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Abstract— The work presented in this paper is part of an
overall effort to design a secure autopilot, resilient against
malicious attacks on both the cyber and physical layers, for a
small unmanned aircraft system (UAS). This paper specifically
deals with identification of malicious attacks on the sensors of
a small UAS. A framework is presented wherein techniques
from statistical analysis are used in a probabilistic setting to
detect sensor attacks. The paper describes in detail the design
of anomaly detectors and the Bayesian network. A case study
involving detection of a spoofing attack on the GPS is used
throughout the paper to illustrate the proposed approach. The
anomaly detectors are designed based on a simulation dataset,
and are re-tuned based on flight tests conducted on a small
fixed-wing UAS platform. The performances of the detectors are
studied under different external disturbances and conclusions
are drawn.

I. INTRODUCTION

Unmanned aircraft systems (UAS) are increasingly be-

coming ubiquitous in both civilian and defense applications.

Now that plans for the integration of UAS into the national

airspace are underway [1], it is becoming more and more

obvious that one of the critical barriers to this integration

is ensuring the safety and security of these systems. The

security concerns are even more acute in civilian applica-

tions, where transmissions are unencrypted and the UAS

architecture is widely known [2]. There is a transition in the

nature of security threats to UAS from passive confidentiality

breaches, such as eavesdropping, to active integrity breaches,

such as jamming and spoofing. The attackers are becoming

increasingly smart and employ sophisticated mechanisms to

compromise the UAS stealthily. In such a scenario, it is

essential to develop an autopilot system capable of actively

detecting and mitigating malicious cyber-physical attacks.

UAS are highly coupled nonlinear systems with an op-

erational environment characterized by uncertainties and

disturbances like sensor noise, wind gusts, and atmospheric

turbulence. The control design process for a UAS begins

with developing a mathematical model of the physical sys-

tem using techniques from system identification [3]. The

mathematical model is only an approximation of the physical

system as many assumptions and simplifications are typically

made to obtain a tractable model. The resulting nonlinear

model is further simplified, for instance, by linearization, to
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obtain a plant model that is amenable to control design. The

modeling inaccuracies and neglected nonlinearities, along

with atmospheric disturbances and sensor noise, provide a

hotbed for attackers to masquerade their attacks. Figure 1

shows the modeling inaccuracies and disturbances in a typ-

ical UAS that can be exploited by an adversary. One of the

main challenges in detecting malicious attacks on UAS is to

be able to distinguish between the response of the UAS to

usual disturbances and the response due to malicious attacks.

Cyber-security has been an active research area over the

last two decades as evident from the numerous papers and

review articles published in this area [4]–[6]. Research on

the security of cyber-physical systems (CPS) is fairly recent,

however, and the publications in this area stem from diverse

application domains. The existing research on CPS security

can be categorized in many ways, for instance, based on the

field of application, type of threats addressed, approach used

(theoretical versus heuristic), etc. One such classification is to

categorize the works into ones which address the problem of

external intrusion detection using algorithmic methods [7]–

[20] and works which use hardware-enhanced security meth-

ods to identify and mitigate internal security threats [21]–

[24]. The works which address the problem of cyber-physical

security for UAS predominantly fall under the category of

algorithmic methods, and specifically behavior-specification-

based methods, wherein normal system behavior is formally

Fig. 1: Modeling inaccuracies and disturbances in a typical

UAS that can be exploited by an attacker.
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Fig. 2: Diagram showing different layers in a typical unmanned aircraft system.

defined using temporal logic or finite state machines and

deviations from the normal behavior are identified as intru-

sions. In [12], normal system operation is defined in terms

of behavioral rules, which specify a certain number of states,

some safe and others unsafe, and the behavior specification

is translated into a state machine. The authors in [15] define

normal system behavior using linear and metric temporal

logic formulas in a Bayesian network framework.
Most of the existing literature on cyber-physical security

for UAS do not explicitly consider the UAS model and

the resultant uncertainties, thereby increasing the probability

of triggering false alarms. In this paper, we propose a

framework for identification of cyber-physical attacks on the

sensors of a small UAS (sUAS). By incorporating knowledge

about the physical system and using a probabilistic frame-

work, the proposed approach minimizes the false alarm rates

by concentrating on the response of the UAS to attacks and

not on the attack mechanism itself.
Throughout this paper, we consider a case study that con-

cerns detection of a spoofing attack on the GPS to illustrate

the proposed methods. The outline of the paper is as follows.

In section II, the proposed framework is presented. Section

III describes the design of different anomaly detectors and

compares their performances in terms of the false alarm rate

and detection latency. Section IV describes the flight tests,

where spoofing attacks on the GPS are simulated, and the re-

tuning of the anomaly detectors based on the data gathered

from the flight tests. In Section V, the Bayesian network for

attack detection is described and some operational scenarios

are simulated using a Bayesian inference tool called Hugin-

Lite. Finally, in Section VI, conclusions and some topics of

future work are discussed.

II. FRAMEWORK FOR DETECTION OF SENSOR

ATTACKS

The security threats encountered by a UAS may target one

or more of the following three layers [25]: physical layer
consisting of the sensors, actuators, ground control station,

and communication hardware, computer layer consisting of

the controller software, firmware, guidance and navigation

algorithms, and communication layer consisting of the radio-

frequency links to the ground control station and inter-UAS

communication in the case of multiple UAS; see Figure 2. In

this paper, the problem of detecting cyber-physical attacks on

the physical layer and especially on the sensors is addressed.

This work is part of an overall effort to design a secure

autopilot, resilient against malicious attacks on all the three

layers. The framework consists of a layered approach, where

attack indicators at each layer are identified and then used

as evidences in a Bayesian network to detect an attack.

We assume that only a subset of the sensors is compro-

mised, and our approach aims to identify these compromised

sensors. Specifically, the sensors in a typical UAS can be

classified as safe sensors or vulnerable sensors. Safe sensors

are sensors that are intrinsic to the UAS, in the sense that,

they do not interact with an outside system. Such sensors

are highly unlikely to be compromised by an attacker and

some examples include the inertial measurement unit (IMU)

(assuming it is reasonably protected against electromagnetic

interference), airdata probe, airspeed sensor, and pressure

altimeter. Vulnerable sensors, on the other hand, are sensors

that rely on an external agent for sensing and are highly

susceptible to adversarial attacks. Examples of such sensors

include GPS, RADAR, LIDAR, and vision-based sensors.

The communication links used for sending/receiving data in a

UAS network, which are susceptible to attacks such as false-

data injection and jamming, are categorized as vulnerable

sensors. In this work, it is assumed that only the vulnerable

sensors can be compromised. Although it is assumed that the

safe sensors cannot be compromised, they can provide faulty

measurements under atypical operational conditions, such as

severe atmospheric disturbances or transient sensor faults.

The attack detection approach consists of the following

two types of anomaly detection methods:

1) Anomaly detection using attack signatures, which are

based on measurements from the safe sensors, and

2) Anomaly detection based on residuals, which are com-

puted by a residual generator from the outputs of a state

estimator.
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Fig. 3: Effect of wind orientation on (ψ−ψref+β).

A. Anomaly Detection Based on Attack Signatures

Attack signatures, which encode information about a pos-

sible attack on the physical layer of the UAS, are identi-

fied based on the knowledge of the physical system. It is

important to note that the attack signatures are based only

on data from safe sensors. Attack signatures correspond to

abnormal behavior in the time evolution of certain measure-

ments or combinations of measurements during an attack on

the physical layer. The foremost requirement of an attack

signature is that it should be sensitive to malicious attacks

on the UAS while being hardly sensitive to changes in wind

disturbances and measurement noise. Based on simulation

studies performed using an sUAS model, it is observed

that for threats such as spoofing attack on GPS and replay

attack, the terms (ψ−ψref+β) and (θ−θref−α) satisfy the

requirements for an attack signature. The symbols ψ, θ, α,

and β denote the yaw angle, pitch angle, angle of attack, and

angle of sideslip, respectively. ψref and θref are the yaw

reference angle and pitch reference angle, respectively; they

are provided by the motion planner or computed from the

reference path generated by the motion planner. For instance,

ψref is the angle between the local tangent to the reference

path at the current position and the North axis of the NED

frame. (ψ−ψref+β) can be thought of as the deviation of

the velocity vector projected onto the local horizontal frame

from the local tangent to the reference path.

The effectiveness of (ψ−ψref+β) as an attack signature

is shown in Figures 3 and 4. Figure 3 shows the variation of

(ψ−ψref+β) for different orientations of the wind vector,

θw, during closed-loop simulations performed using a Senior

Telemaster UAS model [26]. A path-following controller

composed of an inner-loop Proportional-Integral-Derivative

controller and an outer-loop nonlinear guidance logic for

way-point following is used in the simulations. During the

simulations, the UAS is tasked to follow a straight line path

in the presence of 4 m/s steady wind, medium level Dryden

(a) Constant attack

(b) Scaling attack

Fig. 4: Variation of (ψ−ψref+β) during a spoofing attack

on GPS.

turbulence [27], and measurement noise. It is observed from

the figure that (ψ−ψref+β) is hardly sensitive to changes

in the wind disturbance. Figure 4 shows the variation of

(ψ−ψref+β) during two different types of spoofing attack

on the GPS latitude measurement, called the constant attack

and the scaling attack. Both attacks introduce a bias into

the GPS latitude measurement. The constant attack adds

a constant bias, whereas, in the scaling attack, the added

bias increases linearly with time. It is observed from Figure

4 that in the absence of any attack, (ψ−ψref+β) varies

within ±5 degrees mainly due to the effects of atmospheric

turbulence and sensor noise, but in the presence of the attack,

(ψ−ψref+β) increases in magnitude significantly, thereby

serving as an indicator to detect attacks that are hidden under

the guise of disturbances.

B. Anomaly Detection Based on Residuals

The second type of anomaly detection method uses resid-

uals, which are computed from the measurements of the

vulnerable sensors and the output of a state estimator. Each

vulnerable sensor is associated with a state estimator, which

provides estimates of the true uncompromised measurements

made by the vulnerable sensor. The state estimator uses mea-
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Fig. 5: Detection of spoofing attacks on the GPS using the

attack detection framework.

surements from the safe sensors and the vulnerable sensor

in computing the estimates. The output of the state estimator

and the measurements from the vulnerable sensor are used in

a residual generator to compute the residuals. The residuals

from the residual generator are then used by the anomaly

detector to detect a sensor attack. In the present framework,

an Extended Kalman Filter (EKF) is used as the state

estimator. In order to study the comparative performance,

different types of anomaly detectors and residual generators

are considered, and their performances are compared in terms

of the detection latency and the false alarm rate. Three types

of anomaly detectors are considered, two of them are based

on statistical parametric methods such as the cumulative sum

(CUSUM) and sequential probability ratio test (SPRT), and

the third anomaly detector uses a non-parametric method

based on binary hypothesis testing.

To keep the illustration of the anomaly detection method

simple, we consider a case study where the vulnerable sensor

is the GPS, and the safe sensors are the IMU and the pressure

altimeter. Figure 5 shows the detection framework for the

case study considered. The EKF estimates the UAS position

and body-axis velocities using the accelerations ax, ay , and

az , the body-axis angular rates p, q, and r, and the attitude

angles φ, θ, and ψ. The dynamic system considered is

assumed to have zero-mean, uncorrelated, Gaussian process

and measurement noise, and is given in state-space form as

ẋ(t) = f(x(t), u(t)) + w(t),

y(t) = h(x(t), u(t)), (1)

z(tk) = y(tk) + v(tk),

where x(t) is the state vector, y(t) is the measurement output

in continuous-time, and z(tk) is the discrete-time measure-

ment output at time t = tk. The process noise and the

measurement noise are given by w(t) and v(tk), respectively.

The state vector is composed of the UAS positions in the

NED frame xN , xE , and xD, the UAS body-axis velocities

ub, vb, and wb, the accelerometer biases bax , bay , and baz ,

and the gyro biases bp, bq , and br. The measurement vector

consists of the UAS position xN , xE , and altitude H , where

H = −xD is obtained from the pressure altimeter. The state

equations are given by

u̇b = (ax − bax
)− (q − bq)wb + (r − br)vb − gsθ,

v̇b = (ay − bay
)− (r − br)ub + (p− bp)wb − gcθsφ,

ẇb = (az − baz
)− (p− bp)vb + (q − bq)ub − gcθcφ,

ẋN = ubcθcψ + vb(sφsθcψ − cφsψ)

+ wb(cφsθcψ + sφsψ), (2)

ẋE = ubcθsψ + vb(sφsθsψ + cφcψ)

+ wb(cφsθsψ − sφcψ),

ẋD = −ubsθ + vbcθsφ+ wbcθcφ,

ḃax
= 0, ḃay

= 0, ḃaz
= 0,

ḃp = 0, ḃq = 0, ḃr = 0,

where the sin and cos terms are abbreviated as s and c, re-

spectively. The input vector is composed of the accelerometer

outputs ax, ay , and az , the body-axis angular rates p, q, and

r, and the Euler angles φ, θ, and ψ. The theory on EKF is

widely discussed in the literature and is available in [28], [29]

among others, and due to paucity of space is not discussed

here. The measurement update occurs every 0.1 seconds. The

input noise covariance matrix, Q, and the measurement noise

covariance matrix, R, are chosen as

Q = diag(2I3, 1×10−3, 1×10−3, 5×10−4, 2×10−3I3),

and R = diag(2, 2, 0.5), where diag denotes a diagonal

matrix and I3 is the identity matrix of size 3× 3. The initial

guess for the process noise covariance matrix is chosen as

P (0) = diag(0.5I3, 2, 2, 0.5, 2I3, 1I3).

The UAS position estimated by the EKF and the measure-

ment from the GPS are used to compute the residual in the

residual generator. Let ε(tk) = z(tk)− ŷ(tk) denote the dif-

ference between the GPS measurement and the EKF estimate

at time tk. Two types of residual generators are considered in

this work, the first residual generator is based on the 1-norm

of ε(tk), and the second residual generator is based on the χ2

statistic of ε(tk). Let S(tk) = R+C(tk)
TP (tk)C(tk), where

R is the measurement noise covariance matrix, and P (tk)
and C(tk) are the prediction error covariance matrix and the

observation matrix at time tk, respectively. It is noted that

P (tk) and C(tk) are obtained from the EKF. Given S(tk),
the χ2-residual is given by s(tk) = ε(tk)

TS(tk)
−1ε(tk).

In the absence of any attack, s has a χ2-distribution. The

change in the distribution of s during an attack is used in

the anomaly detector to detect the attack. The design of the

different anomaly detectors and their comparative detection

performance are discussed in the next section.

III. DESIGN AND ANALYSIS OF ANOMALY

DETECTORS

As mentioned earlier, three different types of anomaly de-

tectors are considered, namely the sequential probability ratio

test (SPRT) detector, cumulative sum (CUSUM) detector and

the binary hypothesis testing (BHT) detector.
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A. SPRT Anomaly Detector

In the SPRT anomaly detector, the test statistic g(tk) is

computed and checked against a threshold h at every time

instant [30]. If g(tk) exceeds the threshold, then the alarm

is set. The algorithm used in the SPRT anomaly detector is

given below:

g(tk) = g(tk−1) + s(tk)− ν,

g(tk) = 0 if g(tk) < a,

ALARM =

⎧⎨
⎩1 if g(tk) > h,

0 otherwise,

where s(tk) is the output of the residual generator. The

parameters of the detector are the drift term ν, the reset

value a, and the threshold h. The drift term prevents positive

drifts due to noise in the sensor measurements, which could

result in a false alarm. The reset value resets the test statistic

to zero to prevent a negative drift which could increase

the detection latency. The design of the detector involves

choosing the three parameters such that the false alarm rate

and the detection latency are minimum. The design procedure

is detailed in the forthcoming paragraphs.

B. CUSUM Anomaly Detector

The algorithm used in the CUSUM anomaly detector is

similar to that used in the SPRT detector. In fact, the CUSUM

detector is a special case of the SPRT detector, where the

reset value a is zero. The reset value, ideally, should be as

small as possible in magnitude, as a higher value for a would

result in an increase in detection time. A value of zero for a
is the minimum possible. The CUSUM detector, therefore,

has only two parameters: the drift term ν and the threshold h.

The design parameters of the SPRT and CUSUM detectors

are obtained by solving an optimization problem, where the

sum of the false positive and false negative rates is minimized

based on a simulation dataset. The simulation dataset is

generated from a number of nonlinear six-degree-of freedom

simulations, where spoofing attacks on the GPS latitude and

longitude measurements are simulated. The simulations are

performed using a mathematical model of a small fixed-wing

UAS platform derived based on flight test data [31]. During

the simulations, the UAS is tasked to follow a reference path,

which is enabled by a path-following controller designed

based on the controller structure available in the open-source

Ardupilot software [32]. The following factors are varied

during the simulations:

1) Reference path - Two types of reference path, namely a

straight line path and a circular path of radius 110.5m,

are considered.

2) Type of attack - Two types of GPS spoofing attack,

namely the constant attack and the scaling attack, are

simulated. In a constant attack, a constant bias is added

to the GPS latitude and longitude measurements at

every time instant. Whereas, in a scaling attack, a time-

varying bias that scales linearly with time is added to

the GPS latitude and longitude measurements.

Fig. 6: Representative simulations of a constant attack of

magnitude 15 m and a scaling attack of magnitude 1.25 m/s

on the xE position measurement.

3) Magnitude of attack - Four different attack magni-

tudes are considered for each of the two types of

GPS attack. The attack magnitudes considered for the

constant attack are 3m, 5m, 10m and 15m, and

the attack magnitudes for the scaling type of attack

are 0.3125m/s, 0.625m/s, 1.25m/s, and 2.5m/s.
It is noted that the attack is injected after the GPS

measurements are converted to position measurements

in the NED frame.

4) Wind disturbance - A steady wind of magnitude 4m/s
is considered during the simulations, and the direction

of wind is varied from 0◦ to 360◦ in steps of 10◦ or

45◦. It is noted that the direction of wind is changed

only for the simulations where the reference path is a

straight line.

5) Direction of attack - In addition to varying the mag-

nitude of attack, the direction of attack is also varied

from 0◦ to 360◦ in steps of 10◦ or 45◦. For instance,

when the direction of attack is 0◦, only the xN po-

sition measurement is modified during the attack, and

for an attack direction of 90◦, only the xE position

measurement is modified.

The above cases result in a simulation dataset composed of

3264 different simulation cases with 2720 hours of simula-

tion time. Two representative simulation cases for a straight

line reference path are shown in Figure 6. The simulation

dataset is used to choose the optimal parameter values for

the SPRT and the CUSUM detectors. The resulting parameter

values for the SPRT detector are ν = 0.578, h = 3.146, and

a = −3.373. The parameter values for the CUSUM detector

are ν = 0.570 and h = 3.663.

C. Binary Hypothesis Testing (BHT) Anomaly Detector

The third type of anomaly detector is based on binary

hypothesis testing. The BHT detector relies on the premise

that in the absence of attacks and during normal system

operation in the presence of uncertainties and disturbances,
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the residuals, ε(tk), almost always lie within an ellipsoid

that remains invariant under state transitions. The ellipsoid

defines a safe region and, at every time instant, the residuals

are checked for violations of the safe region. A monitoring

interval is defined, and the information about the violations

of the safe region gathered over the monitoring interval is

used in the BHT anomaly detector to detect an attack.

The invariant ellipsoid is defined using the simulation

dataset described earlier along with tools from convex opti-

mization to obtain a minimum volume ellipsoid encompass-

ing a finite set [33]. Let the invariant ellipsoid be described as

ε = {v | ‖Av + b‖2 ≤ 1},
where A ∈ R

n×n, b ∈ R
n and ‖·‖2 is the standard Euclidean

norm. The finite set C is defined as C = {x1, . . . , xN} ⊂ R
3,

where each xi is computed from the EKF output and the

UAS position measurement from the simulation dataset. The

problem of finding the minimum volume ellipsoid can be

written as

minimize log detA−1

subject to ‖Axi + b‖2 ≤ 1, i = 1, . . . , N,

where A and b are the variables of the optimization problem.

Let the number of violations of the invariant ellipsoid within

the monitoring interval be denoted by the random variable

X . The random variable X is generated from one of the two

probability distributions, f ∈ R
m+1 and g ∈ R

m+1, where

m is the length of the monitoring interval and is chosen as

40 time steps. The probability distribution f corresponds to a

normal situation when there is no attack, and the probability

distribution g corresponds to a situation when there is an

attack on the sensor. The distributions, f and g, are obtained

from the simulation dataset by first computing the residuals

ε(tk) at each time instant and then checking for violations of

the invariant ellipsoid ε throughout the monitoring interval.

We use a moving monitoring interval, whereby at each time

instant, the values of ε(tk) at the previous 40 time steps

including the current time step are considered.

Let T ∈ R
2×(m+1) denote a non-negative matrix, where

the sum of each column entries is equal to one. Then, the

detection probability matrix can be defined as

D =
[
Tf Tg

]
=

[
1− Pfp Pfn

Pfp 1− Pfn

]
,

where Pfp and Pfn are the probabilities of false positive

and false negative, respectively. Since the detector design

problem is a bi-criterion vector optimization problem with

competing objectives Pfp and Pfn, it is solved by scalariza-

tion, resulting in the following scalar optimization problem:

minimize Pfp + λPfn

subject to t1j + t2j = 1, tij ≥ 0, i = 1, 2 and

j = 1, . . . ,m+ 1.

The optimization variables are tij , where tij are the elements

of T . For each positive value of λ, a Pareto-optimal detector

Anomaly
Detector

Residual
Generator

False
Positive

Rate (%)

False
Negative
Rate (%)

Mean
Detection
Latency

(sec)

CUSUM 1-norm 4.83 0.88
0.12 (CA)
1.05 (SA)

CUSUM χ2 1.05 0.63
0.13 (CA)
2.30 (SA)

SPRT 1-norm 5.47 0.91
0.12 (CA)
0.94 (SA)

SPRT χ2 0.97 0.55
0.11 (CA)
2.13 (SA)

BHT - 0.17 0.74
0.67 (CA)
0.72 (SA)

Note: CA denotes constant attack and SA denotes scaling attack

TABLE I: Comparison of the performance of different

anomaly detectors based on the simulation dataset.

is obtained. In this work, a value of 21 is chosen for λ, and a

deterministic likelihood ratio detector is used. Namely, given

a value of X , a likelihood ratio threshold test is applied to

determine if X was generated by distribution f (no attack)

or g (attack); see [33] for more details.

D. Comparative Performance of the Anomaly Detectors

The performances of the three anomaly detectors with the

1-norm residual generator and the χ2-residual generator are

summarized in Table I. The performance metrics considered

are the false positive rate, false negative rate, and the average

time taken by the detector to detect the attack. It is observed

that the χ2-residual generator reduces the number of false

alarm rates significantly compared to the 1-norm residual

generator for both the SPRT and the CUSUM anomaly

detectors. The SPRT anomaly detector with the χ2-residual

generator has the lowest false negative rate, and the BHT

anomaly detector has the lowest false positive rate among all

the detectors. In terms of detection latency, the SPRT and the

CUSUM anomaly detectors have comparable performance,

and both detectors have a lower mean detection latency for

the constant attack compared to the scaling attack. The BHT

anomaly detector has comparable values of mean detection

latency for both the constant and scaling types of attack.

IV. DETECTOR TUNING BASED ON FLIGHT

TESTS

The anomaly detectors described in the previous section

are designed based on a simulation dataset. In order to

assess the effectiveness of the designed anomaly detectors

in detecting attacks in the presence of actual exogenous

disturbances experienced by an sUAS, a large number of

flight tests with simulated spoofing attacks on the GPS are

conducted. The objective of the flight tests is to subject the

sUAS to different atmospheric conditions by varying the

following factors:

1) Type of controller - Five different types of controllers

are used in the flight tests. Four of them are path-

following controllers that track a predefined geometric
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path in space, and the fifth controller is a trajectory-

tracking controller which tracks a time-parameterized

path in space. Two of the path-following controllers

are designed based on a lumped model, whereby

the path-following dynamics are combined with the

UAS dynamics. The lumped system is used to de-

sign a linear-time invariant (LTI) controller and a

linear-parameter varying (LPV) controller, both with

H∞ type performance. The other two path-following

controllers are based on a conventional cascaded ar-

chitecture composed of an outer guidance loop and

an inner stabilization loop. The interested reader is

referred to [31] for more details on the design of the

different controllers. The trajectory-tracking controller

is a standard H∞ controller.

2) Type of path - Three different types of reference

path are considered, namely a circular path of radius

110.5m, a lemniscate path with a maximum curvature

of 0.0071, and a time-parameterized circular path of

radius 110.5m. The reference paths considered are

restricted to planar paths.

3) Type of attack - Similar to the simulation dataset, two

types of GPS spoofing attack are considered, namely

the constant attack and the scaling attack.

4) Magnitude of attack - Two different magnitudes of

attack are considered for the constant attack: 10m and

15m. The attack magnitudes considered for the scaling

attack are 2.5m/s and 4.0m/s. In both types of attack,

the bias value due to the attack is added to the xE

position measurement.

The flight tests are performed on a small fixed-wing UAS

platform, which is based on the commercially available

Senior Telemaster airframe [26]. The UAS platform consists

of the following sensors: a barometric pressure sensor, a

differential pressure sensor, a satellite-based augmentation

system (SBAS) enabled U-blox NEO-7 GPS module, and a

miniature MPU 6000 3-axis accelerometer/gyroscope. The

angle of attack and angle of sideslip are provided by an in-

house built five-hole airdata probe. The Autopilot system is

composed of a 3DR Pixhawk [34] and a Gumstix Overo

Fire [35]. The Pixhawk portion of the autopilot handles the

input/output tasks and redundancy management, while the

Gumstix portion of the autopilot executes the control algo-

rithms. The UAS platform, along with the autopilot system,

is shown in Figure 7. Figure 8 shows two representative

segments from the flight tests, where a constant attack and a

scaling attack are simulated. Figure 8a shows a flight segment

where the UAS is tracking a time-parameterized circular path

and a scaling attack of magnitude 2.5m/s is simulated. In

Figure 8b, the UAS tracks a lemniscate path with an LTI

path-following controller, and a constant attack of magnitude

10m is simulated.

The data obtained from the flight tests are used to re-tune

the anomaly detectors designed in Section III. It is observed

that the parameters of the anomaly detectors designed based

on the simulation dataset are reasonably well tuned, and only

Fig. 7: The UAS platform and the autopilot system used in

the flight tests.

the drift term ν needed to be re-tuned to get rid of the

false positives due to the presence of significant atmospheric

disturbances. The re-tuned values of ν for the SPRT and

the CUSUM anomaly detectors are ν = 2.53 and ν = 1.87,

respectively. The performance of the SPRT anomaly detector

after re-tuning is shown in Figure 9 for the data gathered

from one of the flight tests, where the UAS is tracking a

lemniscate path and a scaling attack of magnitude 2.5m/s
is simulated. The detection latency for the case shown in

Figure 9 is 1.9 s. It is noted that the anomaly detector is not

implemented in real-time during the flight tests, but is run

off-line after the flight tests. It is planned to implement the

anomaly detectors onboard the UAS platform to assess the

real-time performance of the anomaly detectors. Based on the

analysis performed using the flight test data, it is observed

that the anomaly detectors are hardly sensitive to the type of

path or the type of controller. However, the type of attack

and the attack magnitude have an influence on the detection

latency. The detection latency is higher for the scaling type

of attack compared to the constant attack as also noted in

Section III. It is therefore inferred that a limited number of

flight tests are sufficient to re-tune the anomaly detectors

instead of extensive flight testing.

V. THE BAYESIAN NETWORK FRAMEWORK

Under atypical operational conditions, such as severe

atmospheric turbulence or transient sensor faults, it is highly

likely that the anomaly detection methods described in the

previous sections may result in false positives. A probabilistic

framework, therefore, can help in identifying attacks with

lesser false alarm rates. In this work, we choose the Bayesian
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(a) Scaling attack

(b) Constant attack

Fig. 8: Representative segments during flight tests with a

simulated spoofing attack on the GPS.

network (BN) as the probabilistic framework. A BN for a

set of variables Z consists of a directed acyclic graph that

encodes a set of conditional independence assertions about

variables in Z, and a set P of local probability distributions

associated with each variable. Many studies have used BN

for anomaly detection in order to minimize the effect of

uncertainties on the detection performance [9], [15]. The BN

uses outputs from the residual-based anomaly detectors and

the attack-signature-based anomaly detectors as evidences to

declare an attack through Bayesian inference.

To illustrate the BN, we consider the case study discussed

earlier, which involves a spoofing attack on the GPS. The BN

for this case study is shown in Figure 10. The set of variables

Z of the BN consists of the binary variables given by

Z = {V1, V2, S1, S2, S3, A1, A2, A3}.
The binary variables V1 and V2 take values in the set

Fig. 9: Detection performance of the SPRT anomaly detector

with the χ2-residual generator for a segment gathered from

one of the flight tests.

{comp,not-comp} corresponding to whether the vulner-

able sensor is compromised or not-compromised. S1, S2,

and S3 take values in the set {faulty,not-faulty}
corresponding to whether the measurement from the safe

sensor is faulty or non-faulty. A1, A2, and A3 take values

in the set {detected,not-detected} corresponding to

whether an attack is detected or not. It is noted that the

Attack node shown in Figure 10 serves as a binary addition

node and is used only for convenience in the BN model.

Except for the sensor nodes, each node has a parent and

a conditional probability table (CPT) associated with it. For

this case study, the conditional probabilities for the nodes are

computed based on the simulation dataset. Firstly, the failure

probabilities of the IMU, the airdata probe, and the pressure

altimeter are chosen as 0.03, 0.08, and 0.08, respectively.

The probabilities that the vulnerable sensors, V1 and V2, are

compromised are assumed to be both equal to 0.85. The

CPTs for the nodes A1, A2, and A3 are constructed by

simulating attacks and sensor failures as per the assumed

probabilities and computing the probability with which the
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Fig. 10: The Bayesian network for the GPS spoofing attack case study.

S1 =
not-faulty

not-detected detected

comp, faulty 0.07 0.93

not-comp,
faulty

0.96 0.04

comp,
not-faulty

0.01 0.99

not-comp,
not-faulty

0.995 0.005

S1 = faulty not-detected detected

comp, faulty 0.095 0.905

not-comp,
faulty

0.95 0.05

comp,
not-faulty

0.02 0.98

not-comp,
not-faulty

0.992 0.008

TABLE II: The conditional probability table for node A1.

anomaly detector detects the attack in each case. An SPRT

detector with a χ2-residual generator is considered as the

anomaly detector for the nodes A1 and A2. The node A3

corresponds to an attack-signature-based anomaly detector. A

representative CPT, which corresponds to node A1, is shown

in Table II.

The BN is modeled using the free-to-use software Hug-

inLite [36], which performs Bayesian inference using the

method described in [37]. The BN model is subjected to dif-

ferent scenarios and Bayesian inference is performed to infer

the compromised sensor from the two vulnerable sensors.

During Bayesian inference, a threshold probability of 0.9 is

used to declare whether a particular sensor is compromised

or healthy. Consider a scenario where the node S2, which

denotes the IMU, gives faulty measurements, and because of

these faulty measurements, the anomaly detector A3 detects

an attack. The anomaly detectors A1 and A2, however, do

not detect an attack. When Bayesian inference is performed

for this scenario with the known evidences, we obtain the

probabilities of the sensors V1 and V2 being compromised

as 0.033 and 0.021, respectively. The probabilities are small

enough that no attack is declared. Consider another scenario

where the airdata probe, which is denoted by the node S3,

is faulty and the anomaly detector A1 detects an attack.

The anomaly detectors A2 and A3 do not detect an attack.

The reason that the anomaly detector A3 does not detect

the attack is due to the fault in the airdata probe. The

probability that the sensor V1 is compromised is inferred

as 0.94, which is 0.042 less than the probability for the case

where sensor S3 is not faulty. Nevertheless, a probability of

0.94 is sufficient for declaring a sensor attack on V1. In the

absence of the Bayesian network, these two scenarios would

have resulted in a difficult problem of ascertaining whether

an attack did happen, given the evidences from the different

anomaly detectors A1, A2, and A3. These two scenarios

elucidate the advantages of using the Bayesian network in

the attack detection framework.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a framework for detection of cyber-

physical attacks on the sensors of an sUAS. The framework

uses knowledge of the physical system and techniques from

statistical analysis to design anomaly detectors for detection

of sensor attacks. The framework also makes use of a

Bayesian network which uses the outputs of the anomaly

detectors as evidences to infer an attack on the sensors.

The explicit use of the dynamics of the physical system

and the BN in the attack detection framework minimizes

the false alarm rates, which is a crucial problem for sUAS

that typically operate in a highly uncertain environment

composed of atmospheric disturbances and sensor noise.
The work presented here addresses the problem of identi-

fying sensor attacks on sUAS and considers only spoofing at-

tacks. An extension of this work will include addressing other

types of attack such as the replay attack, as well as other

types of spoofing attack, apart from the constant and scaling

attacks considered here. For instance, the present framework

will not be able to detect threats that involve a combination

of piecewise-constant attacks of small magnitude. Future

work will include developing methods to detect such stealthy

attacks. Another area of future work is to develop methods

to detect attacks on the other two security layers of the UAS,

namely the communication layer and the computer layer.
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