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a b s t r a c t

Component-based modeling frameworks make it easier for users to access, configure, couple, run and

test numerical models. However, they do not typically provide tools for uncertainty quantification or

data-based model verification and calibration. To better address these important issues, modeling fra-

meworks should be integrated with existing, general-purpose toolkits for optimization, parameter es-

timation and uncertainty quantification.

This paper identifies and then examines the key issues that must be addressed in order to make a

component-based modeling framework interoperable with general-purpose packages for model analysis.

As a motivating example, one of these packages, DAKOTA, is applied to a representative but nontrivial

surface process problem of comparing two models for the longitudinal elevation profile of a river to

observational data. Results from a new mathematical analysis of the resulting nonlinear least squares

problem are given and then compared to results from several different optimization algorithms in DA-

KOTA.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many Earth science domains rely on numerical modeling to

gain a better understanding of Earth system processes. Modeling

addresses a wide variety of problems in the realms of climate,

weather, hydrology, land surface dynamics, geodynamics, geo-

physics, hydrogeophysics and structural geology, among others.

Earth system models are based on physical, chemical, biological

and stochastic processes that make it theoretically possible to

predict changes likely to occur at, below, or above a particular

location on Earth in response to various types of forcing. Data-

based model verification and validation – including more formal

data integration through model parameter estimation – and

quantification of ever-present uncertainty are critical in order to

develop reliable numerical models for observed Earth processes.

The Community Surface Dynamics Modeling System, or

CSDMS, is one example of a component-based modeling frame-

work (Peckham et al., 2013; Syvitski et al., 2014), employed in the

realm of Earth surface process dynamics, with capabilities cur-

rently being extended to deep Earth process modeling. Just as

CSDMS provides interoperability and coupling mechanisms for

process-based models, it could also provide simplified access to

model analysis programs. In this paper, we discuss extensions to

CSDMS that would be required for its component-based frame-

work to interoperate with uncertainty quantification and para-

meter estimation (inverse modeling) toolkits.

2. Background: models and modeling frameworks

2.1. What is a model?

There are many possible definitions of the word model. This

paper is concerned with computational models that predict the

evolution of one or more system state variables over time as a

function of observations at a given start time. These predictions

are made using a set of equations that express laws of physics and

other constraints on the problem of interest. Laws of physics are

often expressed as differential equations that include a time de-

rivative, and computational models use a discretization of space

and time and some combination of numerical methods to solve

these governing equations. Models generally require values for one

or more input variables, often used to describe the initial state of

the system and often specified as spatial scalar or vector fields.

These may be measured or estimated and are distinct from the

model's design parameters (also called control, model or

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

http://dx.doi.org/10.1016/j.cageo.2016.03.005

0098-3004/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.

E-mail address: Scott.Peckham@colorado.edu (S.D. Peckham).

Computers & Geosciences 90 (2016) 152–161



configuration parameters), that must be specified in the equations

that define the model itself. A model run generates numerical

values for output variables (i.e. simulated observations or predic-

tions) that can be compared to observations. A very simple ex-

ample is given by =y c xp, where x and y are input and output

variables, respectively, and c and p are design parameters.

2.2. What is a modeling framework?

Over the last decade, a number of different modeling frame-

works have emerged, both within academia and at several differ-

ent federal agencies. An example from the academic modeling

community is the NSF-funded CSDMS project (cited in the In-

troduction) which primarily serves the Earth surface process

modeling community. Other examples from the federal or opera-

tional modeling community include

� ESMF (Earth System Modeling Framework), which primarily

serves the atmosphere and ocean modeling community,
� OMS (Object Modeling System), developed by the USDA (US

Department of Agriculture) primarily for agricultural modeling

and
� FRAMES (Framework for Risk Analysis in Multimedia Environ-

mental Systems), developed by the US EPA (Environmental

Protection Agency), primarily for environmental modeling.

(Hill et al., 2004; David et al., 2002; Whelan et al., 1997). A project

called Earth System Bridge, funded as a building block in NSF's

EarthCube initiative, is developing adapters that make it easy for

any given model to be prepared as a plug-and-play component

that can be used in (or moved between) multiple modeling

frameworks, including those above.

The intent of all such modeling frameworks is to provide a

software environment in which users can choose models from a

collection and easily couple them to create customized, composite

models in a plug-and-play manner. This facilitates code re-use and

interoperability. The models in the collection may span a wide

variety of different physical processes and are often written by

many different authors, typically experts in their field. In many

cases, the input variables required by one model can be provided

by another model in the collection, so there is strong motivation to

couple them. However, the models typically differ in many ways,

such as their programming language, computational grid, time-

stepping scheme, variable names and units. In addition to pro-

viding a simple mechanism for coupling models, modeling fra-

meworks typically contain service components or mediators that

automatically reconcile differences between the models that

would otherwise prevent them from sharing variables. Examples

of mediators include spatial regridders, time interpolators, unit

converters and semantic mediators. These mediators and other

capabilities of the framework – such as the ability to write com-

posite model output to different file formats with standardized

metadata, or to provide a graphical user interface (GUI) and help

system – provide both model users and developers with sig-

nificant added value.

There is a strong interest in adding a new capability to mod-

eling frameworks, namely the ability to track and analyze un-

certainty either for a single (stand-alone) model or for a coupled

set of models. For example, this is one of the major goals of the

second funding cycle of the CSDMS project. Since several powerful,

integrated packages for uncertainty analysis already exist (Section

4), integrating one or more of them into a modeling framework

seems like the best way to achieve this goal. One such package,

called DAKOTA (Adams et al., 2013b, 2013a) is of particular interest

because it provides a unified interface to a large collection of open-

source packages for optimization and uncertainty quantification.

DAKOTA and similar packages offer an impressive suite of un-

certainty analysis tools, including tools for model sensitivity ana-

lysis (e.g. sampling methods to explore the design parameter

space) as well as inverse modeling (or parameter estimation).

However, the sensitivity analysis tools are easier to integrate

within a modeling framework because they do not usually require

capabilities beyond what a typical model (or composite model)

already provides. By contrast, inverse modeling requires con-

struction of a suitable objective function and computation of de-

rivatives and is also affected by how models are coupled. So al-

though we are interested in bringing all of the capabilities of

packages like DAKOTA into modeling frameworks like CSDMS, this

paper will focus on what a modeling framework must do to ac-

commodate inverse modeling. To set the stage, the next section

provides a very brief, self-contained overview of inverse modeling.

For a more extensive treatment, see Tarantola (2005), Caers (2011)

or Aster et al. (2013).

3. Background: inverse modeling methods

Forward modeling simply refers to running a computational

model for a given set of input variables and design parameters to

generate output variables. Inverse modeling refers to efforts to in-

vert this process, that is, to determine what a model's input vari-

ables and/or design parameters would need to be set to in order to

generate a given set of output variables. In most cases, this inverse

problem is ill-posed, meaning that there is not a unique set of input

variables and design parameters that can produce a given output,

but rather multiple sets. However, regularization methods can be

used to introduce additional criteria that discriminate between

and preferentially select from these multiple sets.

A forward model's performance can be quantified by defining a

metric that measures the “distance” between its output variables

(or predictions or simulated data) and independent measurements

(or observations). Differences between corresponding observed

and predicted values are known as residuals, and this metric –

known as the penalty, cost or objective function (Section 3.1) – is

typically a function of the residuals, input variables and design

parameters. Inverse modeling is concerned with how to make

forward models perform as well as possible (model calibration), or

with seeking the optimal input variables to predict observations to

within measurement error. They therefore make use of optimiza-

tion methods that seek to minimize an objective function, often

subject to additional constraints.

Earth system modelers range widely in their familiarity with

and adoption of inverse modeling methodology. For example,

groundwater modelers have a long history of using inverse mod-

els, while sediment transport modelers do not. Inclusion of these

methods in modeling frameworks should encourage broader use

of these methods.

3.1. Constructing an objective function

The objective function must be a metric that measures a forward

model's performance, or the abstract “distance” between observed

and model-predicted or simulated values. There are many differ-

ent metrics that can be used, such as those based on the one-

parameter family of Lp norms, given by

∑∥ − ∥ = −
( )

( ) ( )
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where y is a vector with components yk and >p 0 is a scalar. The

case where p¼2, or the L2 norm, is the basis of the popular least

squares metric. While this metric gives disproportionate weight to
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outliers, it ensures that the derivative of the objective function is

continuous where the error is zero.

While (1) provides a simple measure of model performance, it

is well known in statistics that model fit can be too good. In in-

version, we are therefore only interested in optimizing the ob-

jective function to within the data errors, and seek to avoid over-

fitting the data. To that effect, the general penalty function (1) is

usually modified to scale the residuals by a data covariance. For

examples, see Doherty and Welter (2010) and Foglia et al. (2013).

As mentioned previously, many inverse problems are ill-posed,

meaning that not one or several, but sometimes a subspace in the

model parameter space will satisfy the measured data to within

the measurement errors. In some domains, including hydrology

(Beven and Binley, 1992; Beven and Freer, 2001; Beven, 2006), this

problem is known as equifinality. We are thus typically interested

in obtaining not just any solutions, but the smoothest among those

that are satisfactory. We may also want the solution to be as close

to our a priori knowledge about the model (or design) parameters,

as possible, while still fitting the measured data. Many of these

objectives are obtained with a set of methods called regularization.

Details of these methods are provided by Tikhonov (1963), Parker

(1984), Hill and Tiedeman (2007) and Renard et al. (2011).

3.2. Optimization methods

Given an objective function, there are a variety of optimization

methods for finding either its minima or maxima, as required.

Most of these can be classified as local or global (the others are

hybrid). Local methods start somewhere in the design parameter

space and then search in that vicinity for a local extrema — the

“closest” one to the starting point, in some sense. Some local

methods are gradient-based and some are gradient-free. Global

methods seek global extrema, and therefore have some way of

looking (or sampling) everywhere, not just near a starting point.

A classic optimization test problem is to find the (single) global

minimum of the Rosenbrock function (Rosenbrock, 1960):

( ) = ( − ) + ( − ) ( )f p p a p b p p, . 21 2 1
2

2 1
2 2

The second, quartic term is a valley-shaped surface that achieves

its minimum value of zero along the parabola =p p2 1
2. Increasing

the value of b gives steeper valley walls and increases the difficulty

of this optimization problem (Lampton, 1997). The addition of the

first term results in a function, f, with a single global minimum at
the point ( ) = ( )p p a a, ,1 2

2 , where ( ) =f p p, 01 2 . Typically one sets
the constants to a¼1 and b¼100. Here, p1 and p2 are the model

design parameters that are varied to improve the design of the

model.

This problem provides a good test of an optimization algorithm

because the global minimum lies along the bottom of a narrow

valley with steep walls and a very flat bottom. While it is easy for

algorithms to find the valley, it is difficult to converge to the lo-

cation of the global minimum within this valley. The Rosenbrock

function, shown in Fig. 1, is used as an example in the DAKOTA

package and provides context for our example problem to be ex-

amined in (5).

3.2.1. Derivative-based optimization

Derivative-based optimization algorithms require computing

the gradient and/or Hessian of an objective function. The gradient

is the vector of first derivatives of the objective function with re-

spect to each of the continuous design parameters, while the Hes-

sian is a square matrix of the mixed second derivatives. A Jacobian

is a matrix of gradient vectors for multiple functions. If ( … )f x x, , n1

is the objective function of the design parameters, the gradient

and Hessian matrix are
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Derivative-based methods include Gradient Descent, Conjugate Gra-

dient, Sequential Quadratic Programming (SQP) Newton Methods and

Method of Feasible Directions (MFD) (DAKOTA includes multiple var-

iants of these and more). All derivative-based methods require re-

peated derivative evaluations at (typically) at least several dozens to

several hundreds of points in the model parameter space. They are

best suited to finding local minima near initial guesses.

Many models of physical processes are based on mathematical

functions that have continuous first and second derivatives with

respect to their parameters. In addition, many optimization pro-

blems can be formulated in terms of cost (or penalty) functions

that have continuous first and second derivatives. For these types

of models, it is often possible to find local extrema (stationary

points) of the function using standard methods of calculus, i.e. by

determining locations where derivatives are equal to zero. (See

Section 5.) A second derivative test can then be used to determine

whether a minimum or maximum occurs at that location. For

these analytic models, the derivative can be computed by symbolic

differentiation and model code can be written to return the re-

sulting functions evaluated at required points in the parameter

space. However, this situation is less common in practical

geoscience applications.

For the typical case where computational models do not pro-

vide analytic derivatives of their output variables with respect to

the design parameters, brute force numerical differentiation is ty-

pically required. To compute the derivative of the objective func-

tion by numerical differentiation, each of the model design para-

meters, xi, is, in turn, slightly perturbed around its local value. The

objective function is evaluated for the unperturbed and the per-

turbed parameter, and the difference is taken to estimate one

entry in the gradient vector. The number of forward model runs to

compute the gradient vector at a point with this method is thus

( + )N 1m , where Nm is the number of design parameters and be-

comes impractical for large parameter spaces.

The third type of differentiation is distinct from the first two

classical types and is usually called automatic differentiation. It

exploits the fact that every computer program, no matter how

Fig. 1. The Rosenbrock function, a classic test problem in optimization.
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complicated, performs calculations by combining elementary ar-

ithmetic operations (addition, subtraction, multiplication, division,

powers, etc.) with evaluations of elementary functions (exp, log,

sin, cos, etc.). By applying the chain rule to this sequence of op-

erations it is possible to automatically compute derivatives of ar-

bitrary order that are accurate to the machine's working precision

while using only several times more operations than the original

program. Many such tools have now reached maturity (e.g.,

OpenAD, Utke et al., 2014; see http://www.autodiff.org/ for a

comprehensive list). With automatic differentiation, the cost of

computing the gradient vector varies, but typically takes as much

time as several (e.g. 2–12) forward model runs, which could be a

great improvement over numerical differentiation for large model

parameter spaces.

Finally, the adjoint state method is available for computing the

gradients at the cost of 2 model runs, by making clever use of certain

symmetries in computational model formulations. Errico (1997)

provides an accessible introduction to this method. It requires writ-

ing an alternative adjoint model, which is similar to the forward

model and typically has very similar or identical physics, except for

certain sign conventions. However, various convergence complica-

tions may arise making the writing of the adjoint code a somewhat

nontrivial task. Once the adjoint code exists, it may be used for re-

peated, extremely efficient, and accurate derivative calculations.

3.2.2. Derivative-free optimization

Derivative-free methods do not require computing derivatives of

the objective function and can therefore be used for a larger class of

optimization problems where continuous derivatives may not exist

(including problems with discrete parameters). These methods can be

classified as either local or global. Local methods use a variety of dif-

ferent algorithms for searching the parameter space for optimal so-

lutions and for refining or focusing the search in the vicinity of good

solutions to find better solutions. Examples include Pattern Search

methods (e.g. Asynchronous Parallel Pattern Search, COLINY Pattern

Search and Mesh Adaptive Search), Simplex methods (e.g. Parallel

Direct Search, COBYLA and Nelder–Mead) and Greedy Search Heuristic

(e.g. Solis–Wets method). Global methods simultaneously search across

the entire parameter space. Examples include Division of RECTangles

(DIRECT) and Evolutionary Algorithms (EA), which are based on con-

cepts from Darwin's Theory of Evolution and concepts from genetics

(e.g. natural selection, reproduction, mutation, crossover, inheritance

and recombination). Implementations of these and other derivative-

free methods are also available and documented within the powerful

DAKOTA toolkit.

Population-based optimization is another important class of gra-

dient-free optimization methods. Examples include Genetic Algo-

rithms (e.g. from the larger class of Evolutionary Algorithms), Memetic

Algorithms (based on the concept of memes, which combine an evo-

lutionary or population-based algorithm with individual learning or

local improvement procedures), Swarm Algorithms (e.g. Ant Colony

Optimization, Particle Swarm Optimization, Intelligent Water Drops),

Harmony Search, Cuckoo Search and Differential Evolution.

4. General-purpose software packages for inverse modeling

and uncertainty quantification

There is a rich foundation in the area of inverse modeling and

uncertainty quantification that could potentially be incorporated

into a component-based modeling framework. Each of the soft-

ware packages listed here is easy to obtain (many are open-source)

and provide a rich collection of methods.

� DAKOTA, 2015 (Design Analysis Kit for Optimization and Ter-

ascale Applications) http://dakota.sandia.gov/software.html

� UCODE/Jupiter API, 2015 (Joint Universal Parameter IdenTifica-

tion and Evaluation of Reliability, Poeter et al., 2014) http://

igwmc.mines.edu/freeware/ucode/
� PSUADE, 2014 (Problem Solving environment for Uncertainty

Analysis and Design Exploration, PSUADE, 2014) http://computa

tion.llnl.gov/casc/uncertainty_quantification/
� PEST, 2015 (Model-Independent Parameter Estimation and Un-

certainty Analysis) http://www.pesthomepage.org/Home.php
� Ostrich, 2008 (Optimization Software Toolkit) http://www.civil.

uwaterloo.ca/lsmatott/Ostrich/OstrichMain.html
� TAO, 2014 (Toolkit for Advanced Optimization), with a focus on

gradient-based search methods http://www.mcs.anl.gov/re

search/projects/tao/
� QUESO, 2014 (Quantification of Uncertainty for Estimation, Si-

mulation and Optimization) https://red.ices.utexas.edu/pro

jects/software/wiki/QUESO
� STEPS, 2012 (Stochastic Engine for Pathway Simulation) http://

steps.sourceforge.net/STEPS/default.php

Fortunately, there is a fairly standard mechanism that inverse

modeling or uncertainty analysis applications use to interact with

process models, such as those in CSDMS, as illustrated in Fig. 2.

After the user selects and configures an analysis method, the ap-

plication generates the input data needed for that method, saves it

to the model's configuration file (using a blank template), and runs

the model repeatedly with different inputs. After each model run,

a post-processing script scrapes results from the model's output

files, which may include evaluation of a cost function or its deri-

vatives, and uses these results to perform the analysis. In a mod-

eling framework, the model to be analyzed may be a composition

of many separate but connected component models.

Many of these general-purpose toolkits are implemented as Py-

thon packages, or Cþþ/Fortran libraries, to streamline integration

with computational models; some others would be harder to in-

tegrate. Each has unique features. Python packages for uncertainty

quantification include uncertainty, soerp and mcerp. (See http://py

thonhosted.org/uncertainties/ for more information.)

5. Example problem: finding best fits to longitudinal elevation

profiles

We now illustrate a small part of what a toolkit such as DA-

KOTA has to offer, using a type of problem that will be familiar to

Fig. 2. Flowchart showing how an inverse modeling or uncertainty analysis ap-

plication such as DAKOTA or UCODE (represented by blue and white boxes) typi-

cally interacts with a process model, such as those in CSDMS (red boxes). Modified

from Banta et al. (2008). (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this paper.)
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many earth surface process modelers. This particular problem —

which at first glance appears to be quite simple — actually re-

presents a nontrivial optimization problem (similar to the Rosen-

brock problem in Section 3.2) that requires more sophisticated

optimization algorithms.

Peckham (2015) reviews three different physics-based deriva-

tions that predict a particular functional form for the longitudinal

elevation profiles of rivers (i.e. elevation as a function of distance

downstream from a drainage divide). These are concave-up func-

tions that are steep near the drainage divide or ridgetop, but

which rapidly flatten out with increasing distance downstream.

The functions contain parameters that relate to the physics of the

problem, but which are not easily measured. For this example, two

different models will be considered. The first, derived by Whipple

and Tucker (1999), can be written as

( ) = − ( )( − ) ≠ ( )z x z c p x x p/ , 0. 4p p
0 0

While this looks simple, the parameters p and c are actually

functions of eight other physical and geometric parameters. The

design or fitting parameters for this model are c and p, and

( ) =z x z0 0 for any values of c and p. Here, z0 is the elevation at a

distance x0 from the ridgetop, and we typically take =x 00 .

However, this model has an unrealistic and infinite slope at =x x0
when =x 00 . A second model, derived by Peckham (2015), predicts

that

( )( ) = + − + −
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Here, γ γ= ( + )
γ
p 1 / , and the design parameters are γ (an exponent

in a slope-discharge formula) and ⋆R (a rescaled, geomorphically

effective rainrate). This function includes S0, the measured, finite

slope at x0, and has | ′( ) | =z x S0 0. The theoretical value of γ typically

lies between �1 and 0. If we treat S0 as given by direct observa-

tion, then both models have two design parameters.

For this example, both models are compared to observational

data for the main channel of Beaver Creek, Kentucky, as measured

by RiverTools (Peckham, 2009) from a digital elevation model with

a grid-spacing of 10 m. This data set consists of 2426 ( )x z,k k pairs,

with =x 0.00 , =z 668.330 (m), and =S 0.4610 . A nonlinear, least-

squares cost function was constructed from the residuals using the

L2 norm; see (1) and Appendix A. While most optimization algo-

rithms can find the best-fit parameters for the second model, the

first model leads to a nontrivial optimization problem. For ex-

ample, we tried the well-known Levenberg–Marquardt (LM) al-

gorithm (Moré, 1977) — a robust and adaptive algorithm which

combines the benefits of the gradient descent and Gauss–Newton

methods, and which is able to solve the Rosenbrock problem. We

tried the implementation of the LM algorithm in IDL (Interactive

Data Language) called LMFIT, and the one in MatLab, provided as

an option for lsqnonlin. Both could get close but failed to converge

for this model, even after 5000 double-precision iterations with a

tolerance of 10�4, and even when starting near the best-fit values.

The LM algorithm is used by or available in many other curve-

fitting packages, including Microsoft Excel.

A new mathematical treatment of this nonlinear least squares

problem is given in Appendix A, for a class of models that includes

(4) as a special case. It allows the best-fit c and p to be computed

quickly and reliably and provides a way to evaluate the results

from the various algorithms. Tables 1 and 2 show the best-fit

parameters to the Beaver Creek data set for the two profile models

as computed by the method in Appendix A and by several opti-

mization algorithms in DAKOTA. The corresponding input files and

DAKOTA configuration files are available on GitHub (github.com/

mcflugen/peckham_et_al_2016). The NL2SOL routine uses a gen-

eralization of the Levenberg–Marquardt algorithm, but converges

for both models.

For the Whipple–Tucker model, the analytic gradient with re-

spect to p contains terms with ( )x xlnp , which approach 0 as x goes

to zero for >p 0. These initially caused problems until the analytic

gradient functions were modified accordingly. It was also found

that all methods were sensitive to the value of x0 — perturbing x0
from 0 to a small value such 0.01 resulted in significantly different

best-fit parameters. Fig. 3 shows the best fit of (4) to the Beaver

Creek profile data, obtained with the NL2SOL method in DAKOTA.

Fig. 4 shows the best fit of (5) to the same profile data, obtained

with the NL2SOL method in DAKOTA.

6. Sources of model error and how modeling frameworks can

help reduce them

In addition to helping quantify model uncertainty, modeling

frameworks can also be augmented to help reduce some, but not

all sources of model error. To see how, it is helpful to consider

various sources of error in some detail. Sources of error can be

classified into four main categories, namely (1) model inadequacy,

(2) input data inadequacy, (3) model parameter and input data

Table 1

Best-fit parameters for the Whipple–Tucker (1999) model to the Beaver Creek main

profile data.

Optimization method (DAKOTA or theory) p0 c0 R2

Method in Appendix A 0.133 14.68 0.90

NL2SOL (analytic gradients) 0.133 14.68 0.90

NL2SOL (numeric gradients) 0.133 14.68 0.90

OPTþþ Gauss–Newton (analytic gradients) 0.133 14.68 0.90

OPTþþ Gauss–Newton (numeric gradients) 0.133 14.68 0.90

Pattern search (no gradients) 0.133 14.68 0.90

Evolutionary algorithm (no gradients) 0.130 14.82 0.90

Table 2

Best-fit parameters for the Peckham (2015) model to the Beaver Creek main profile

data.

Optimization method (DAKOTA) γ ⋆R R2

LMFIT in IDL (analytic gradients) �0.701 0.0035 0.99

NL2SOL (analytic gradients) �0.701 0.0035 0.99

NL2SOL (numeric gradients) �0.702 0.0035 0.99

OPTþþ Gauss–Newton (analytic gradients) �0.701 0.0035 0.99

OPTþþ Gauss–Newton (numeric gradients) �0.702 0.0035 0.99

Pattern search (no gradients) �0.741 0.0041 0.99

Evolutionary algorithm (no gradients) �0.678 0.0031 0.99

Fig. 3. Best fit of Whipple–Tucker (1999) model to Beaver Creek main channel

profile, using NL2SOL algorithm in DAKOTA.
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uncertainty and (4) developer and user errors.

6.1. Model inadequacy

Models may be inadequate for their intended purpose for a

variety of reasons, such as

� lack of knowledge of the true, underlying physics. For example,

it was impossible to explain the observed precession of the

planet Mercury using classical (Newtonian) mechanics, but it

was finally explained in 1916 by Einstein's more complete the-

ory of general relativity (curvature of space-time near the Sun.)

This lack of knowledge was responsible for what has been called

an unknown unknown;
� neglected effects or simplifying assumptions (e.g. air

resistance);
� numerical method and approximation problems (convergence,

stability, consistency, fidelity, etc.);
� model coupling problems (e.g. feedbacks, conservation problems).

The main ways to reduce uncertainty due to model inadequacy

are (1) scientific research to better understand physical processes

and systems that are poorly understood, (2) careful selection of

numerical methods and (3) various forms of testing. As for testing,

there are five main things that models can be tested or evaluated

against, namely:

� analytic solutions and test problems;
� measured data (i.e. observed vs. predicted);
� valid range or reasonableness (e.g. sanity tests);
� other models (especially for complex models, e.g. climate

models);
� their former selves (e.g. regression and unit tests, often auto-

mated).

It is straightforward to build this type of testing into a modeling

framework, and CSDMS has already started to build a collection of

analytic solutions and test data sets for this purpose. In addition,

modeling frameworks result in models being used by large groups

of people, which leads to them becoming more reliable and robust,

particularly when their source code is open.

6.2. Input data inadequacy

Inadequate input data is another key source of model error.

Note that even if the mathematics and physics of a model were

perfect, perfect predictions would not be possible because input

data (e.g. initial conditions over the model domain) will always be

imperfectly known and incomplete. For example, for spatial

models, surrogates for actual measurements across the model

domain based on remotely sensed imagery are often the best

available data for initial conditions (e.g. soil moisture or rainfall

rates). Issues include

� poor spatial or temporal resolution;
� poor quality;
� storage or transfer errors (e.g. byte order, data type, truncated

files, formatting, etc.)

Themainways to reduce this type of uncertainty are (1) better data

collection methodologies and (2) careful data preparation and doc-

umentation (with provenance metadata). Modeling frameworks pro-

vide an ideal platform for guiding users through input data prepara-

tion steps, checking data for errors, displaying documentation and

managing metadata. As with models, data sets become more reliable

and robust when they are used by large groups of people.

6.3. Model parameter and input data uncertainties

This category includes model calibration problems, which arise

when the model design parameters are not set to their optimal (or

even reasonable) values. Measurement or observation error in

input data can also result in biased or incorrect simulated data or

model predictions (a phenomenon known as aleatoric uncertainty).

DAKOTA and similar toolkits can provide modeling frameworks

with powerful tools for assessing and quantifying this source of

uncertainty.

6.4. Developer and user errors

• incorrect implementation or developer error (e.g. bugs)

○ regressions (bugs due to updates or improvements);

○ bugs may be in software dependencies or in the model itself;

○ coordinate projection, sign convention, or units mismatch

(and failure to convert);

○ problems at domain boundaries;
• preparation of input data (model setup);
• incorrect or unintended use (e.g. unawareness of limitations).

Developer error can be reduced through a variety of best soft-

ware development practices, such as various types of testing (see

above), version control, use of design principles such as separation

of concerns, use of standards and frequent use. User errors can be

addressed in a variety of ways, including:

� documentation (e.g. tech tips, FAQs, manuals, tutorials, context

help);
� GUIs (that can restrict possible inputs based on context);
� software to check inputs, conditions, compatibility, etc.;
� training (and certification);
� supervision by an expert.

Most of these strategies would be straightforward to implement

within a modeling framework.

7. Towards including inverse modeling and uncertainty

quantification in a component-based modeling framework

Inclusion of uncertainly quantification, parameter estimation and

inversion tools in a modeling framework inevitably requires a certain

Fig. 4. Best fit of Peckham (2015) model to Beaver Creek main channel profile,

using NL2SOL algorithm in DAKOTA.
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compromise on efficiency, but has the potential to democratize these

techniques, providing Earth system modelers with fingertip access to

model validation approaches, without the typically steep learning

curve and software development requirements. Here however, we

aim to show that in a smart framework, this efficiency compromise

may not be a significant drawback. For this, we consider several

common use case scenarios, illustrated in (5).

7.1. Stand-alone models

In a modeling framework with access to “uncertainty tools”, a

stand-alone computational model could immediately make use of

external parameter estimation tools based on derivative-free op-

timization (Section 3.3.2). Derivative-based optimization methods

(Section 3.3.1) could also be directly employed, using numerical

differentiation to iteratively compute derivatives of the penalty

Fig. 5. Model coupling configurations in a component-based framework.
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function. However, both types of methods are only applicable for

models that have relatively few significant input model para-

meters that are free to vary. For models with a large model para-

meter space, adjoint techniques must be employed to compute

penalty function derivatives for derivative-based optimization (see

more details on the adjoints in Section 3.3.1), and to compute the

data sensitivities (or the full Jacobian) needed by the uncertainly

quantification techniques. These adjoint codes are most efficient if

hand-coded, and the model developer could provide an adjoint for

the system to use, if such a tool already exists. Users would then

immediately enjoy the full variety of techniques available in the

framework, while sacrificing little on the efficiency. For models

that do not have an adjoint, the use of automatic differentiation

could be considered. (It should be noted that an adjoint version of

every generic interpolation routine supported by the framework

would also need to be provided to enable this functionality.) Thus,

the methods described here could be beneficial to modelers who

are interested in using and/or testing out a variety of inversion

techniques with minimal additional development investment.

However, the true value of the framework-based approach to in-

version becomes evident when inversion and/or parameter esti-

mation for coupled models is considered. We now discuss two

distinct use cases.

7.2. Models coupled in series

This happens when the output of a numerical model A provides

input to a different numerical model B. The output of model B may

then be directly compared with measured data. The user may be

interested in calibrating the input parameters of model A to better

match observations. For example, a lithospheric deformation code

could be coupled to a landscape evolution code, which could in

turn be validated by surface topography.

In this scenario, the model coupling framework will essentially

bundle the sequence of models into one for the purposes of an

external model calibration or inversion tool. For derivative-based

optimization techniques, the derivative of the penalty function

with respect to the input parameters to the model sequence would

be obtained by chain rule, specifically applying the adjoint of

model B to the data residuals, and the adjoint of model A to the

results of the adjoint on model B to obtain the complete derivative

of the penalty function. For simpler models, brute-force derivative

multiplication would be performed. All of these options would be

handled at the framework level, making it possible to streamline

complicated model validation and calibration scenarios.

7.3. Models coupled in parallel

A very different model coupling setup occurs when a single set

of parameters is input to more than one computational model. In

this case, models A and B have the same inputs, but they predict

different variables, and are validated by different data. The goal is

then to use all data jointly to obtain the best matching set of input

parameters. Such is, for example, the problem of joint inversion in

geophysics: parameters such as temperature, pressure, presence of

melt, chemical impurities, and water content are the true para-

meters of interest. These may be used to compute the indirectly

observed Earth parameters, such as seismic velocities or electrical

conductivity, which are in turn used to compute the predicted

observables at the Earth's surface. A joint inversion would use both

seismic and electromagnetic measurements to constrain the

Earth's structure. In general, this problem involves both series and

parallel model coupling.

In the parallel model coupling scenario, the adjoint would be

obtained by applying the two model adjoints, separately, to their

respective data residuals, and the resultant variations in the input

model parameters would be summed up to obtain the complete

penalty function derivative. Again, this would be handled at the

framework level, allowing the complicated model coupling sce-

nario to be wrapped up for direct use in an external inversion

routine.

7.4. New modeling framework functionality

Brute-force penalty function derivative computations for cou-

pled models require computing, storing and multiplying the Ja-

cobian matrices. This becomes prohibitive for models that are

nonlinear, with more than a few design parameters, and/or long

run times. If Nd is the dimension of the output vector field or the

number of data points, and Nm is the number of model design

parameters for one model, its Jacobian has ×N Nd m entries and

requires at least ( + + )N Nmin 1, 1d m model runs if the adjoint is

available, and ( + )N 1m model runs otherwise. The matrix would

need to be computed for each model in the coupling sequence, and

for nonlinear models these computations need to be performed

repeatedly while the optimization algorithm iteratively converges

to a solution.

Fortunately, as discussed in Section 3.3.1, a derivative of the

penalty function may be obtained in +N 1m coupled model runs by

numerical differentiation, and in as few as 2 coupled model runs

by an adjoint method. The latter entails a call to apply the adjoint

code to the weighted data residuals, which in essence implements

multiplication by transposed Jacobian to obtain a perturbation of

the model design parameters, without a direct computation or

storage of the Jacobian matrix. These methods come at no addi-

tional storage cost except for that of the intermediate solutions,

needed to evaluate the total penalty function derivative, and

therefore make arbitrarily complex coupling problems potentially

tractable.

To summarize, several new capabilities must be added to a

model framework in order to support user-friendly inverse mod-

eling. Specifically, it must be able to: (1) store and perform ar-

ithmetic operations with the parameters and data for each model,

(2) interpolate in space and time to provide predictions at ob-

servation locations, (3) read data in various formats and compute

data residuals, (4) provide a range of penalty functions to work

with, (5) numerically compute the derivative of the penalty

function, or run the adjoint if provided, and (6) make use of nu-

merical efficiencies to compute and manipulate Jacobian matrices

and higher order derivatives.

8. Summary and recommendations

Computational models are a powerful means of understanding

the Earth system, making predictions and guiding decisions. Too

often, however, models are used without any analysis of their

uncertainty. The integration of toolkits such as DAKOTA into

component-based modeling frameworks will help to resolve this

by drawing attention to the problem and providing easy access to

powerful methods, thereby making it much easier for users to

quantify, assess and understand the uncertainty in models. Back-

ground information on modeling frameworks and inverse mod-

eling were provided in Sections 2 and 3 and a list of major soft-

ware toolkits for uncertainty quantification and inverse modeling

was given in Section 4. Since most of these toolkits use the same

approach to interacting with models, it appears feasible for a

modeling framework to provide access to more than one such

package. Section 5 used an example surface process problem to

illustrate some of the issues that are encountered in real applica-

tions and to give a taste of what toolkits like DAKOTA have to offer

modelers. In Section 6 it was argued that the primary sources of
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error in computational models can be usefully organized into four

groups — model inadequacy, input data inadequacy, model para-

meter and input data uncertainty and developer and user errors —

and that modeling frameworks could address many of them. Fi-

nally, several technical issues regarding the inclusion of inverse

modeling in a model coupling framework were discussed in Sec-

tion 7.

Key design criteria for including inverse modeling in a com-

ponent-based modeling framework are (1) minimal changes to

models, (2) minimal loss of performance and (3) minimal effort for

developers and users. Optimization methods that are derivative-

free or that work well with numerical derivatives will be easiest to

provide, but will still require tools for defining cost functions and

the ability to ingest observational data in different formats.

Methods that use analytic or automatic differentiation, as well as

adjoint methods, will require service components to be added to

the modeling framework that compute, store and manipulate Ja-

cobians and Hessians. Separate methods will be required for

models coupled in series or in parallel and changes to component

model interfaces, such as the CSDMS Basic Model Interface (BMI),

may also be required.
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Appendix A. Best-fit parameters for a class of profile models

Peckham (2015) reviews several physics-based derivations that

predict functional forms for the longitudinal elevation profiles of

rivers (i.e. elevation as a function of distance downstream from a

drainage divide). Several of these profiles can be expressed in the

form

( ) = − ( ) ( )z x z c H p x x, , , 60 0

where ( ) =H p x x, , 00 0 . The results of this section apply to an

otherwise arbitrary function, H. The Whipple–Tucker profile is in a

special subclass where ( ) = ( ) − ( )H p x x f p x f p x, , , ,0 0 , with
( ) = ( )f p x p x, 1/ p. Note that ≥x x0 and the profile is pinned at the

upper end to measured values since ( ) =z x z0 0. Since real elevation

profiles are decreasing, upward-concave functions of downstream

distance, x, we require z(x) to have these features. This can occur

with >c 0 and ( )H p x x, , 0 an increasing function of x, or with <c 0

and ( )H p x x, , 0 a decreasing function of x. It is also desirable for the

slope at x0, = | ′( )|S z x0 0 , to be finite, and for some models this only

occurs if >x 00 .

For elevation profiles predicted by theory, the design para-

meters c and p are functions of both physical-process and em-

pirical parameters, such as those that model a steady-state fluvial

landscape where rainfall-induced erosion is exactly balanced by a

steady and spatially uniform tectonic uplift rate. Theory may

constrain the signs of c and p.

A nonlinear least squares fit of the model (6) to a measured

profile of elevations, ( )x z,k k , ∈ { … }k n0, , seeks a parameter pair

( )c p,0 0 that minimizes the following cost function:

( )∑ ∑( ) = − ( ) = − + ( )
( )= =

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦E c p z z x z z c H p x x, , ,
7k

n

k k

k

n

k k

1

2

1

0 0
2

Fig. 6 shows a contour plot for this cost function over the (c,p) plane

for a particular set of measured elevation profile values, ( )x z,k k and

the special subclass mentioned above with ( ) = ( )f p x p x, 1/ p. Note

that the global minimum lies in a broad, flat valley, very similar to

what happens for the well-known Rosenbrock function (see Fig. 1).

This similarity appears to explain why many curve-fitting algorithms

struggle or fail to converge to the minimum, at least when

( ) = ( )f p x p x, 1/ p. As with the Rosenbrock function, it is easy for

optimization algorithms to find the valley but remains difficult for

them to find the global minimum.

The nature of this broad, flat valley can be understood geo-

metrically. First, notice that for n¼1, ( )E c p, plots as a valley in the

(c,p) plane that attains its minimum value (zero in this case) along
the entire curve given by = ( − ) ( − )c p z z x x1 / p p

0 1 0 . This curve di-
verges at p¼0 and rapidly decreases with increasing p. The posi-

tion of the valley depends on ( )x z,0 0 and ( )x z,1 1 , but there is no

global minimum. The cost function (7) may be viewed as a sum of

such valley surfaces, all offset somewhat from one another, which

results in a surface with a global minimum that lies in a broad

valley.

If the cost function (7) has a minimum, it must occur where all

components of its gradient vector (i.e. the partial derivatives with

respect to c and p) are equal to zero. Computing the derivative of

(7) with respect to c, setting it to zero and solving for c, gives

( )
( )

( ) =
∑ − ( )

∑ ( )

=

=

c p
z z H p x x

H p x x

, ,

, ,
.

8

k

n
k k

k

n
k

1
1 0 0

1
2

0

This is a curve in the (c,p) plane along which ∂ ∂ =E c/ 0. Computing

the derivative of (7) with respect to p, setting it to zero and again

solving for c, gives

( )
( )

( ) =
∑ − ∂ ( ) ∂

∑ ∂ ( ) ∂ ( )

=

=

c p
z z H p x x p

H p x x H p x x p

, , /

, , , , /
.

9

k

n
k k

k

n
k k

2
1 0 0

1 0 0

This is a curve in the (c,p) plane along which ∂ ∂ =E p/ 0. As shown

in Fig. 7, the curves ( )c p1 and ( )c p2 are very close to one another,

and close to the bottom of the valley, but they cross at a single

point which gives the best-fit (c,p) pair. Since the best-fit pair lies

on the curve ( )c p1 , we can insert = ( )c c p1 into the cost function (7)

Fig. 6. Contour plot for a typical cost function when ( ) = ( )f x p p x, 1/ p, with extreme

vertical exaggeration to show global minimum. For this example, =c 250 and

=p 0.1660 .
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to get a new cost function that depends only on p, namely

( ) = ( ( ) )E p E c p p,1 . After simplification, we find that

( )
∑( ) = ( − ) −

∑ − ( )

∑ ( ) ( )=

=

=

⎡
⎣

⎤
⎦

E p z z
z z H p x x

H p x x

, ,

, ,
.

10k

n

k
k

n
k k

k

n
k1

0
2 1 0 0

2

1
2

0

Notice the power of 2 in the numerator of the last term, not pre-

sent in (8). For both ( ) = ( )f p x p x, 1/ p and ( ) =f p x x, p, this sim-

plifies further to

( )( )
( )

∑( ) = ( − ) −
∑ − −

∑ − ( )=

=

=

⎡
⎣

⎤
⎦

E p z z
z z x x

x x
.

11k

n

k
k

n
k k

p p

k

n

k
p p

1

0
2 1 0 0

2

1 0

2

The best-fit p-value, p0, minimizes E(p) for a given set of measured

values ( )x z,k k . We can therefore find p0 by computing the deri-

vative of (11) with respect to p, setting the result to zero and

solving for p. While there is not a closed form expression for p0, a

numerical root finder can be used. Another simple approach is to

evaluate (11) at 1000 equally-spaced p-values in the interval [ ]0, 1

and then find the =p p0 for which E(p) is smallest. This rapidly
yields the best-fit value, p0, to three significant digits. Once p0 has

been found, c0 can be computed as = ( )c c p0 1 0 .
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