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Abstract—In this paper, we consider the mixture of sparse
linear regressions model. Let β(1), . . . ,β(L)

∈ C
n be L un-

known sparse parameter vectors with a total of K non-zero
coefficients. Noisy linear measurements are obtained in the

form yi = xH
i β

(�i) + wi, each of which is generated randomly
from one of the sparse vectors with the label �i unknown.
The goal is to estimate the parameter vectors efficiently with
low sample and computational costs. This problem presents
significant challenges as one needs to simultaneously solve the
demixing problem of recovering the labels �i as well as the

estimation problem of recovering the sparse vectors β(�).
Our solution to the problem leverages the connection between

modern coding theory and statistical inference. We introduce
a new algorithm, Mixed-Coloring, which samples the mix-
ture strategically using query vectors xi constructed based
on ideas from sparse graph codes. Our novel code design
allows for both efficient demixing and parameter estimation.
The algorithm achieves the order-optimal sample and time
complexities of Θ(K) in the noiseless setting, and near-optimal
Θ(K polylog(n)) complexities in the noisy setting. In one of
our experiments, to recover a mixture of two regressions with
dimension n = 500 and sparsity K = 50, our algorithm is more
than 300 times faster than EM algorithm, with about 1/3 of
its sample cost.

I. INTRODUCTION

Mixture and latent variable models, such as Gaussian

mixtures and subspace clustering, are expressive, flexible,

and widely used in a broad range of problems including

background modeling [1], speaker identification [2] and

recommender systems [3]. However, parameter estimation

in mixture models is notoriously difficult due to the non-

convexity of the likelihood functions and the existence of

local optima. In particular, it often requires a large sample

size and many re-initializations of the algorithms to achieve

an acceptable accuracy.

Our goal is to develop provably fast and efficient algo-

rithms for mixture models — with sample and time com-

plexities sublinear in the problem’s ambient dimension when

the parameter vectors of interest is sparse — by leveraging

the underlying low-dimensional structures.

In this paper we focus on a powerful class of models

called mixtures of linear regressions [4]. We consider the

sparse setting with a query-based algorithmic framework.

In particular, we assume that each query-measurement pair

(xi, yi) is generated from a sparse linear model chosen

randomly from L possible models:1

yi = xH
i β

(�) + wi with probability q�, for � ∈ [L], (1)

where wi is noise. The total number of nonzero elements in

the parameter vectors {β(�) ∈ C
n, � ∈ [L]} is assumed to

be K. The goal is to estimate the β(�)’s, without knowing

which β(�) generates each query-measurement pair.

A mixture of regressions provides a flexible model for

various heterogeneous settings where the regression coef-

ficients differ for different subsets of observations. This

model has been applied to a broad range of tasks including

medicine measurement design [5], behavioral health care [6]

and music perception modeling [7]. Here, we study the

problem when the query vectors xi can be designed by the

user; in Section I-B we discuss several practical applications

that motivate the study of this query-based setting. Our

results show that by appropriately exploiting this design

freedom, one can achieve significant reduction the sample

and computational costs.

To recover K unknown non-zero elements, it is clear

that the amount of measurements and time required scale

at least as Θ(K). We introduce a new algorithm, called

the Mixed-Coloring algorithm, that matches these sublinear

sample and time complexity lower bounds. The design of

query vectors and decoding algorithm leverages ideas from

sparse graph codes such as low-density parity-check (LDPC)

codes [8]. Our algorithm recovers the parameter vectors

with optimal Θ(K) sample and time complexities in the

noiseless setting, both in theory and empirically, and is stable

under noise with near-optimal Θ(K polylog(n)) sample and

time complexities. Prior literature on this problem that does

not utilize the design freedom typically have sample/time

complexities that are at least polynomial in n; we provide

a survey of prior work and a more detailed comparison in

Section VI. Empirically, we find that our algorithm is orders

1We use x
H
i

to denote the conjugate transpose of xi, and [L] the set of
integers {1, 2, . . . , L}.
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(a) Non-zero elements (b) Singleton balls

(c) Giant components (d) Results

Fig. 1: Mixed-Coloring algorithm with L = 2.

of magnitude faster than standard Expectation-Maximization

(EM) algorithms for mixture of regressions. For example, in

one of our experiments, detailed in Section V, we consider

recovering a mixture of two regressions with dimension n =
500 and sparsity K = 50; our algorithm is more than 300
times faster than EM algorithm, with about 1/3 of its sample

cost.

A. Algorithm Overview

Our Mixed-Coloring algorithm solves two problems simul-

taneously: (i) rapiddemixing, namely identifying the label

�i of the vector β(�i) that generates each measurement

yi; (ii) efficient identification of the location and value of

the non-zero elements of the β(�)’s. The main idea is to

use a divide-and-conquer approach that iteratively reduce

the original problem into simpler ones with much sparser

parameter vectors. More specifically, we design Θ(K) sets

of sparse query vectors, with each set only associated with a

subset of all the non-zero elements. The design of the query

vectors ensures that we can first identify the sets which are

associated with a single non-zero element (called singletons),

and recover the location and value of that element (we call

them singleton balls, shown as shaded balls in Figure 1b).

We further identify the pairs of singleton balls which have

the same (but unknown) label, indicated by the edges in

Figure 1b. Results from random graph theory guarantees that,

with high probability, the L largest connected components

(giant components) of the singleton graph have the different

labels, and thus we recover a fraction of the non-zero

elements in each β(�), as shown in Figure 1c. We can then

iteratively enlarge the recovered fraction with a guess-and-

check method until finding all the non-zero elements. We

revisit Figure 1 when describing the details of our algorithm

in Section III.

B. Motivation

Our problem is a natural extension of the setting of

compressive sensing,2 in which one often has full freedom

2Compressive sensing is a special case of our problem with L = 1.

of designing query vectors in order to estimate a sparse

parameter vector. In many applications, the unknown sparse

parameter vector can be affected by latent variables, leading

to a mixture of sparse linear regressions, and these scenar-

ios have been observed in neuroscience [9], genetics [10],

psychology [5], etc. Here, we provide a concrete example

motivated by neuroscience applications [9]. In neural signal

processing, sensors are used to measure the brain activities,

represented by an unknown sparse vector β. The sensors

can be modeled as digital filters, and one can design the

linear filter weights (xi’s) when measuring the neural signal.

Multiple sensors are usually placed in a particular area of the

brain in order to acquire enough compressed measurements.

However, there may be more than one neuron affecting a

particular area of the brain, as shown in Figure 2, and each

neuron may have different activities, corresponding to a dif-

ferent β(�). Consequently, each sensor may be measuring one

of several different sparse signals, which can be formulated

as a mixture-of-sparse-linear-regressions problem. Variants

of this problem, such as neural spike sorting [9], has been

studied in neuroscience. While the common solution is to use

clustering algorithms on the spike signals, we believe that our

algorithm provides the potential of improving sensor design

and reducing sample and time complexities.

Fig. 2: Mixture of neural signals.

In addition, our work adds the intellectual value of the

power of design freedom in tackling sparse mixture prob-

lems by highlighting the huge performance gap between

algorithms that can exploit the design freedom and those

that cannot. We also believe that our ideas are applicable

more broadly for other latent-variable problems that require

experimental designs, such as survey designs in psychology

with mixed type of respondents and biology experiments with

mixed cell interior environments.

II. MAIN RESULTS

In this section, we present the recovery guarantees for the

Mixed-Coloring algorithm, and provide bounds on its sample

and time complexities. We assume there are L unknown n-

dimensional parameter vectors β(1), . . . ,β(L). Each β(�) has

K� non-zero elements, i.e., |supp(β(�))| = |{j : β
(�)
j �=

0}| = K�. Let K =
∑L

�=1 K� be the total number of

non-zero elements. Using the query vectors {xi} ∈ C
n,

the Mixed-Coloring algorithms obtains m measurements yi,
i ∈ [m] generated independently according to the model (1),

and outputs an estimate {β̂
(�)

, � ∈ [L]} of the unknown
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parameter vectors. We defer more details to Sections III

and IV.

Our results are stated in the asymptotic regime where n
and K approach infinity. A constant is a quantity that does

not depend on n and K, with the associated Big-O notations

O(·) and Θ(·). We assume that L is a known and fixed

constant, and the mixture weights satisfy q� = Θ(1) for each

� ∈ [L] and thus are of the same order. Similarly, the sparsity

levels of the parameter vectors are also of the same order with

K� = Θ(K).

A. Guarantees for the Noiseless Setting

In the noiseless case, i.e., wi ≡ 0, we consider for

generality the complex-valued setting with β(�) ∈ C
n (our

results can be easily applied to real case).

We make a mild technical assumption, which stipulates

that if any pair of parameter vectors have overlapping sup-

port, then the elements in the overlap are different.

Assumption 1. For each pair �1, �2 ∈ [L], �1 �= �2 and each

index j ∈ supp(β(�1))∩supp(β(�2)), we have β
(�1)
j �= β

(�2)
j .

Under the above setting, we have the following recovery

guarantees for the Mixed-Coloring algorithm.

Theorem 1. Consider the asymptotic regime where n and K
approach infinity. Under Assumption 1, for any fixed constant

p∗ ∈ (0, 1), there exists a constant C > 0 such that if

the number of measurements is m = CK, then the Mixed-

Coloring algorithm satisfies the following three properties

for each � ∈ [L] (up to a label permutation):

1) (No False Discovery) ∀ j ∈ supp(β(�)), β̂
(�)
j equals

either β
(�)
j or 0; ∀ j /∈ supp(β(�)), β̂

(�)
j = 0.

2) (Element-wise Recovery) There exists a constant p̃� ∈

(0, p∗) such that P{β̂
(�)
j = β

(�)
j } = 1 − p̃� − O(1/K),

∀ j ∈ supp(β(�)).
3) (Support Recovery)

P
{

|supp(β̂
(�)

)| ≥ (1−p∗)|supp(β(�))|
}

= 1−O(1/K).

Moreover, the computational time of the Mixed-Coloring

algorithm is Θ(K).

The theorem ensures that the Mixed-Coloring algorithm

has no false discovery, and recovers (1− p∗) fraction of the

non-zero elements with high probability. The error fraction

p∗ is an input parameter to algorithm, and can be made

arbitrarily close to zero by adjusting the oversampling ratio

C ≡ C(p∗, L, {q�}). (By more careful analysis, one can

show that the dependence of C on p∗ is C = O(log(1/p∗)).
Here, since we set p∗ as a constant, C is a constant.) Given

the number of components L, mixture weights {q�} and the

target p∗, the value of the constant C can be computed

numerically. The table below gives some of the C values

for several p∗ and L, under the setting q� = 1/L, ∀� ∈ [L].
We see that the value of C is quite modest.

We can in fact boost the above guarantee to recover all the

non-zero elements, by running the Mixed-Coloring algorithm

Θ(logK) times independently and aggregating the results

TABLE I: Sample complexity of the Mixed-Coloring algorithm

L 2 3 4
p∗ 5.1× 10−6 8.8× 10−6 8.1× 10−6

m = CK 33.39K 37.80K 40.32K

by majority voting. By property 2 in Theorem 1 and a

union bound argument, this procedure exactly recovers all

the parameter vectors with probability 1 − O(1/poly(K))
with Θ(K logK) sample and time complexities.

B. Guarantees for the Noisy Setting

An extension of the previous algorithm, Robust Mixed-

Coloring, handles noise in the measurement model (1). Here

we focus on the case with two parameter vectors which

appear equally likely, i.e., L = 2 and q� = 1/2, � = 1, 2.

Many interesting applications have binary latent factors:

gene mutation present/not, gender, healthy/sick individual,

children/adult, etc. The noise wi is assumed to be i.i.d.

Gaussian with mean zero and constant variance σ2. For the

purpose of theoretical analysis, we assume that the non-

zero elements in the parameter vectors take value in a finite

quantized set.

Assumption 2. The non-zero elements of the parameter

vectors satisfy β
(�)
j ∈ D, ∀β

(�)
j �= 0, � ∈ [L], where

D � {±∆,±2∆, . . . ,±b∆} ⊂ R,

The positive constants ∆ and b are known to the algorithms.

As shown in our empirical results in Section V, the Robust

Mixed-Coloring algorithm works even when the assumption

is violated. In this case, the algorithm produces the best

quantized approximation to the unknown parameter vectors,

provided that they are not too far off the quantized set. The

theoretical results for the continuous alphabet setting is still

an open problem, and the tools in recent work such as [11]

may be applied to our problem.

When the quantization assumption holds, exact recovery

is possible, as guaranteed in the theorem below. The Robust

Mixed Coloring algorithm maintains sublinear sample and

time complexities, and recovers the parameter vectors in the

presence of noise with bounded variance.

Theorem 2. Consider the asymptotic regime where K and

n approach infinity with K = Θ(nα) for some constant α ∈
(0, 1].When L = 2 and Assumptions 1 and 2 hold, there exists

a constant η > 0, such that if ∆/σ > η and the number of

measurements is m = Θ(K polylog(n)), then the Robust

Mixed-Coloring algorithm satisfies the three properties in

Theorem 1. Moreover, the computational time of the Robust

Mixed-Coloring algorithm is Θ(K polylog(n)).

Similar to the noiseless case, by running the Robust

Mixed-Coloring algorithm Θ(logK) times, one can exactly

recover the two parameter vectors with probability 1 −
O(1/poly(K)). In this case, the sample and computational

complexities are Θ(K log(K) polylog(n)), and further, since
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we assume that K = Θ(nα) for some constant α, we can still

conclude that the sample and computational complexities for

full recovery are Θ(K polylog(n)).

III. MIXED-COLORING ALGORITHM FOR NOISELESS

RECOVERY

In this section, we provide details of the Mixed-Coloring

algorithm in the noiseless setting. We first provide some

primitives that serve as important ingredients in the algo-

rithm, and then describe the design of query vectors and

decoding algorithm in detail.

A. Primitives

The algorithm makes uses of four basic primitives: sum-

mation check, indexing, peeling, and guess-and-check,

which are described below.

Summation Check: Suppose that we generate two query

vectors x1 and x2 independently from some continuous dis-

tribution on C
n, and a third query vector of the form x1+x2.

Let y1, y2, and y3 be the corresponding measurements. We

check the sum of the measurements and in the noiseless case,

if y3 = y1+y2, then with probability one, we know that these

three measurements are generated from the same parameter

vector β(�). In this case we call {y1, y2} a consistent pair

of measurements as they are from the same β(�) (the third

measurement y3 is now redundant).

Indexing: The indexing procedure is to find the locations

and values of the non-zero elements by carefully designed

query vectors. In the noiseless case, this can be done by suit-

ably designed ratio test. We sketch the idea of the ratio test

here. Consider a consistent pair of measurements {y1, y2}
and corresponding query vectors {x1,x2}. We design the

query vectors such that the information of the locations of the

non-zero elements is encoded in the relative phase between

y1 and y2. In particular, we generate n i.i.d. random variables

rj , j ∈ [n] uniformly distributed on the unit circle. Letting

W = ei
2π

n where i is the imaginary unit, we set the j-

th entries of x1 and x2 to be either x1,j = x2,j = 0,

or x1,j = rj and x2,j = rjW
j−1. (The locations of the

zeros are determined using sparse-graph codes and discussed

later.) Below is an example of such a consistent pair of

measurements and the corresponding linear system:
[

y1

y2

]

=

[

xH
1

xH
2

]

β(1)

=

[

0 r2 r3 0 0 r6 0 0

0 r2W r3W
2 0 0 r6W

5 0 0

]

β(1).

(2)

Suppose that β(1) is 3-sparse and of the form β(1) =
[0 0 ∗ 0 ∗ 0 0 ∗]T. There is only one non-zero element,

β
(1)
3 , that contributes to the measurements y1 and y2 . In

this case the consistent measurement pair {y1, y2} is called

a singleton. A singleton can be detected by testing the

integrality of the relative phase of the ratio y1/y2. In the

above example, since y1 = r3β
(1)
3 and y2 = r3W

2β
(1)
3 , we

observe that |y1| = |y2| and the relative phase ∠(y2/y1) =

2 · 2π
8 is an integral multiple of 2π

8 . We therefore know that

with probability one, this consistent pair is a singleton, and

moreover the corresponding non-zero element is located at

the 3-rd coordinate with value β
(1)
3 = y1/r3. We would like

to remark that the indexing step can also be done using real-

valued query vectors.

Peeling: The third ingredient of the decoder is peeling, i.e.,

iteratively reducing the problem by subtracting off recovered

elements, in a Gaussian elimination-like manner. In the

example above, suppose instead that β(1) is 4-sparse, i.e.,

β(1) = [0 ∗ ∗ 0 ∗ 0 0 ∗]T, in which case the consistent pair

yi = xi,2β
(1)
2 + xi,3β

(1)
3 , i = 1, 2 (3)

is associated with two non-zero elements of β(1). If in a

previous iteration of the algorithm we have recovered the

location and value of β
(1)
2 , then we can subtract/peel off this

recovered element by yi ← yi − xi,2β
(1)
2 , for i = 1, 2.

The updated measurement pairs satisfy yi = xi,3β
(1)
3 , i =

1, 2, and we have reduced the problem to a simpler form. In

fact, in this case the pair {y1, y2} becomes a singleton, to

which the above ratio test can be applied to recover β
(1)
3 .

Guess-and-check: The ratio test and peeling steps can be

combined to detect that two non-zero elements are from the

same parameter vectors. In the previous example (3), suppose

instead that we recovered two elements β
(�1)
2 and β

(�2)
3 in

previous iterations via ratio-testing another two consistent

pairs that are singletons, but values of their labels �1 and �2
are unknown. We can still try to peel off β

(�1)
2 from {y1, y2};

if the updated measurements {y1, y2} pass the ratio test and

recover a non-zero element with location 3 and value β
(�2)
3 ,

then we know that with probability one the non-zero elements

β
(�1)
2 and β

(�2)
3 must come from the same parameter vector

(the one that generates {y1, y2}), i.e., �1 = �2 = 1. In this

case the peeling step is valid.

The continuing execution of these four primitives is made

possible by the design of the query vectors using sparse-

graph codes, which we describe next.

B. Design of Query Vectors

As illustrated in Figure 3, we construct M = Θ(K) sets

of query vectors (called bins). The query vectors in each

bin are associated with some coordinates of the parameter

vectors (i.e., the queries are non-zero only on those coor-

dinates). The association between the coordinates and bins

is determined by a d-left regular bipartite graph with n left

nodes (coordinates) and M right nodes (bins), where each

left node is connected to d = Θ(1) right nodes chosen

independently uniformly at random. Each bin consists of

three query vectors. The values of the non-zero elements of

the first two query vectors are in the form of (2), enabling

the ratio test. The third query vectors equals the sum of the

first two and is used for the summation check.

If the query vectors in each bin were used only once, then

we would have very few bins passing the summation check

and hence few consistent pairs. Instead, we use the first two

query vectors repeatedly for R = Θ(1) times, obtaining two
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sets of measurements, each of size R and called type-I and

type-II index measurements. We use the third query vector

V = Θ(1) times to obtain a set of verification measurements.

We therefore have 2R + V measurements associated with

each of the M bins, hence a total of m = (2R + V )M =
Θ(K) measurements, as shown in Figure 3. Using density

evolution methods [12], we can find proper values of d, R,

V , and M such that successful recovery is guaranteed.

Fig. 3: (2R+ V )M query vectors.

C. Decoding Algorithm

The decoding algorithm first finds consistent pairs (by

summation check) in each bin, within which singletons are

identified (by the ratio test). The ratio test also recovers the

location and values of several non-zero elements, some of

which can then be associated with the same β(�) by guess-

and-check. At this point, for each β(�), we have recovered

some of its non-zero elements (including their locations,

values and labels). These steps are then repeated iteratively

via peeling until no more non-zero elements can be found.

Below we elaborate on these steps.

a) Finding Consistent Pairs: The decoding procedure

starts by finding all the consistent pairs. In each bin, we

perform summation checks on all triplets (y1, y2, y3) in

which y1, y2, and y3 are the type-I index measurement,

type-II index measurement and verification measurement,

respectively. If a triplet passes the summation check, then

a consistent pair {y1, y2} is found. Note that in each bin the

number of triplets of the above form is a constant, so this

step can be done in Θ(K) time. The subsequent steps of the

algorithm are based on the consistent pairs found in this step.

b) Recovering a Subset of Non-zero Elements: Each

non-zero element of the parameter vectors can be identified

by its label-location-value triplet (�, j, β
(�)
j ). We visualize

these triplets (i.e., non-zero elements) as balls, as shown in

Figure 1a, and initially their labels, locations and values are

unknown. As before, a consistent pair associated with only

one non-zero element is called a singleton, and we call this

non-zero element a singleton ball. We run the ratio test on

the consistent pairs to identify singletons and their associated

singleton balls. The singleton balls found are illustrated in

Figure 1b as shaded balls. The ratio test also recovers the

locations and values of these singleton balls, although at this

point we do not know the label � of the balls.

(a) (b)

(c) (d)

Fig. 4: Iterative decoding. If a ball is peeled off, the edges connected
to it are shown in dashed lines. The colored balls in (b) are found by
the giant component method. In (c) and (d), more balls are colored
by iterative decoding.

The next step is crucial: For two singleton balls and a

consistent measurement pair associated with the locations of

these two balls, we run the guess-and-check operations to

detect if these two singleton balls indeed have the same label

(or equivalently, if the two non-zero elements are in the same

parameter vector). If so, we connect these two balls with

an edge, as shown in Figure 1b. Doing so creates a graph

over the balls (i.e., non-zero elements), and each connected

component of the graph is from a single parameter vector.

Since each non-zero element is associated with a constant

number of consistent pairs (due to using a d-left regular

bipartite graph with constant d), this step can in fact be

done efficiently in Θ(K) time without enumerating all the

combinations of singleton ball pairs.

By carefully choosing the parameters d, M , R, and V , and

using tools from random graph theory, we can ensure that

with high probability the L largest connected components

(called giant components) correspond to the L parameter

vectors, and each of these components has size Θ(K). Then,

the labels of the balls in these components are now identified.

This is illustrated in Figure 1c for L = 2, where colors repre-

sent the labels. In summary, at this point we have recovered

the labels, locations and values of a constant fraction of the

non-zero elements (i.e., balls) of each parameter vector.

c) Iterative Decoding: The decoding procedure pro-

ceeds by identifying the labels of the remaining balls via

iteratively applying the peeling and guess-and-check primi-
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tives. The connected components in Figure 1c are therefore

expanded, until no more changes can be made, as illustrated

in Figure 1d.

We provide an example of this iterative procedure in

Figure 4. Recall that the association between the coordinates

of the parameter vectors and the bins (or consistent pairs) is

determined by a bipartite graph. Here, we only show one

consistent pair for each bin and omit the zero elements.

The non-zero elements and the consistent pairs are shown

as balls and squares, respectively, as in Figure 4a. The steps

described in the last part recover a subset of these balls,

which are shown in colors in Figure 4b. Now consider the

measurement pair 1, which is associated with the balls a,

b and c. As a and b are recovered, we can peel them off

from the measurement pair 1 to recover (by the ratio test) the

label, location and value of the non-zero element represented

by ball c. Similarly, peeling off the recovered ball v from

the measurement pair 3, recovers ball w, as illustrated in

Figure 4c. We continue this process iteratively, peeling off

balls recovered in the previous iterations to recover more

balls. For example, we peel off the balls b and c from the

measurement pair 2 to recover the ball d, and the ball w from

pair 4 to recover ball z, resulting in Figure 4d. So far we

have described the Mixed-Coloring algorithm in the noiseless

case.

IV. ROBUST MIXED-COLORING ALGORITHM FOR NOISY

RECOVERY

The overall structure of the Robust Mixed-Coloring al-

gorithm is the same as its noiseless counterpart. In the

presence of noise, the ratio test method for indexing and the

summation check primitive need to be robustified, which are

done by a modification of the query design. In particular, we

design three types of query vectors. The first type, called

binary indexing vectors, encodes the location information

using binary representations with, �log2(n)� bits (as opposed

to using the relative phases in the noiseless case). A sim-

ilar approach is considered in [13] for compressive phase

retrieval. The second type is called singleton verification

vectors, which are used for singleton detection. Using these

two types of vectors we can modify the ratio test to achieve

the same performance with noise. The third type of query

vectors is used for consecutive summation check, which finds

consistent sets of measurements.

In addition to the new query design, we also employ a

noise reduction scheme. This is done by using each designed

query vector (say xi) repeatedly for R times and averaging

the corresponding measurements from the same β(�). In

particular, these R measurements are sampled i.i.d. from a

mixture of two Gaussians with centers xT
i β

(1) and xT
i β

(2),

so we use an EM algorithm initialized by moment methods to

estimate the two centers. Using the result in [14], we prove

that the EM-based noise reduction scheme succeeds under

the conditions in Theorem 2, namely R = Θ(polylog(n))
and ∆/σ > η. We refer the readers to Section ?? of the

appendices for the details of the Robust Mixed-Coloring

algorithm.

V. EXPERIMENTAL RESULTS

In this section, we test the sample and time complexities

of the Mixed-Coloring algorithm in both noiseless and noisy

cases to verify our theoretical results. We refer the readers

to the appendices for more details of the experiments.

For the noiseless case, we use the optimal parameters

(d,R, V ) from numerical calculations of the density evolu-

tion. For different values of L,K,m, we record the empirical

success probability and running time averaged over 100
trials. Here, we use a sufficiently small p∗ so that the success

event is equivalent to recovery of all the non-zero elements.

The results are shown in Figure 5a. The phase transition

occurs at some C = m/K that matches the values in Table I

predicted by our theory. Moreover, the running time is linear

in K and does not depend on n, as shown in Figure 5b.
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Fig. 5: Success probability and running time in the noiseless case.

Similar experiments are performed for the noisy case using

the Robust Mixed-Coloring algorithm, under the quantization

assumption. Figure 6a shows the minimum number of queries

m required for 100 consecutive successes, for different n and

K. We observe that the sample complexity is linear in K and

sublinear in n. The running time exhibits a similar behavior,

as shown in Figure 6b. Both observations agree with the

prediction of our theory.

We also compare the Mixed-Coloring algorithm with a

state-of-the-art EM-style algorithm (equivalent to alternating

minimization in the noiseless setting) from [15]. These

comparisons are not entirely fair, since our algorithm is based

on carefully designed query vectors, while the algorithm

in [15] uses random design, i.e., the entries of xi’s are i.i.d.

Gaussian. However, this is exactly where the intellectual

value of our work lies: we expose the gains available by

careful design. We consider four test cases with (L, n,K) =
(2, 100, 20), (2, 500, 50), (2, 100, 100), (2, 500, 500), with
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the first two cases being sparse problems and the last two

being relatively dense problems. We find the minimum

number of queries that leads to a 100% successful rate in 100

trials, and the average running time. As shown in Table II,

in both sparse and dense problems, our Mixed-Coloring

algorithm is several orders of magnitude faster. As for the

sample complexity, our algorithm requires smaller number

of samples in the sparse cases, while in dense problems,

the sample complexity of our algorithm is within a constant

factor (about 3) of that of the alternating minimization

algorithm. For the noisy setting, our algorithm is most

powerful in the high dimensional setting, i.e., large n,

due to the polylog(n) factors. However, in this setting, it

takes extremely long time for the state-of-the-art algorithms

such as [16] to converge, and thus, we do not present the

comparison in the noisy setting.
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Fig. 6: Sample and time complexities of Robust Mixed-Coloring
algorithm.

TABLE II: Comparison of two algorithms
(M-C=Mixed-Coloring)

(n,K) sample(M-C)

sample(EM)

speed(M-C)

speed(EM)

(100, 20) 0.57 124
(500, 50) 0.33 368
(100, 100) 2.78 19
(500, 500) 3.00 37

We further test the Robust Mixed-Coloring algorithm when

the quantization assumption is violated. For any β ∈ R, we

define D(β) = argmina∈D |a − β|1(β �= 0), where 1(·)
denotes the indicator function. This means that D(β) is the

element in D which is the closest one to β, when β �= 0.

For a vector β ∈ R
n, we define D(β) = {D(βj)}

n
j=1. We

define the perturbation of a vector β as Perturbation(β) =
maxj∈[n] |βj −D(βj)|/∆.
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Fig. 7: Performance of Robust Mixed-Coloring algorithm with
quantization assumption violated.

In this experiment, we generate sparse parameter vec-

tors β(�), � ∈ [L] with a total number of K non-zero

elements. These non-zero elements are generated randomly

while keeping the perturbation of the parameter vectors under

a certain level by adding bounded noise to the quantized

non-zero elements. We record the probability of success for

different number of bins M and different perturbation level.

Here the success event is defined as recovery of D(β(�))
for all � ∈ [L]. The result is shown in Figure 7. We see

that the Robust Mixed-Coloring algorithm works without the

quantization assumption as long as the perturbations are not

too large.

VI. RELATED WORK

A. Mixtures of Regressions

Parameter estimation using the expectation-maximization

(EM) algorithm is studied empirically in [17]. In [16], an �1-

penalized EM algorithm is proposed for the sparse setting.

Theoretical analysis of the EM algorithm is difficult due to

non-convexity. Progress was made in [15], [18] and [14]

under stylized Gaussian settings with dense β, for which

a sample complexity of Θ(n polylog(n)) is proved given

a suitable initialization of EM. The algorithm uses a grid

search initialization step to guarantee that the EM algorithm

can find the global optimal solution, with the assumption

that the query vectors are i.i.d. Gaussian distributed. The

computational complexity is polynomial of n. An alternative

algorithm is proposed in [19], which achieves optimal O(n)
sample complexity, but has high computational cost due

to the use of semidefinite lifting. The algorithm in [20]

makes use of tensor decomposing techniques, but suffers

from a high sample complexity of O(n6). In comparison,

our approach has order optimal sample and time complexities

by utilizing the potential design freedom. The classification

version of this problem has also been studied in [21].

B. Coding-theoretic Methods

Many modern error-correcting codes such as LDPC codes

and polar codes [22] with their roots in communication

problems, exploit redundancy to achieve robustness, and use

structural design to allow for fast decoding. These proper-

ties of codes have recently found applications in statistical

problems, including graph sketching [23], sparse covariance

estimation [24], low-rank approximation [25], and discrete
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inference [26]. Most related to our approach is the work

in [13], [27], [28], which apply sparse graph codes with

peeling-style decoding algorithms to compressive sensing

and phase retrieval problems. In our setting we need to handle

a mixture distribution, which requires more sophisticated

query design and novel unmixing algorithms that go beyond

the standard peeling-style decoding.

C. Combinatorial and Dimension Reduction Techniques

Our results demonstrate the power of strategic query and

coding theoretic tools in mixture problems, and can be

considered as efficient linear sketching of a mixture of sparse

vectors. In this sense, our work is in line with recent work

that make uses of combinatorial and dimension reduction

techniques in high-dimensional and large scale statistical

problems. These techniques, such as locality-sensitive hash-

ing [29], sketching of convex optimization [30], and coding-

theoretic methods [31], allow one to design highly efficient

and robust algorithms applicable to computationally chal-

lenging datasets without compromising statistical accuracy.

VII. CONCLUSIONS

We propose the Mixed-Coloring algorithm as a query

based learning algorithm for mixtures of sparse linear regres-

sions. The design of the query vectors and the recovery algo-

rithm are base sparse graph codes, and our scheme achieves

order optimal sample and computational complexities in the

noiseless case, and sublinear sample and time complexities in

the presence of noise. Our experiments justified the theoreti-

cal results. In the noisy scenario, studying the Robust Mixed-

Coloring algorithm with more than two parameter vectors

and obtain theoretical results for the continuous alphabet can

be two important future directions.
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