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Abstract—In this paper, we consider the mixture of sparse
linear regressions model. Let 3V, ... 3%  C” be L un-
known sparse parameter vectors with a total of K non-zero
coefficients. Noisy linear measurements are obtained in the
form y; = w?ﬂ“i) + w;, each of which is generated randomly
from one of the sparse vectors with the label ¢; unknown.
The goal is to estimate the parameter vectors efficiently with
low sample and computational costs. This problem presents
significant challenges as one needs to simultaneously solve the
demixing problem of recovering the labels /; as well as the
estimation problem of recovering the sparse vectors 5(0.

Our solution to the problem leverages the connection between
modern coding theory and statistical inference. We introduce
a new algorithm, Mixed-Coloring, which samples the mix-
ture strategically using query vectors x; constructed based
on ideas from sparse graph codes. Our novel code design
allows for both efficient demixing and parameter estimation.
The algorithm achieves the order-optimal sample and time
complexities of ©(K) in the noiseless setting, and near-optimal
O(K polylog(n)) complexities in the noisy setting. In one of
our experiments, to recover a mixture of two regressions with
dimension n = 500 and sparsity K = 50, our algorithm is more
than 300 times faster than EM algorithm, with about 1/3 of
its sample cost.

I. INTRODUCTION

Mixture and latent variable models, such as Gaussian
mixtures and subspace clustering, are expressive, flexible,
and widely used in a broad range of problems including
background modeling [1], speaker identification [2] and
recommender systems [3]. However, parameter estimation
in mixture models is notoriously difficult due to the non-
convexity of the likelihood functions and the existence of
local optima. In particular, it often requires a large sample
size and many re-initializations of the algorithms to achieve
an acceptable accuracy.

Our goal is to develop provably fast and efficient algo-
rithms for mixture models — with sample and time com-
plexities sublinear in the problem’s ambient dimension when
the parameter vectors of interest is sparse — by leveraging
the underlying low-dimensional structures.

In this paper we focus on a powerful class of models
called mixtures of linear regressions [4]. We consider the
sparse setting with a query-based algorithmic framework.
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In particular, we assume that each query-measurement pair
(z;,y;) is generated from a sparse linear model chosen
randomly from L possible models:'

Y = :cZ-H,B(z) + w; with probability ¢,, for £ € [L], (1)

where w; is noise. The total number of nonzero elements in
the parameter vectors {3) € C" ¢ € [L]} is assumed to
be K. The goal is to estimate the ﬁ(@’s, without knowing
which B“) generates each query-measurement pair.

A mixture of regressions provides a flexible model for
various heterogeneous settings where the regression coef-
ficients differ for different subsets of observations. This
model has been applied to a broad range of tasks including
medicine measurement design [5], behavioral health care [6]
and music perception modeling [7]. Here, we study the
problem when the query vectors x; can be designed by the
user; in Section I-B we discuss several practical applications
that motivate the study of this query-based setting. Our
results show that by appropriately exploiting this design
freedom, one can achieve significant reduction the sample
and computational costs.

To recover K unknown non-zero elements, it is clear
that the amount of measurements and time required scale
at least as O(K). We introduce a new algorithm, called
the Mixed-Coloring algorithm, that matches these sublinear
sample and time complexity lower bounds. The design of
query vectors and decoding algorithm leverages ideas from
sparse graph codes such as low-density parity-check (LDPC)
codes [8]. Our algorithm recovers the parameter vectors
with optimal ©(K) sample and time complexities in the
noiseless setting, both in theory and empirically, and is stable
under noise with near-optimal © (K polylog(n)) sample and
time complexities. Prior literature on this problem that does
not utilize the design freedom typically have sample/time
complexities that are at least polynomial in n; we provide
a survey of prior work and a more detailed comparison in
Section VI. Empirically, we find that our algorithm is orders

'We use w? to denote the conjugate transpose of @;, and [L] the set of
integers {1,2,...,L}.
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Fig. 1: Mixed-Coloring algorithm with L = 2.

of magnitude faster than standard Expectation-Maximization
(EM) algorithms for mixture of regressions. For example, in
one of our experiments, detailed in Section V, we consider
recovering a mixture of two regressions with dimension n =
500 and sparsity K = 50; our algorithm is more than 300
times faster than EM algorithm, with about 1/3 of its sample
cost.

A. Algorithm Overview

Our Mixed-Coloring algorithm solves two problems simul-
taneously: (i) rapiddemixing, namely identifying the label
{; of the vector ﬁ(m that generates each measurement
y;; (i) efficient identification of the location and value of
the non-zero elements of the ﬁ(é)’s. The main idea is to
use a divide-and-conquer approach that iteratively reduce
the original problem into simpler ones with much sparser
parameter vectors. More specifically, we design ©(K) sets
of sparse query vectors, with each set only associated with a
subset of all the non-zero elements. The design of the query
vectors ensures that we can first identify the sets which are
associated with a single non-zero element (called singletons),
and recover the location and value of that element (we call
them singleton balls, shown as shaded balls in Figure 1b).
We further identify the pairs of singleton balls which have
the same (but unknown) label, indicated by the edges in
Figure 1b. Results from random graph theory guarantees that,
with high probability, the L largest connected components
(giant components) of the singleton graph have the different
labels, and thus we recover a fraction of the non-zero
elements in each ﬁ(e), as shown in Figure lc. We can then
iteratively enlarge the recovered fraction with a guess-and-
check method until finding all the non-zero elements. We
revisit Figure 1 when describing the details of our algorithm
in Section III.

B. Motivation

Our problem is a natural extension of the setting of
compressive sensing,” in which one often has full freedom

2Compressive sensing is a special case of our problem with I = 1.

of designing query vectors in order to estimate a sparse
parameter vector. In many applications, the unknown sparse
parameter vector can be affected by latent variables, leading
to a mixture of sparse linear regressions, and these scenar-
ios have been observed in neuroscience [9], genetics [10],
psychology [5], etc. Here, we provide a concrete example
motivated by neuroscience applications [9]. In neural signal
processing, sensors are used to measure the brain activities,
represented by an unknown sparse vector 3. The sensors
can be modeled as digital filters, and one can design the
linear filter weights (z;’s) when measuring the neural signal.
Multiple sensors are usually placed in a particular area of the
brain in order to acquire enough compressed measurements.
However, there may be more than one neuron affecting a
particular area of the brain, as shown in Figure 2, and each
neuron may have different activities, corresponding to a dif-
ferent ,B(e). Consequently, each sensor may be measuring one
of several different sparse signals, which can be formulated
as a mixture-of-sparse-linear-regressions problem. Variants
of this problem, such as neural spike sorting [9], has been
studied in neuroscience. While the common solution is to use
clustering algorithms on the spike signals, we believe that our
algorithm provides the potential of improving sensor design
and reducing sample and time complexities.

Fig. 2: Mixture of neural signals.

In addition, our work adds the intellectual value of the
power of design freedom in tackling sparse mixture prob-
lems by highlighting the huge performance gap between
algorithms that can exploit the design freedom and those
that cannot. We also believe that our ideas are applicable
more broadly for other latent-variable problems that require
experimental designs, such as survey designs in psychology
with mixed type of respondents and biology experiments with
mixed cell interior environments.

II. MAIN RESULTS

In this section, we present the recovery guarantees for the
Mixed-Coloring algorithm, and provide bounds on its sample
and time complexities. We assume there are L unknown n-
dimensional parameter vectors ,6(1), e ﬂ(L). Each ,B(é) has
K, non-zero elements, i.c., [supp(83Y)| = |{j : 5](-6) #
0} = Ky Let K = ZeL=1 K, be the total number of
non-zero elements. Using the query vectors {x;} € C",
the Mixed-Coloring algorithms obtains m measurements y;,
i € [m] generated independently according to the model (1),

A (¢
and outputs an estimate {,3( ), ¢ € [L]} of the unknown
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parameter vectors. We defer more details to Sections III
and IV.

Our results are stated in the asymptotic regime where n
and K approach infinity. A constant is a quantity that does
not depend on n and K, with the associated Big-O notations
O(-) and O(-). We assume that L is a known and fixed
constant, and the mixture weights satisfy ¢, = ©(1) for each
¢ € [L] and thus are of the same order. Similarly, the sparsity
levels of the parameter vectors are also of the same order with
K, =0(K).

A. Guarantees for the Noiseless Setting

In the noiseless case, i.e., w; = 0, we consider for
generality the complex-valued setting with ,B(z) € C™ (our
results can be easily applied to real case).

We make a mild technical assumption, which stipulates
that if any pair of parameter vectors have overlapping sup-
port, then the elements in the overlap are different.

Assumption 1. For each pair {1,05 € [L], {1 # {5 and each
index j € supp(ﬁ(el))ﬂsupp(ﬁ“"’)), we have ﬁ]@l) #* B§€2).

Under the above setting, we have the following recovery
guarantees for the Mixed-Coloring algorithm.

Theorem 1. Consider the asymptotic regime where n and K
approach infinity. Under Assumption 1, for any fixed constant
p* € (0,1), there exists a constant C' > 0 such that if
the number of measurements is m = CK, then the Mixed-
Coloring algorithm satisfies the following three properties
for each € € [L] (up to a label permutation):
1) (No False Discovery) ¥ j € supp(ﬁ(f)), B](-e) equals
either Bjm or0;,Vjé¢ supp(ﬁ“)), BJ(D =0.
2) (Element-wise Recovery) There exists a constant py; €
(0,p") such thar P{B\" = g} = 1 - p, — O(1/K),
v j € supp(B8).
3) (Support Recovery)

P{[supp(B")| > (1=p") supp(B)[} = 1-0(1/K).

Moreover, the computational time of the Mixed-Coloring
algorithm is O(K).

The theorem ensures that the Mixed-Coloring algorithm
has no false discovery, and recovers (1 — p*) fraction of the
non-zero elements with high probability. The error fraction
p* is an input parameter to algorithm, and can be made
arbitrarily close to zero by adjusting the oversampling ratio
C = C(p*,L,{q¢}). (By more careful analysis, one can
show that the dependence of C' on p* is C' = O(log(1/p*)).
Here, since we set p* as a constant, C' is a constant.) Given
the number of components L, mixture weights {¢,} and the
target p*, the value of the constant C' can be computed
numerically. The table below gives some of the C' values
for several p* and L, under the setting g = 1/L,V¢ € [L].
We see that the value of C is quite modest.

We can in fact boost the above guarantee to recover all the
non-zero elements, by running the Mixed-Coloring algorithm
O(log K) times independently and aggregating the results

TABLE I: Sample complexity of the Mixed-Coloring algorithm

L 2 3 4
p* 51x107% [ 88x10°% | 81 x10°F
m=CK 33.39K 37.80K 40.32K

by majority voting. By property 2 in Theorem 1 and a
union bound argument, this procedure exactly recovers all
the parameter vectors with probability 1 — O(1/poly(K))
with ©(K log K') sample and time complexities.

B. Guarantees for the Noisy Setting

An extension of the previous algorithm, Robust Mixed-
Coloring, handles noise in the measurement model (1). Here
we focus on the case with two parameter vectors which
appear equally likely, i.e., L = 2 and g, = 1/2, ¢ = 1,2.
Many interesting applications have binary latent factors:
gene mutation present/not, gender, healthy/sick individual,
children/adult, etc. The noise w; is assumed to be i.i.d.
Gaussian with mean zero and constant variance 2. For the
purpose of theoretical analysis, we assume that the non-
zero elements in the parameter vectors take value in a finite
quantized set.

Assumption 2. The non-zero elements of the parameter
vectors satisfy ﬂj(g) eD, Vﬁj(»e) # 0,0 € [L], where

D £ {+A,4+2A,...,+bA} C R,
The positive constants A and b are known to the algorithms.

As shown in our empirical results in Section V, the Robust
Mixed-Coloring algorithm works even when the assumption
is violated. In this case, the algorithm produces the best
quantized approximation to the unknown parameter vectors,
provided that they are not too far off the quantized set. The
theoretical results for the continuous alphabet setting is still
an open problem, and the tools in recent work such as [11]
may be applied to our problem.

When the quantization assumption holds, exact recovery
is possible, as guaranteed in the theorem below. The Robust
Mixed Coloring algorithm maintains sublinear sample and
time complexities, and recovers the parameter vectors in the
presence of noise with bounded variance.

Theorem 2. Consider the asymptotic regime where K and
n approach infinity with K = ©(n®) for some constant « €
(0,1].When L = 2 and Assumptions I and 2 hold, there exists
a constant 1 > 0, such that if A/o > n and the number of
measurements is m = O(K polylog(n)), then the Robust
Mixed-Coloring algorithm satisfies the three properties in
Theorem 1. Moreover, the computational time of the Robust
Mixed-Coloring algorithm is ©(K polylog(n)).

Similar to the noiseless case, by running the Robust
Mixed-Coloring algorithm O(log K') times, one can exactly
recover the two parameter vectors with probability 1 —
O(1/poly(K)). In this case, the sample and computational
complexities are O(K log(K) polylog(n)), and further, since
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we assume that K’ = ©(n®) for some constant «, we can still
conclude that the sample and computational complexities for
full recovery are O(K polylog(n)).

III. MIXED-COLORING ALGORITHM FOR NOISELESS
RECOVERY

In this section, we provide details of the Mixed-Coloring
algorithm in the noiseless setting. We first provide some
primitives that serve as important ingredients in the algo-
rithm, and then describe the design of query vectors and
decoding algorithm in detail.

A. Primitives

The algorithm makes uses of four basic primitives: sum-
mation check, indexing, peeling, and guess-and-check,
which are described below.

Summation Check: Suppose that we generate two query
vectors 1 and x5 independently from some continuous dis-
tribution on C", and a third query vector of the form x| +x-.
Let y1, y2, and y3 be the corresponding measurements. We
check the sum of the measurements and in the noiseless case,
if y3 = y1 +y2, then with probability one, we know that these
three measurements are generated from the same parameter
vector B9 In this case we call {y1,y2} a consistent pair
of measurements as they are from the same ﬁ(z) (the third
measurement ¥ is now redundant).

Indexing: The indexing procedure is to find the locations
and values of the non-zero elements by carefully designed
query vectors. In the noiseless case, this can be done by suit-
ably designed ratio test. We sketch the idea of the ratio test
here. Consider a consistent pair of measurements {y1,y>}
and corresponding query vectors {x,x2}. We design the
query vectors such that the information of the locations of the
non-zero elements is encoded in the relative phase between
y1 and ys. In particular, we generate n i.i.d. random variables
rj,j € [n] uniformly distributed on the unit circle. Letting
W = %" where i is the imaginary unit, we set the j-
th entries of x; and xo to be either z1; = z2; = 0,
or #1; = r; and z2; = r;WJI~L. (The locations of the
zeros are determined using sparse-graph codes and discussed
later.) Below is an example of such a consistent pair of
measurements and the corresponding linear system:

= H B
Y2 Ty
2)
o s 00 o 000 50,
0 TQW ’I"z;I/I/2 0 0 T6W5 0 0

Suppose that ﬁ(l) is 3-sparse and of the form ﬂ(l) =
[00 % 0 % 00 %]T. There is only one non-zero element,
él), that contributes to the measurements y; and ys . In
this case the consistent measurement pair {y;,y2} is called
a singleton. A singleton can be detected by testing the
integrality of the relative phase of the ratio y;/y2. In the
above example, since y; = Tgﬁél) and yo = r3W2ﬁ§1), we
observe that |y1| = |y2| and the relative phase Z(y2/y1) =

2- %” is an integral multiple of %’T. We therefore know that
with probability one, this consistent pair is a singleton, and
moreover the corresponding non-zero element is located at
the 3-rd coordinate with value ﬂél) = y1/r3. We would like
to remark that the indexing step can also be done using real-
valued query vectors.

Peeling: The third ingredient of the decoder is peeling, i.e.,
iteratively reducing the problem by subtracting off recovered
elements, in a Gaussian elimination-like manner. In the
example above, suppose instead that ,8(1) is 4-sparse, i.e.,
BY =10 %000 T, in which case the consistent pair

Yi = xi,zﬁél) + $i735§1)7 1=1,2 €))

is associated with two non-zero elements of ﬁ(l). If in a
previous iteration of the algorithm we have recovered the
location and value of ﬁél), then we can subtract/peel off this
recovered element by y; < y; — a:mﬁél), fori=1,2.

The updated measurement pairs satisfy y; = wi,gﬁél),i =
1,2, and we have reduced the problem to a simpler form. In
fact, in this case the pair {y1,y2} becomes a singleton, to
which the above ratio test can be applied to recover ﬂél).

Guess-and-check: The ratio test and peeling steps can be
combined to detect that two non-zero elements are from the
same parameter vectors. In the previous example (3), suppose
instead that we recovered two elements 6§£1) and Bgez) in
previous iterations via ratio-testing another two consistent
pairs that are singletons, but values of their labels ¢; and {5
are unknown. We can still try to peel off Byl) from {y1,y2};
if the updated measurements {y,y2} pass the ratio test and
recover a non-zero element with location 3 and value Béb),
then we know that with probability one the non-zero elements
Béll) and BéeZ) must come from the same parameter vector
(the one that generates {y1,y2}), i.e., {1 = 2 = 1. In this
case the peeling step is valid.

The continuing execution of these four primitives is made
possible by the design of the query vectors using sparse-
graph codes, which we describe next.

B. Design of Query Vectors

As illustrated in Figure 3, we construct M = O(K) sets
of query vectors (called bins). The query vectors in each
bin are associated with some coordinates of the parameter
vectors (i.e., the queries are non-zero only on those coor-
dinates). The association between the coordinates and bins
is determined by a d-left regular bipartite graph with n left
nodes (coordinates) and M right nodes (bins), where each
left node is connected to d = ©O(1) right nodes chosen
independently uniformly at random. Each bin consists of
three query vectors. The values of the non-zero elements of
the first two query vectors are in the form of (2), enabling
the ratio test. The third query vectors equals the sum of the
first two and is used for the summation check.

If the query vectors in each bin were used only once, then
we would have very few bins passing the summation check
and hence few consistent pairs. Instead, we use the first two
query vectors repeatedly for R = ©(1) times, obtaining two
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sets of measurements, each of size R and called type-I and
type-11 index measurements. We use the third query vector
V' = ©O(1) times to obtain a set of verification measurements.
We therefore have 2R + V' measurements associated with
each of the M bins, hence a total of m = (2R + V)M =
O(K) measurements, as shown in Figure 3. Using density
evolution methods [12], we can find proper values of d, R,
V', and M such that successful recovery is guaranteed.

R type-I index measurements

R type-II index measurements Bin 1
R type-I index measurements
R type-1I index measurements Bin M

Fig. 3: (2R + V)M query vectors.

C. Decoding Algorithm

The decoding algorithm first finds consistent pairs (by
summation check) in each bin, within which singletons are
identified (by the ratio test). The ratio test also recovers the
location and values of several non-zero elements, some of
which can then be associated with the same ﬁ“) by guess-
and-check. At this point, for each 5(5), we have recovered
some of its non-zero elements (including their locations,
values and labels). These steps are then repeated iteratively
via peeling until no more non-zero elements can be found.
Below we elaborate on these steps.

a) Finding Consistent Pairs: The decoding procedure
starts by finding all the consistent pairs. In each bin, we
perform summation checks on all triplets (y1,y2,y3) in
which vy, ys, and y3 are the type-I index measurement,
type-II index measurement and verification measurement,
respectively. If a triplet passes the summation check, then
a consistent pair {y1,y=} is found. Note that in each bin the
number of triplets of the above form is a constant, so this
step can be done in ©(K) time. The subsequent steps of the
algorithm are based on the consistent pairs found in this step.

b) Recovering a Subset of Non-zero Elements: Each
non-zero element of the parameter vectors can be identified
by its label-location-value triplet (¢, j,ﬂj(é)). We visualize
these triplets (i.e., non-zero elements) as balls, as shown in
Figure la, and initially their labels, locations and values are
unknown. As before, a consistent pair associated with only
one non-zero element is called a singleton, and we call this
non-zero element a singleton ball. We run the ratio test on
the consistent pairs to identify singletons and their associated
singleton balls. The singleton balls found are illustrated in
Figure 1b as shaded balls. The ratio test also recovers the
locations and values of these singleton balls, although at this
point we do not know the label ¢ of the balls.

(c) (d)

Fig. 4: Iterative decoding. If a ball is peeled off, the edges connected
to it are shown in dashed lines. The colored balls in (b) are found by
the giant component method. In (c) and (d), more balls are colored
by iterative decoding.

The next step is crucial: For two singleton balls and a
consistent measurement pair associated with the locations of
these two balls, we run the guess-and-check operations to
detect if these two singleton balls indeed have the same label
(or equivalently, if the two non-zero elements are in the same
parameter vector). If so, we connect these two balls with
an edge, as shown in Figure 1b. Doing so creates a graph
over the balls (i.e., non-zero elements), and each connected
component of the graph is from a single parameter vector.
Since each non-zero element is associated with a constant
number of consistent pairs (due to using a d-left regular
bipartite graph with constant d), this step can in fact be
done efficiently in ©(K) time without enumerating all the
combinations of singleton ball pairs.

By carefully choosing the parameters d, M, R, and V, and
using tools from random graph theory, we can ensure that
with high probability the L largest connected components
(called giant components) correspond to the L parameter
vectors, and each of these components has size ©(K). Then,
the labels of the balls in these components are now identified.
This is illustrated in Figure 1c for L = 2, where colors repre-
sent the labels. In summary, at this point we have recovered
the labels, locations and values of a constant fraction of the
non-zero elements (i.e., balls) of each parameter vector.

c) Iterative Decoding: The decoding procedure pro-
ceeds by identifying the labels of the remaining balls via
iteratively applying the peeling and guess-and-check primi-
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tives. The connected components in Figure 1c are therefore
expanded, until no more changes can be made, as illustrated
in Figure 1d.

We provide an example of this iterative procedure in
Figure 4. Recall that the association between the coordinates
of the parameter vectors and the bins (or consistent pairs) is
determined by a bipartite graph. Here, we only show one
consistent pair for each bin and omit the zero elements.
The non-zero elements and the consistent pairs are shown
as balls and squares, respectively, as in Figure 4a. The steps
described in the last part recover a subset of these balls,
which are shown in colors in Figure 4b. Now consider the
measurement pair 1, which is associated with the balls a,
b and c. As a and b are recovered, we can peel them off
from the measurement pair 1 to recover (by the ratio test) the
label, location and value of the non-zero element represented
by ball c. Similarly, peeling off the recovered ball v from
the measurement pair 3, recovers ball w, as illustrated in
Figure 4c. We continue this process iteratively, peeling off
balls recovered in the previous iterations to recover more
balls. For example, we peel off the balls b and ¢ from the
measurement pair 2 to recover the ball d, and the ball w from
pair 4 to recover ball z, resulting in Figure 4d. So far we
have described the Mixed-Coloring algorithm in the noiseless
case.

IV. ROBUST MIXED-COLORING ALGORITHM FOR NOISY
RECOVERY

The overall structure of the Robust Mixed-Coloring al-
gorithm is the same as its noiseless counterpart. In the
presence of noise, the ratio test method for indexing and the
summation check primitive need to be robustified, which are
done by a modification of the query design. In particular, we
design three types of query vectors. The first type, called
binary indexing vectors, encodes the location information
using binary representations with, [log,(n)] bits (as opposed
to using the relative phases in the noiseless case). A sim-
ilar approach is considered in [13] for compressive phase
retrieval. The second type is called singleton verification
vectors, which are used for singleton detection. Using these
two types of vectors we can modify the ratio test to achieve
the same performance with noise. The third type of query
vectors is used for consecutive summation check, which finds
consistent sets of measurements.

In addition to the new query design, we also employ a
noise reduction scheme. This is done by using each designed
query vector (say x;) repeatedly for R times and averaging
the corresponding measurements from the same ﬁ(z). In
particular, these R measurements are sampled i.i.d. from a
mixture of two Gaussians with centers 2T 3!) and T8,
so we use an EM algorithm initialized by moment methods to
estimate the two centers. Using the result in [14], we prove
that the EM-based noise reduction scheme succeeds under
the conditions in Theorem 2, namely R = ©(polylog(n))
and A/o > n. We refer the readers to Section ?? of the
appendices for the details of the Robust Mixed-Coloring
algorithm.

V. EXPERIMENTAL RESULTS

In this section, we test the sample and time complexities
of the Mixed-Coloring algorithm in both noiseless and noisy
cases to verify our theoretical results. We refer the readers
to the appendices for more details of the experiments.

For the noiseless case, we use the optimal parameters
(d, R, V) from numerical calculations of the density evolu-
tion. For different values of L, K, m, we record the empirical
success probability and running time averaged over 100
trials. Here, we use a sufficiently small p* so that the success
event is equivalent to recovery of all the non-zero elements.
The results are shown in Figure 5a. The phase transition
occurs at some C' = m/K that matches the values in Table I
predicted by our theory. Moreover, the running time is linear
in K and does not depend on n, as shown in Figure 5b.

+L=2, K=480
08l ©L=2.K=1200
-0 4 L=2, K=2400
o & L=3, K=480
$0.67 +1L=3,K=1200
S =3, K=2400
2.0.4| ~L=4,K=480
£ ©L=4, K=1200
02| <L=4K=2400
0 o660 o wadlds ! . .
10 20 30 40 50 60
m/K
(a) Probability of success (n = 10°)
2.5 T :
*L=2, n=1x10*¥L=3, n=1x10’
9 2| +L=2n=5x10*<¢L=4, n=1x10*
z ©L=2, n=1x10°*L=4, n=5x10*
E1.5F 2123, n=1x10*> L=4, n=1x10°
= | rL=3.n=5x10*
= 1r
E=
=
Z05

0 200 400 600 800
K

1000

(b) Time complexity

Fig. 5: Success probability and running time in the noiseless case.

Similar experiments are performed for the noisy case using
the Robust Mixed-Coloring algorithm, under the quantization
assumption. Figure 6a shows the minimum number of queries
m required for 100 consecutive successes, for different n and
K. We observe that the sample complexity is linear in K and
sublinear in n. The running time exhibits a similar behavior,
as shown in Figure 6b. Both observations agree with the
prediction of our theory.

We also compare the Mixed-Coloring algorithm with a
state-of-the-art EM-style algorithm (equivalent to alternating
minimization in the noiseless setting) from [15]. These
comparisons are not entirely fair, since our algorithm is based
on carefully designed query vectors, while the algorithm
in [15] uses random design, i.e., the entries of x;’s are i.i.d.
Gaussian. However, this is exactly where the intellectual
value of our work lies: we expose the gains available by
careful design. We consider four test cases with (L,n, K) =
(2,100, 20), (2,500, 50), (2,100, 100), (2,500, 500),  with
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the first two cases being sparse problems and the last two
being relatively dense problems. We find the minimum
number of queries that leads to a 100% successful rate in 100
trials, and the average running time. As shown in Table II,
in both sparse and dense problems, our Mixed-Coloring
algorithm is several orders of magnitude faster. As for the
sample complexity, our algorithm requires smaller number
of samples in the sparse cases, while in dense problems,
the sample complexity of our algorithm is within a constant
factor (about 3) of that of the alternating minimization
algorithm. For the noisy setting, our algorithm is most
powerful in the high dimensional setting, i.e., large n,
due to the polylog(n) factors. However, in this setting, it
takes extremely long time for the state-of-the-art algorithms
such as [16] to converge, and thus, we do not present the
comparison in the noisy setting.
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Fig. 6: Sample and time complexities of Robust Mixed-Coloring
algorithm.

TABLE II: Comparison of two algorithms
(M-C=Mixed-Coloring)

0,5 | [
(100, 20) 0.57 124
(500, 50) 0.33 368

(100, 100) 2.78 19
(500, 500) 3.00 37

We further test the Robust Mixed-Coloring algorithm when
the quantization assumption is violated. For any 5 € R, we
define D(B) = argmingep|a — B|1(8 # 0), where 1(-)
denotes the indicator function. This means that D(f) is the
element in D which is the closest one to /3, when 3 # 0.
For a vector B € R", we define D(B) = {D(8;)}}-,. We
define the perturbation of a vector 3 as Perturbation(3) =
maxe(y) |85 — D(B;)|/A.
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Fig. 7: Performance of Robust Mixed-Coloring algorithm with
quantization assumption violated.

In this experiment, we generate sparse parameter vec-
tors 3, ¢ e [L] with a total number of K non-zero
elements. These non-zero elements are generated randomly
while keeping the perturbation of the parameter vectors under
a certain level by adding bounded noise to the quantized
non-zero elements. We record the probability of success for
different number of bins M and different perturbation level.
Here the success event is defined as recovery of D(ﬁ(@)
for all ¢ € [L]. The result is shown in Figure 7. We see
that the Robust Mixed-Coloring algorithm works without the
quantization assumption as long as the perturbations are not
too large.

VI. RELATED WORK
A. Mixtures of Regressions

Parameter estimation using the expectation-maximization
(EM) algorithm is studied empirically in [17]. In [16], an ¢;-
penalized EM algorithm is proposed for the sparse setting.
Theoretical analysis of the EM algorithm is difficult due to
non-convexity. Progress was made in [15], [18] and [14]
under stylized Gaussian settings with dense 3, for which
a sample complexity of O(npolylog(n)) is proved given
a suitable initialization of EM. The algorithm uses a grid
search initialization step to guarantee that the EM algorithm
can find the global optimal solution, with the assumption
that the query vectors are i.i.d. Gaussian distributed. The
computational complexity is polynomial of n. An alternative
algorithm is proposed in [19], which achieves optimal O(n)
sample complexity, but has high computational cost due
to the use of semidefinite lifting. The algorithm in [20]
makes use of tensor decomposing techniques, but suffers
from a high sample complexity of O(n®). In comparison,
our approach has order optimal sample and time complexities
by utilizing the potential design freedom. The classification
version of this problem has also been studied in [21].

B. Coding-theoretic Methods

Many modern error-correcting codes such as LDPC codes
and polar codes [22] with their roots in communication
problems, exploit redundancy to achieve robustness, and use
structural design to allow for fast decoding. These proper-
ties of codes have recently found applications in statistical
problems, including graph sketching [23], sparse covariance
estimation [24], low-rank approximation [25], and discrete
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inference [26]. Most related to our approach is the work
in [13], [27], [28], which apply sparse graph codes with
peeling-style decoding algorithms to compressive sensing
and phase retrieval problems. In our setting we need to handle
a mixture distribution, which requires more sophisticated
query design and novel unmixing algorithms that go beyond
the standard peeling-style decoding.

C. Combinatorial and Dimension Reduction Techniques

Our results demonstrate the power of strategic query and
coding theoretic tools in mixture problems, and can be
considered as efficient linear sketching of a mixture of sparse
vectors. In this sense, our work is in line with recent work
that make uses of combinatorial and dimension reduction
techniques in high-dimensional and large scale statistical
problems. These techniques, such as locality-sensitive hash-
ing [29], sketching of convex optimization [30], and coding-
theoretic methods [31], allow one to design highly efficient
and robust algorithms applicable to computationally chal-
lenging datasets without compromising statistical accuracy.

VII. CONCLUSIONS

We propose the Mixed-Coloring algorithm as a query
based learning algorithm for mixtures of sparse linear regres-
sions. The design of the query vectors and the recovery algo-
rithm are base sparse graph codes, and our scheme achieves
order optimal sample and computational complexities in the
noiseless case, and sublinear sample and time complexities in
the presence of noise. Our experiments justified the theoreti-
cal results. In the noisy scenario, studying the Robust Mixed-
Coloring algorithm with more than two parameter vectors
and obtain theoretical results for the continuous alphabet can
be two important future directions.
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