Submitted 7 September 2017
Accepted 3 November 2017
Published 1 December 2017

Corresponding authors
Malia A. Gehan,
mgehan@danforthcenter.org
Noah Fahlgren,
nfahlgren@danforthcenter.org

Academic editor
Ann Loraine

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peer;j.4088

© Copyright
2017 Gehan et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

PlantCV v2: Image analysis software for
high-throughput plant phenotyping

Malia A. Gehan'", Noah Fahlgren"’, Arash Abbasi', Jeffrey C. Berry',
Steven T. Callen'®, Leonardo Chavez', Andrew N. Doust’, Max J. Feldman',
Kerrigan B. Gilbert', John G. Hodge’, J. Steen Hoyer'”, Andy Lin"”’,

Suxing Liu*"’, César Lizdrraga''', Argelia Lorence’, Michael Miller"",

Eric Platon®, Monica Tessman'” and Tony Sax’

! Donald Danforth Plant Science Center, St. Louis, MO, United States of America

? Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK,
United States of America

* Computational and Systems Biology Program, Washington University in St. Louis, St. Louis, MO,
United States of America

* Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States of America

> Arkansas Biosciences Institute, Department of Chemistry and Physics, Arkansas State University, Jonesboro,
AR, United States of America

¢ Cosmos X, Tokyo, Japan

’ Missouri University of Science and Technology, Rolla, MO, United States of America
& Current affiliation: Monsanto Company, St. Louis, MO, United States of America

9 Current affiliation: Unidev, St. Louis, MO, United States of America

19 Current affiliation: Department of Plant Biology, University of Georgia, Athens, GA,
United States of America

' Current affiliation: CiBO Technologies, Cambridge, MA, United States of America

'2 Current affiliation: Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle
Center for Biotechnology, University of Nebraska - Lincoln, Lincoln, NE, United States of America

" These authors contributed equally to this work.

ABSTRACT

Systems for collecting image data in conjunction with computer vision techniques are
a powerful tool for increasing the temporal resolution at which plant phenotypes can
be measured non-destructively. Computational tools that are flexible and extendable
are needed to address the diversity of plant phenotyping problems. We previously
described the Plant Computer Vision (PlantCV) software package, which is an image
processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to
develop a set of modular, reusable, and repurposable tools for plant image analysis
that are open-source and community-developed. Here we present the details and
rationale for major developments in the second major release of PlantCV. In addition
to overall improvements in the organization of the PlantCV project, new functionality
includes a set of new image processing and normalization tools, support for analyzing
images that include multiple plants, leaf segmentation, landmark identification tools
for morphometrics, and modules for machine learning.

Subjects Agricultural Science, Bioinformatics, Computational Biology, Plant Science, Data
Mining and Machine Learning

Keywords Plant phenotyping, Image analysis, Computer vision, Machine learning,
Morphometrics

How to cite this article Gehan et al. (2017), PlantCV v2: Image analysis software for high-throughput plant phenotyping. Peer]J 5:e4088;
DOI 10.7717/peer}.4088

Peer

INTRODUCTION

All approaches for improving crops eventually require measurement of traits (phenotyping)
(Fahlgren, Gehan & Baxter, 2015). However, manual plant measurements are time-
consuming and often require destruction of plant materials in the process, which prevents
measurement of traits for a single plant through time. Consequently, plant phenotyping is
widely recognized as a major bottleneck in crop improvement (Furbank ¢ Tester, 2011).
Targeted plant phenotypes can range from measurement of gene expression, to flowering
time, to grain yield; therefore, the software and hardware tools used are often diverse.
Here, we focus on the software tools required to nondestructively measure plant traits
through images. This is a challenging area of research because the visual definition of
phenotypes vary depending on the target species. For example, identification of petals can
be used to measure flowering time, but petal color can vary by species. Therefore, software
tools needed to process high-throughput image data need to be flexible and amenable to
community input.

The term ‘high-throughput’ is relative to the difficulty to collect the measurement. The
scale that might be considered high-throughput for root phenotyping might not be the same
for shoot phenotyping, which can be technically easier to collect depending on the trait and
species. Here we define high-throughput as thousands or hundreds of thousands of images
per dataset. PlantCV is an open-source, open-development suite of analysis tools capable of
analyzing high-throughput image-based phenotyping data (Fahlgren et al., 2015). Version
1.0 of PlantCV (PlantCV v1.0) was released in 2015 alongside the introduction of the
Bellwether Phenotyping Facility at the Donald Danforth Plant Science Center (Fahlgren et
al., 2015). PlantCV v1.0 was envisioned as a base suite of tools that the community could
build upon, which lead to several design decisions aimed at encouraging participation.
First, GitHub was used as a platform to organize the community by integrating version
control, code distribution, documentation, issue tracking, and communication between
users and contributors (Perez-Riverol et al., 2016). Second, PlantCV was written in Python,
a high-level language widely used for both teaching and bioinformatics (Mangalam,
2002; Dudley & Butte, 2009), to facilitate contribution from both biologists and computer
scientists. Additionally, the use of Python allows extension of PlantCV with the many tools
available from the Python scientific computing community (Oliphant, 2007; Millman &
Aivazis, 2011). Third, a focus on modular development fosters code reuse and makes it
easier to integrate PlantCV with new or existing systems. Finally, the use of a permissive,
open-source license (MIT) allows PlantCV to be used, reused, or repurposed with limited
restrictions, for both academic and proprietary applications. The focus of the paper
associated with the original release of PlantCV v1.0 (Fahlgren et al., 2015) was not the
structure and function of PlantCV for image analysis, but rather an example of the type
of biological question that can be answered with high-throughput phenotyping hardware
and software platforms. Since the release of PlantCV v1.0 major improvements have been
made to increase the flexibility, usability, and functionality of PlantCV, while maintaining
all of the functionality in v1.0. Here we document the structure of PlantCV v2 along with
examples that demonstrate new functionality.

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 2/23

Peer

MATERIALS & METHODS

The latest version or a specific release of PlantCV can be cloned from GitHub. The
release for this paper is v2.1. Scripts, notebooks, SQL schema, and simple input data
associated with the figures and results presented in this paper are available on GitHub at
https://github.com/danforthcenter/plantcv-v2-paper. Project-specific GitHub repositories
are kept separate from the PlantCV software repository because their purpose is to make
project-specific analyses available for reproducibility, while the main PlantCV software
repository contains general purpose image analysis modules, utilities, and documentation.

Images of Arabidopsis thaliana were captured with a Raspberry Pi computer and
camera in a Conviron growth chamber. Additional details about the imaging set-up
are provided in a companion paper (Tovar et al., 2017). Images of Setaria viridis (A10)
and Setaria italica (B100) are from publicly available datasets that are available at
http://plantcv.danforthcenter.org/pages/data.html (Fahlgren et al., 2015; Feldman et al.,
2017). Images of wheat (Triticum aestivum L.) infected with wheat stem rust (Puccinia
graminis f. sp. tritici) were acquired with a flatbed scanner.

Image analysis was done in PlantCV using Python v2.7.5, OpenCV v2.4.5 (Bradski, 2000),
NumPy v1.12.1 (Van der Walt, Colbert ¢ Varoquaux, 2011), Matplotlib v2.0.2 (Hunter,
2007), SciPy v0.19.0 (Jones, Oliphant ¢ Peterson, 2014), Pandas v0.20.1 (McKinney, 2010),
scikit-image v0.13.0 (Van der Walt et al., 2014), and Jupyter Notebook v4.2.1 (Kluyver et
al., 2016). Statistical analysis and data visualization was done using R v3.3 (R Core Team,
2017) and RStudio v1.0 (RStudio Team, 2016). Graphs were produced using Matplotlib
v2.0.2 (Hunter, 2007) and ggplot2 v2.2.1 (Wickham, 2009).

RESULTS AND DISCUSSION

The following are details on improvements to the structure, usability, and functionality of
PlantCV since the v1.0 release. Further documentation for using PlantCV can be found at
the project website (http://plantcv.danforthcenter.org/).

Organization of the PlantCV project

PlantCV is a collection of modular Python functions, which are reusable units of Python
code with defined inputs and outputs (Fig. 1A). PlantCV functions can be assembled into
simple sequential or branching/merging pipelines. A pipeline can be as long or as short as
it needs to be, allowing for maximum flexibility for users using different imaging systems
and analyzing features of seed, shoot, root, or other plant systems. Suggestions on how to
approach image analysis with PlantCV, in addition to specific tutorials, are available through
online documentation (http://plantcv.readthedocs.io/en/latest/analysis_approach/). Each
function has a debugging option to allow users to view and evaluate the output of a single
step and adjust parameters as necessary. A PlantCV pipeline is written by the user as a
Python script. Once a satisfactory pipeline script is developed, the PlantCV parallelization
script (‘plantcv-pipeline.py’) can be used to deploy the pipeline across a large set of image
data (Fig. 1A). The parallelization script also functions to manage data by consolidating
measurements and metadata into an SQLite database (Fig. 1B). In terms of speed, the user
is only limited by the complexity of the pipeline and the number of available processors.

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 3/23

PeerJ

Modular
Function
Library

Pipeline of
Modules

Parallelize
Pipelines

Measurement &
Metadata Database

o R

==] analysis_images

Figure 1 Diagram of the components of PlantCV. (A) PlantCV is an open-source, open-development
suite of image analysis tools. PlantCV contains a library of modular Python functions that can be assem-
bled into simple sequential or branching/merging processing pipelines. Image processing pipelines, which

process single images (possibly containing multiple plants), can be deployed over large image sets using

PlantCV parallelization, which outputs an SQLite database of both measurements and image/experimental

metadata. (B) Overview of the structure of the SQLite database.

Full-size @ DOI: 10.7717/peer;j.4088/fig-1

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088

4/23

Peer

The modular structure of the PlantCV package makes it easier for members of the
community to become contributors. Contributors to PlantCV submit bug reports, develop
new functions and unit tests, or extend existing functionality or documentation. Core
PlantCV developers do not filter additions of new functions in terms of perceived impact
or number of users but do check that new functions follow the PlantCV contribution guide
(see the sections on contributing in the online documentation). PlantCV contributors are
asked to follow the PEP8 Python style guide (https://www.python.org/dev/peps/pep-0008/).
Additions or revisions to the PlantCV code or documentation are submitted for review
using pull requests via GitHub. The pull request mechanism is essential to protect against
merge conflicts, which are sections of code that have been edited by multiple users in
potentially incompatible ways.

In PlantCV v2, several service integrations were added to automate common tasks during
pull requests and updates to the code repository. A continuous integration framework using
the Travis CI service (https://travis-ci.org/) was added so that software builds and unit
tests can be run automatically upon pull requests and other software updates. Continuous
integration provides a safeguard against code updates that break existing functionality by
providing a report that shows which tests passed or failed for each build (Wilson et al.,
2014). The effectiveness of continuous integration depends on having thorough unit test
coverage of the PlantCV code base. Unit test coverage of the PlantCV Python package is
monitored through the Coveralls service (https://coveralls.io/), which provides a report
on which parts of the code are covered by existing unit tests. In addition to the code, the
PlantCV documentation was enhanced to use a continuous documentation framework
using the Read the Docs service (https://readthedocs.org/), which allows documentation
to be updated automatically and versioned in parallel with updates to PlantCV. The
documentation was updated to cover all functions in the PlantCV library, tutorials on
building pipelines and using specialized tools (e.g., multi-plant analysis and machine
learning tools), a frequently asked questions section, and several guides such as installation,
Jupyter notebooks, and instructions for contributors.

Improved usability

PlantCV v1.0 required pipeline development to be done using the command line, where
debug mode is used to write intermediate image files to disk for each step. In command-line
mode, an entire pipeline script must be executed, even if only a single step is being evaluated.
To improve the pipeline and function development process in PlantCV v2, the debugging
system was updated to allow for seamless integration with the Juptyer Notebook system
(http://jupyter.org/; Kluyver et al., 2016). Jupyter compatibility allows users to immediately
visualize output and to iteratively rerun single steps in a multi-step PlantCV pipeline,
which makes parameters like thresholds or regions of interest much easier to adjust.
Once a pipeline is developed in Jupyter, it can then be converted into a Python script
that is compatible with PlantCV parallelization (see online documentation for detailed
instructions on conversion; http://plantcv.readthedocs.io/en/latest/jupyter/). Because of

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 5/23

Peer

the web-based interface and useful export options, Jupyter notebooks are also a convenient
method of sharing pipelines with collaborators, or in publications, and teaching others to
use PlantCV.

PlantCV was initially created to analyze data generated by the Bellwether Phenotyping
Facility at the Donald Danforth Plant Science Center. Several updates to PlantCV v2
addressed the need to increase the flexibility of PlantCV to analyze data from other
plant phenotyping systems. The PlantCV SQLite database schema was simplified so that
new tables do not need to be added for every new camera system (Fig. 1B). The full
database schema is available on GitHub (see ‘Materials and Methods’) and in PlantCV
documentation. New utilities were added to PlantCV v2 that allow data to be quickly and
efficiently exported from the SQLite database into text files that are compatible with R (R
Core Team, 2017) for further statistical analysis and data visualization.

Because standards for data collection and management for plant phenotyping data are
still being developed (Pauli et al., 2016), image metadata is often stored in a variety of
formats on different systems. A common approach is to include metadata within image
filenames, but because there is a lack of file naming standards, it can be difficult to robustly
capture this data automatically. In PlantCV v2, a new metadata processing system was
added to allow for flexibility in file naming both within and between experiments and
systems. The PlantCV metadata processing system is part of the parallelization tool and
works by using a user-provided template to process filenames. User-provided templates are
built using a restricted vocabulary so that metadata can be collected in a standardized way.
The vocabulary used can be easily updated to accommodate future community standards.

Performance

In PlantCV v1.0, image analysis parallelization was achieved using a Perl-based multi-
threading system that was not thread-safe, which occasionally resulted in issues with data
output that had to be manually corrected. Additionally, the use of the Python package
Matplotlib (Hunter, 2007) in PlantCV v1.0 limited the number of usable processors to
10-12. For PlantCV v2, the parallelization framework was completely rewritten in Python
using a multiprocessing framework, and the use of Matplotlib was updated to mitigate the
issues and processor constraints in v1.0. The output of image files mainly used to assess
image segmentation quality is now optional, which should generally increase computing
performance. Furthermore, to decentralize the computational resources needed for parallel
processing and prepare for future integration with high-throughput computing resources
that use file-in-file-out operations, results from PlantCV pipeline scripts (one per image)
are now written out to temporary files that are aggregated by the parallelization tool after
all image processing is complete.

New functionality

PlantCV v2 has added new functions for image white balancing, auto-thresholding, size
marker normalization, multi-plant detection, combined image processing, watershed
segmentation, landmarking, and a trainable naive Bayes classifier for image segmentation
(machine learning). The following are short descriptions and sample applications of new
PlantCV functions.

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 6/23

Peer

White balancing

If images are captured in a greenhouse, growth chamber, or other situation where light
intensity is variable, image segmentation based on global thresholding of image intensity
values can become variable. To help mitigate image inconsistencies that might impair the
ability to use a single global threshold and thus a single pipeline over a set of images, a
white balance function was developed. If a white color standard is visible within the image,
the user can specify a region of interest. If a specific area is not selected then the whole
image is used. Each channel of the image is scaled relative to the reference maximum.

Auto-thresholding functions

An alternative approach to using a fixed, global threshold for image segmentation is to use
an auto-thresholding technique that either automatically selects an optimal global threshold
value or introduces a variable threshold for different regions in an image. Triangle, Otsu,
mean, and Gaussian auto-thresholding functions were added to PlantCV to further improve
object detection when image light sources are variable. The ‘triangle_auto_threshold’
function implements the method developed by Zack, Rogers ¢ Latp (1977). The triangle
threshold method uses the histogram of pixel intensities to differentiate the target object
(plant) from background by generating a line from the peak pixel intensity (Duarte, 2015)
to the last pixel value and then finding the point (i.e., the threshold value) on the histogram
that maximizes distance to that line. In addition to producing the thresholded image in
debug mode, the ‘triangle_auto_threshold’ function outputs the calculated threshold value
and the histogram of pixel intensities that was used to calculate the threshold. In cases where
the auto-threshold value does not adequately separate the target object from background,
the threshold can be adjusted by modifying the stepwise input. Modifying the stepwise
input shifts the distance calculation along the x-axis, which subsequently calculates a new
threshold value to use.

The Otsu, mean, and Gaussian threshold functions in PlantCV are implemented using
the OpenCV library (Bradski, 2000). Otsu’s binarization (‘otsu_auto_threshold;’ (Ofsu,
1979)) is best implemented when a grayscale image histogram has two peaks since the Otsu
method selects a threshold value that minimizes the weighted within-class variance. In
other words, the Otsu method identifies the value between two peaks where the variances
of both classes are minimized. Mean and Gaussian thresholding are executed by indicating
the desired threshold type in the function ‘adaptive_threshold.” The mean and Gaussian
methods will produce a variable local threshold where the threshold value of a pixel
location depends on the intensities of neighboring pixels. For mean adaptive thresholding,
the threshold of a pixel location is calculated by the mean of surrounding pixel values;
for Gaussian adaptive thresholding, the threshold value of a pixel is the weighted sum
of neighborhood values using a Gaussian window (Gonzalez & Woods, 2002; Kaehler ¢
Bradski, 2016).

Gaussian blur

In addition to the ‘median_blur’ function included in PlantCV v1.0, we have added a
Gaussian blur smoothing function to reduce image noise and detail. Both the median and
Gaussian blur methods are implemented using the OpenCV library (Bradski, 2000) and

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 7123

Peer

are typically used to smooth a grayscale image or a binary image that has been previously
thresholded. Image blurring, while reducing detail, can help remove or reduce signal from
background noise (e.g., edges in imaging cabinets), generally with minimal impact on
larger structures of interest. Utilizing a rectangular neighborhood around a center pixel,
‘median_blur’ replaces each pixel in the neighborhood with the median value. Alternatively,
‘gaussian_blur’ determines the value of the central pixel by multiplying its and neighboring
pixel values by a normalized kernel and then averaging these weighted values (i.e., image
convolution) (Kaehler ¢» Bradski, 2016). The extent of image blurring can be modified by
increasing (for greater blur) or decreasing the kernel size (which takes only odd numbers;
commonly, 3 x 3) or by changing the standard deviation in the X and/or Y directions.

Size marker normalization

Images that are not collected from a consistent vantage point require one or more size
markers as references for absolute or relative scale. The size marker function allows users
to either detect a size marker within a user-defined region of interest or to select a specific
region of interest to use as the size marker. The pixel area of the marker is returned as a
value that can be used to normalize measurements to the same scale. For this module to
function correctly we assume that the size marker stays in frame, is unobstructed, and is
relatively consistent in position throughout a dataset, though some movement is allowed
as long as the marker remains within the defined marker region of interest.

Multi-plant detection

There is growing interest among the PlantCV user community to process images with
multiple plants grown in flats or trays, but PlantCV v1.0 was built to processes images
containing single plants. The major challenge with analyzing multiple plants in an image
is successfully identifying individual whole plants as distinct objects. Leaves or other plant
parts can sometimes be detected as distinct contours from the rest of the plant and need to
be grouped with other contours from the same plant to correctly form a single plant/target
object. While creating multiple regions of interest (ROI) to demarcate each area containing
an individual plant/target is an option, we developed two modules, ‘cluster_contours’ and
‘cluster_contours_split_img,” that allow contours to be clustered and then parsed into
multiple images without having to manually create multiple ROIs (Fig. 2).

The ‘cluster_contours’ function takes as input: an image, the contours that need to be
clustered, a number of rows, and a number of columns. Total image size is detected, and
the rows and columns create a grid to serve as approximate ROIs to cluster the contours
(Fig. 2A). The number of rows and columns approximate the desired size of the grid cells.
There does not need to be an object in each of the grid cells. Several functions were also
added to aid the clustering function. The ‘rotate_img’ and ‘shift_img’ functions allow the
image to be adjusted so objects are better aligned to a grid pattern.

After objects are clustered, the ‘cluster_contour_split_img’ function splits images into
the individual grid cells and outputs each as a new image so that there is a single clustered
object per image. If there is no clustered object in a grid cell, no image is outputted. With
the ‘cluster_contour_split_img’ function, a text file with genotype names can be included
to add them to image names. The ‘cluster_contour_split_img’ function also checks that

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 8/23

PeerJ

Figure 2 Analysis of images containing multiple plants. New functions have been added to
PlantCV v2 that enable individual plants from images containing multiple plants to be analyzed. The
‘cluster_contours’ function clusters contour objects using a flexible grid arrangement (approximate rows
and columns defined by a user). (A) An image produced by ‘cluster_contours’ in debug mode highlights
plants by their cluster group with unique colors on a sequential scale. The ‘cluster_contours_split_img’
function creates a new image for each cluster group. The resulting images of individual plants can be
processed by standard PlantCV methods. (B) The ‘cluster_contours_split_img’ function was used to split
the full image into individual plants. The shape of each plant was then analyzed with ‘analyze_objects” and
printed on a common image background.

Full-size Gl DOI: 10.7717/peer;j.4088/fig-2

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 9/23

Peer

there are the same number of names as objects. If there is a conflict in the number of
names and objects, a warning is printed and a correction is attempted. Alternatively, if
the file option is not used, all of the object groups are labeled by position. Once images
are split, they can be processed like single plant images using additional PlantCV tools
(Fig. 2B). See the online documentation for an example multi-plant imaging pipeline
(http://plantcv.readthedocs.io/en/latest/multi-plant_tutorial/).

The current method for multi-plant identification in PlantCV is flexible but relies
on a grid arrangement of plants, which is common for controlled-environment-grown
plants. Future releases of PlantCV may incorporate additional strategies for detection and
identification of plants, such as arrangement-independent K -means clustering approaches
(Minervini, Abdelsamea ¢ Tsaftaris, 2014).

Combined image processing

The Bellwether Phenotyping Facility has both RGB visible light (VIS) and near-infrared
(NIR) cameras, and images are captured ~1 min apart (Fahlgren et al., 2015). Compared
to VIS images, NIR images are grayscale with much less contrast between object and
background. It can be difficult to segment plant material from NIR images directly, even
with edge detection steps. Therefore, several functions were added to allow the plant binary
mask that results from VIS image processing pipelines to be resized and used as a mask
for NIR images. Combining VIS and NIR camera pipelines also has the added benefit of
decreasing the number of steps necessary to process images from both camera types, thus
increasing image processing throughput. The ‘get_nir’ function identifies the path of the
NIR image that matches VIS image. The ‘get_nir’ function requires that the image naming
scheme is consistent and that the matching image is in the same image directory. The
‘resize’ function then resizes the VIS plant mask in both the x and y directions to match
the size of the NIR image. Resizing values are determined by measuring the same reference
object in an example image taken from both VIS and NIR cameras (for example the width
of the pot or pot carrier in each image). The ‘crop_position_mask’ function is then used
to adjust the placement of the VIS mask over the NIR image and to crop/adjust the VIS
mask so it is the same size as the NIR image. It is assumed that the pot position changes
consistently between VIS and NIR image datasets. An example VIS/NIR dual pipeline to
follow can be accessed online (http://plantcv.readthedocs.io/en/latest/vis_nir_tutorial/).

Object count estimation with watershed segmentation

While segmentation and analysis of whole plants in images provides useful information
about plant size and growth, a more detailed understanding of plant growth and
development can be obtained by measuring individual plant organs. However, fully
automated segmentation of individual organs such as leaves remains a challenge, due to
issues such as occlusion (Scharr et al., 2016). Multiple methods for leaf segmentation have
been proposed (Scharr et al., 2016), and in PlantCV v2 we have implemented a watershed
segmentation approach. The ‘watershed_segmentation’ function can be used to estimate the
number of leaves for plants where leaves are distinctly separate from other plant structures
(e.g., A. thaliana leaves are separated by thin petioles; Fig. 3). The inputs required are an
image, an object mask, and a minimum distance to separate object peaks. The function

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 10/23

Peer/

Figure 3 Leaf segmentation by a distance-based watershed transformation. The watershed segmenta-
tion function can be used to segment and estimate the number of objects in an image. For the three exam-
ple images, the watershed segmentation function was used to estimate the number of leaves for Arabidop-
sis thaliana (estimated leaf count for top: 13, middle: 14, and bottom: eight). Images shown are the output
from the ‘watershed_segmentation’ function (A, C, E) and the segmented plants (B, D, F).

Full-size 4 DOT: 10.7717/peer;j.4088/fig-3

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 11/23

Peer

uses the input mask to calculate a Euclidean distance map (Liberti et al., 2014). Marker
peaks calculated from the distance map that meet the minimum distance setting are used in
a watershed segmentation algorithm (Van der Walt et al., 2014) to segment and count the
objects. Segmented objects are visualized in different colors, and the number of segmented
objects is reported (Fig. 3). An example of how the watershed segmentation method was
used to assess the effect of water deficit stress on the number of leaves of A. thaliana plants
can be found in Acosta-Gamboa et al. (2017).

Landmarking functions for morphometrics

To extend PlantCV beyond quantification of size-based morphometric features, we
developed several landmarking functions. Landmarks are generally geometric points
located along the contours of a shape that correspond to homologous biological features
that can be compared between subjects (Bookstein, 1991). Typical examples of landmarks
include eyes between human subjects or suture joins in a skull. For a growing plant, potential
landmarks include the tips of leaves and pedicel and branch angles. When specified a priori,
landmarks should be assigned to provide adequate coverage of the shape morphology across
a single dimensional plane (Bookstein, 1991). Additionally, the identification of landmark
points should be repeatable and reliable across subjects while not altering their topological
positions relative to other landmark positions (Bookstein, 1991). Type I landmarks provide
the strongest support for homology because they are defined by underlying biological
features, but it is problematic to assign Type I landmarks a priori when analyzing high-
throughput plant imagery. To address this, PlantCV v2 contains functions to identify
anatomical landmarks based upon the mathematical properties of object contours (Type
II) and non-anatomical pseudo-landmarks/semilandmarks (Type III), as well as functions
to rescale and analyze biologically relevant shape properties (Bookstein, 1991; Bookstein,
1997; Gunz, Mitteroecker ¢ Bookstein, 2005; Gunz ¢ Mitteroecker, 2013).

The ‘acute’ function identifies Type II landmarks by implementing a pseudo-landmark
identification algorithm that operates using a modified form of chain coding (Freeman,
1961). Unlike standard chain coding methods that attempt to capture the absolute shape
of a contour, the acute method operates by measuring the angle between a pixel coordinate
and two neighboring pixels on opposite sides of it that fall within a set distance, or window,
along the length of the contour. The two neighboring points are used to calculate an angle
score for the center pixel. When the angle score is calculated for each position along the
length of a contour, clusters of acute points can be identified, which can be segmented
out by applying an angle threshold. The middle position within each cluster of acute
points is then identified for use as a pseudo-landmark (Fig. 4A). The ability to subjectively
adjust the window size used for generating angle scores also helps to tailor analyses for
identifying points of interest that may differ in resolution. For example, an analysis of leaf
data might utilize a larger window size to identify the tips of lobes whereas smaller window
sizes would be able to capture more minute patterns such as individual leaf serrations.
Further segmentation can also be done using the average pixel values output (pt_vals)
for each pseudo-landmark, which estimates the mean pixel intensity within the convex
hull of each acute region based on the binary mask used in the analysis. The average pixel

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 12/23

Peer/

Landmarks
X-axis °
y-axis e e e
Centroid ®

Treatment
Dry
0.004{ = Wet

-0.04-

—0.08-

Average Y-distance to centroid o

15 20 25 30
Days after planting

Figure 4 Landmark-based analysis of plant shape in PlantCV. (A) Automatic identification of leaf
tip landmarks using the ‘acute’ and ‘acute_vertex’ functions (blue dots). (B) Geometrically homologous
semi/pseudo-landmarks across both the x- and y-axes. Semi/pseudo-landmarks identified by scanning the
x-axis are denoted by light blue (top side of the contour), brown (bottom side of the contour), and light
orange (centroid location of horizontal bins) dots. Semi/pseudo-landmarks identified by scanning the
y-axis are denoted by dark blue (left side of the contour), pink (right side of the contour), and dark orange
(centroid location of vertical bins) dots. The plant centroid is plotted larger in red. (C) A representation of
the rescaled plant landmarks identified in panel (A). White points correspond to the leaf tips. The orange
point is the location of the plant centroid. The blue point is the location of the plant centroid where the
plant emerges from the soil. Red lines are the vertical distance from leaf tip points relative to the plant
centroid. (D) Analysis of the average scaled vertical distance from each leaf tip to the centroid diverges in
response to water limitation.

Full-size &l DOI: 10.7717/peerj.4088/fig-4

value output allows for concave landmarks (e.g., leaf axils and grass ligules) and convex
landmarks (e.g., leaf tips and apices) on a contour to be differentiated in downstream
analyses. Additionally, PlantCV v2 includes the ‘acute_vertex’ function that uses the same
chain code-based pseudo-landmark identification algorithm used in the ‘acute’ function
except that it uses an adjustable local search space criteria to reduce the number of angle
calculations, which speeds up landmark identification.

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 13/23

Peer

For Type III landmarks, the ‘x_axis_pseudolandmarks’ and ‘y_axis_pseudolandmarks’
functions identify homologous points along a single dimension of an object (x-axis or
y-axis) based on equidistant point locations within an object contour. The plant object is
divided up into twenty equidistant bins, and the minimum and maximum extent of the
object along the axis and the centroid of the object within each bin is calculated. These
sixty points located along each axis possess the properties of semi/pseudo-landmark points
(an equal number of reference points that are approximately geometrically homologous
between subjects to be compared) that approximate the contour and shape of the object
(Fig. 4B). Such semi/pseudo-landmarking strategies have been utilized in cases where
traditional homologous landmark points are difficult to assign or poorly represent the
features of object shape (Bookstein, 1997; Gunz, Mitteroecker ¢» Bookstein, 2005; Gunz &
Mitteroecker, 2013).

Frequently, comparison of shape attributes requires rescaling of landmark points
to eliminate the influence of size on the relative position of landmark points. The
landmark functions in PlantCV output untransformed point values that can either be
directly input into morphometric programs in R (shapes (Dryden ¢ Mardia, 2016) or
morpho (Schlager, 2017)) or uniformly rescaled to a 0-1 coordinate system using the
PlantCV ‘scale_features’ function. The location of landmark points can be used to examine
multidimensional growth curves for a broad variety of study systems and tissue types and
can be used to compare properties of plant shape throughout development or in response
to differences in plant growth environment. An example of one such application is the
‘landmark_reference_pt_dist’ function. This function estimates the vertical, horizontal,
Euclidean distance, and angle of landmark points from two landmarks (centroid of the
plant object and centroid localized to the base of the plant). Preliminary evidence from
a water limitation experiment performed using a Setaria recombinant inbred population
indicates that vertical distance from rescaled leaf tip points identified by the ‘acute_vertex’
function to the centroid is decreased in response to water limitation and thus may provide
a proximity measurement of plant turgor pressure (Figs. 4C and 4D).

Two-class or multiclass naive Bayes classifier

Pixel-level segmentation of images into two or more classes is not always straightforward
using traditional image processing techniques. For example, two classes of features in an
image may be visually distinct but similar enough in color that simple thresholding

is not sufficient to separate the two groups. Furthermore, even with methods that
adjust for inconsistencies between images (e.g., white balancing and auto-thresholding
functions), inconsistent lighting conditions in a growth chamber, greenhouse, or field
can still make bulk processing of images with a single workflow difficult. Methods
that utilize machine learning techniques are a promising approach to tackle these and
other phenotyping challenges (Minervini, Abdelsamea ¢ Tsaftaris, 20145 Singh et al., 2016;
Ubbens ¢» Stavness, 2017; Atkinson et al., 2017; Pound et al., 2017). With PlantCV v2, we
have started to integrate machine learning methods to detect features of interest (e.g.,
the plant), starting with a naive Bayes classifier (Abbasi ¢ Fahlgren, 2016). The naive
Bayes classifier can be trained using two different approaches for two-class or multiclass

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 14/23

Peer

(two or more) segmentation problems. During the training phase using the ‘plantcv-
train.py’ script, pixel RGB values for each input class are converted to the hue, saturation
and value (HSV) color space. Kernel density estimation (KDE) is used to calculate

a probability density function (PDF) from a vector of values for each HSV channel
from each class. The output PDFs are used to parameterize the naive Bayes classifier
function (‘naive_bayes_classifier’), which can be used to replace the thresholding steps in
a PlantCV pipeline. The ‘naive_bayes_classifer’ function uses these PDFs to calculate the
probability (using Bayes’ theorem) that a given pixel is in each class. The output of the
‘naive_bayes_classifier’ is a binary image for each class where the pixels are white if the
probability the pixel was in the given class was highest of all classes and is black otherwise. A
tutorial of how to implement naive Bayes plant detection into an image processing pipeline
is online (http://plantcv.readthedocs.io/en/latest/machine_learning_tutorial/).

For the two-class approach, the training dataset includes color images and corresponding
binary masks where the background is black and the foreground (plant or other target
object) is white. PlantCV can be used to generate binary masks for the training set using the
standard image processing methods and the new ‘output_mask’ function. It is important
for the training dataset to be representative of the larger dataset. For example, if there
are large fluctuations in light intensity throughout the day or plant color throughout the
experiment, the training dataset should try to cover the range of variation. A random
sample of 10% of the foreground pixels and the same number background pixels are used
to build the PDFs.

To assess how well the two-class naive Bayes method identifies plant material in
comparison to thresholding methods, we reanalyzed Setaria images (Fahlgren et al., 2015)
using the naive Bayes classifier and compared the pixel area output to pipelines that utilize
thresholding steps (Fig. 5). We used 99 training images (14 top view and 85 side view
images) from a total of 6,473 images. We found that the plant pixel area calculated by naive
Bayes was highly correlated with that calculated from pipelines that use thresholding for
both side-view images (R* = 0.99; Fig. 5A) and top-view images (R*> = 0.96; Fig. 5B). Naive
Bayes segmentation enabled use of pipelines that were both simpler (fewer steps) and more
flexible: five new scripts were sufficient for processing the dataset (five categories of photo
data), whereas nine threshold-based pipeline scripts had previously been required.

The multiclass naive Bayes approach requires a tab-delimited table for training where
each column is a class (minimum two) and each cell is a comma-separated list of RGB
pixel values from the column class. We currently use the Pixel Inspection Tool in Image]
(Schneider, Rasband ¢ Eliceiri, 2012) to collect samples of pixel RGB values used to generate
the training text file. As noted above for the two-class approach, it is important to adequately
capture the variation in the image dataset for each class when generating the training text
file to improve pixel classification. If images are consistent, only one image needs to
be sampled for generating the training table; however, if they vary, several images may
be needed. For complex backgrounds (or non-targeted objects), several classes may be
required to capture all of the variation. Once the training table is generated, it is input
into the ‘plantcv-train.py’ script to generate PDFs for each class. As an example, we used
images of wheat leaves infected with wheat rust to collect pixel samples from four classes:

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 15/23

PeerJ

Genotype: @ S. viridis (A10) @ S. italica (B100)

“A

y = 1460 + 0.95x
R?=10.99

PlantCV (naive Bayes) projected leaf area (10° px)

0 1 2 3 4
PlantCV projected leaf area (10° px)

1zB

y = 9787 + 1.1x

01 Re=0.96

PlantCV (naive Bayes) projected leaf area (10° px)

0 [} []

0 2 4 6 8 10 12
PlantCV projected leaf area (105 px)

Figure 5 Plant segmentation using a naive Bayes classifier. Correlation between plant area in pixels (px)
detected using thresholding pipelines (Fahlgren et al., 2015) on the x-axis compared to plant area detected
using a trained naive Bayes classifier on the y-axis. (A) Side-view images. (B) Top-view images.

Full-size G DOI: 10.7717/peer;j.4088/fig-5

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 16/23

Peer

> 0.35,
‘B
[
[0
a
P
E
[ay]
o)
)
o 0
0 180 360
Hue (degrees)
2 0.05;
2]
[
[0
a
P \
E
[ay]
o)
° A
o o0
Saturatlon percent)
2> 0.024
‘D
C
[0
a
=
z
]
o)
2
o —y
O0 50 100
Value (percent)
—Plant —Chlorosis
Pustule —Background

Figure 6 Simultaneous segmentation of four feature groups using the naive Bayes classifier. An exam-
ple of the naive Bayes classifier used to assign pixels into four classes: background, unaffected plant tissue,
chlorotic tissue, and wheat stem rust pustules. (A) Probability density functions (PDFs) from the ‘plantcv-
train.py’ script that show hue, saturation, and value color channel distributions of four classes estimated
from training data. (B) Example of a classified image. Photo credit: Katie Liberatore and Shahryar Kia-
nian. (C) Example of a merged pseudocolored image with pixels classified by the ‘naive_bayes_classifier’ as
background (black), unaffected leaf tissue (green), chlorotic leaf tissue (blue), and pustules (red).

Full-size Gal DOI: 10.7717/peerj.4088/fig-6

non-plant background, unaffected leaf tissue, rust pustule, and chlorotic leaf tissue, and
then used the naive Bayes classifier to segment the images into each class simultaneously
(Fig. 6). This method can likely be used for a variety of applications, such as identifying a
plant under variable lighting conditions or quantifying specific areas of stress on a plant.

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 17/23

Peer

In summary, the naive Bayes classifier offers several advantages over threshold-based
segmentation: (1) two or more classes can be segmented simultaneously; (2) probabilistic
segmentation can be more robust across images than fixed thresholds; and (3) classifier-
based segmentation replaces multiple steps in threshold-based pipelines, reducing pipeline
complexity.

CONCLUSIONS

The field of digital plant phenotyping is at an exciting stage of development where it

is beginning to shift from a bottleneck to one that will have a positive impact on plant
research, especially in agriculture. The Plant Image Analysis database currently lists over
150 tools that can be used for plant phenotyping (http://www.plant-image-analysis.org/;
Lobet, Draye & Périlleux, 2013). Despite the abundance of software packages, long-term
sustainability of individual projects may become an issue due to the lack of incentives for
maintaining bioinformatics software developed in academia (Lobet, 2017). In a survey of
corresponding authors of plant image analysis tools by Lobet, 60% either said the tool was
no longer being maintained or did not respond (Lobet, 2017). To develop PlantCV as a
sustainable project we have adopted an open, community-based development framework
using GitHub as a central service for the organization of developer activities and the
dissemination of information to users. We encourage contribution to the project by posting
bug reports and issues, developing or revising analysis methods, adding or updating unit
tests, writing documentation, and posting ideas for new features. We aim to periodically
publish updates, such as the work presented here, to highlight the work of contributors to
the PlantCV project.

There are several areas where we envision future PlantCV development. Standards
and interoperability: Improved interoperability of PlantCV with data providers and
downstream analysis tools will require adoption of community-based standards for data
and metadata (e.g., Minimum Information About a Plant Phenotyping Experiment;
Cwiek Kupczyriska et al., 2016). Improved interoperability will make it easier to develop
standardized tools for statistical analysis of image processing results, both within the
PlantCV project or with tools from other projects. New data sources: Handling and
analysis of data from specialized cameras that measure three-dimensional structure or
hyperspectral reflectance will require development or integration of additional methods
into PlantCV. Machine learning: Our goal is to develop additional tools for machine
learning and collection of training data. In some cases, where these methods can be
implemented in a modular and reusable framework, they can be integrated directly into
PlantCV. In other cases, PlantCV can be combined with new and existing tools. A recent
example of this latter approach built on PlantCV, using its image preprocessing and
segmentation functions alongside a modular framework for building convolutional neural
networks (Ubbens & Stavness, 2017). As noted throughout, we see great potential for
modular tools such as PlantCV and we welcome community feedback.

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 18/23

Peer

ACKNOWLEDGEMENTS

We would like to thank Melinda Darnell, Leonardo Chavez, Kevin Reilly, and the staff
of both the Danforth Center Facilities and Support Services group and the Plant Growth
Facility for careful maintenance of the Danforth Center phenotyping facilities. We thank
Katie Liberatore and Shahryar Kianian for images of wheat (Triticum aestivum L.). We
would also like to thank all of the other people who have given us input on the PlantCV
project in person or on GitHub.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Donald Danforth Plant Science Center, the US National
Science Foundation (ITA-1430427, 11A-1430428, 11A-1355406, 10S-1202682, MCB-
1330562, and DBI-1156581), the US Department of Energy (DE-AR0000594, DE-
SC0014395), and the US Department of Agriculture (MOW-2012-01361 and 2016-67009-
25639). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Donald Danforth Plant Science Center.

US National Science Foundation: I11A-1430427, 11A-1430428, ITIA-1355406, 10S-1202682,
MCB-1330562, DBI-1156581.

US Department of Energy: DE-AR0000594, DE-SC0014395.

US Department of Agriculture: MOW-2012-01361, 2016-67009-25639.

Competing Interests

Malia A. Gehan, Noah Fahlgren, Arash Abbasi, Jeffrey C. Berry, Steven T. Callen, Leonardo
Chavez, Max J. Feldman, Kerrigan B. Gilbert, Steen Hoyer, Andy Lin, César Lizarraga,
Michael Miller and Monica Tessman contributed to the research described while working
at the Donald Danforth Plant Science Center, a 501(c)(3) nonprofit research institute.
Suxing Liu and Argelia Lorence contributed to the research described while working at the
University of Arkansas. John G. Hodge and Andrew N. Doust contributed to the research
described while working at the University of Oklahoma. Eric Platon contributed to the
research described while working as a founder and employee of Cosmos X. Tony Sax
contributed to the research described while a full-time student at the Missouri University
of Science and Technology.

Author Contributions

e Malia A. Gehan, Noah Fahlgren and Max J. Feldman conceived and designed
the experiments, performed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,
reviewed drafts of the paper.

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 19/23

Peer

e Arash Abbasi, Andrew N. Doust and John G. Hodge contributed reagents/materials/-
analysis tools, wrote the paper, reviewed drafts of the paper.

e Jeffrey C. Berry, Leonardo Chavez, Andy Lin, César Lizarraga, Michael Miller, Eric
Platon, Monica Tessman and Tony Sax contributed reagents/materials/analysis tools,
reviewed drafts of the paper.

e Steven T. Callen analyzed the data, contributed reagents/materials/analysis tools, wrote
the paper, reviewed drafts of the paper.

e Kerrigan B. Gilbert prepared figures and/or tables, reviewed drafts of the paper.

e J. Steen Hoyer performed the experiments, contributed reagents/materials/analysis tools,
wrote the paper, reviewed drafts of the paper.

e Suxing Liu and Argelia Lorence conceived and designed the experiments, contributed
reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

PlantCV is available on GitHub at https://github.com/danforthcenter/plantcv. PlantCV
v2.1 is archived on Zenodo at https://doi.org/10.5281/zenodo.1035894. Scripts used for
image and statistical analysis are available on GitHub at https://github.com/danforthcenter/
plantcv-v2-paper.

REFERENCES

Abbasi A, Fahlgren N. 2016. Naive Bayes pixel-level plant segmentation. In: 2016
IEEE western New York image and signal processing workshop (WNYISPW). 1-4
DOI 10.1109/WNYIPW.2016.7904790.

Acosta-Gamboa LM, Liu S, Langley E, Campbell Z, Castro-Guerrero N, Mendoza-
Cozatl D, Lorence A. 2017. Moderate to severe water limitation differentially affects
the phenome and ionome of Arabidopsis. Functional Plant Biology 44:94-106
DOI 10.1071/FP16172.

Atkinson JA, Lobet G, Noll M, Meyer PE, Griffiths M, Wells DM. 2017. Combining
semi-automated image analysis techniques with machine learning algorithms to ac-
celerate large scale genetic studies. GigaScience 6:1-7 DOI 10.1093/gigascience/gix084.

Bookstein FL. 1991. Morphometric tools for landmark data. New York: Cambridge
University Press.

Bookstein FL. 1997. Morphometric tools for landmark data: geometry and biology. New
York: Cambridge University Press.

Bradski G. 2000. The opencv library. Doctor Dobbs Journal 25:120-126.

Cwiek Kupczyniska H, Altmann T, Arend D, Arnaud E, Chen D, Cornut G, Fiorani F,
Frohmberg W, Junker A, Klukas C, Lange M, Mazurek C, Nafissi A, Neveu P, Van
Oeveren J, Pommier C, Poorter H, Rocca-Serra P, Sansone S-A, Scholz U, Van
Schriek M, Seren U, Usadel B, Weise S, Kersey P, Krajewski P. 2016. Measures
for interoperability of phenotypic data: minimum information requirements and
formatting. Plant Methods 12:Article 44 DOI 10.1186/s13007-016-0144-4.

Gehan et al. (2017), PeerdJ, DOI 10.7717/peerj.4088 20/23

Peer

Dryden IL, Mardia KV. 2016. Statistical shape analysis: with applications in R. Hoboken:
John Wiley & Sons.

Duarte M. 2015. Notes on scientific computing for biomechanics and motor control.
GitHub repository. Available at https:// github.com/ demotu/BMC.

Dudley JT, Butte AJ. 2009. A quick guide for developing effective bioinformatics
programming skills. PLOS Computational Biology 5:e1000589
DOI 10.1371/journal.pcbi.1000589.

Fahlgren N, Feldman M, Gehan MA, Wilson MS, Shyu C, Bryant DW, Hill ST, McEntee
CJ, Warnasooriya SN, Kumar I, Ficor T, Turnipseed S, Gilbert KB, Brutnell TP,
Carrington JC, Mockler TC, Baxter I. 2015. A versatile phenotyping system and
analytics platform reveals diverse temporal responses to water availability in Setaria.
Molecular Plant 8:1520-1535 DOI 10.1016/j.molp.2015.06.005.

Fahlgren N, Gehan MA, Baxter I. 2015. Lights, camera, action: high-throughput plant
phenotyping is ready for a close-up. Current Opinion in Plant Biology 24:93—99
DOI 10.1016/j.pbi.2015.02.006.

Feldman M]J, Paul RE, Banan D, Barrett JF, Sebastian J, Yee M-C, Jiang H, Lipka AE,
Brutnell TP, Dinneny JR, Leakey ADB, Baxter I. 2017. Time dependent genetic
analysis links field and controlled environment phenotypes in the model C4 grass
Setaria. PLOS Genetics 13:1006841 DOI 10.1371/journal.pgen.1006841.

Freeman H. 1961. On the encoding of arbitrary geometric configurations. IRE Transac-
tions on Electronic Computers EC-10:260-268 DOI 10.1109/TEC.1961.5219197.

Furbank RT, Tester M. 2011. Phenomics—technologies to relieve the phenotyping
bottleneck. Trends in Plant Science 16:635—-644 DOI 10.1016/j.tplants.2011.09.005.

Gonzalez RC, Woods RE. 2002. Digital image processing. Upper Saddle River: Prentice
Hall.

Gunz P, Mitteroecker P. 2013. Semilandmarks: a method for quantifying curves and
surfaces. Hystrix 24:103—-109 DOI 10.4404/hystrix-24.1-6292.

Gunz P, Mitteroecker P, Bookstein FL. 2005. Semilandmarks in three dimensions. In:
Modern morphometrics in physical anthropology. Developments in primatology: progress
and prospects. Boston: Springer, 73-98.

Hunter JD. 2007. Matplotlib: A 2D graphics environment. Computing in Science &
Engineering 9:90-95 DOI 10.1109/MCSE.2007.55.

Jones E, Oliphant T, Peterson P. 2014. SciPy: open source scientific tools for Python.
Available at http://www.scipy.org/.

Kaehler A, Bradski G. 2016. Learning OpenCV 3: computer vision in C++ with the
OpenCV library. Sebastopol: O’Reilly Media.

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K,
Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C, Jupyter De-
velopment Team. 2016. Jupyter Notebooks—a publishing format for reproducible
computational workflows. In: Loizides F, Schmidt B, eds. Positioning and power in
academic publishing: players, agents and agendas: proceedings of the 20th international
conference on electronic publishing. Amsterdam: IOS Press, 87-90.

Gehan et al. (2017), PeerdJ, DOI 10.7717/peerj.4088 21/23

Peer

Liberti L, Lavor C, Maculan N, Mucherino A. 2014. Euclidean distance geometry and
applications. SIAM Review 56:3—69 DOI 10.1137/120875909.

Lobet G. 2017. Image analysis in plant sciences: publish then perish. Trends in Plant
Science 22:559-566 DOI 10.1016/j.tplants.2017.05.002.

Lobet G, Draye X, Périlleux C. 2013. An online database for plant image analysis
software tools. Plant Methods 9:Article 38 DOI 10.1186/1746-4811-9-38.

Mangalam H. 2002. The Bio* toolkits—a brief overview. Briefings in Bioinformatics
3:296-302 DOI 10.1093/bib/3.3.296.

McKinney W. 2010. Data structures for statistical computing in python. In: Proceedings
of the 9th Python in Science Conference. SciPy Austin, TX, 51-56.

Millman KJ, Aivazis M. 2011. Python for scientists and engineers. Computing in Science
& Engineering 13:9—-12 DOI 10.1109/MCSE.2011.36.

Minervini M, Abdelsamea MM, Tsaftaris SA. 2014. Image-based plant phenotyping
with incremental learning and active contours. Ecological Informatics 23:35-48
DOI 10.1016/j.ecoinf.2013.07.004.

Oliphant TE. 2007. Python for scientific computing. Computing in Science ¢ Engineering
9:10-20 DOI 10.1109/MCSE.2007.58.

Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transac-
tions on Systems, Man, and Cybernetics 9:62—66 DOI 10.1109/TSMC.1979.4310076.

Pauli D, Chapman SC, Bart R, Topp CN, Lawrence-Dill CJ, Poland J, Gore MA. 2016.
The quest for understanding phenotypic variation via integrated approaches in the
field environment. Plant Physiology 172:622—634 DOT 10.1104/pp.16.00592.

Perez-Riverol Y, Gatto L, Wang R, Sachsenberg T, Uszkoreit J, Leprevost Fda V,
Fufezan C, Ternent T, Eglen SJ, Katz DS, Pollard TJ, Konovalov A, Flight RM,
Blin K, Vizcaino JA. 2016. Ten simple rules for taking advantage of Git and GitHub.
PLOS Computational Biology 12:€1004947 DOI 10.1371/journal.pcbi.1004947.

Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat
A, Tzimiropoulos G, Wells DM, Murchie EH, Pridmore TP, French AP. 2017.
Deep machine learning provides state-of-the-art performance in image-based plant
phenotyping. GigaScience 6:1-10 DOI 10.1093/gigascience/gix083.

Scharr H, Minervini M, French AP, Klukas C, Kramer DM, Liu X, Luengo I, Pape
J-M, Polder G, Vukadinovic D, Yin X, Tsaftaris SA. 2016. Leaf segmentation in
plant phenotyping: a collation study. Machine Vision and Applications 27:585-606
DOI 10.1007/s00138-015-0737-3.

Schlager S. 2017. Morpho and Rvcg—shape analysis in R. In: Zheng G, Li S, Szekely G,
eds. Statistical shape and deformation analysis. San Diego: Academic Press, 217-256.

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to Image]: 25 years of image
analysis. Nature Methods 9:671-675 DOI 10.1038/nmeth.2089.

Singh A, Ganapathysubramanian B, Singh AK, Sarkar S. 2016. Machine learning for
high-throughput stress phenotyping in plants. Trends in Plant Science 21:110-124
DOI 10.1016/j.tplants.2015.10.015.

R Core Team. 2017. R: a language and environment for statistical computing. Vienna: the
R Foundation for Statistical Computing. Available at hitps:// www.R-project.org/.

Gehan et al. (2017), PeerdJ, DOI 10.7717/peerj.4088 22/23

Peer

RStudio Team. 2016. RStudio: integrated development environment for R. Boston:
RStudio, Inc. Available at https:// www.rstudio.com/ products/rstudio/ .

Tovar J, Hoyer JS, Lin A, Tielking A, Callen S, Castillo E, Miller M, Tessman M,
Fahlgren N, Carrington J, Nusinow D, Gehan MA. 2017. Raspberry Pi powered
imaging for plant phenotyping. BioRxiv DOI 10.1101/183822.

Ubbens JR, Stavness I. 2017. Deep plant phenomics: a deep learning platform for
complex plant phenotyping tasks. Frontiers in Plant Science 8:Article 1190
DOI 10.3389/1pls.2017.01190.

Van der Walt S, Colbert SC, Varoquaux G. 2011. The NumPy array: a structure for
efficient numerical computation. Computing in Science & Engineering 13:22-30
DOI 10.1109/MCSE.2011.37.

Van der Walt S, Schonberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N,
Gouillart E, Yu T, scikit-image contributors. 2014. scikit-image: image processing
in Python. Peer] 2:e453 DOI 10.7717/peerj.453.

Wickham H. 2009. ggplot2: elegant graphics for data analysis. New York: Springer.

Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, Haddock
SHD, Huff KD, Mitchell IM, Plumbley MD, Waugh B, White EP, Wilson
P. 2014. Best practices for scientific computing. PLOS Biology 12:1001745
DOI 10.1371/journal.pbio.1001745.

Zack GW, Rogers WE, Latp SA. 1977. Automatic measurement of sister chromatid
exchange frequency. Journal of Histochemistry and Cytochemistry 25:741-753
DOI 10.1177/25.7.70454.

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 23/23

