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Abstract—The work presented in this paper is part of an
overall effort to design a secure autopilot, resilient against
malicious attacks on both the cyber and physical layers, for a
small unmanned aircraft system (UAS). This paper specifically
deals with identification of malicious attacks on the sensors of
a small UAS. A framework is presented wherein techniques
from statistical analysis are used in a probabilistic setting to
detect sensor attacks. The paper describes in detail the design
of anomaly detectors and the Bayesian network. A case study
involving detection of a spoofing attack on the GPS is used
throughout the paper to illustrate the proposed approach. The
anomaly detectors are designed based on a simulation dataset,
and are re-tuned based on flight tests conducted on a small
fixed-wing UAS platform. The performances of the detectors are
studied under different external disturbances and conclusions
are drawn.

I. INTRODUCTION

Unmanned aircraft systems (UAS) are increasingly be-
coming ubiquitous in both civilian and defense applications.
Now that plans for the integration of UAS into the national
airspace are underway [1], it is becoming more and more
obvious that one of the critical barriers to this integration
is ensuring the safety and security of these systems. The
security concerns are even more acute in civilian applica-
tions, where transmissions are unencrypted and the UAS
architecture is widely known [2]. There is a transition in the
nature of security threats to UAS from passive confidentiality
breaches, such as eavesdropping, to active integrity breaches,
such as jamming and spoofing. The attackers are becoming
increasingly smart and employ sophisticated mechanisms to
compromise the UAS stealthily. In such a scenario, it is
essential to develop an autopilot system capable of actively
detecting and mitigating malicious cyber-physical attacks.

UAS are highly coupled nonlinear systems with an op-
erational environment characterized by uncertainties and
disturbances like sensor noise, wind gusts, and atmospheric
turbulence. The control design process for a UAS begins
with developing a mathematical model of the physical sys-
tem using techniques from system identification [3]. The
mathematical model is only an approximation of the physical
system as many assumptions and simplifications are typically
made to obtain a tractable model. The resulting nonlinear
model is further simplified, for instance, by linearization, to
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obtain a plant model that is amenable to control design. The
modeling inaccuracies and neglected nonlinearities, along
with atmospheric disturbances and sensor noise, provide a
hotbed for attackers to masquerade their attacks. Figure 1
shows the modeling inaccuracies and disturbances in a typ-
ical UAS that can be exploited by an adversary. One of the
main challenges in detecting malicious attacks on UAS is to
be able to distinguish between the response of the UAS to
usual disturbances and the response due to malicious attacks.

Cyber-security has been an active research area over the
last two decades as evident from the numerous papers and
review articles published in this area [4]-[6]. Research on
the security of cyber-physical systems (CPS) is fairly recent,
however, and the publications in this area stem from diverse
application domains. The existing research on CPS security
can be categorized in many ways, for instance, based on the
field of application, type of threats addressed, approach used
(theoretical versus heuristic), etc. One such classification is to
categorize the works into ones which address the problem of
external intrusion detection using algorithmic methods [7]—
[20] and works which use hardware-enhanced security meth-
ods to identify and mitigate internal security threats [21]—
[24]. The works which address the problem of cyber-physical
security for UAS predominantly fall under the category of
algorithmic methods, and specifically behavior-specification-
based methods, wherein normal system behavior is formally
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Fig. 1: Modeling inaccuracies and disturbances in a typical
UAS that can be exploited by an attacker.

1189



GPS Guidance/
: | Navigation
MU S Algorithm
Magneto- >
meter

Airspeed
Sensor
Pressure
Itimete
Air Data
Probe

| Firmware | |

Physical Layer
Communication Layer
Computer Layer

=

4
&

Servo

é Control
Y Controller .iﬁLCt“atorg—)[Surfaces

Fig. 2: Diagram showing different layers in a typical unmanned aircraft system.

defined using temporal logic or finite state machines and
deviations from the normal behavior are identified as intru-
sions. In [12], normal system operation is defined in terms
of behavioral rules, which specify a certain number of states,
some safe and others unsafe, and the behavior specification
is translated into a state machine. The authors in [15] define
normal system behavior using linear and metric temporal
logic formulas in a Bayesian network framework.

Most of the existing literature on cyber-physical security
for UAS do not explicitly consider the UAS model and
the resultant uncertainties, thereby increasing the probability
of triggering false alarms. In this paper, we propose a
framework for identification of cyber-physical attacks on the
sensors of a small UAS (sUAS). By incorporating knowledge
about the physical system and using a probabilistic frame-
work, the proposed approach minimizes the false alarm rates
by concentrating on the response of the UAS to attacks and
not on the attack mechanism itself.

Throughout this paper, we consider a case study that con-
cerns detection of a spoofing attack on the GPS to illustrate
the proposed methods. The outline of the paper is as follows.
In section II, the proposed framework is presented. Section
IIT describes the design of different anomaly detectors and
compares their performances in terms of the false alarm rate
and detection latency. Section IV describes the flight tests,
where spoofing attacks on the GPS are simulated, and the re-
tuning of the anomaly detectors based on the data gathered
from the flight tests. In Section V, the Bayesian network for
attack detection is described and some operational scenarios
are simulated using a Bayesian inference tool called Hugin-
Lite. Finally, in Section VI, conclusions and some topics of
future work are discussed.

II. FRAMEWORK FOR DETECTION OF SENSOR
ATTACKS

The security threats encountered by a UAS may target one
or more of the following three layers [25]: physical layer
consisting of the sensors, actuators, ground control station,
and communication hardware, computer layer consisting of
the controller software, firmware, guidance and navigation

algorithms, and communication layer consisting of the radio-
frequency links to the ground control station and inter-UAS
communication in the case of multiple UAS; see Figure 2. In
this paper, the problem of detecting cyber-physical attacks on
the physical layer and especially on the sensors is addressed.
This work is part of an overall effort to design a secure
autopilot, resilient against malicious attacks on all the three
layers. The framework consists of a layered approach, where
attack indicators at each layer are identified and then used
as evidences in a Bayesian network to detect an attack.

We assume that only a subset of the sensors is compro-
mised, and our approach aims to identify these compromised
sensors. Specifically, the sensors in a typical UAS can be
classified as safe sensors or vulnerable sensors. Safe sensors
are sensors that are intrinsic to the UAS, in the sense that,
they do not interact with an outside system. Such sensors
are highly unlikely to be compromised by an attacker and
some examples include the inertial measurement unit (IMU)
(assuming it is reasonably protected against electromagnetic
interference), airdata probe, airspeed sensor, and pressure
altimeter. Vulnerable sensors, on the other hand, are sensors
that rely on an external agent for sensing and are highly
susceptible to adversarial attacks. Examples of such sensors
include GPS, RADAR, LIDAR, and vision-based sensors.
The communication links used for sending/receiving data in a
UAS network, which are susceptible to attacks such as false-
data injection and jamming, are categorized as vulnerable
sensors. In this work, it is assumed that only the vulnerable
sensors can be compromised. Although it is assumed that the
safe sensors cannot be compromised, they can provide faulty
measurements under atypical operational conditions, such as
severe atmospheric disturbances or transient sensor faults.

The attack detection approach consists of the following
two types of anomaly detection methods:

1) Anomaly detection using attack signatures, which are
based on measurements from the safe sensors, and

2) Anomaly detection based on residuals, which are com-
puted by a residual generator from the outputs of a state
estimator.
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Fig. 3: Effect of wind orientation on (¢ —.s+0).

A. Anomaly Detection Based on Attack Signatures

Attack signatures, which encode information about a pos-
sible attack on the physical layer of the UAS, are identi-
fied based on the knowledge of the physical system. It is
important to note that the attack signatures are based only
on data from safe sensors. Attack signatures correspond to
abnormal behavior in the time evolution of certain measure-
ments or combinations of measurements during an attack on
the physical layer. The foremost requirement of an attack
signature is that it should be sensitive to malicious attacks
on the UAS while being hardly sensitive to changes in wind
disturbances and measurement noise. Based on simulation
studies performed using an sUAS model, it is observed
that for threats such as spoofing attack on GPS and replay
attack, the terms ()—1;+03) and (60—0,.;—a) satisfy the
requirements for an attack signature. The symbols 1, 6, «,
and [ denote the yaw angle, pitch angle, angle of attack, and
angle of sideslip, respectively. 1,y and 0,.s are the yaw
reference angle and pitch reference angle, respectively; they
are provided by the motion planner or computed from the
reference path generated by the motion planner. For instance,
Yrey is the angle between the local tangent to the reference
path at the current position and the North axis of the NED
frame. ()—trc¢+/3) can be thought of as the deviation of
the velocity vector projected onto the local horizontal frame
from the local tangent to the reference path.

The effectiveness of (¢)—r.¢+/3) as an attack signature
is shown in Figures 3 and 4. Figure 3 shows the variation of
(v—1rep+3) for different orientations of the wind vector,
0., during closed-loop simulations performed using a Senior
Telemaster UAS model [26]. A path-following controller
composed of an inner-loop Proportional-Integral-Derivative
controller and an outer-loop nonlinear guidance logic for
way-point following is used in the simulations. During the
simulations, the UAS is tasked to follow a straight line path
in the presence of 4 m/s steady wind, medium level Dryden
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Fig. 4: Variation of (¢)—,.s+[) during a spoofing attack
on GPS.

turbulence [27], and measurement noise. It is observed from
the figure that (¢)—t,.s+0) is hardly sensitive to changes
in the wind disturbance. Figure 4 shows the variation of
(—1res+PB) during two different types of spoofing attack
on the GPS latitude measurement, called the constant attack
and the scaling attack. Both attacks introduce a bias into
the GPS latitude measurement. The constant attack adds
a constant bias, whereas, in the scaling attack, the added
bias increases linearly with time. It is observed from Figure
4 that in the absence of any attack, (¢Y—v.p+3) varies
within £5 degrees mainly due to the effects of atmospheric
turbulence and sensor noise, but in the presence of the attack,
(—1preg+PB) increases in magnitude significantly, thereby
serving as an indicator to detect attacks that are hidden under
the guise of disturbances.

B. Anomaly Detection Based on Residuals

The second type of anomaly detection method uses resid-
vals, which are computed from the measurements of the
vulnerable sensors and the output of a state estimator. Each
vulnerable sensor is associated with a state estimator, which
provides estimates of the true uncompromised measurements
made by the vulnerable sensor. The state estimator uses mea-
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Fig. 5: Detection of spoofing attacks on the GPS using the
attack detection framework.

surements from the safe sensors and the vulnerable sensor
in computing the estimates. The output of the state estimator
and the measurements from the vulnerable sensor are used in
a residual generator to compute the residuals. The residuals
from the residual generator are then used by the anomaly
detector to detect a sensor attack. In the present framework,
an Extended Kalman Filter (EKF) is used as the state
estimator. In order to study the comparative performance,
different types of anomaly detectors and residual generators
are considered, and their performances are compared in terms
of the detection latency and the false alarm rate. Three types
of anomaly detectors are considered, two of them are based
on statistical parametric methods such as the cumulative sum
(CUSUM) and sequential probability ratio test (SPRT), and
the third anomaly detector uses a non-parametric method
based on binary hypothesis testing.

To keep the illustration of the anomaly detection method
simple, we consider a case study where the vulnerable sensor
is the GPS, and the safe sensors are the IMU and the pressure
altimeter. Figure 5 shows the detection framework for the
case study considered. The EKF estimates the UAS position
and body-axis velocities using the accelerations a, a,, and
a, the body-axis angular rates p, ¢, and r, and the attitude
angles ¢, 6, and . The dynamic system considered is
assumed to have zero-mean, uncorrelated, Gaussian process
and measurement noise, and is given in state-space form as

i(t) = f(x(t),u(?)) +w(t),
y(t) = h(z(t), u(t)), (1)
2(tr) = y(te) + v(te),

where x(t) is the state vector, y(¢) is the measurement output
in continuous-time, and z(tj) is the discrete-time measure-
ment output at time ¢ = {¢;. The process noise and the
measurement noise are given by w(t) and v(tx), respectively.
The state vector is composed of the UAS positions in the
NED frame zy, g, and xp, the UAS body-axis velocities
Uup, Vp, and wp, the accelerometer biases b, bay, and b,_,
and the gyro biases b, bq, and b,. The measurement vector
consists of the UAS position =, g, and altitude H, where

H = —xp is obtained from the pressure altimeter. The state
equations are given by

Uy = (az — ba,) — (g — bq)wb + (r — by )vp — gsb,

Up = (ay = ba,) — (r —bp)up + (p — bp)wy — gebso,
' ba.) = (p = bp)ve + (g — bg)up — gchco,
upclc) + vp(spsberp — chsi))

+ wy(copsbey + spsi), )
Ty = upclsth + vp(spsbsy) + cocy))
+ wy(copsbs) — spcy),

Tp = —upst + vpchso + wycheo,
ba, =0, ba. =0,

b, =0, b, =0,

Wy = (a; —

TN

bay =0,
b, =0,

where the sin and cos terms are abbreviated as s and ¢, re-
spectively. The input vector is composed of the accelerometer
outputs a, a,, and a,, the body-axis angular rates p, g, and
r, and the Euler angles ¢, 6, and 1. The theory on EKF is
widely discussed in the literature and is available in [28], [29]
among others, and due to paucity of space is not discussed
here. The measurement update occurs every 0.1 seconds. The
input noise covariance matrix, ), and the measurement noise
covariance matrix, R, are chosen as

Q = diag(215,1x1073,1x1072,5x1074,2x 1073 13),

and R = diag(2,2,0.5), where diag denotes a diagonal
matrix and I3 is the identity matrix of size 3 x 3. The initial
guess for the process noise covariance matrix is chosen as

P(0) = diag(0.515,2,2,0.5, 215, 113).

The UAS position estimated by the EKF and the measure-
ment from the GPS are used to compute the residual in the
residual generator. Let €(tx) = z(t;) — §(t) denote the dif-
ference between the GPS measurement and the EKF estimate
at time ¢j,. Two types of residual generators are considered in
this work, the first residual generator is based on the 1-norm
of €(t), and the second residual generator is based on the x>
statistic of €(t). Let S(tx) = R+C(t)T P(tx)C(tx), where
R is the measurement noise covariance matrix, and P(ty)
and C(t)) are the prediction error covariance matrix and the
observation matrix at time tg, respectively. It is noted that
P(tx) and C(t;) are obtained from the EKF. Given S(¢x),
the x2-residual is given by s(t;) = e(tr)? S(tr) Le(ty).
In the absence of any attack, s has a y2-distribution. The
change in the distribution of s during an attack is used in
the anomaly detector to detect the attack. The design of the
different anomaly detectors and their comparative detection
performance are discussed in the next section.

III. DESIGN AND ANALYSIS OF ANOMALY
DETECTORS

As mentioned earlier, three different types of anomaly de-
tectors are considered, namely the sequential probability ratio
test (SPRT) detector, cumulative sum (CUSUM) detector and
the binary hypothesis testing (BHT) detector.
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A. SPRT Anomaly Detector

In the SPRT anomaly detector, the test statistic g(x) is
computed and checked against a threshold h at every time
instant [30]. If g({;) exceeds the threshold, then the alarm
is set. The algorithm used in the SPRT anomaly detector is
given below:

g(tr) = g(te—1) + s(tx) — v,

g(tr) =0 if  g(ty) <a,

ALARM — 1 if g(tg) > h,
0 otherwise,

where s(t;) is the output of the residual generator. The
parameters of the detector are the drift term v, the reset
value a, and the threshold h. The drift term prevents positive
drifts due to noise in the sensor measurements, which could
result in a false alarm. The reset value resets the test statistic
to zero to prevent a negative drift which could increase
the detection latency. The design of the detector involves
choosing the three parameters such that the false alarm rate
and the detection latency are minimum. The design procedure
is detailed in the forthcoming paragraphs.

B. CUSUM Anomaly Detector

The algorithm used in the CUSUM anomaly detector is
similar to that used in the SPRT detector. In fact, the CUSUM
detector is a special case of the SPRT detector, where the
reset value a is zero. The reset value, ideally, should be as
small as possible in magnitude, as a higher value for a would
result in an increase in detection time. A value of zero for a
is the minimum possible. The CUSUM detector, therefore,
has only two parameters: the drift term v and the threshold h.

The design parameters of the SPRT and CUSUM detectors
are obtained by solving an optimization problem, where the
sum of the false positive and false negative rates is minimized
based on a simulation dataset. The simulation dataset is
generated from a number of nonlinear six-degree-of freedom
simulations, where spoofing attacks on the GPS latitude and
longitude measurements are simulated. The simulations are
performed using a mathematical model of a small fixed-wing
UAS platform derived based on flight test data [31]. During
the simulations, the UAS is tasked to follow a reference path,
which is enabled by a path-following controller designed
based on the controller structure available in the open-source
Ardupilot software [32]. The following factors are varied
during the simulations:

1) Reference path - Two types of reference path, namely a
straight line path and a circular path of radius 110.5m,
are considered.

2) Type of attack - Two types of GPS spoofing attack,
namely the constant attack and the scaling attack, are
simulated. In a constant attack, a constant bias is added
to the GPS latitude and longitude measurements at
every time instant. Whereas, in a scaling attack, a time-
varying bias that scales linearly with time is added to
the GPS latitude and longitude measurements.

Constant attack
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Fig. 6: Representative simulations of a constant attack of
magnitude 15 m and a scaling attack of magnitude 1.25 m/s
on the x g position measurement.

3) Magnitude of attack - Four different attack magni-
tudes are considered for each of the two types of
GPS attack. The attack magnitudes considered for the
constant attack are 3m, 5m, 10m and 15m, and
the attack magnitudes for the scaling type of attack
are 0.3125m/s, 0.625m/s, 1.25m/s, and 2.5m/s.
It is noted that the attack is injected after the GPS
measurements are converted to position measurements
in the NED frame.

4) Wind disturbance - A steady wind of magnitude 4 m/s
is considered during the simulations, and the direction
of wind is varied from 0° to 360° in steps of 10° or
45°. Tt is noted that the direction of wind is changed
only for the simulations where the reference path is a
straight line.

5) Direction of attack - In addition to varying the mag-
nitude of attack, the direction of attack is also varied
from 0° to 360° in steps of 10° or 45°. For instance,
when the direction of attack is 0°, only the zy po-
sition measurement is modified during the attack, and
for an attack direction of 90°, only the xp position
measurement is modified.

The above cases result in a simulation dataset composed of
3264 different simulation cases with 2720 hours of simula-
tion time. Two representative simulation cases for a straight
line reference path are shown in Figure 6. The simulation
dataset is used to choose the optimal parameter values for
the SPRT and the CUSUM detectors. The resulting parameter
values for the SPRT detector are v = 0.578, h = 3.146, and
a = —3.373. The parameter values for the CUSUM detector
are v = 0.570 and h = 3.663.

C. Binary Hypothesis Testing (BHT) Anomaly Detector

The third type of anomaly detector is based on binary
hypothesis testing. The BHT detector relies on the premise
that in the absence of attacks and during normal system
operation in the presence of uncertainties and disturbances,
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the residuals, e(;), almost always lie within an ellipsoid
that remains invariant under state transitions. The ellipsoid
defines a safe region and, at every time instant, the residuals
are checked for violations of the safe region. A monitoring
interval is defined, and the information about the violations
of the safe region gathered over the monitoring interval is
used in the BHT anomaly detector to detect an attack.

The invariant ellipsoid is defined using the simulation
dataset described earlier along with tools from convex opti-
mization to obtain a minimum volume ellipsoid encompass-
ing a finite set [33]. Let the invariant ellipsoid be described as

e={v|||Av+1d|2 <1},

where A € R"*™, b € R™ and ||-||2 is the standard Euclidean
norm. The finite set C is defined as C = {z1,..., 25} C R3,
where each z; is computed from the EKF output and the
UAS position measurement from the simulation dataset. The
problem of finding the minimum volume ellipsoid can be
written as

minimize log det A™!

subject to  ||Az; + bl <1, i=1,...,N,

where A and b are the variables of the optimization problem.
Let the number of violations of the invariant ellipsoid within
the monitoring interval be denoted by the random variable
X. The random variable X is generated from one of the two
probability distributions, f € R™*! and g € R™T!, where
m is the length of the monitoring interval and is chosen as
40 time steps. The probability distribution f corresponds to a
normal situation when there is no attack, and the probability
distribution g corresponds to a situation when there is an
attack on the sensor. The distributions, f and g, are obtained
from the simulation dataset by first computing the residuals
€(ty) at each time instant and then checking for violations of
the invariant ellipsoid € throughout the monitoring interval.
We use a moving monitoring interval, whereby at each time
instant, the values of €(t;) at the previous 40 time steps
including the current time step are considered.

Let T e R2*(m+1) denote a non-negative matrix, where
the sum of each column entries is equal to one. Then, the
detection probability matrix can be defined as

1— Py
pr

Py

D=1 14| = -

)

where Py, and Py, are the probabilities of false positive
and false negative, respectively. Since the detector design
problem is a bi-criterion vector optimization problem with
competing objectives Py, and Py, it is solved by scalariza-
tion, resulting in the following scalar optimization problem:

minimize Py, + APy,
subject to  t1; +t2; =1, ;37 >0, i=1,2and
j=1,....m-+1.

The optimization variables are ¢;;, where ¢;; are the elements
of T'. For each positive value of A, a Pareto-optimal detector

Fal Fal Mean
Anomaly Residual alse awse Detection
Detector Generator Positive Negative Latency

Rate (%) Rate (%) .

(sec)
0.12 (CA)
CUSUM 1-norm 4.83 0.88 1.05 (SA)
2 0.13 (CA)
CUSUM X 1.05 0.63 230 (SA)
0.12 (CA)
SPRT 1-norm 5.47 0.91 0.94 (SA)
2 0.11 (CA)
SPRT X 0.97 0.55 213 (SA)
0.67 (CA)
BHT - 0.17 0.74 0.72 (SA)

Note: CA denotes constant attack and SA denotes scaling attack

TABLE I: Comparison of the performance of different
anomaly detectors based on the simulation dataset.

is obtained. In this work, a value of 21 is chosen for A, and a
deterministic likelihood ratio detector is used. Namely, given
a value of X, a likelihood ratio threshold test is applied to
determine if X was generated by distribution f (no attack)
or g (attack); see [33] for more details.

D. Comparative Performance of the Anomaly Detectors

The performances of the three anomaly detectors with the
1-norm residual generator and the y2-residual generator are
summarized in Table I. The performance metrics considered
are the false positive rate, false negative rate, and the average
time taken by the detector to detect the attack. It is observed
that the x2-residual generator reduces the number of false
alarm rates significantly compared to the 1-norm residual
generator for both the SPRT and the CUSUM anomaly
detectors. The SPRT anomaly detector with the 2-residual
generator has the lowest false negative rate, and the BHT
anomaly detector has the lowest false positive rate among all
the detectors. In terms of detection latency, the SPRT and the
CUSUM anomaly detectors have comparable performance,
and both detectors have a lower mean detection latency for
the constant attack compared to the scaling attack. The BHT
anomaly detector has comparable values of mean detection
latency for both the constant and scaling types of attack.

IV. DETECTOR TUNING BASED ON FLIGHT
TESTS

The anomaly detectors described in the previous section
are designed based on a simulation dataset. In order to
assess the effectiveness of the designed anomaly detectors
in detecting attacks in the presence of actual exogenous
disturbances experienced by an sUAS, a large number of
flight tests with simulated spoofing attacks on the GPS are
conducted. The objective of the flight tests is to subject the
SUAS to different atmospheric conditions by varying the
following factors:

1) Type of controller - Five different types of controllers

are used in the flight tests. Four of them are path-
following controllers that track a predefined geometric
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path in space, and the fifth controller is a trajectory-
tracking controller which tracks a time-parameterized
path in space. Two of the path-following controllers
are designed based on a lumped model, whereby
the path-following dynamics are combined with the
UAS dynamics. The lumped system is used to de-
sign a linear-time invariant (LTI) controller and a
linear-parameter varying (LPV) controller, both with
Hoo type performance. The other two path-following
controllers are based on a conventional cascaded ar-
chitecture composed of an outer guidance loop and
an inner stabilization loop. The interested reader is
referred to [31] for more details on the design of the
different controllers. The trajectory-tracking controller
is a standard H ., controller.

2) Type of path - Three different types of reference
path are considered, namely a circular path of radius
110.5m, a lemniscate path with a maximum curvature
of 0.0071, and a time-parameterized circular path of
radius 110.5m. The reference paths considered are
restricted to planar paths.

3) Type of attack - Similar to the simulation dataset, two
types of GPS spoofing attack are considered, namely
the constant attack and the scaling attack.

4) Magnitude of attack - Two different magnitudes of
attack are considered for the constant attack: 10 m and
15m. The attack magnitudes considered for the scaling
attack are 2.5m/s and 4.0 m/s. In both types of attack,
the bias value due to the attack is added to the =g
position measurement.

The flight tests are performed on a small fixed-wing UAS
platform, which is based on the commercially available
Senior Telemaster airframe [26]. The UAS platform consists
of the following sensors: a barometric pressure sensor, a
differential pressure sensor, a satellite-based augmentation
system (SBAS) enabled U-blox NEO-7 GPS module, and a
miniature MPU 6000 3-axis accelerometer/gyroscope. The
angle of attack and angle of sideslip are provided by an in-
house built five-hole airdata probe. The Autopilot system is
composed of a 3DR Pixhawk [34] and a Gumstix Overo
Fire [35]. The Pixhawk portion of the autopilot handles the
input/output tasks and redundancy management, while the
Gumstix portion of the autopilot executes the control algo-
rithms. The UAS platform, along with the autopilot system,
is shown in Figure 7. Figure 8 shows two representative
segments from the flight tests, where a constant attack and a
scaling attack are simulated. Figure 8a shows a flight segment
where the UAS is tracking a time-parameterized circular path
and a scaling attack of magnitude 2.5m/s is simulated. In
Figure 8b, the UAS tracks a lemniscate path with an LTI
path-following controller, and a constant attack of magnitude
10m is simulated.

The data obtained from the flight tests are used to re-tune
the anomaly detectors designed in Section III. It is observed
that the parameters of the anomaly detectors designed based
on the simulation dataset are reasonably well tuned, and only

Airdata Probe

GPS Antenna

Telemetry
Antenna

Electronic
Speed
Controller

the flight tests.

the drift term v needed to be re-tuned to get rid of the
false positives due to the presence of significant atmospheric
disturbances. The re-tuned values of v for the SPRT and
the CUSUM anomaly detectors are v = 2.53 and v = 1.87,
respectively. The performance of the SPRT anomaly detector
after re-tuning is shown in Figure 9 for the data gathered
from one of the flight tests, where the UAS is tracking a
lemniscate path and a scaling attack of magnitude 2.5m/s
is simulated. The detection latency for the case shown in
Figure 9 is 1.9s. It is noted that the anomaly detector is not
implemented in real-time during the flight tests, but is run
off-line after the flight tests. It is planned to implement the
anomaly detectors onboard the UAS platform to assess the
real-time performance of the anomaly detectors. Based on the
analysis performed using the flight test data, it is observed
that the anomaly detectors are hardly sensitive to the type of
path or the type of controller. However, the type of attack
and the attack magnitude have an influence on the detection
latency. The detection latency is higher for the scaling type
of attack compared to the constant attack as also noted in
Section III. It is therefore inferred that a limited number of
flight tests are sufficient to re-tune the anomaly detectors
instead of extensive flight testing.

V. THE BAYESIAN NETWORK FRAMEWORK

Under atypical operational conditions, such as severe
atmospheric turbulence or transient sensor faults, it is highly
likely that the anomaly detection methods described in the
previous sections may result in false positives. A probabilistic
framework, therefore, can help in identifying attacks with
lesser false alarm rates. In this work, we choose the Bayesian
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Fig. 8: Representative segments during flight tests with a
simulated spoofing attack on the GPS.

network (BN) as the probabilistic framework. A BN for a
set of variables Z consists of a directed acyclic graph that
encodes a set of conditional independence assertions about
variables in Z, and a set P of local probability distributions
associated with each variable. Many studies have used BN
for anomaly detection in order to minimize the effect of
uncertainties on the detection performance [9], [15]. The BN
uses outputs from the residual-based anomaly detectors and
the attack-signature-based anomaly detectors as evidences to
declare an attack through Bayesian inference.

To illustrate the BN, we consider the case study discussed
earlier, which involves a spoofing attack on the GPS. The BN
for this case study is shown in Figure 10. The set of variables
Z of the BN consists of the binary variables given by

Z ={V1,V5,51, 855,55, A1, Ay, As}.

The binary variables V; and V, take values in the set

——Measured (Compromised) 250
— True position 300

Time (sec)

Threshold

Alarm
(=]
o [+
.
i |

Time (sec)

Fig. 9: Detection performance of the SPRT anomaly detector
with the y2-residual generator for a segment gathered from
one of the flight tests.

{comp, not-comp} corresponding to whether the vulner-
able sensor is compromised or not-compromised. S7, So,
and S3 take values in the set {faulty,not-faulty}
corresponding to whether the measurement from the safe
sensor is faulty or non-faulty. Ay, As, and As take values
in the set {detected,not—detected} corresponding to
whether an attack is detected or not. It is noted that the
Attack node shown in Figure 10 serves as a binary addition
node and is used only for convenience in the BN model.
Except for the sensor nodes, each node has a parent and
a conditional probability table (CPT) associated with it. For
this case study, the conditional probabilities for the nodes are
computed based on the simulation dataset. Firstly, the failure
probabilities of the IMU, the airdata probe, and the pressure
altimeter are chosen as 0.03, 0.08, and 0.08, respectively.
The probabilities that the vulnerable sensors, V; and V5, are
compromised are assumed to be both equal to 0.85. The
CPTs for the nodes A;, Ao, and As are constructed by
simulating attacks and sensor failures as per the assumed
probabilities and computing the probability with which the
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Fig. 10: The Bayesian network for the GPS spoofing attack case study.

S1 =
not-faulty not-detected detected
comp, faulty 0.07 0.93
not-comp,
faulty 0.96 0.04
comp,
not-faulty 0.01 0.99
not-comp,
not—faulty 0.995 0.005
S1 = faulty not-detected detected
comp, faulty 0.095 0.905
not-comp,
faulty 0.95 0.05
comp,
not-faulty 0.02 0.98
not-comp,
not—faulty 0.992 0.008

TABLE II: The conditional probability table for node A;.

anomaly detector detects the attack in each case. An SPRT
detector with a y2-residual generator is considered as the
anomaly detector for the nodes A; and A,. The node Aj
corresponds to an attack-signature-based anomaly detector. A
representative CPT, which corresponds to node Ay, is shown
in Table II.

The BN is modeled using the free-to-use software Hug-
inLite [36], which performs Bayesian inference using the
method described in [37]. The BN model is subjected to dif-
ferent scenarios and Bayesian inference is performed to infer
the compromised sensor from the two vulnerable sensors.
During Bayesian inference, a threshold probability of 0.9 is
used to declare whether a particular sensor is compromised
or healthy. Consider a scenario where the node S5, which
denotes the IMU, gives faulty measurements, and because of
these faulty measurements, the anomaly detector A3 detects
an attack. The anomaly detectors A; and As, however, do
not detect an attack. When Bayesian inference is performed
for this scenario with the known evidences, we obtain the
probabilities of the sensors Vi and V5 being compromised
as 0.033 and 0.021, respectively. The probabilities are small
enough that no attack is declared. Consider another scenario
where the airdata probe, which is denoted by the node S3,
is faulty and the anomaly detector A; detects an attack.

The anomaly detectors As and A3 do not detect an attack.
The reason that the anomaly detector A3 does not detect
the attack is due to the fault in the airdata probe. The
probability that the sensor V;j is compromised is inferred
as 0.94, which is 0.042 less than the probability for the case
where sensor S5 is not faulty. Nevertheless, a probability of
0.94 is sufficient for declaring a sensor attack on V;. In the
absence of the Bayesian network, these two scenarios would
have resulted in a difficult problem of ascertaining whether
an attack did happen, given the evidences from the different
anomaly detectors Aj;, Ao, and Asz. These two scenarios
elucidate the advantages of using the Bayesian network in
the attack detection framework.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a framework for detection of cyber-
physical attacks on the sensors of an sUAS. The framework
uses knowledge of the physical system and techniques from
statistical analysis to design anomaly detectors for detection
of sensor attacks. The framework also makes use of a
Bayesian network which uses the outputs of the anomaly
detectors as evidences to infer an attack on the sensors.
The explicit use of the dynamics of the physical system
and the BN in the attack detection framework minimizes
the false alarm rates, which is a crucial problem for sUAS
that typically operate in a highly uncertain environment
composed of atmospheric disturbances and sensor noise.

The work presented here addresses the problem of identi-
fying sensor attacks on sUAS and considers only spoofing at-
tacks. An extension of this work will include addressing other
types of attack such as the replay attack, as well as other
types of spoofing attack, apart from the constant and scaling
attacks considered here. For instance, the present framework
will not be able to detect threats that involve a combination
of piecewise-constant attacks of small magnitude. Future
work will include developing methods to detect such stealthy
attacks. Another area of future work is to develop methods
to detect attacks on the other two security layers of the UAS,
namely the communication layer and the computer layer.
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