH between pH 7.5 to
3.9. Because the pH range of the soil waters studied here ranged from 7.6 to 4.5, applying a
634 constant yield of 35% could underestimate the concentrations of $\cdot\text{OH}$ produced if the yield of
hTPA produced per mol $\cdot\text{OH}$ present was lower. Although it is not possible to determine
636 controls on the yield of $\cdot\text{OH}$ across the range of water chemistries studied here, a yield of 0.35
mol hTPA per 1 mol $\cdot\text{OH}$ has been proposed to be an upper limit (Fang et al., 1996; Charbouillot
638 et al., 2011). Assuming the yield varies from 0.10 to 0.35 mol hTPA per 1 mol $\cdot\text{OH}$
(Charbouillot et al., 2011), concentrations of $\cdot\text{OH}$ could be almost four times greater in some soil
640 waters than reported here. Therefore, the multiple methodological limitations in $\cdot\text{OH}$ detection
suggest that $\cdot\text{OH}$ produced from soil waters is likely a conservative estimate. While it was not
642 possible to know with confidence the absolute $\cdot\text{OH}$ produced from oxidation of soil waters by
O₂ or H₂O₂, the findings from this study strongly suggest that when $\cdot\text{OH}$ is produced, it oxidizes
644 DOC to CO₂ (Fig. 9).

6. Conclusions and implications

646 Results from this study show for the first time that Fe(II) was the main electron donor
upon aeration of soil waters, and that H₂O₂ is likely produced from aeration of natural waters
648 with reduced species such as iron and DOC. Prior work and our results strongly indicate Fe(II)
oxidation as the predominant pathway for $\cdot\text{OH}$ production when O₂ is introduced to arctic soil
650 waters. This study also is the first to directly demonstrate that CO₂ is produced from natural soil

waters in proportion to $\cdot\text{OH}$ produced, likely due to the oxidation of DOC by $\cdot\text{OH}$. Thus, this
652 study demonstrates that the dark, chemical oxidation of DOC by $\cdot\text{OH}$ may be an important
source of CO_2 produced in arctic soils. Direct evidence for CO_2 from $\cdot\text{OH}$ oxidation of DOC in
654 this study supports prior work in tropical soils, where a correlation between CO_2 production and
Fe(II) oxidation was suggested to be due in part to oxidation of DOC by $\cdot\text{OH}$ (Hall and Silver,
656 2013).

However, the quantitative importance of $\cdot\text{OH}$ in soil carbon cycling depends on the *in-*
658 *situ* $\cdot\text{OH}$ production as redox constituents in soil waters cycle between reducing and oxidizing
conditions. Waterlogged soils result in the accumulation of Fe(II) (Lipson et al., 2010) that can
660 be oxidized by the introduction of O_2 . O_2 can be introduced through a change in the water table
depth, slow diffusion to the oxic-anoxic interface, rain events, or downslope flow of anoxic soil
662 waters into oxic surface streams. Introduction of O_2 by any of these pathways to Fe(II) rich soil
waters could trigger the oxidation of DOC by $\cdot\text{OH}$ to CO_2 or to low molecular weight organic
664 compounds (Goldstone et al., 2002) at these redox interfaces. Interestingly, Herndon et al.
(2015) reported the presence of low molecular weight compounds like acetate at redox interfaces
666 in arctic soils. Therefore, understanding (1) the frequency of oxygenation events, (2) the rates of
production of reduced species after oxygenation, (3) the variability in Fe(II) concentrations and
668 (4) *in-situ* $\cdot\text{OH}$ production, are the next steps needed to understand the role of dark $\cdot\text{OH}$ in soil carbon cycling.

670 Understanding iron-mediated $\cdot\text{OH}$ production is important because increased thaw depth
in a warming Arctic may increase the abundance of Fe(II) in arctic and boreal soils (Keller et al.,
672 2007; Pokrovsky et al., 2013; Herndon et al., 2015; Reyes and Lougheed, 2015; Vonk et al.,
2015). For example, Barker et al. (2014) reported the highest concentrations of total dissolved

674 iron in arctic streams in late fall, which they attributed to deeper thaw into the mineral layer of
the soils. Previous work has shown that minerals in permafrost soils contain leachable iron
676 (Keller et al., 2007), but information from broad geographic settings is limited.

In addition to greater iron availability with increasing thaw depth, thawed permafrost
678 soils contain tremendous stores of soil carbon (Ping et al., 2008) susceptible to oxidation by
•OH. Oxidation of DOC by •OH may be less selective than microbial oxidation and degradation
680 of DOC (Ward and Cory, 2015), suggesting that even if annual rates of DOC oxidation by •OH
to CO₂ are much less than microbial production of CO₂ from arctic and boreal soils, •OH
682 oxidation of DOC may influence microbial respiration of DOC. For example, •OH may oxidize
a fraction of DOC that would otherwise be relatively resistant to microbial degradation, or
684 produce low molecular weight acids that are more labile to microbes (Goldstone et al., 2002).

Thus, iron-mediated •OH production and its oxidation of organic carbon could influence the
686 conversion of the vast stores of organic carbon in permafrost soils to CO₂ on relatively short
time scales, and potentially contribute to an accelerating feedback to global warming (e.g.,
688 MacDougall, 2012).

Acknowledgements

690 We thank K. Yuhas, J. Dobkowski, C. Ward, C. Cook, M. Findley, A. Deely, and researchers,
technicians, and support staff of the Toolik Lake Arctic LTER and Toolik Lake Field Station
692 (GIS, J. Stuckey) for assistance in the field and laboratory. Thanks to Anne Giblin and three
anonymous reviewers for helpful feedback on the manuscript. Research was supported by NSF
694 CAREER-1351745, DEB-1026843 and 1637459, PLR-1504006, and NSF GRFP to A. Trusiak.