
A service-oriented architecture for coupling web service models using

the Basic Model Interface (BMI)

Peishi Jiang a, Mostafa Elag a, Praveen Kumar a, *, Scott Dale Peckham c, Luigi Marini b,
Liu Rui b

a Ven Te Chow Hydrosystem Laboratory, Civil and Environmental Engineering, University of Illinois, Urbana, IL 61801, USA
b National Center for Supercomputing Applications, University of Illinois, Urbana, IL 61801, USA
c CSDMS, University of Colorado, Boulder, CO 80303, USA

a r t i c l e i n f o

Article history:

Received 31 December 2016

Accepted 27 January 2017

Keywords:

Integrated modeling

Service-oriented architecture

The Basic Model Interface

EMELI-Web

a b s t r a c t

Service-oriented approach for model coupling is gradually gaining momentum. By leveraging the World

Wide Web, the service-oriented approach lowers the interoperability barrier of integrating models in

terms of programming languague and operating system. While such paradigm has been applied to

integrate models wrapped with some standard interfaces, this paper considers the Basic Model Interface

(BMI) as model interface. The advantages of BMI are that it (1) enrich the semantics of variable names,

and (2) is framework-agnostic. We exposed the BMI-enabled models through web services. Then, a smart

modeling framework, the Experimental Modeling Environment for Linking and Interoperability (EMELI),

was enhanced into a web application (i.e., EMELI-Web) to integrate the BMI-enabled web service models.

By implementing the whole orchestration in coupling TopoFlow components, we demonstrate that BMI

helps connect web service models by reducing the heterogeneity of variable names, and EMELI-Web

makes it convenient to couple BMI-enabled web service models.

© 2017 Elsevier Ltd. All rights reserved.

Software availability

� The code for the BMI-enabled web service TopoFlow compo-

nents is available at: https://opensource.ncsa.illinois.edu/

bitbucket/projects/ECGS/repos/bmi-flask/browse

� The code for EMELI-Web is available at: https://opensource.

ncsa.illinois.edu/bitbucket/projects/ECGS/repos/emeli-web-

application/browse

1. Introduction

There is an increasing need of integration and re-use of models

from different disciplines in the geoscience community to simulate

and model complex environmental systems. Due to different sci-

entific conventions and vocabulary usage in different disciplines,

the associated numerical and physical models usually differ in

programming languages, variable names, variable units, and spatial

and temporal grids for solution, causing the difficulties of model

integration(Argent, 2004). To address the issues of coupling

multidisciplinary heterogeneous models, a lot of solutions have

been put forward during the past decade (Sui and Maggio, 1999;

Hill et al., 2004; Syvitski et al., 2004; Maxwell and Miller, 2005;

Moore and Tindall, 2005; David et al., 2013). Among these solu-

tions, a loosely-coupled, service-oriented approach is gaining mo-

mentum recently due to its ability of leveraging the World Wide

Web for integrated modeling (Geller and Melton, 2008; Goodall

et al., 2011; Laniak et al., 2013; Nativi et al., 2013). However, most

applications of such service-oriented architecture (SOA) are limited

to models wrapped with the model interfaces which (1) does not

reduce the heterogeneity of variable names, and (2) is used in a

specific model integration framework thus causing the difficulties

of being applied in other frameworks (Goodall et al., 2011, 2013;

Castronova et al., 2013). Therefore, the goal of this study is to

develop a service-oriented modeling framework for coupling

models by adopting the Basic Model Interface (BMI, Peckham et al.

(2013)) which not only enriches the semantic information of vari-

able names but also is framework-independent.

Prior to the emergence of the loosely-coupled, service-oriented

approach, researchers have proposed multiple solutions to* Corresponding author.

E-mail address: kumar1@illinois.edu (P. Kumar).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

http://dx.doi.org/10.1016/j.envsoft.2017.01.021

1364-8152/© 2017 Elsevier Ltd. All rights reserved.

Environmental Modelling & Software 92 (2017) 107e118



integrate heterogeneous models. Generally, there are two types of

methods: tightly-coupled and loosely-coupled, integration ap-

proaches. The tight coupling approach has been adopted by a

number of researchers by porting codes from different models into

a single modeling application (Sui and Maggio, 1999; Facchi et al.,

2004; Maxwell and Miller, 2005; Yu et al., 2006). Despite its

capability in fully controlling the modeling process, the tightly-

coupled approach requires the consistent internal conventions

within the models (e.g., data structures). In contrast, following a

loosely-coupled approach, researchers only need to standardize the

model interface and integrate models within a specific modeling

framework, thus allowing the internal structure of the model to be

unchanged. Examples of such modeling frameworks include the

Earth System Modleing Framework (ESMF, Hill et al. (2004)), the

Open Modeling Interface (OpenMI, Moore and Tindall (2005)), the

Object Modeling System (OMS, David et al. (2013)), and the Com-

munity Surface DynamicsModeling System (CSDMS, Peckham et al.

(2013)).

Compared with the traditional loose coupling approach (for

example, the component-based modeling approach where the

models are integrated in one computing platform in a plug-and-

play manner (Van Ittersum et al., 2008; Elag et al., 2011;

Peckham et al., 2013; Theurich et al., 2015)), the application of

loosely-coupled service-oriented method in model integration has

the following advantages (Goodall et al., 2011). First, it allows the

independence of operating system and programming languages

for models, lowering the interoperability barrier of model inte-

gration. Second, by exposing models through web service, one can

utilize the functionality of the model without installing it in his or

her own computing system. Third, the web service feature allows

the maintenance or update of a model while still providing the

original functionality to the clients over the web. In geoscience

domain, the idea of adopting SOA in modeling is also termed as

“Model Web” (Geller and Melton, 2008) and has been applied in

modeling water resource systems (Goodall et al., 2011; Castronova

et al., 2013).

Despite the existing efforts in applying SOA in model integra-

tion, the model interfaces used do not provide sufficient semantic

information of variable names and are heavily dependent on model

integration framework and model interface standard. For instance,

hydrologic models encapsulated with OpenMI are transformed into

web services and loosely coupled in a service-oriented architecture

(Goodall et al., 2011; Castronova et al., 2013). However, OpenMI

standard fails to address the heterogeneity issue of variable names.

Furthermore, it is usually difficult to integrate models standardized

in different modeling frameworks (e.g., ESMF and OMS), therefore

limiting a wider application of these modeling frameworks and

standards.

Hence, in this study, we adopt the Basic Model Interface (BMI)

as the model interface, which is originally developed in the

Community Surface Dynamics Modeling System (CSDMS)

(Peckham et al., 2013). There are two unique features of BMI. First,

BMI is able to map a model's internal variable names to CSDMS

standard names, which is a set of “cross-domain naming con-

ventions for describing process models, data sets, and their asso-

ciated variables” (Peckham, 2014a), so that models adopting

different variable naming convention can still be properly con-

nected before being further coupled. The second feature of BMI is

that it is framework-agnostic. Namely, there is no need for re-

searchers to adjust their models to a specific modeling framework

(Peckham, 2014b). It also suggests that a BMI-enabled model can

be used in any other framework once a corresponding adapter is

developed. This is reflected in an ongoing EarthCube project, Earth

System Bridge whose goal is to allow different modeling frame-

works to be “interoperate” by using BMI as the “bridge”

connecting different frameworks (Peckham et al., 2014). Another

example of utilizing BMI's framework-agnostic property is the

development of Experimental Modeling Environment for Linking

and Interoperability (EMELI), a smart modeling framework for

integrating BMI-enabled models (Peckham, 2014b).

In this research, we develop a service-oriented modeling

framework by enhancing EMELI to integrate web service models

using BMI as depicted in Fig. 1. To achieve the BMI-based service-

oriented framework, the following technical challenges are

addressed: (1) how to convert the BMI-enabled models into web

service models (i.e., constructing the web service exposing the

functionality of BMI); (2) how to advance the EMELI framework to

EMELI-Web which enables the “integration” of the BMI-enabled

web serviced models. Also, a web interface is established for

EMELI-Web, which allows the convenient usage of EMELI-Web

through the browser. The entire architecture is then tested by (1)

transforming components of a set of spatially-distributed hydro-

logic model TopoFlow (Peckham, 2009) into BMI-enabled web

service models and (2) executing the models in Owl watershed of

the Upper Sangamon River Basin in Illinois through EMELI-Web.

In the remainder of this paper, the concept of SOA and its

application is reviewed in Section 2. Section 3 details the design of

the BMI-based service-oriented modeling paradigm, including the

conversion of BMI-enabled models into web services and the

construction of EMELI-Web. An implementation is then performed

by converting TopoFlow components into the BMI-enabled web

service models in Section 4. A short discussion of the whole ar-

chitecture is provided in Section 5, and the paper is briefly

concluded in Section 6.

2. Background

Service-Oriented Architecture (SOA) is a way of using web ser-

vice to model a large software system, where sub-softwares or

computing components are distributed on different remote servers

that provide services for other clients (Erl, 2004; Huhns and Singh,

2005). A typical communication between a service and a client

(which can be either a human being or another service) is as fol-

lows. Following a specific communication protocol, a client sends a

request to a web service operated on another server via the

internet. After receiving the request, the service reads the incoming

information, carries out a certain processing, and sends a response

back to the client. Such communication in SOA implies a loosely-

coupled architecture where the software or computing compo-

nent behind the web service can be conserved in any hardware

environment and run in any programming language.

Until recently, SOA has been adopted as an alternative in model

integration for component-based modeling approach, which has

been widely applied in coupling heterogeneous models in a ‘plug-

and-play’ manner (Geller and Melton, 2008). Compared with the

component-based approach, which usually has to reply on a spe-

cific modeling framework in a single computing resource, the

service-oriented modeling paradigm allows the independence of

both operating system and programming language as well as the

avoidance of code duplication (Nativi et al., 2013). By exposing a

model as web services, users can utilize the functionality of the

models directly by calling the service, without considering the

dependent platform and programming language. Also, because of

the ability to run a model via the Internet, there is no need to

duplicate the code in the users' own computer. There have been

some efforts to apply SOA for coupling models in geoscience. For

example, Goodall et al. (2011) transformed water resource models

into web services by using the Open Geospatial Consortium (OGC)

Web Processing Service (WPS) and demonstrated how it can be

encapsulated as OpenMI-compliant models. Later, Castronova et al.

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118108



(2013) furthered the idea of servicing an OpenMI-compliant model

by considering the case of time-dependent models. In addition, an

OpenMI-ESMF web service wrapper was developed to couple a

climate model implemented via ESMF web service with an

OpenMI-compliant hydrologic model running on a personal com-

puter (Goodall et al., 2013). Exposing models through web services

would significantly lower the interoperability barrier of the

communication between models, and a client only needs to

configure the communication protocol used by the modeling

service.

Two commonweb service communication methods are: Simple

Object Access Protocol (SOAP, SOAP (2004)) and REpresentational

State Transfer (REST, Fielding (2000)) specifications. SOAP has been

widely applied for setting up web services, usually combined with

the Web Service Description Language (WSDL). However, a web

service adopting SOAP/WSDL protocol is complex in that SOAP is

designed for structured information and thus requires the

incoming data to follow a sophisticated prototype (Mulligan and

Gra�canin, 2009). Meanwhile, constructing a RESTful application is

relatively simple because it only relies on a stateless communica-

tion protocol, most commonly Hypertext Transfer Protocol (HTTP).

By using a set of HTTP methods (GET, POST, PUT, DELETE, HEAD

(Fielding et al., 1999)), a RESTful application is able to interact with

the resources exposed by a web service.

In this study, we adopt the RESTful approach due to its

simplicity and easy of use. Also, in terms of the specification

encoding messages transferred between the RESTful web services,

JavaScript Object Notation (JSON) is utilized due to its capability of

transmitting messages in a lightweight data-interchange format.

3. Design

The design of our SOA includes (1) a modeling service for

exposing BMI-enabled models as web service models, and (2) the

EMELI-Web framework for coupling web service models, which is

an enhanced version of EMELI to handle BMI-enabled web service

model. As discussed in Section 1, BMI is chosen as the model

interface because of its framework-agnostic property and capability

of enriching the semantic information of variable names. Therefore,

despite the adoption of BMI as the model interface, models

encapsulated with other standards or in other frameworks can also

be integrated in this SOA once a wrapper like the one being

developed in Earth System Bridge is ready.

By exposing BMI-enabledmodels as web services, clients can get

the information of a model and execute it by sending requests to

the services. To couple the BMI-enabled web service models,

EMELI-Web is equipped with a user interface and introduces a port

to receive and ingest the response from the modeling service.

3.1. Exposing BMI-enabled models through web service

The interface of a web service model developed in this work is

Fig. 1. The architecture of integrating BMI-enabled web service models through EMELI-Web.

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118 109



based on a combination of the Basic Model Interface (BMI) and a

set of JSON-based RESTful web service APIs (application pro-

gramming interfaces) exposing information provided by BMI. As a

model interface, BMI allows a model to self-describe in that the

basic features of a model (e.g., input and output names) are able to

be retrieved through a set of BMI functions (Peckham et al., 2013).

In terms of web service interface, despite the wide applications of

different web service specifications developed in the Open Geo-

spatial Consortium (OGC), there is no specification for geoscience

modeling. Even though a combination of several existing stan-

dards (e.g., the Web Processing Service, the Geography Markup

Language and Water Markup Language) might provide a solution

to address this issue, as suggested by Castronova et al. (2013),

these XML-based standards would make the conveyed informa-

tion heavily encapsulated, slowing down the entire service-based

communication. Hence, in this study, we develop a set of JSON-

based web service APIs for conveying information provided by

BMI.

To convert a BMI-enabled model into a web service, we

construct a wrapper by exposing most BMI functions through

web service APIs. In addition, when an instance of a model

resource is initialized in the server, its own ID and file system are

generated as well. In order to reduce the web latency of service

communication, variable values of a model are saved in a binary-

formate netCDF (i.e., network Common Data Form) file and

transferred over the web.

3.1.1. Web service design for BMI-enabled models

The design of BMI-enabled web service models is to allow the

integration of the web service models under a EMELI-based web

service framework in our study. To this end, the following efforts

are made: (1) exposing almost all BMI functions into RESTful APIs;

(2) designing a RESTful API by combining several BMI functions to

reduce web latency; and (3) introducing utility RESTful APIs to

smooth the SOA-based coupling in EMELI-Web. All the APIs

designed for a BMI-enabled web service model, including BMI-

based APIs and utility APIs, are listed in Table 1 and Table 2,

respectively.

A BMI-enabled model not only is self-describing but also facil-

itates clients to have a full control of the model. The BMI functions

are categorized into five groups: model control functions, model

information functions, variable getter and setter functions, variable

information functions, and grid information functions. The basic

information of a model is available through performing model in-

formation functions, variable information functions and grid in-

formation functions. For example, by using model information

functions, the input(s) and output(s) of a model can be retrieved in

CSDMS standard names, which would help check the connections

between models in a model coupling workflow. Also, the variables'

values can be obtained and reset through variable getter and setter

functions. Furthermore, model control functions enable clients to

initialize the model based on a configuration file, update the model

at each time step and finalize the model by releasing all compu-

tational resources. More detailed functionality of BMI are provided

in Peckham et al. (2013).

For the conversion of a BMI-enabled model into web services,

most BMI-based APIs are directly constructed upon the original BMI

functions as shown in Table 1. This design allows a convenient

revision of EMELI in that most BMI functions utilized by EMELI can

then be easily revised to consume the responses from calling the

corresponding BMI-based APIs. For example, in model control

functions, the BMI capability of initializing, updating and finalizing a

model is converted into three corresponding HTTP PUT methods.

Similarly, in model information functions, three HTTP GETmethods

Table 1

The BMI-based RESTful APIs of a BMI-enabled web service model where 〈 model〉 and 〈 id〉 represent the model name and the ID of the model instance, respectively.

Model Control Functions

/instantiate POST Instantiates the model and return back an ID

/〈 id〉/initialize PUT Initializes the model after it is instantiated by sending the configuration file

/〈 id〉/update PUT Updates the model after it is initialized

/〈 id〉/finalize PUT Finalizes the model after the simulation is done

Model Information Functions

/〈 id〉/get_input_var_names GET Returns the inputs of the model

/〈 id〉/get_output_var_names GET Returns the outputs of the model

/〈 id〉/get_attribute GET Returns the attributes of the model

Variable Information Functions

/〈 id〉/get_time_step GET Returns the time step of the model after model initialization

/〈 id〉/get_time_units GET Returns the time units of the model after model initialization

/〈 id〉/get_time/〈 when〉 GET Returns the time of the model after model initialization

Variable Getter and Setter Functions

/〈 id〉/set_values_for_vars PUT Resets the values of some variables in the model by sending a netCDF file including

the variable values after model initialization.

/〈 id〉/set_vars_provided_list PUT Informs the model of the variables which are used by clients after model initialization

Grid Information Functions

/〈 id〉/get_grid_properties GET Returns the grid properties of the variable with name var after model initialization

Table 2

The utility RESTful APIs of a BMI-enabled web service model where 〈 id〉 represents the ID of the model instance.

/〈 id〉/send_cfg_sup_files GET Sends a configuration file along with any input files to the model after model instantiation

/〈 id〉/mode/update/〈 status〉 PUT Updates the mode status of the model after model instantiation

/〈 id〉/output GET Lists the model's output files after model instantiation

/〈 id〉/download_output/〈 file〉 GET Downloads the model's output files after model completion

/〈 id〉/download_temp_nc/〈 file〉 GET Downloads the temporary netCDF files of the model when the model is initialized updated or finalized

/〈 id〉/remove DELETE Removes the model instance after the model is instantiated

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118110



are built up to retrieve the input and output names of the model as

well as the model's attributes.

Moreover, to reduce web latency, some BMI-based APIs are

established by including several BMI functions. For instance, for

grid information function, one single API is provided to obtain

variable's spatial information which is originally available through

several BMI functions. In this way, the number of modeling services

called decreases so that the web latency is diminished. Also, for

BMI's variable getter and setter functions, instead of getting and

setting values of one variable at each time, the web service design

allows retrieving and changing values of multiple variables by

saving the variables' values in a netCDF file, thereby reducing web

service calling times. The details of using netCDF file to store var-

iable values are further explained in Section 3.1.3.

Some utility RESTful APIs of a BMI-enabled web service model

are designed for performing specific tasks under a service-oriented

environment (as shown in Table 2). For example, once the model

instance is finalized, the client can obtain the list of outputs through

calling the API/〈 id〉/output, and download them by sending a

request to the API/〈 id〉/download_output/〈 file〉 to download the

output.

3.1.2. Identification of a web service model instance

To avoid the conflicting executions of a modeling resource by

different clients, a unique ID is assigned to the model instance

when the model is instantiated by calling the model instantiation

API (i.e.,/〈 id〉/instantiate). Universally unique identifier (UUID), a

widely adopted identifier standard in software construction, is

employed as the mechanism for generating the ID (Leach et al.,

2005). Once a model instance is created in the server, the

assigned ID is required for further interactions with the specific

instance of the modeling resource through the APIs shown in

Tables 1 and 2.

Furthermore, a file system is needed for each model instance to

store input and output files. During the model instantiation, three

file folders (i.e., input folder, output folder and temp folder) are

created for the specific model instance to store the input files, the

output files and the files containing temporary variable values

during the model simulation, respectively. Specifically, the temp

folder contains files either created when the model is executed and

stores the variable values, or uploaded from a client for resetting

the variable values, in netCDF format. The file system belonging to a

specific model instance is deleted once the model instance is

removed by using the API/〈 id〉/remove.

3.1.3. Variable value transfer via the internet through netCDF files

To enable unambiguous, structured and efficient client-service

communication, the variable values of a model are saved in a

netCDF file at each time step. NetCDF is a “self-describing, machine-

independent” and binary data format to store and access the array-

oriented data, developed in Unidata program by the University

Corporation for Atmospheric Research (UCAR) (Rew and Davis,

1990). It is also a standard for defining data in terms of variable

name, variable unit and spatio-temporal property. As a conse-

quence, adopting the binary-based netCDF files to store variable

values is extremely helpful in both structuring data values and

reducing information storage compared with the traditional XML-

based data transfer format.

We use netCDF files to store variable data in the following sce-

narios. First, netCDF files are utilized to contain several variable

values and returned back to the client when a model is either

initialized, updated or finalized. The variables of a model required

by the clients should be informed when the modeling service is

initialized by sending a list of the required variables to the API/〈 id〉/

set_ vars_provided_list. In a workflow, the required variables are

usually parts of the model's BMI outputs which are utilized as the

inputs of other models. Once the model instance is informed of

what variables should be provided for the client, a netCDF file

storing the values of these required variables is sent back to the

client during each model execution (i.e., model initialization, up-

date and finalization). The second case of using netCDF files is for

resetting values of multiple variables in a model by posting a

netCDF file to the API/〈 id〉/set_values_for_vars. This is useful in a

scenariowhen the inputs of themodel need to be updated based on

the outputs of other models before the model is further executed.

3.2. Service orchestration based on EMELI-Web

As illustrated in Fig.1, EMELI-Web, aweb-based implementation

of EMELI, is responsible for creating the workflow of multiple web

service models, orchestrating the execution of web service models

running at different time steps, and coordinating the information

(e.g., netCDF data files) flowing between EMELI-Web and modeling

services. To enable EMELI to integrate BMI-enabled web service

models, EMELI is first enhanced by introducing a port to call the

modeling service and receive its response. Then, a web interface is

constructed for users to conveniently utilize EMELI-Web through

web browsers.

3.2.1. EMELI-web design for integrating BMI-enabled web service

models

We choose EMELI as the basis for integrating BMI-enabled web

service models. EMELI is a Python class whose goal is to conve-

niently integrate component models wrapped with BMI into a

composite model (Peckham, 2014b). EMELI creates a runtime

environment for the BMI-enabled models, and it couples the

models by sequentially going through model instantiation, initial-

ization, update and finalization stages. For details of how EMELI

works, please see the Peckham's description of EMELI (Peckham,

2014b).

The port, a Python class, is developed for converting the JSON-

based response from the modeling service into the data structure

that EMELI can consume. Based on the combination of EMELI and

the port for calling modeling service, EMELI-Web is set up to

interact with a BMI-enabled web service model, as illustrated in

Fig. 2.

� Model preparation: After BMI-enabled models are exposed

through web service, their URL namespaces are registered in an

XML file (i.e., component_repository.xml). The registration file is

used later for calling the web service model in EMELI-Web.

� Model instantiation: A new instance of EMELI-Web is created.

The instance first obtains the available web service models by

reading the model registration file (i.e., component_repositor-

y.xml). Then, the EMELI-Web instance reads a text file (named

provider_file in Fig. 2), which lists the models to be coupled in

the execution order, and instantiates the selected web service

models.

� Model initialization: In this stage, the EMELI-Web instance

checks the connections between the web service models. Basi-

cally, the connection check ensures whether the inputs of a

models can be provided by the outputs of other models. This

connection process is improved by reading standard-based

variable names between models through the BMI functions.

Once all the chosen models are connected, by using the model

initialization API, the EMELI-Web instance then initializes the

models through sending the input files and obtains the IDs of

the modeling web service instances for further interaction

usage.

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118 111



� Model update: After the web service models are initialized, the

update API is used to update each model according to its own

time step. In each time step, to judge whether a model needs to

be updated, a framework environment clock time is compared

with the internal time of a model, which is available by calling

the API for BMI variable information functions. The model is

Fig. 2. The internal mechanism of EMELI-Web. (a) The workflow of running EMELI-Web with model instantiation (yellow), model initialization (green), model update (cyan), and

model finalization (gray) stages. (b) Communication between EMELI-Web and a BMI-enabled web service model.

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118112



updated if clock time is larger than model's internal time. Once

the internal times of all the models are larger than clock time,

clock time is updated and compared again with models' current

time for the update of themodel. Furthermore, before amodel is

updated, EMELI-Web resets the input values of the model by (1)

extracting other models' output values (by calling the APIs for

BMI variable getter and setter functions), and (2) conducting

numerical alignments (e.g., unit conversion and temporal

alignment) based on the variable features (e.g., variable unit and

its spatio-temporal property) of each model.

� Model completion:When a certain stopping condition (e.g., the

total runtime or the excedance of a specific variable value

threshold) is fulfilled, EMELI-Web sends a request to the final-

ization API of each modeling service, and downloads any

existing output files.

3.2.2. Creating a web interface for EMELI-Web

To make it easy for users to utilize web service model coupling

capability, EMELI-Web provides a web interface, which is con-

structed by using Flask e a Python web development package

(Flask, 2016). This web interface is similar to CSDMSWeb Modeling

Tool (WMT), enabling the model selection, model configuration,

model running and output download based on a web interface

(CSDMS, 2016). However, it is noted that, different from CSDMS

WMT, which interacts with BMI-enabled models existing in CSDMS

High Performance Computing Cluster, the web application sup-

ported by EMELI-Web aims to couple models under a service-

oriented architecture.

As a web application, EMELI-Web employs a simple relational

database by using SQL (Structured Query Language) to enable the

authorization of using EMELI-Web and also record the coupling

activities of each user, which is illustrated in Fig. 3. The User data-

base model is utilized to record a user's basic information (e.g., id,

email, user_name, password, etc.) and authorize the usage of

EMELI-Web. The other database model is EMELI_Instance, which is

used for recording coupling activities of each user. The affiliation of

a EMELI_Instance to a User is referred by the connection between

user_id in EMELI_Instance and id in User. In addition, it is noted that

the id field in EMELI_Instance serves a similar purpose as the ID in

identifying the instance of a modeling service (see Section 3.1.2) d

to avoid the conflicting uses of the same resource (EMELI in this

case) from different users (see Fig. 1).

After registration, a user can start to use EMELI-Web to couple

BMI-enabled web service models following the procedures depic-

ted in Fig. 4 (i.e., selecting, configuring, and coupling, and getting

results). In the Select model page, a new EMELI_Instance is gener-

ated to record this coupling activity based on the fields of EME-

LI_Instance (see Fig. 3). The user is required to: (1) select the models

from the available BMI-enabled web service models in the execu-

tion order, (2) check the connections between the selected models

by clicking checkmodel connections, and (3) click submit to go to

the Configure model page. In the Configure model page, the user

needs to provide the values or files of the configuration variables.

Once the configuration variables are ready, the user can click the

submit button to trigger both the generation of the configuration

file for each model and the creation of a runtime environment by

EMELI-Web. After the coupling completes, the Results & Outputs

page is shown, listing all the outputs.

4. Implementation

In this section we present an implementation of the BMI-based

service-oriented modeling paradigm in loosely coupling a set of

hydrological models. TopoFlow, a family of spatially distributed

hydrological process components, is deployed as BMI-enabled web

service models. EMELI-Web is then used to create a runtime envi-

ronment for coupling these web service models.

4.1. Model description

TopoFlow is a spatially-distributed, D8-based hydrologic model

(Peckham, 2009) that simulates several hydrologic processes,

including meteorology, channel/overland flow, snow, evaporation,

infiltration and subsurface flow. Its capability of reproducing

different processes in hydrological cycle is well tested in modeling

the Imnavait Creek watershed, Alaska (Bolton, 2006; Schramm

et al., 2007). Furthermore, each process in TopoFlow can be simu-

lated by using at least one method. For example, the infiltration

process includes three methods: Green-Ampt method, Smith-

Parlange method, and 1D Richards' equation with 3 layers. In

addition, each process runs at a different time step (see Fig. 5) and is

modular such that each process can be simulated as an indepen-

dent model.

The modular feature of TopoFlow components allows the

models being wrapped with BMI interfaces individually and work

as plug-and-play components in the CSDMS architecture. The latest

version of TopoFlow is written in Python and wrapped with BMI

Fig. 3. The SQL relational database used for EMELI-Web includes two database model: User and EMELI_instance. The user_id in EMELI_instance is used as the foreign key pointing

to the primary key id in User so that a user may have multiple EMELI-Web instances.

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118 113



interfaces (Peckham, 2013). The BMI-enabled feature of TopoFlow

components facilitates the mapping between the CSDMS standard

names and the models' internal variable names in BMI's model

information functions for retrieving the BMI's inputs and outputs of

a model in standard names. The semantic mapping between vari-

able names helps connect models. For instance, one of the BMI

output of the meteorology component is rainfall volume flux with

the internal symbol P_rain, while the BMI input of the channel flow

Fig. 4. Screenshots of the three procedures of using EMELI-Web: (1) selecting web service models to be coupled, (2) configuring the selected models, and (3) coupling models and

showing the results.

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118114



component uses a different internal symbol P for rainfall. By

mapping both P_rain and P to the CSDMS standard name atmos-

phere_water__rainfall_volume_flux in the meteorology component

and the channel flow component, respectively, the two models can

be connected through the rainfall variable even though their in-

ternal representations are different. The integration of the BMI-

enabled TopoFlow components has been successfully imple-

mented not only in the CSDMS framework but also in EMELI

(Peckham, 2014b).

4.2. Integrating TopoFlow components as BMI-enabled web service

models in EMELI-WEB

We expose the BMI-enabled TopoFlow components through

web services, based on the endpoints listed in Tables 1 and 2 The

Python web development package, Flask, is used for creating the

web services.

Once the web service version of BMI-enabled TopoFlow

components is ready, the basic information of the components

(e.g., model name, author, URL, etc.) are registered in the com-

ponent_repository.xml file. The XML file is later read by EMELI-

Web in model instantiation stage as described in Section 3.2.1.

Also, a web interface allowing users to provide information of

configuration variables for each model is constructed in EMELI-

Web, of which an example is illustrated in the configure model

page screenshot in Fig. 4.

A simulation of TopoFlow is conducted on the Owl watershed,

located in the Upper Sangamon River Basin in Illinois (see Fig. 6).

The integrated TopoFlow components listed in the execution order

are the meteorology component, the channel flow component of

the kinematic wave method, the snow component of the degree

day method, the evaporation component of Priestley-Taylor

method, the infiltration component of Green-Ampt method and

the saturated zone process component. To drive the above Topo-

Flow components, the following data files are used: (1) the digital

elevation model of the Owl watershed and (2) the time series data

collected from the sites of Intensively Managed Landscapes of

Critical Zone Observatory (IML-CZO, 2014), including air tempera-

ture, precipitation and relative humidity. The remaining configu-

ration variables of the models are assumed to be constant in that

the main purpose of the simulation is to study the feasibility of

coupling BMI-enabled web service models rather than seeking

simulation accuracy. The procedures of using EMELI-Web to run

BMI-enabled TopoFlow components have been detailed in Section

3.2.2. First, select the TopoFlow components in the Select model

page, and check the model connections. Then, go to the Configure

model page, and provide the configuration variables' information

(i.e., upload data files from IML-CZO data repository site or enter

default values). Next, when the configuration information is pro-

vided, click the submit button and EMELI-Web would start to

couple theweb servicemodels. Once themodel simulation finishes,

the output files are available for downloading in the Results &

Outputs page, as shown in Fig. 4.

Fig. 5. An example of running TopoFlow components at different time steps.

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118 115



5. Discussion

The motivation of this study is to create a service-oriented ar-

chitecture for coupling models using Basic Model Interface (BMI).

BMI is chosen as the standard model interface because of its two

unique advantages in terms of model integration. First, the

framework-agnostic property of BMI allows a BMI-enabled model

to be easily set up in any other modeling integration frameworks.

This is proved by the successfully developed EMELI, which is the

basis of EMELI-Web. Also, BMI's capability of mapping between

models' internal variable names and CSDMS standard names helps

semantic mapping during the connection of models. We illustrated

how TopoFlow components are connected to create a composite

model in EMELI-Web through the BMI's input and output functions

(Section 4.2).

A set of web service APIs are developed for converting a BMI-

enabled model into web services, with JSON as the schema for

encoding the information to and from the endpoints. Contrary to

XML, which has beenwidely used as the basic data transfer schema

in many standards (e.g., different conventions developed by OGC),

JSON is adopted as the data-interchange format because of its light-

weight format. Furthermore, we didn't adopt any existing web

service standard due to the lack of a domain-specific web service

standard for geoscience modeling, despite the existence of web

service standard for different subdomains (e.g., OGC WPS standard

for processing general data, the Water Markup Language

(WaterML) for describing time series data (Taylor, 2012) and the

Geography Markup Language (GML) for describing spatial infor-

mation (Portele, 2013)). Besides a call for a web service standard of

geoscience modeling, the combined employment of OGC WPS,

WaterML and GML is also suggested as an alternative (Castronova

et al., 2013). This effort requires a separate publication which de-

mands not only how the different web service standards are

combined but also whether the combination is suitable for a new

standard. Hence, we suggest not only the development of a stan-

dard for geoscience modeling web service but also more JSON-

based web service standards (some of which are being developed

in the community (Cox and Taylor, 2015)).

One important consideration in our service-oriented modeling

is reducing network latency caused by numerous information

flowing between services. Specifically, netCDF files are utilized to

store the numerical values of variables for updating variables be-

tween models through EMELI-Web. Compared with storing nu-

merical values in XML format, less data storage in a binary-based

netCDF file can be of benefit and leads to a faster information

communication over the web.

Further, to identify different usages of the same resource (which

can be either a BMI-enabled web service model or a model inte-

gration environment based on EMELI-Web in this study), a unique

ID is assigned to a resource instance when the instance is generated

by a specific client during the stage of model instantiation. How-

ever, the design of conserving different instances in both the

memory and the file system raises the issue of system reliability

and service performance, which is also a key aspect in service-

oriented architecture. For example, how to optimize the execu-

tion procedures at the server side when multiple requests are sent

to the server? To answer this question, a thoughtful parallel pro-

gramming design considering the estimated execution time spent

on each request would be helpful to achieve the minimum running

time in the server, and requires further investigations.

Moreover, such service-oriented architecture can be not only

applied in model coupling, but used for integrating a model with

either an online data repository or a model assessment tool as well.

For instance, a modeling service can be coupled with a model

analysis toolkit such as DAKOTA, which has already been integrated

into CSDMS modeling framework (Peckham et al., 2016). Also, a

service-orientedwrapper can be set up between amodeling service

and an online data repository (e.g. CUAHSI-HIS (the Consortium of

Universities for the Advancement of Hydrologic Science, Inc - Hy-

drologic Information System)). Peckham and Goodall (2013)

demonstrated the interoperability between CUAHSI-HIS and

CSDMS by developing a prototype CSDMS component. Such

Fig. 6. The digital elevation model of Owl watershed and its location in Illinois (shown as the blue area of the figure in the lower right corner). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118116



component can be revised to allow the interoperability between a

EMELI-Web coupling activity and CUAHSI-HIS.

6. Summary and conclusions

We have deployed a release of a service-oriented modeling

paradigm by adopting the Basic Model Interface (BMI) in this paper.

We developed a set of web service APIs to expose the functionality

of a BMI-enabled model via the internet. We enhanced EMELI to

EMELI-Web enabling the integration of BMI-enabled web service

models by using their web service APIs. Finally, we developed a

user-friendly web interface for the convenient use of EMELI-Web.

The whole orchestration was then implemented in coupling

TopoFlow components, a set of spatially distributed hydrologic

models.

The key contributions of this study in integrating web service

models are as follows. First, employing the BMI as the standard

model interface in modeling service not only enriches the semantic

information of variables names which facilitates checking con-

nections between web service models, but also allows the utiliza-

tion of EMELI as a base to construct EMELI-Web due to its

framework-independent property. In addition, to reduce network

latency of executing web-serviced models, saving input/output

values in a binary-format file transferred over the internet is more

efficient than storing the values in a standard data-interchange

protocol (e.g., JSON and XML). In this study, netCDF file is utilized

to convey the variable values between EMELI-Web and a BMI-

enabled web service model. Finally, the proposed way of identifi-

cation of the model instance is effective in the avoidance of con-

flicting executions towards the web service model.

As stated in the introduction, employing a service-oriented ar-

chitecture in model coupling is able to (1) lower the interopera-

bility barrier of model integration by enabling the independence of

programming language and operating system of models, (2) facil-

itate a model to be accessed via the internet without being

downloaded thus popularizing the model, and (3) allow the easier

maintenance of the model with it original functionality exposed

through a web service. Despite these benefits of SOA, issues such as

the network latency and the reliability of the architecture should

also be taken into consideration for modelers and decision makers

when applying a service-orientedmodeling paradigm in simulating

a specific phenomenon. Finally, even though further investigations

need to be emphasized on the reduction of the web latency and the

improvement of the execution performance, we are confident that

service-oriented modeling paradigm implying a loosely coupling

style is more suitable and convenient for integrating models where

models are set up at different platform.

Acknowledgements

The authors wish to acknowledge the support of the study by

the National Science Foundation (ICER-1440315 & EAR-1331906).

Gratitude is also expressed to Yan Zhao from National Center for

Supercomputing Applications for her tremendous help and advices

in constructing the web interface of EMELI-Web.

References

Argent, R.M., 2004. An overview of model integration for environmental applica-

tions components, frameworks and semantics. Environ. Model. Softw. 19,
219e234. http://dx.doi.org/10.1016/S1364-8152(03)00150-6.

Bolton, W.R., 2006. Dynamic Modeling of the Hydrologic Processes in Areas of
Discontinuous Permafrost. Ph.D. thesis. University of Alaska Fairbanks.

Castronova, A.M., Goodall, J.L., Elag, M.M., 2013. Models as web services using the
open geospatial consortium (OGC) web processing service (WPS) standard.

Environ. Model. Softw. 41, 72e83. http://dx.doi.org/10.1016/

j.envsoft.2012.11.010.

Cox, S.J.D., Taylor, P., 2015. OGC Observations and Measurements JSON Imple-

mentation. Technical Report Open Geospatial Consortium. URL. https://portal.
opengeospatial.org/files/?artifact_id¼64910.

CSDMS, 2016. The CSDMS web modeling tool. URL. https://csdms.colorado.edu/
wmt/. accessed: 2016-12-01.

David, O., Ascough, J., Lloyd, W., Green, T., Rojas, K., Leavesley, G., Ahuja, L., 2013.

A software engineering perspective on environmental modeling framework
design: the object modeling system. Environ. Model. Softw. 39, 201e213. http://

dx.doi.org/10.1016/j.envsoft.2012.03.006.
Elag, M.M., Goodall, J.L., Castronova, A.M., 2011. Feedback loops and temporal

misalignment in component-based hydrologic modeling. Water Resour. Res. 47
http://dx.doi.org/10.1029/2011WR010792.

Erl, T., 2004. Service-oriented Architecture: a Field Guide to Integrating XML and

Web Services. Prentice Hall PTR.
Facchi, A., Ortuani, B., Maggi, D., Gandolfi, C., 2004. Coupled SVATegroundwater

model for water resources simulation in irrigated alluvial plains. Environ.
Model. Softw. 19, 1053e1063. http://dx.doi.org/10.1016/j.envsoft.2003.11.008.

Fielding, R.T., 2000. Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis. University of California, Irvine.
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.,

1999. Hypertext transfer protocolehttp/1.1. URL. https://www.w3.org/
Protocols/HTTP/1.1/draft-ietf-http-v11-spec-01. accessed: 2016-12-01.

Flask, 2016. Flask web development, one drop at a time. URL. http://flask.pocoo.org/

. accessed: 2016-07-04.
Geller, G.N., Melton, F., 2008. Looking forward: applying an ecological model web to

assess impacts of climate change. Biodiversity 9, 79e83. http://dx.doi.org/
10.1080/14888386.2008.9712910.

Goodall, J.L., Robinson, B.F., Castronova, A.M., 2011. Modeling water resource sys-
tems using a service-oriented computing paradigm. Environ. Model. Softw. 26,

573e582. http://dx.doi.org/10.1016/j.envsoft.2010.11.013.

Goodall, J.L., Saint, K.D., Ercan, M.B., Briley, L.J., Murphy, S., You, H., DeLuca, C.,
Rood, R.B., 2013. Coupling climate and hydrological models: interoperability

through web services. Environ. Model. Softw. 46, 250e259. http://dx.doi.org/
10.1016/j.envsoft.2013.03.019.

Hill, C., DeLuca, C., Suarez, M., Da Silva, A., et al., 2004. The architecture of the earth

system modeling framework. Comput. Sci. Eng. 6, 18e28. http://dx.doi.org/
10.1109/MCISE.2004.1255817.

Huhns, M.N., Singh, M.P., 2005. Service-oriented computing: key concepts and
principles. Internet Comput. IEEE 9, 75e81. http://dx.doi.org/10.1109/

MIC.2005.21.
IML-CZO, 2014. Intensively managed landscapes - critical zone observatory. URL.

http://imlczo.ncsa.illinois.edu/ (Accessed: 04.07.16).

Van Ittersum, M.K., Ewert, F., Heckelei, T., Wery, J., Olsson, J.A., Andersen, E.,
Bezlepkina, I., Brouwer, F., Donatelli, M., Flichman, G., et al., 2008. Integrated

assessment of agricultural systemsea component-based framework for the
European Union (SEAMLESS). Agric. Syst. 96, 150e165. http://dx.doi.org/

10.1016/j.agsy.2007.07.009.

Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G.,
Geller, G., Quinn, N., Blind, M., et al., 2013. Integrated environmental modeling:

a vision and roadmap for the future. Environ. Model. Softw. 39, 3e23. http://
dx.doi.org/10.1016/j.envsoft.2012.09.006.

Leach, P.J., Mealling, M., Salz, R., 2005. A universally unique identifier (UUID urn)
namespace. URL. https://tools.ietf.org/html/rfc4122.

Maxwell, R.M., Miller, N.L., 2005. Development of a coupled land surface and

groundwater model. J. Hydrometeorol. 6, 233e247. http://dx.doi.org/10.1175/
JHM422.1.

Moore, R.V., Tindall, C.I., 2005. An overview of the open modelling interface and
environment (the OpenMI). Environ. Sci. Policy 8, 279e286. http://dx.doi.org/

10.1016/j.envsci.2005.03.009.

Mulligan, G., Gra�canin, D., 2009. A comparison of SOAP and REST implementations
of a service based interaction independence middleware framework. In:

Simulation Conference (WSC), Proceedings of the 2009 Winter. IEEE,
pp. 1423e1432. http://dx.doi.org/10.1109/WSC.2009.5429290.

Nativi, S., Mazzetti, P., Geller, G.N., 2013. Environmental model access and inter-
operability: the GEO model web initiative. Environ. Model. Softw. 39, 214e228.

http://dx.doi.org/10.1016/j.envsoft.2012.03.007.

Peckham, S., 2009. Geomorphometry and spatial hydrologic modelling. Dev. Soil Sci.
33, 579e602. http://dx.doi.org/10.1016/S0166-2481(08)00025-1.

Peckham, S.D., 2013. TopoFlow. URL. https://csdms.colorado.edu/wiki/Model:
TopoFlow (Accessed: 04.07.16).

Peckham, S., 2014a. The CSDMS Standard Names: Cross-domain Naming Conven-

tions for Describing Process Models, Data Sets and Their Associated Variables.
International Environmental Modelling and Software Society (iEMSs), San

Diego, California, USA.
Peckham, S.D., 2014b. EMELI 1.0: An Experimental Smart Modeling Framework for

Automatic Coupling of Self-Describing 483 Models. CUNY Academic Works.

http://academicworks.cuny.edu/cc_conf_hic/464.
Peckham, S.D., Goodall, J.L., 2013. Driving plug-and-play models with data fromweb

services: a demonstration of interoperability between CSDMS and CUAHSI-HIS.
Comput. Geosci. 53, 154e161. http://dx.doi.org/10.1016/j.cageo.2012.04.019.

Peckham, S.D., Hutton, E.W., Norris, B., 2013. A component-based approach to in-
tegrated modeling in the geosciences: the design of CSDMS. Comput. Geosci. 53,

3e12. http://dx.doi.org/10.1016/j.cageo.2012.04.002.

Peckham, S., DeLuca, C., Gochis, D., Arrigo, J., Kelbert, A., Choi, E., & Dunlap, R.
(2014). EarthCube-earth system bridge: spanning scientific communities with

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118 117



interoperable modeling frameworks. In AGU Fall Meeting Abstracts (p. 3754).

volume 1.
Peckham, S.D., Kelbert, A., Hill, M.C., Hutton, E.W., 2016. Towards uncertainty

quantification and parameter estimation for earth system models in a
component-based modeling framework. Comput. Geosci. 90, 152e161. http://

dx.doi.org/10.1016/j.cageo.2016.03.005.

Portele, C., 2013. OpenGIS Geography Markup Language (GML) Encoding Standard.
Technical Report Open Geospatial Consortium. URL. http://www.

opengeospatial.org/standards/gml (Accessed: 01.12.16).
Rew, R., Davis, G., 1990. NetCDF: an interface for scientific data access. IEEE Comput.

Graph. Appl. 10, 76e82. http://dx.doi.org/10.1109/38.56302.
Schramm, I., Boike, J., Bolton, W.R., Hinzman, L.D., 2007. Application of TopoFlow, a

spatially distributed hydrological model, to the Imnavait Creek watershed,

Alaska. J. Geophys. Res. Biogeosci. 112 http://dx.doi.org/10.1029/2006JG000326.
SOAP, 2004. Simple object access protocol. URL. https://www.w3.org/TR/soap/

(Accessed: 04.07.16).
Sui, D., Maggio, R., 1999. Integrating GIS with hydrological modeling: practices,

problems, and prospects. Comput. Environ. urban Syst. 23, 33e51. http://

dx.doi.org/10.1016/S0198-9715(98)00052-0.
Syvitski, J., Paola, C., Slingerland, R., Furbish, D., Wiberg, P., Tucker, G., 2004.

Building a Community Surface Dynamics Modeling System: Rationale and
Strategy. A Report to the National Science Foundation. Penn State University,

State College, p. 41.

Taylor, P., 2012. OGCWaterML 2.0: Part 1 Timeseries. Technical Report Open Geo-
spatial Consortium. URL. https://portal.opengeospatial.org/files/?artifact_

id¼57222.
Theurich, G., DeLuca, C., Campbell, T., Liu, F., Saint, K., Vertenstein, M., Chen, J.,

Oehmke, R., Doyle, J., Whitcomb, T., et al., 2015. The earth system prediction
suite: toward a coordinated US modeling capability. Bull. Am. Meteorol. Soc.

http://dx.doi.org/10.1175/BAMS-D-14-00164.1.

Yu, Z., Pollard, D., Cheng, L., 2006. On continental-scale hydrologic simulations with
a coupled hydrologic model. J. Hydrol. 331, 110e124. http://dx.doi.org/10.1016/

j.jhydrol.2006.05.021.

P. Jiang et al. / Environmental Modelling & Software 92 (2017) 107e118118


	A service-oriented architecture for coupling web service models using the Basic Model Interface (BMI)
	Software availability
	1. Introduction
	2. Background
	3. Design
	3.1. Exposing BMI-enabled models through web service
	3.1.1. Web service design for BMI-enabled models
	3.1.2. Identification of a web service model instance
	3.1.3. Variable value transfer via the internet through netCDF files

	3.2. Service orchestration based on EMELI-Web
	3.2.1. EMELI-web design for integrating BMI-enabled web service models
	3.2.2. Creating a web interface for EMELI-Web


	4. Implementation
	4.1. Model description
	4.2. Integrating TopoFlow components as BMI-enabled web service models in EMELI-WEB

	5. Discussion
	6. Summary and conclusions
	Acknowledgements
	References


