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ABSTRACT

Systems for collecting image data in conjunction with computer vision techniques are

a powerful tool for increasing the temporal resolution at which plant phenotypes can

be measured non-destructively. Computational tools that are flexible and extendable

are needed to address the diversity of plant phenotyping problems. We previously

described the Plant Computer Vision (PlantCV) software package, which is an image

processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to

develop a set of modular, reusable, and repurposable tools for plant image analysis

that are open-source and community-developed. Here we present the details and

rationale for major developments in the second major release of PlantCV. In addition

to overall improvements in the organization of the PlantCV project, new functionality

includes a set of new image processing and normalization tools, support for analyzing

images that include multiple plants, leaf segmentation, landmark identification tools

for morphometrics, and modules for machine learning.
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Mining and Machine Learning
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INTRODUCTION

All approaches for improving crops eventually requiremeasurement of traits (phenotyping)

(Fahlgren, Gehan & Baxter, 2015). However, manual plant measurements are time-

consuming and often require destruction of plant materials in the process, which prevents

measurement of traits for a single plant through time. Consequently, plant phenotyping is

widely recognized as a major bottleneck in crop improvement (Furbank & Tester, 2011).
Targeted plant phenotypes can range from measurement of gene expression, to flowering

time, to grain yield; therefore, the software and hardware tools used are often diverse.

Here, we focus on the software tools required to nondestructively measure plant traits

through images. This is a challenging area of research because the visual definition of

phenotypes vary depending on the target species. For example, identification of petals can

be used to measure flowering time, but petal color can vary by species. Therefore, software

tools needed to process high-throughput image data need to be flexible and amenable to

community input.

The term ‘high-throughput’ is relative to the difficulty to collect the measurement. The

scale thatmight be considered high-throughput for root phenotypingmight not be the same

for shoot phenotyping, which can be technically easier to collect depending on the trait and

species. Here we define high-throughput as thousands or hundreds of thousands of images

per dataset. PlantCV is an open-source, open-development suite of analysis tools capable of

analyzing high-throughput image-based phenotyping data (Fahlgren et al., 2015). Version
1.0 of PlantCV (PlantCV v1.0) was released in 2015 alongside the introduction of the

Bellwether Phenotyping Facility at the Donald Danforth Plant Science Center (Fahlgren et
al., 2015). PlantCV v1.0 was envisioned as a base suite of tools that the community could

build upon, which lead to several design decisions aimed at encouraging participation.

First, GitHub was used as a platform to organize the community by integrating version

control, code distribution, documentation, issue tracking, and communication between

users and contributors (Perez-Riverol et al., 2016). Second, PlantCV was written in Python,

a high-level language widely used for both teaching and bioinformatics (Mangalam,
2002; Dudley & Butte, 2009), to facilitate contribution from both biologists and computer

scientists. Additionally, the use of Python allows extension of PlantCV with the many tools

available from the Python scientific computing community (Oliphant, 2007; Millman &
Aivazis, 2011). Third, a focus on modular development fosters code reuse and makes it

easier to integrate PlantCV with new or existing systems. Finally, the use of a permissive,

open-source license (MIT) allows PlantCV to be used, reused, or repurposed with limited

restrictions, for both academic and proprietary applications. The focus of the paper

associated with the original release of PlantCV v1.0 (Fahlgren et al., 2015) was not the
structure and function of PlantCV for image analysis, but rather an example of the type

of biological question that can be answered with high-throughput phenotyping hardware

and software platforms. Since the release of PlantCV v1.0 major improvements have been

made to increase the flexibility, usability, and functionality of PlantCV, while maintaining

all of the functionality in v1.0. Here we document the structure of PlantCV v2 along with

examples that demonstrate new functionality.
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MATERIALS & METHODS

The latest version or a specific release of PlantCV can be cloned from GitHub. The

release for this paper is v2.1. Scripts, notebooks, SQL schema, and simple input data

associated with the figures and results presented in this paper are available on GitHub at

https://github.com/danforthcenter/plantcv-v2-paper. Project-specific GitHub repositories

are kept separate from the PlantCV software repository because their purpose is to make

project-specific analyses available for reproducibility, while the main PlantCV software

repository contains general purpose image analysis modules, utilities, and documentation.

Images of Arabidopsis thaliana were captured with a Raspberry Pi computer and

camera in a Conviron growth chamber. Additional details about the imaging set-up

are provided in a companion paper (Tovar et al., 2017). Images of Setaria viridis (A10)
and Setaria italica (B100) are from publicly available datasets that are available at

http://plantcv.danforthcenter.org/pages/data.html (Fahlgren et al., 2015; Feldman et al.,
2017). Images of wheat (Triticum aestivum L.) infected with wheat stem rust (Puccinia
graminis f. sp. tritici) were acquired with a flatbed scanner.

Image analysis was done in PlantCVusing Python v2.7.5, OpenCV v2.4.5 (Bradski, 2000),
NumPy v1.12.1 (Van der Walt, Colbert & Varoquaux, 2011), Matplotlib v2.0.2 (Hunter,
2007), SciPy v0.19.0 (Jones, Oliphant & Peterson, 2014), Pandas v0.20.1 (McKinney, 2010),
scikit-image v0.13.0 (Van der Walt et al., 2014), and Jupyter Notebook v4.2.1 (Kluyver et
al., 2016). Statistical analysis and data visualization was done using R v3.3 (R Core Team,
2017) and RStudio v1.0 (RStudio Team, 2016). Graphs were produced using Matplotlib

v2.0.2 (Hunter, 2007) and ggplot2 v2.2.1 (Wickham, 2009).

RESULTS AND DISCUSSION

The following are details on improvements to the structure, usability, and functionality of

PlantCV since the v1.0 release. Further documentation for using PlantCV can be found at

the project website (http://plantcv.danforthcenter.org/).

Organization of the PlantCV project

PlantCV is a collection of modular Python functions, which are reusable units of Python

code with defined inputs and outputs (Fig. 1A). PlantCV functions can be assembled into

simple sequential or branching/merging pipelines. A pipeline can be as long or as short as

it needs to be, allowing for maximum flexibility for users using different imaging systems

and analyzing features of seed, shoot, root, or other plant systems. Suggestions on how to

approach image analysis with PlantCV, in addition to specific tutorials, are available through

online documentation (http://plantcv.readthedocs.io/en/latest/analysis_approach/). Each

function has a debugging option to allow users to view and evaluate the output of a single

step and adjust parameters as necessary. A PlantCV pipeline is written by the user as a

Python script. Once a satisfactory pipeline script is developed, the PlantCV parallelization

script (‘plantcv-pipeline.py’) can be used to deploy the pipeline across a large set of image

data (Fig. 1A). The parallelization script also functions to manage data by consolidating

measurements and metadata into an SQLite database (Fig. 1B). In terms of speed, the user

is only limited by the complexity of the pipeline and the number of available processors.
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The modular structure of the PlantCV package makes it easier for members of the

community to become contributors. Contributors to PlantCV submit bug reports, develop

new functions and unit tests, or extend existing functionality or documentation. Core

PlantCV developers do not filter additions of new functions in terms of perceived impact

or number of users but do check that new functions follow the PlantCV contribution guide

(see the sections on contributing in the online documentation). PlantCV contributors are

asked to follow the PEP8Python style guide (https://www.python.org/dev/peps/pep-0008/).

Additions or revisions to the PlantCV code or documentation are submitted for review

using pull requests via GitHub. The pull request mechanism is essential to protect against

merge conflicts, which are sections of code that have been edited by multiple users in

potentially incompatible ways.

In PlantCV v2, several service integrations were added to automate common tasks during

pull requests and updates to the code repository. A continuous integration framework using

the Travis CI service (https://travis-ci.org/) was added so that software builds and unit

tests can be run automatically upon pull requests and other software updates. Continuous

integration provides a safeguard against code updates that break existing functionality by

providing a report that shows which tests passed or failed for each build (Wilson et al.,
2014). The effectiveness of continuous integration depends on having thorough unit test

coverage of the PlantCV code base. Unit test coverage of the PlantCV Python package is

monitored through the Coveralls service (https://coveralls.io/), which provides a report

on which parts of the code are covered by existing unit tests. In addition to the code, the

PlantCV documentation was enhanced to use a continuous documentation framework

using the Read the Docs service (https://readthedocs.org/), which allows documentation

to be updated automatically and versioned in parallel with updates to PlantCV. The

documentation was updated to cover all functions in the PlantCV library, tutorials on

building pipelines and using specialized tools (e.g., multi-plant analysis and machine

learning tools), a frequently asked questions section, and several guides such as installation,

Jupyter notebooks, and instructions for contributors.

Improved usability

PlantCV v1.0 required pipeline development to be done using the command line, where

debugmode is used to write intermediate image files to disk for each step. In command-line

mode, an entire pipeline scriptmust be executed, even if only a single step is being evaluated.

To improve the pipeline and function development process in PlantCV v2, the debugging

system was updated to allow for seamless integration with the Juptyer Notebook system

(http://jupyter.org/; Kluyver et al., 2016). Jupyter compatibility allows users to immediately

visualize output and to iteratively rerun single steps in a multi-step PlantCV pipeline,

which makes parameters like thresholds or regions of interest much easier to adjust.

Once a pipeline is developed in Jupyter, it can then be converted into a Python script

that is compatible with PlantCV parallelization (see online documentation for detailed

instructions on conversion; http://plantcv.readthedocs.io/en/latest/jupyter/). Because of
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the web-based interface and useful export options, Jupyter notebooks are also a convenient

method of sharing pipelines with collaborators, or in publications, and teaching others to

use PlantCV.

PlantCV was initially created to analyze data generated by the Bellwether Phenotyping

Facility at the Donald Danforth Plant Science Center. Several updates to PlantCV v2

addressed the need to increase the flexibility of PlantCV to analyze data from other

plant phenotyping systems. The PlantCV SQLite database schema was simplified so that

new tables do not need to be added for every new camera system (Fig. 1B). The full

database schema is available on GitHub (see ‘Materials and Methods’) and in PlantCV

documentation. New utilities were added to PlantCV v2 that allow data to be quickly and

efficiently exported from the SQLite database into text files that are compatible with R (R
Core Team, 2017) for further statistical analysis and data visualization.

Because standards for data collection and management for plant phenotyping data are

still being developed (Pauli et al., 2016), image metadata is often stored in a variety of

formats on different systems. A common approach is to include metadata within image

filenames, but because there is a lack of file naming standards, it can be difficult to robustly

capture this data automatically. In PlantCV v2, a new metadata processing system was

added to allow for flexibility in file naming both within and between experiments and

systems. The PlantCV metadata processing system is part of the parallelization tool and

works by using a user-provided template to process filenames. User-provided templates are

built using a restricted vocabulary so that metadata can be collected in a standardized way.

The vocabulary used can be easily updated to accommodate future community standards.

Performance

In PlantCV v1.0, image analysis parallelization was achieved using a Perl-based multi-

threading system that was not thread-safe, which occasionally resulted in issues with data

output that had to be manually corrected. Additionally, the use of the Python package

Matplotlib (Hunter, 2007) in PlantCV v1.0 limited the number of usable processors to

10–12. For PlantCV v2, the parallelization framework was completely rewritten in Python

using a multiprocessing framework, and the use of Matplotlib was updated to mitigate the

issues and processor constraints in v1.0. The output of image files mainly used to assess

image segmentation quality is now optional, which should generally increase computing

performance. Furthermore, to decentralize the computational resources needed for parallel

processing and prepare for future integration with high-throughput computing resources

that use file-in-file-out operations, results from PlantCV pipeline scripts (one per image)

are now written out to temporary files that are aggregated by the parallelization tool after

all image processing is complete.

New functionality

PlantCV v2 has added new functions for image white balancing, auto-thresholding, size

marker normalization, multi-plant detection, combined image processing, watershed

segmentation, landmarking, and a trainable naive Bayes classifier for image segmentation

(machine learning). The following are short descriptions and sample applications of new

PlantCV functions.
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White balancing

If images are captured in a greenhouse, growth chamber, or other situation where light

intensity is variable, image segmentation based on global thresholding of image intensity

values can become variable. To help mitigate image inconsistencies that might impair the

ability to use a single global threshold and thus a single pipeline over a set of images, a

white balance function was developed. If a white color standard is visible within the image,

the user can specify a region of interest. If a specific area is not selected then the whole

image is used. Each channel of the image is scaled relative to the reference maximum.

Auto-thresholding functions

An alternative approach to using a fixed, global threshold for image segmentation is to use

an auto-thresholding technique that either automatically selects an optimal global threshold

value or introduces a variable threshold for different regions in an image. Triangle, Otsu,

mean, andGaussian auto-thresholding functions were added to PlantCV to further improve

object detection when image light sources are variable. The ‘triangle_auto_threshold’

function implements the method developed by Zack, Rogers & Latp (1977). The triangle
threshold method uses the histogram of pixel intensities to differentiate the target object

(plant) from background by generating a line from the peak pixel intensity (Duarte, 2015)
to the last pixel value and then finding the point (i.e., the threshold value) on the histogram

that maximizes distance to that line. In addition to producing the thresholded image in

debug mode, the ‘triangle_auto_threshold’ function outputs the calculated threshold value

and the histogram of pixel intensities that was used to calculate the threshold. In cases where

the auto-threshold value does not adequately separate the target object from background,

the threshold can be adjusted by modifying the stepwise input. Modifying the stepwise

input shifts the distance calculation along the x-axis, which subsequently calculates a new

threshold value to use.

The Otsu, mean, and Gaussian threshold functions in PlantCV are implemented using

the OpenCV library (Bradski, 2000). Otsu’s binarization (‘otsu_auto_threshold;’ (Otsu,
1979)) is best implemented when a grayscale image histogram has two peaks since the Otsu

method selects a threshold value that minimizes the weighted within-class variance. In

other words, the Otsu method identifies the value between two peaks where the variances

of both classes are minimized. Mean and Gaussian thresholding are executed by indicating

the desired threshold type in the function ‘adaptive_threshold.’ The mean and Gaussian

methods will produce a variable local threshold where the threshold value of a pixel

location depends on the intensities of neighboring pixels. For mean adaptive thresholding,

the threshold of a pixel location is calculated by the mean of surrounding pixel values;

for Gaussian adaptive thresholding, the threshold value of a pixel is the weighted sum

of neighborhood values using a Gaussian window (Gonzalez & Woods, 2002; Kaehler &
Bradski, 2016).

Gaussian blur

In addition to the ‘median_blur’ function included in PlantCV v1.0, we have added a

Gaussian blur smoothing function to reduce image noise and detail. Both the median and

Gaussian blur methods are implemented using the OpenCV library (Bradski, 2000) and
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are typically used to smooth a grayscale image or a binary image that has been previously

thresholded. Image blurring, while reducing detail, can help remove or reduce signal from

background noise (e.g., edges in imaging cabinets), generally with minimal impact on

larger structures of interest. Utilizing a rectangular neighborhood around a center pixel,

‘median_blur’ replaces each pixel in the neighborhoodwith themedian value. Alternatively,

‘gaussian_blur’ determines the value of the central pixel by multiplying its and neighboring

pixel values by a normalized kernel and then averaging these weighted values (i.e., image

convolution) (Kaehler & Bradski, 2016). The extent of image blurring can be modified by

increasing (for greater blur) or decreasing the kernel size (which takes only odd numbers;

commonly, 3 × 3) or by changing the standard deviation in the X and/or Y directions.

Size marker normalization

Images that are not collected from a consistent vantage point require one or more size

markers as references for absolute or relative scale. The size marker function allows users

to either detect a size marker within a user-defined region of interest or to select a specific

region of interest to use as the size marker. The pixel area of the marker is returned as a

value that can be used to normalize measurements to the same scale. For this module to

function correctly we assume that the size marker stays in frame, is unobstructed, and is

relatively consistent in position throughout a dataset, though some movement is allowed

as long as the marker remains within the defined marker region of interest.

Multi-plant detection

There is growing interest among the PlantCV user community to process images with

multiple plants grown in flats or trays, but PlantCV v1.0 was built to processes images

containing single plants. The major challenge with analyzing multiple plants in an image

is successfully identifying individual whole plants as distinct objects. Leaves or other plant

parts can sometimes be detected as distinct contours from the rest of the plant and need to

be grouped with other contours from the same plant to correctly form a single plant/target

object. While creating multiple regions of interest (ROI) to demarcate each area containing

an individual plant/target is an option, we developed two modules, ‘cluster_contours’ and

‘cluster_contours_split_img,’ that allow contours to be clustered and then parsed into

multiple images without having to manually create multiple ROIs (Fig. 2).

The ‘cluster_contours’ function takes as input: an image, the contours that need to be

clustered, a number of rows, and a number of columns. Total image size is detected, and

the rows and columns create a grid to serve as approximate ROIs to cluster the contours

(Fig. 2A). The number of rows and columns approximate the desired size of the grid cells.

There does not need to be an object in each of the grid cells. Several functions were also

added to aid the clustering function. The ‘rotate_img’ and ‘shift_img’ functions allow the

image to be adjusted so objects are better aligned to a grid pattern.

After objects are clustered, the ‘cluster_contour_split_img’ function splits images into

the individual grid cells and outputs each as a new image so that there is a single clustered

object per image. If there is no clustered object in a grid cell, no image is outputted. With

the ‘cluster_contour_split_img’ function, a text file with genotype names can be included

to add them to image names. The ‘cluster_contour_split_img’ function also checks that
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Figure 2 Analysis of images containing multiple plants.New functions have been added to

PlantCV v2 that enable individual plants from images containing multiple plants to be analyzed. The

‘cluster_contours’ function clusters contour objects using a flexible grid arrangement (approximate rows

and columns defined by a user). (A) An image produced by ‘cluster_contours’ in debug mode highlights

plants by their cluster group with unique colors on a sequential scale. The ‘cluster_contours_split_img’

function creates a new image for each cluster group. The resulting images of individual plants can be

processed by standard PlantCV methods. (B) The ‘cluster_contours_split_img’ function was used to split

the full image into individual plants. The shape of each plant was then analyzed with ‘analyze_objects’ and

printed on a common image background.

Full-size DOI: 10.7717/peerj.4088/fig-2
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there are the same number of names as objects. If there is a conflict in the number of

names and objects, a warning is printed and a correction is attempted. Alternatively, if

the file option is not used, all of the object groups are labeled by position. Once images

are split, they can be processed like single plant images using additional PlantCV tools

(Fig. 2B). See the online documentation for an example multi-plant imaging pipeline

(http://plantcv.readthedocs.io/en/latest/multi-plant_tutorial/).

The current method for multi-plant identification in PlantCV is flexible but relies

on a grid arrangement of plants, which is common for controlled-environment-grown

plants. Future releases of PlantCV may incorporate additional strategies for detection and

identification of plants, such as arrangement-independent K -means clustering approaches

(Minervini, Abdelsamea & Tsaftaris, 2014).

Combined image processing

The Bellwether Phenotyping Facility has both RGB visible light (VIS) and near-infrared

(NIR) cameras, and images are captured ∼1 min apart (Fahlgren et al., 2015). Compared

to VIS images, NIR images are grayscale with much less contrast between object and

background. It can be difficult to segment plant material from NIR images directly, even

with edge detection steps. Therefore, several functions were added to allow the plant binary

mask that results from VIS image processing pipelines to be resized and used as a mask

for NIR images. Combining VIS and NIR camera pipelines also has the added benefit of

decreasing the number of steps necessary to process images from both camera types, thus

increasing image processing throughput. The ‘get_nir’ function identifies the path of the

NIR image that matches VIS image. The ‘get_nir’ function requires that the image naming

scheme is consistent and that the matching image is in the same image directory. The

‘resize’ function then resizes the VIS plant mask in both the x and y directions to match

the size of the NIR image. Resizing values are determined by measuring the same reference

object in an example image taken from both VIS and NIR cameras (for example the width

of the pot or pot carrier in each image). The ‘crop_position_mask’ function is then used

to adjust the placement of the VIS mask over the NIR image and to crop/adjust the VIS

mask so it is the same size as the NIR image. It is assumed that the pot position changes

consistently between VIS and NIR image datasets. An example VIS/NIR dual pipeline to

follow can be accessed online (http://plantcv.readthedocs.io/en/latest/vis_nir_tutorial/).

Object count estimation with watershed segmentation

While segmentation and analysis of whole plants in images provides useful information

about plant size and growth, a more detailed understanding of plant growth and

development can be obtained by measuring individual plant organs. However, fully

automated segmentation of individual organs such as leaves remains a challenge, due to

issues such as occlusion (Scharr et al., 2016). Multiple methods for leaf segmentation have

been proposed (Scharr et al., 2016), and in PlantCV v2 we have implemented a watershed

segmentation approach. The ‘watershed_segmentation’ function can be used to estimate the

number of leaves for plants where leaves are distinctly separate from other plant structures

(e.g., A. thaliana leaves are separated by thin petioles; Fig. 3). The inputs required are an

image, an object mask, and a minimum distance to separate object peaks. The function
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Figure 3 Leaf segmentation by a distance-based watershed transformation. The watershed segmenta-

tion function can be used to segment and estimate the number of objects in an image. For the three exam-

ple images, the watershed segmentation function was used to estimate the number of leaves for Arabidop-
sis thaliana (estimated leaf count for top: 13, middle: 14, and bottom: eight). Images shown are the output

from the ‘watershed_segmentation’ function (A, C, E) and the segmented plants (B, D, F).

Full-size DOI: 10.7717/peerj.4088/fig-3
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uses the input mask to calculate a Euclidean distance map (Liberti et al., 2014). Marker

peaks calculated from the distance map that meet the minimum distance setting are used in

a watershed segmentation algorithm (Van der Walt et al., 2014) to segment and count the

objects. Segmented objects are visualized in different colors, and the number of segmented

objects is reported (Fig. 3). An example of how the watershed segmentation method was

used to assess the effect of water deficit stress on the number of leaves of A. thaliana plants
can be found in Acosta-Gamboa et al. (2017).

Landmarking functions for morphometrics

To extend PlantCV beyond quantification of size-based morphometric features, we

developed several landmarking functions. Landmarks are generally geometric points

located along the contours of a shape that correspond to homologous biological features

that can be compared between subjects (Bookstein, 1991). Typical examples of landmarks

include eyes between human subjects or suture joins in a skull. For a growing plant, potential

landmarks include the tips of leaves and pedicel and branch angles. When specified a priori,
landmarks should be assigned to provide adequate coverage of the shapemorphology across

a single dimensional plane (Bookstein, 1991). Additionally, the identification of landmark

points should be repeatable and reliable across subjects while not altering their topological

positions relative to other landmark positions (Bookstein, 1991). Type I landmarks provide

the strongest support for homology because they are defined by underlying biological

features, but it is problematic to assign Type I landmarks a priori when analyzing high-

throughput plant imagery. To address this, PlantCV v2 contains functions to identify

anatomical landmarks based upon the mathematical properties of object contours (Type

II) and non-anatomical pseudo-landmarks/semilandmarks (Type III), as well as functions

to rescale and analyze biologically relevant shape properties (Bookstein, 1991; Bookstein,
1997; Gunz, Mitteroecker & Bookstein, 2005; Gunz & Mitteroecker, 2013).

The ‘acute’ function identifies Type II landmarks by implementing a pseudo-landmark

identification algorithm that operates using a modified form of chain coding (Freeman,
1961). Unlike standard chain coding methods that attempt to capture the absolute shape

of a contour, the acute method operates by measuring the angle between a pixel coordinate

and two neighboring pixels on opposite sides of it that fall within a set distance, or window,

along the length of the contour. The two neighboring points are used to calculate an angle

score for the center pixel. When the angle score is calculated for each position along the

length of a contour, clusters of acute points can be identified, which can be segmented

out by applying an angle threshold. The middle position within each cluster of acute

points is then identified for use as a pseudo-landmark (Fig. 4A). The ability to subjectively

adjust the window size used for generating angle scores also helps to tailor analyses for

identifying points of interest that may differ in resolution. For example, an analysis of leaf

data might utilize a larger window size to identify the tips of lobes whereas smaller window

sizes would be able to capture more minute patterns such as individual leaf serrations.

Further segmentation can also be done using the average pixel values output (pt_vals)

for each pseudo-landmark, which estimates the mean pixel intensity within the convex

hull of each acute region based on the binary mask used in the analysis. The average pixel
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Figure 4 Landmark-based analysis of plant shape in PlantCV. (A) Automatic identification of leaf

tip landmarks using the ‘acute’ and ‘acute_vertex’ functions (blue dots). (B) Geometrically homologous

semi/pseudo-landmarks across both the x- and y-axes. Semi/pseudo-landmarks identified by scanning the

x-axis are denoted by light blue (top side of the contour), brown (bottom side of the contour), and light

orange (centroid location of horizontal bins) dots. Semi/pseudo-landmarks identified by scanning the

y-axis are denoted by dark blue (left side of the contour), pink (right side of the contour), and dark orange

(centroid location of vertical bins) dots. The plant centroid is plotted larger in red. (C) A representation of

the rescaled plant landmarks identified in panel (A). White points correspond to the leaf tips. The orange

point is the location of the plant centroid. The blue point is the location of the plant centroid where the

plant emerges from the soil. Red lines are the vertical distance from leaf tip points relative to the plant

centroid. (D) Analysis of the average scaled vertical distance from each leaf tip to the centroid diverges in

response to water limitation.

Full-size DOI: 10.7717/peerj.4088/fig-4

value output allows for concave landmarks (e.g., leaf axils and grass ligules) and convex

landmarks (e.g., leaf tips and apices) on a contour to be differentiated in downstream

analyses. Additionally, PlantCV v2 includes the ‘acute_vertex’ function that uses the same

chain code-based pseudo-landmark identification algorithm used in the ‘acute’ function

except that it uses an adjustable local search space criteria to reduce the number of angle

calculations, which speeds up landmark identification.
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For Type III landmarks, the ‘x_axis_pseudolandmarks’ and ‘y_axis_pseudolandmarks’

functions identify homologous points along a single dimension of an object (x-axis or
y-axis) based on equidistant point locations within an object contour. The plant object is

divided up into twenty equidistant bins, and the minimum and maximum extent of the

object along the axis and the centroid of the object within each bin is calculated. These

sixty points located along each axis possess the properties of semi/pseudo-landmark points

(an equal number of reference points that are approximately geometrically homologous

between subjects to be compared) that approximate the contour and shape of the object

(Fig. 4B). Such semi/pseudo-landmarking strategies have been utilized in cases where

traditional homologous landmark points are difficult to assign or poorly represent the

features of object shape (Bookstein, 1997; Gunz, Mitteroecker & Bookstein, 2005; Gunz &
Mitteroecker, 2013).

Frequently, comparison of shape attributes requires rescaling of landmark points

to eliminate the influence of size on the relative position of landmark points. The

landmark functions in PlantCV output untransformed point values that can either be

directly input into morphometric programs in R (shapes (Dryden & Mardia, 2016) or
morpho (Schlager, 2017)) or uniformly rescaled to a 0-1 coordinate system using the

PlantCV ‘scale_features’ function. The location of landmark points can be used to examine

multidimensional growth curves for a broad variety of study systems and tissue types and

can be used to compare properties of plant shape throughout development or in response

to differences in plant growth environment. An example of one such application is the

‘landmark_reference_pt_dist’ function. This function estimates the vertical, horizontal,

Euclidean distance, and angle of landmark points from two landmarks (centroid of the

plant object and centroid localized to the base of the plant). Preliminary evidence from

a water limitation experiment performed using a Setaria recombinant inbred population

indicates that vertical distance from rescaled leaf tip points identified by the ‘acute_vertex’

function to the centroid is decreased in response to water limitation and thus may provide

a proximity measurement of plant turgor pressure (Figs. 4C and 4D).

Two-class or multiclass naive Bayes classifier

Pixel-level segmentation of images into two or more classes is not always straightforward

using traditional image processing techniques. For example, two classes of features in an

image may be visually distinct but similar enough in color that simple thresholding

is not sufficient to separate the two groups. Furthermore, even with methods that

adjust for inconsistencies between images (e.g., white balancing and auto-thresholding

functions), inconsistent lighting conditions in a growth chamber, greenhouse, or field

can still make bulk processing of images with a single workflow difficult. Methods

that utilize machine learning techniques are a promising approach to tackle these and

other phenotyping challenges (Minervini, Abdelsamea & Tsaftaris, 2014; Singh et al., 2016;
Ubbens & Stavness, 2017; Atkinson et al., 2017; Pound et al., 2017). With PlantCV v2, we

have started to integrate machine learning methods to detect features of interest (e.g.,

the plant), starting with a naive Bayes classifier (Abbasi & Fahlgren, 2016). The naive

Bayes classifier can be trained using two different approaches for two-class or multiclass
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(two or more) segmentation problems. During the training phase using the ‘plantcv-

train.py’ script, pixel RGB values for each input class are converted to the hue, saturation

and value (HSV) color space. Kernel density estimation (KDE) is used to calculate

a probability density function (PDF) from a vector of values for each HSV channel

from each class. The output PDFs are used to parameterize the naive Bayes classifier

function (‘naive_bayes_classifier’), which can be used to replace the thresholding steps in

a PlantCV pipeline. The ‘naive_bayes_classifer’ function uses these PDFs to calculate the

probability (using Bayes’ theorem) that a given pixel is in each class. The output of the

‘naive_bayes_classifier’ is a binary image for each class where the pixels are white if the

probability the pixel was in the given class was highest of all classes and is black otherwise. A

tutorial of how to implement naive Bayes plant detection into an image processing pipeline

is online (http://plantcv.readthedocs.io/en/latest/machine_learning_tutorial/).

For the two-class approach, the training dataset includes color images and corresponding

binary masks where the background is black and the foreground (plant or other target

object) is white. PlantCV can be used to generate binary masks for the training set using the

standard image processing methods and the new ‘output_mask’ function. It is important

for the training dataset to be representative of the larger dataset. For example, if there

are large fluctuations in light intensity throughout the day or plant color throughout the

experiment, the training dataset should try to cover the range of variation. A random

sample of 10% of the foreground pixels and the same number background pixels are used

to build the PDFs.

To assess how well the two-class naive Bayes method identifies plant material in

comparison to thresholding methods, we reanalyzed Setaria images (Fahlgren et al., 2015)
using the naive Bayes classifier and compared the pixel area output to pipelines that utilize

thresholding steps (Fig. 5). We used 99 training images (14 top view and 85 side view

images) from a total of 6,473 images. We found that the plant pixel area calculated by naive

Bayes was highly correlated with that calculated from pipelines that use thresholding for

both side-view images (R2
= 0.99; Fig. 5A) and top-view images (R2

= 0.96; Fig. 5B). Naive

Bayes segmentation enabled use of pipelines that were both simpler (fewer steps) and more

flexible: five new scripts were sufficient for processing the dataset (five categories of photo

data), whereas nine threshold-based pipeline scripts had previously been required.

The multiclass naive Bayes approach requires a tab-delimited table for training where

each column is a class (minimum two) and each cell is a comma-separated list of RGB

pixel values from the column class. We currently use the Pixel Inspection Tool in ImageJ

(Schneider, Rasband & Eliceiri, 2012) to collect samples of pixel RGB values used to generate

the training text file. As noted above for the two-class approach, it is important to adequately

capture the variation in the image dataset for each class when generating the training text

file to improve pixel classification. If images are consistent, only one image needs to

be sampled for generating the training table; however, if they vary, several images may

be needed. For complex backgrounds (or non-targeted objects), several classes may be

required to capture all of the variation. Once the training table is generated, it is input

into the ‘plantcv-train.py’ script to generate PDFs for each class. As an example, we used

images of wheat leaves infected with wheat rust to collect pixel samples from four classes:

Gehan et al. (2017), PeerJ, DOI 10.7717/peerj.4088 15/23





B

C

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Hue (degrees)

0.35

0 360180
0

A

Value (percent)
0 10050

0.02

0P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Saturation (percent)
0 10050

0.05

0

Plant

Pustule

Chlorosis

Background

Figure 6 Simultaneous segmentation of four feature groups using the naive Bayes classifier. An exam-

ple of the naive Bayes classifier used to assign pixels into four classes: background, unaffected plant tissue,

chlorotic tissue, and wheat stem rust pustules. (A) Probability density functions (PDFs) from the ‘plantcv-

train.py’ script that show hue, saturation, and value color channel distributions of four classes estimated

from training data. (B) Example of a classified image. Photo credit: Katie Liberatore and Shahryar Kia-

nian. (C) Example of a merged pseudocolored image with pixels classified by the ‘naive_bayes_classifier’ as

background (black), unaffected leaf tissue (green), chlorotic leaf tissue (blue), and pustules (red).

Full-size DOI: 10.7717/peerj.4088/fig-6

non-plant background, unaffected leaf tissue, rust pustule, and chlorotic leaf tissue, and

then used the naive Bayes classifier to segment the images into each class simultaneously

(Fig. 6). This method can likely be used for a variety of applications, such as identifying a

plant under variable lighting conditions or quantifying specific areas of stress on a plant.
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In summary, the naive Bayes classifier offers several advantages over threshold-based

segmentation: (1) two or more classes can be segmented simultaneously; (2) probabilistic

segmentation can be more robust across images than fixed thresholds; and (3) classifier-

based segmentation replaces multiple steps in threshold-based pipelines, reducing pipeline

complexity.

CONCLUSIONS

The field of digital plant phenotyping is at an exciting stage of development where it

is beginning to shift from a bottleneck to one that will have a positive impact on plant

research, especially in agriculture. The Plant Image Analysis database currently lists over

150 tools that can be used for plant phenotyping (http://www.plant-image-analysis.org/;

Lobet, Draye & Périlleux, 2013). Despite the abundance of software packages, long-term
sustainability of individual projects may become an issue due to the lack of incentives for

maintaining bioinformatics software developed in academia (Lobet, 2017). In a survey of

corresponding authors of plant image analysis tools by Lobet, 60% either said the tool was

no longer being maintained or did not respond (Lobet, 2017). To develop PlantCV as a

sustainable project we have adopted an open, community-based development framework

using GitHub as a central service for the organization of developer activities and the

dissemination of information to users.We encourage contribution to the project by posting

bug reports and issues, developing or revising analysis methods, adding or updating unit

tests, writing documentation, and posting ideas for new features. We aim to periodically

publish updates, such as the work presented here, to highlight the work of contributors to

the PlantCV project.

There are several areas where we envision future PlantCV development. Standards
and interoperability: Improved interoperability of PlantCV with data providers and

downstream analysis tools will require adoption of community-based standards for data

and metadata (e.g., Minimum Information About a Plant Phenotyping Experiment;

Çwiek Kupczy´ska et al., 2016). Improved interoperability will make it easier to develop

standardized tools for statistical analysis of image processing results, both within the

PlantCV project or with tools from other projects. New data sources: Handling and

analysis of data from specialized cameras that measure three-dimensional structure or

hyperspectral reflectance will require development or integration of additional methods

into PlantCV. Machine learning: Our goal is to develop additional tools for machine

learning and collection of training data. In some cases, where these methods can be

implemented in a modular and reusable framework, they can be integrated directly into

PlantCV. In other cases, PlantCV can be combined with new and existing tools. A recent

example of this latter approach built on PlantCV, using its image preprocessing and

segmentation functions alongside a modular framework for building convolutional neural

networks (Ubbens & Stavness, 2017). As noted throughout, we see great potential for

modular tools such as PlantCV and we welcome community feedback.
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