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ABSTRACT

We propose a fully automated methodology for hexahedral meshing of patient-specific structures
of the human knee obtained from magnetic resonance images, i.e. femoral/tibial cartilages and
menisci. We select eight patients from the Osteoarthritis Initiative and validate our methodology
using MATLAB on a laptop computer. We obtain the patient-specific meshes in an average of three
minutes, while faithfully representing the geometries with well-shaped elements. We hope to provide
a fundamentally different means to test hypotheses on the mechanisms of disease progression by
integrating our patient-specific FE meshes with data from individual patients. Download both our
meshes and software at http://im.engr.uconn.edu/downloads.php.

1. Introduction

Articular cartilage in diarthrodial joints must provide (i)
a compliant, low-friction surface between the relatively
rigid bones; (ii) a long-wearing and resilient surface; and
(iii) a means to distribute the contact pressure to the
underlying bones. Osteoarthritis (OA) is a disease of the
synovial joint, with degeneration and loss of articular car-
tilage (and subsequent function) as one hallmark change.
OA is a debilitating disease that afflicts nearly 20% of
people in the US, costing more than $185.5 billion a
year (in 2007 dollars), and its prevalence is projected to
increase by about 40% in the next 25 years (Lawrence et
al. 2008a, 2008b; Kotlarz et al. 2009).

Fortunately, to facilitate the study of OA we can ac-
cess large cohort databases on its progression, e.g. the
Osteoarthritis Initiative (OAI) with a cohort of 4,796
participants. The OAI is a multicenter, longitudinal, ob-
servational study of knee OA funded in part by the NIH
(Nevitt et al. 2006). This study selects men and women
from the general population who are at high risk as in-
dicated by weight, knee symptoms, or history of knee
injuries. The OAI public database supports investigations
of OA of the knee onset and progression using traditional
measures of disease and biomarkers. This database in-
cludes 3.0 T Siemens Trio Magnetic Resonance Images
(MRIs), e.g. localizer (3-plane), intermediate-weighted
turbo spin echo, 3-D dual-echo in steady-state (DESS),
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intermediate-weighted turbo spin echo, TI1-weighted
3-D flash, and T2.

Despite the multifactorial nature of OA, mechanical
stresses play a key role in the destructive evolution of the
disease (Andriacchi etal. 2004; Goldring and Marcu 2009;
Poluretal. 2010; Loeser etal. 2012) and subsequent loss of
tissue/joint function. Both overloading (e.g. trauma) and
reduced loading (e.g. immobilization) of cartilage induce
molecular and microstructural changes that lead to me-
chanical softening, fibrillation, and erosion. Experiments
can be used to quantify mechanical properties and biol-
ogy of tissues, and imaging can be used to estimate tissue
structure and even strains; however, only computational
models can estimate intra-tissue stresses in human joints,
because the required in vivo experiments are impossible
or unsafe. Finite element (FE) models are well-established
at the macro (e.g. joint) scale as a means to estimate intra-
tissue stress distributions.

Generating an appropriate computational mesh is a
prerequisite for applying many numerical techniques,
including FE analyses, to patient-specific questions. Such
meshes represent the geometry of interest using a set of
polyhedral elements, commonly tetrahedra (a minimum
of four connected nodes creating four triangular faces) or
hexahedra (a minimum of eight connected nodes creating
six quadrilateral faces). Many fast and robust methods
exist for automatically generating tetrahedral meshes of
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arbitrary geometries, cf. Yerry and Shephard (1984),
Lohner and Parikh (1988).

Building computational meshes from hexahedra is far
more restrictive and time consuming, and a fully auto-
matic algorithm for generating hexahedral meshes of ar-
bitrary geometries does not yet exist. However, for a wide
range of applications, hexahedral-based meshes are pre-
ferred. Among many reasons, FE meshes require far more
tetrahedral elements (relative to hexahedral elements) to
achieve the same solution accuracy for a given analyses,
and this leads to higher computational costs (both time
and memory) (Ramos and Simdes 2006). When the aim is
to apply FE analyses, tetrahedral meshes produce accept-
able displacement results but are relatively inaccurate for
predicting stresses (Puso and Solberg 2006). Addition-
ally, we aim to allow use of different material parameters
through the thickness of the tissue to model the zonal
structure of healthy cartilage (Pierce et al. 2013a, 2013b).
In this case hexahedral meshes are an excellent option.

Specialized software packages, such as TrueGrid
(XYZ Scientific Applications, Inc., Pleasant Hill, CA),
MeshGems (Distene SAS, Bruyeres-le-Chatel, FR) and
IA-FEMesh (Grosland et al. 2009), simplify the creation
of fully hexahedral meshes. Nonetheless, such software
demands significant experience and user interaction to
create a block layout for each structure from which
meshes are then generated. Each structure may thus re-
quire significant processing time, on the order of several
hours per structure.

Several methods for generic hexahedral meshing are
proposed in the literature, e.g. octree-based (Maréchal
2009), morphing-based (Murase and Tamamura 2016),
and sweeping (Roca et al. 2004; Lievers and Kent 2013;
Mukherjee et al. 2013). Of these only the method of
Murase and Tamamura (2016) was tested on structures in
the knee, and unfortunately little information on results
is available.

‘Open Knee(s): Virtual Biomechanical Represent-
ations of the Knee Joint’ (Erdemir 2016) offers patient-
specific biomechanical models of knee structures based
on hexahedral meshes. The project provides specific
meshes, generated using TrueGrid, for download but
does not provide software to generate new models based
on additional patient images.

In this work we propose a specific, automatic algo-
rithm designed to work with patient-specific geometries
of the knee obtained from MRI. Indeed, we establish a
fully automated methodology for hexahedral meshing of
knee joint structures, i.e. femoral cartilage, menisci, and
tibial plateau cartilages.

2. Materials and methods
2.1. Segment and reconstruct image data

We determine the anatomical structures of the knee in
each patient by manually segmenting sagittal slices of
the fat-suppressed 3-D dual-echo in steady state (DESS),
e.g. from the OAI database. MRI data sets from the OAI
include 160 slices of 384 x 384 pixels?, for a final voxel res-
olution of 0.365 x 0.365 x 0.7 mm?>. The DESS sequence
provides excellent universal cartilage discrimination to
capture quantitative cartilage morphology. We gener-
ate triangular surface meshes of each structure from the
manual segmentations using a marching cubes algorithm
(Lorensen and Cline 1987), see Figure 1.

2.2. Generate hexahedral meshes

We start from triangular surfaces of the structures of in-
terest as inputs to our fully-automatic, hexahedral mesh-
ing methodology for knee joint structures, specifically
femoral cartilage, medial/lateral menisci, and medial/
lateral tibial cartilages.

2.2.1. Overview

Our methodology uses the following steps for each struc-
ture of interest: (1) create an initial low-resolution mesh
with our structure-specific, custom sweeping algorithm,
(2) smooth this mesh using a Laplacian filter, (3) ex-
pand this mesh to fit the original (triangular surface)
segmentation, (4) optimize element quality, (5) refine this
by subdividing hexahedra, and (6) smooth, expand and
optimize element quality iteratively. The first five steps of
our methodology follow Lievers and Kent (2013) while
we perform step (6) iteratively until all the elements of
the mesh fulfill the quality conditions.

Femoral cartilage: First we outline our custom hexa-
hedral meshing methodology for femoral cartilage struc-
tures, see Figure 2.

We model the femoral cartilage using a sweeping al-
gorithm in cylindrical coordinates. Two points define
the axis of the cylinder, each point resulting from the
projection of the center of mass of each tibial plateau
cartilage over the plane that divides the minimum bound-
ing box of the femoral cartilage into two equal parts in
the proximal-distal axis. Using this coordinate system,
we compute the intersection of rays, defined by their
angular and axial positions, with the triangular surface
(Figure 2(a)). The result is two clouds of points describing
the proximal (red) and distal (articular surface, blue)
surfaces of the cartilage (Figure 2(b)). We use these points
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Figure 1. We manually segment magnetic resonance images and generate triangular surfaces using a marching cubes algorithm, (a)
representative fat-suppressed 3-D dual-echo in steady state (DESS) images with manual segmentation, and (b) resulting triangular

surfaces of each patient-specific structure.

Figure 2. Schematic representation of custom hexahedral mesh generation for femoral cartilage structures: (a) sweeping in both axial
and circumferential directions using cylindrical coordinates, (b) determining initial nodes, (c) generating initial low-resolution mesh, (d)
correcting elements with six nodes (collapsed elements), () smoothing the mesh, and (f) refining and optimizing the mesh iteratively.

as nodes of an initial non-smooth mesh (Figure 2(c)).
We detect and process elements formed by only six nodes
(collapsed elements) (Figure 2(d)) before applying Lapla-
cian smoothing (Field 1988) (Figure 2(e)). Once we have
this initial hexahedral mesh, we refine it and iteratively
smooth, expand and optimize the mesh, until all of the
elements of the final mesh fulfill the minimum quality
metrics (Figure 2(f)).

Menisci: Next we outline our custom hexahedral
meshing methodology for meniscus structures in
Figure 3.

We model each meniscus using a radial sweeping al-
gorithm with the proximal-distal (vertical) line through
the center of mass of each respective tibial cartilage as

principal axis (Figure 3(a)). We initially describe each 2-
D contour as a triangle to posteriorly define ten patches
and 17 points (Figure 3(b)). We use the resulting cloud
of points (Figure 3(c)) to create the initial low-resolution
mesh, and apply Laplacian smoothing to eliminate out-
liers (Figure 3(d)). Thereafter we refine this mesh and
iteratively smooth, expand and optimize it, until all of
the elements of the final mesh fulfill the minimum quality
metrics (Figure 3(e)).

Tibial plateau cartilages: Finally, we outline our cus-
tom hexahedral meshing methodology for tibial cartilage
structures in Figure 4.

We model each tibial plateau cartilage using a hybrid
sweeping algorithm, combining an initial Cartesian dis-
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Figure 3. Schematic representation of custom hexahedral mesh generation for meniscus structures: (a) sweeping in the circumferential
direction using cylindrical coordinates, (b) modeling each contour as a triangle with ten patches and 17 nodes, (c) determining initial
nodes, (d) generating initial low-resolution mesh, and (e) refining and optimizing the mesh iteratively.

Figure 4. Schematic representation of custom hexahedral mesh generation for tibial cartilage structures: (a) first sweeping in Cartesian
coordinates, (b) second sweeping in Cartesian coordinates, (c) determining initial nodes, (d) generating initial low-resolution mesh, and

(e) refining and optimizing the mesh iteratively.

tribution, centered at the center of mass of the structure
(Figure 4(a)), with a radial distribution (Figure 4(b)).
We compute the intersection of rays with the triangular
surfaces. As in the first case, the result is two clouds of
points describing the proximal (articular surface, red)
and distal (blue) surfaces of the cartilage (Figure 4(c)).
We use these points as nodes of an initial non-smooth
hexahedral mesh (Figure 4(d)). Once we have this initial
mesh, we refine it and iteratively smooth, expand and

optimize the mesh, until all of the elements of the final
mesh fulfill the minimum quality metrics (Figure 4(e)).

2.2.2. Create low-resolution meshes

Our methodology uses the minimum bounding box
(O’Rourke 1985) of the cartilages and menisci to perform
specific and customized sweeping algorithms for each
structure. Our sweeping algorithms generate clouds of
points that we use to create the initial low-resolution
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meshes, while eliminating the use of collapsed elements.
Creation of the initial low-resolution mesh is the main
difference between our structure-specific methods, while
the processes of smoothing, expanding and optimization
of the meshes are common between structures.

2.2.3. Smooth meshes with Laplacian filter

We first perform Laplacian smoothing over all nodes of
the low-resolution mesh, an enhancement process that
removes outliers (Field 1988). For each vertex formed at
nodal position n; in our mesh (i € {1,2,...,N} with N
nodes in the mesh), we select a new nodal position f;
based on local information using an extended version of
the Laplacian smoothing algorithm (Vollmer et al. 1999)
as

R l—«o

=N il Zféadj(i) & ()
where n; are the positions of nodes forming adjacent
vertices j € adj(i) (if adj(i) = ¥ then node i is not
moved). We use @ = 0.5 to balance smoothing quality
and degree of model shrinkage.

2.2.4. Expand meshes into the triangular surfaces
Laplacian smoothing reduces the volume of our struc-
tures, and thus we assume our deformation step is only
for expansion. We expand meshes using only the surface
nodes. In the femoral and tibial cartilages, the struc-
tures have only surface nodes before division into layers.
However, in the menisci there are internal nodes. In
this case, we move (if needed) internal nodes during the
optimization step.

We deform each surface node n; towards its respective
triangular surface along a vector v; determined from the
average of all the face normals sharing n;. We compute
each face normal as the unit vector resulting from the
cross product of both edges sharing n; and the face of
interest. The intersection of the ray, with origin n; and
direction v;, and the triangular surface mesh determines
the new position n;. If we do not find an intersection,
or the intersection is very far from the origin, n; is not

modified.

2.2.5. Optimize meshes

Creation or expansion of the low-resolution mesh may
result in mesh distortion or inversion. Thus, we perform
an optimization step to both repair any invalid elements
and improve the overall mesh quality. To achieve these
goals, we propose combining Laplacian smoothing and
element optimization, an approach that works indepen-
dent of the resolution of the mesh. First, we detect ele-
ment inversions as negative nodal Jacobian Jj values, cf.
(2) in Section 2.3. We solve this problem by replacing
such nodes with the average of its neighbors. Second,

Figure 5. Schematic representation of mesh optimization. We
move nodes associated with angles <45° or >135° (white dots)
to new positions (white squares) in order to improve the scaled
Jacobian values and meet minimum quality metrics.

we apply local mesh improvements to ill-conditioned
elements with scaled ]acobiansf < 0.5, cf. (3), following
a strategy similar to that proposed by Auer and Gasser
(2010). For each ill-conditioned element, we detect and
correct internal angles <45° or >135°. To illustrate, in
Figure 5 we move nodes 1 and 3 (associated with obtuse
angles >135°) further apart from one another along the
line connecting them, while we move nodes 2 and 4
(associated with acute angles <45°) closer together to one
another along the line connecting them.

2.2.6. Refine meshes

For the femoral and tibial cartilages, where the initial low-
resolution mesh is only one-element thick, we divide each
hexahedral element into four hexahedra (dividing by two
in the lateral-medial and anterior-posterior directions,
but not in the proximal-distal direction). For the menisci,
we divide each hexahedral element into eight hexahedra
(dividing by two in each of the three sweeping directions).
Importantly, by modifying the sweeping parameters we
can fully adjust the density of our meshes.

2.2.7. Smooth, expand and optimize iteratively
The first five steps of our methodology, outlined in
Section 2.2.1, follow Lievers and Kent (2013) while we
perform step (6) iteratively until all the elements of the
mesh fulfill the quality conditions. Our iterative approach
allows us to meet or exceed minimum targets for our
quality metrics outlined in Section 2.3,

Table Al in Appendix 1 provides pseudo code for our
structure-specific cartilage meshing methodology.

2.3. Determine quality of the meshes

Several factors affect the quality of an FE mesh, i.e. its
usefulness in numerical simulations, and these depend
on the type of calculation and on the desired results.
For the analysis of solid structures the scaled Jacobian
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is a common quality metric (De Santis et al. 2011). We
evaluate the nodal Jacobian Ji of each hexahedral element
at the element center k = 0 using the principal axes, and
ateachnodek, k € [1,..., 8], as the triple scalar product
of the edges connected to that node using

Jk = ex1 - (ex2 X ex3). (2)

The modulus of (2) represents six times the volume of
the tetrahedron enclosed by these three edges. We evalu-
ate the scaled ]acobianf of an element as the minimum of
each nodal Jacobian J divided by the length of the three
corresponding edges (e, €k, ex3) using

Jk } ’ 3)

f: min |:—
kelo,....81 | [lex1 |l exzllllexsl]

where ] € [—1,1] for a hexahedral element, with —1
corresponding to the worst possible elements and +1
the best possible ones. Importantly, only elements with
a non-zero, positive scaled Jacobian are suitable for FE
analyses. We use the open-source program ParaView
(Kitware, Inc., Clifton Park, New York, USA) to evaluate
the scaled Jacobian, among other quality metrics, which
in turn uses the Verdict library (Stimpson et al. 2007;
Ayachit 2015).

We evaluate the similarity of our hexahedral meshes
to the original triangular surfaces using the non-signed
value of the Hausdorft distance (Aspert et al. 2002). We
compute the error e; for each node my in the original
triangular surface (k € {1,2,..., M} with M nodes in
the mesh) as the infimum of the distance between my
and all nodes n; in our custom hexahedral mesh (i €
{1,2,..., N} with N nodes in the mesh)

e = inf dk’,', (4)
, N}

where dy; is the Cartesian distance from my to n; (NB.
this distance is not symmetric). We use the open-source
program 3D Slicer (http://www.slicer.org) to evaluate the
error in distance for each node (Fedorov et al. 2012).

2.4. Validate methodology

To validate the efficacy of our methodology, and to eval-
uate its performance, we implemented it in MATLAB
2016a (The MathWorks Inc., Natick, MA). We select
eight patients from the OAI database, manually segment
the cartilages and menisci using the DESS images, and
generate triangular surface meshes of each structure, cf.
Section 2.1. Finally, using eight triangular surface meshes,
we test our methodology using a laptop computer with
an Intel Core i7-3632QM CPU at 2.20 GHz and with

8 GB RAM. For each of the eight tests we record the total
number of elements, the quality (scaled Jacobian) of each
element, the root-mean-squared error (RMSE, between
the surface and hexahedral meshes), and computation
time.

In our example meshes we adjust the mesh density, i.e.
we select parameters controlling the spatial resolution, so
that the mean value of the edge lengths of the elements is
~1 mm for all of the structures. For the femoral and tibial
cartilages we chose to create distinct layers to mimic the
superficial/middle/deep zones of cartilage (each with two
elements per layer) using anatomically correct through-
thickness ratios (0.16/0.54/0.30) (Mow and Huiskes 2005;
Fujioka et al. 2013). In this way we allow use of differ-
ent material parameters to model the zonal structure of
healthy cartilage, cf. Pierce et al. (2013a, 2013b).

2.5. Analyze outputs

First we check if our results are normally distributed
using a Shapiro-Wilk test with a significance level of
0.05 (Royston 1992). If number of elements, number of
elements binned by quality (J > 0.8 or 0.6 > ] > 0.5),
RMSE distance, computation time, and supplementary
element data (on resolution) are normally distributed,
we report the mean and standard deviation (M=£SD),
otherwise we report the median and interquartile range

(MD[Q1,Q3]).

3. Results

Using our fully automated methodology, we generate
hexahedral meshes of patient-specific geometric struc-
tures of the human knee - i.e. femoral cartilages, menisci,
and tibial cartilages — for eight patients from the OAI
database. Figure 6 illustrates two representative meshes
generated using our methodology.

With our methodology, cartilages can be meshed with
any number of elements through their thickness. This
flexibility allows us to represent cartilage using a single
constitutive model, as in Figure 6(a) (where we represent
the full cartilage thickness with a single color), or as a
three-layered material with different constitutive models,
as in Figure 6(b) (where we represent the three different
layers with different colors).

3.1. Results by anatomical structure

In all cases our methodology obtains the patient-specific
meshes of interest from the input triangular surfaces in
an average of approximately three minutes (running our
MATLAB implementation on a common laptop com-
puter), see Table 1. The number of elements, number
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Figure 6. Representative hexahedral meshes of the femoral (yellow) and tibial (blue) cartilages, and medial (red) and lateral (green)
menisci where the structures are separated in the axial direction for visualization purposes: (a) healthy structures of patient 9932809,

and (b) degenerated structures of patient 9951449.
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Figure 7. The quality of eight patient-specific meshes measured using the scaled Jacobian, (a) histogram of the resulting scaled Jacobian
values, and (b) representative spatial distribution of the scaled Jacobian from patient 9948792 (expanded in the axial direction for

visualization).

of elements binned by quality (J >0.8o0r06>] >
0.5), and RMSE distances are normally distributed, and
we present these results using the mean and standard
deviation (M£SD). In contrast, computation time cannot
be modeled as a normal distribution and thus we present
these results using the median and interquartile range
(MD[Q1,Q3]).

Table 1 provides the mesh quality metrics by anatom-
ical structure, and corresponding computation times.

Importantly, every structure-specific mesh comprises
only hexahedral elements - no collapsed elements or
wedges are necessary — and with all scaled Jacobian values
f > 0.5. Furthermore, both femoral and tibial cartilages
comprise ~95% of their elements with f >0.8 on average,
and less than 0.5% of their elements with 0.6 >f > 0.5.
Both of these structures present excellent similarity in
shape and size to their original surface meshes, RMSE
distances below 0.2 mm.

In contrast, our methodology obtains poorer perfor-
mance for the menisci, both in time, mesh quality and

error. Although menisci represent only ~10% of the ele-
ments required to model a patient, they require approxi-
mately two-thirds of the processing time.

Figure 7 illustrates the overall mesh quality from our
validation study on eight patient-specific meshes of the
structures of interest. Specifically, Figure 8(a) illustrates
the quality of eight patient-specific meshes using a his-
togram of the scaled Jacobian values of the five structures.
The number of high-quality elements in the femoral and
tibial cartilages masks the results in the menisci, where
a more homogeneous distribution is observed. All the
elements have scaled Jacobian values >0.5, and ~90% of
them are high-quality elements. Figure 7(b) illustrates a
representative spatial distribution of the scaled Jacobian
from patient 9948792. Most of the lower-quality elements
are in the menisci, the edges of the femoral cartilage, and
the transitions from Cartesian to angular sweeping in the
tibial cartilages.

Figure 8 illustrates the overall error distances from
our validation study on eight patient-specific meshes of
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Figure 8. The quality of eight patient-specific meshes measured using the Haussdorff distance between the input triangular surfaces
and resulting hexahedral meshes, (a) histogram of the resulting distance errors, (b) representative spatial distribution of the distance

errors from patient 9988820 (RMSE = 0.2 mm).

Table 1. Mesh quality metrics by anatomical structure (M+SD), where F. = Femoral, T. = Tibial, L. = Lateral, and M. = Medial, and
corresponding computation time (MD[Q1,Q3]). RMSE = Root-Mean-Squared-Error in Hausdorff distance between the input triangular

surfaces and resulting hexahedral meshes.

Structure Elements (#) J>0.8(%) 0.6 >J > 0.5(%) RMSE (mm) Time (s)

F. Cartilage 18713 & 1875 95.66 == 0.89 0.48 £ 0.16 0.242 £ 0.024 30.0 £ [29.8,31.3]
L. Meniscus 1675 == 206 62.07 £ 7.53 3.05+2.10 0.334 = 0.082 60.5 =+ [45.3,73.0]
M. Meniscus 1380 == 200 56.84 - 8.83 528 +2.26 0.543 £ 0.173 43.5 £ [31.0,66.8]
LT. Cartilage 3816+ 0 93.76 = 3.58 0.17£0.3 0.139 £ 0.019 5.7 £[5.5,6.0]
M.T. Cartilage 3906 + 0 95.78 == 1.46 0.05 £ 0.11 0.128 £ 0.027 6.2 £ [5.7,6.4]

the structures of interest. Specifically, Figure 8(a) illus-
trates the quality of eight patient-specific meshes using a
histogram of the Haussdorff distance between the initial
triangular surfaces and resulting hexahedral meshes of
the five structures. We see that almost all of the distance
errors in all the structures are below 0.5mm. Higher
values are in the edges of the structures, particularly in
the femoral cartilage and the extremes of the menisci.
Figure 8(b) illustrates a representative spatial distribution
of the distance errors from patient 9988820.

Table Bl in Appendix 2 provides mean and minimum
values of edge length, face area and element volume by
structure. All variables are normally distributed.

3.2. Results by OAl patient

Table 2 provides the mesh quality metrics by OAI patient
ID, and corresponding computation times. The method-
ology gives consistent performance across all patients
selected, except in terms of computation time. Meshes
from patient 9977985 took less than two minutes to gen-
erate, while meshes from patient 9977706 took more than
four and a half minutes. The remaining patients present
computation times of approximately three minutes.

4, Discussion

In this work, we propose a novel methodology for gener-
ating high-quality, hexahedral meshes of patient-specific

structures of the human knee obtained from MRIs, and
demonstrate its performance. Our methodology allows
modeling of both normal/healthy knee structures (i.e.
those without clear signs of degeneration), as shown in
Figure 6(a), and pathological knee structures (i.e. those
presenting signs of degeneration), as shown in Figure 6(b)
where both the femoral and medial tibial cartilages
present holes in their anatomy. However, such holes
(complete local loss of tissue) in the structures can only be
modeled if they are detected in the initial low-resolution
mesh. We could use a higher sweeping resolution in our
initial mesh to lower the distance errors at the expense of
a higher mesh density and increased computation time.

4.1. Relation to state-of-the-art

To the best of our knowledge, this is the only methodol-
ogy offering the following combination of characteristics:
(1) automatic generation of hexahedral meshes modeling
five important knee structures for specific patients; (2)
integrated quantitative evaluation of the quality of the
resulting meshes (and proving that there are no distorted
elements); (3) possibility for division of the cartilages
into specific through-thickness layers based on anatomy
(allowing the use of different material properties or con-
stitutive models); and (4) affordable computation times
(presenting full results in minutes).
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Table 2. Mesh quality metrics by OAI patient ID, where RMSE = Root-Mean-Squared-Error in Hausdorff distance between the input

triangular surfaces and resulting hexahedral meshes.

OAIID Elements (#) J>0.8 (%) 0.6>J>0.5 (%) RMSE (mm) Time (s)
9932809 30,530 89.98 0.97 0.25 161
9948792 31,458 91.54 0.78 0.29 184
9951449 32,106 92.10 0.60 0.28 186
9961728 30,362 92.70 0.65 0.23 152
9977706 28,706 90.48 0.86 0.30 279
9977985 28,938 92.71 0.50 0.23 116
9988421 26,914 91.09 0.81 0.24 201
9988820 26,908 92.23 1.01 0.26 214
Mean 29,490 91.60 0.77 0.26 186

Within the context of the FE method, the quality of the
finite elements obtained from mesh generation greatly
affects both the convergence of the simulations and the
resulting approximations to the solutions of the govern-
ing partial differential equations. Additionally, accuracy
in the representation of the true, patient-specific in vivo
geometry also influences the biomechanical/biomedical
applicability of the results. Metrics for mesh quality must
detect inverted elements (elements with negative volume,
which generate meaningless results or prevent solution
convergence) and provide an estimate of the mesh’s fit-
ness for use in numerical simulations.

Only IA-FEMESH published an evaluation of mesh
accuracy and validity (DeVries et al. 2009), but this study
focused specifically on phalanx bones. The authors re-
ported computational times of approximately six minutes
for one mesh 0f 4550 elements, where 10% of the elements
were distorted. Our methodology generates meshes of
five patient-specific structures in approximately three
minutes (on average) with ~30,000 elements in total, and
where less than 1% are acceptable but not high-quality
elements.

The NIH-sponsored project ‘Open Knee(s): Virtual
Biomechanical Representations of the Knee Joint’ offers
free access to hexahedral meshes of almost ten specific
patients. Similarly, we offer free access to our meshes
of eight patients from the OAI database (formatted for
multiply FE codes). Additionally, we offer our MATLAB
implementation of our methodology free for download.
Thus, interested researchers can generate specific meshes
well suited to FE simulation based only on their segmen-
tations of MRIs.

4.2. Summary and future work

Our fully hexahedral meshing methodology preserves
tissue volume and produces high-quality elements. To
the best of our knowledge, no other automatic hexahedral
meshing for patient-specific knee structures exists in the
literature. With our freely available MATLAB implemen-
tation, there are low barriers to use since users need only

input triangular surface segmentations and choose the
initial resolution for the mesh of each structure. Down-
load both our meshes and software at http://im.engr.
uconn.edu/downloads.php.

We hope to provide a fundamentally different means
to test hypotheses on the mechanisms of disease pro-
gression at the patient level by integrating our patient-
specific FE meshes and analysis framework, cf. Pierce et
al. (2016), with data from individual patients or from
natural history databases, e.g. the OAI In the longer
term, simulation-based, predictive medicine combined
with medical imaging will likely improve the health, well-
being, and quality of life for patients with OA.
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Appendix 1. Pseudo code for the meshing methodology

Table A1. Pseudo code for our structure-specific cartilage meshing methodology.

for pre-processing do
Compute minimal bounding box for femoral and tibial cartilages
Compute center-of-mass for both tibial plateau cartilages
Compute two points defining the axis for the femoral cartilage
end for
for femoral cartilage do
cylindrical sweep
process six-node elements
Laplacian smooth
expand to triangular surface
optimize
refine
while scaled Jacobian < 0.5 do
Laplacian smooth
expand to triangular surface
optimize
end while
divide into through-thickness layers
end for
for each meniscus do
radial sweep
parameterize contour
Laplacian smooth
expand to triangular surface
optimize
refine
while scaled Jacobian < 0.5 do
Laplacian smooth
expand to triangular surface
optimize
end while
end for
for each tibial plateau cartilage do
Cartesian sweep
radial sweep
while scaled Jacobian < 0.5 do
Laplacian smooth
expand to triangular surface
optimize
end while
divide into through-thickness layers
end for

Appendix 2. Supplementary data on elements in the example meshes

Table B1. Supplementary data on elements in the example meshes organized by anatomical structure (M£SD), where F. = Femoral, T. =
Tibial, L. = Lateral, M. = Medial, E.L. = edge length (mm), F.A. = face area (mm?2), and E.V. = element volume (mm?3).

Structure mean(E.L.) min(E.L.) mean(F.A.) min(F.A.) mean(E.V.) min(E.V.)

F. Cartilage 0.97 £+ 0.07 0.03 +0.01 0.67 £0.10 0.03 £ 0.01 0.524+0.12 0.04 £+ 0.01
L. Meniscus 1.03 +0.09 0.04 +0.01 0.734+0.17 0.03 +0.01 0.58 +£0.21 0.06 +0.03
M. Meniscus 0.95+£0.01 0.02 £0.01 0.60 £0.15 0.02 £0.02 0.44+0.17 0.04 £0.03
L.T. Cartilage 1.04 +0.07 0.16 £ 0.04 1.10+0.15 0.05 £ 0.01 1.05 4+ 0.23 0.04 +0.04

M.T. Cartilage 1.16 £ 0.13 0.23 £0.05 1.324+0.30 0.09 £ 0.01 1.344+0.46 0.114+0.08
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