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Abstract—Gene Ontology (GO) provides a controlled vocab-
ulary for describing genes and related gene products. Quality
assurance of Gene ontology (GO) is a vital aspect of the
terminology management lifecycle. In this paper, we introduce
a lexical-based inference approach to detecting subtype (or is-
a) inconsistencies among GO terms (i.e., biological concepts).
We first model the name of each concept as a set of words.
Then, we generate hierarchically linked and unlinked pairs of
concepts (A,B), where A and B have the same number of
words, and contain common words as well as a single different
word. Each linked concept-pair infers a linked term-pair, and
each unlinked concept-pair infers an unlinked term-pair. A term-
pair appearing as both linked and unlinked is considered a
potential inconsistency, which may represent a subtype incon-
sistency between the original linked and unlinked concept-pair.
Applying this approach to the 03/28/2017 release of GO, a total of
3,715 potential subtype inconsistencies were obtained. Evaluation
of a random sample of potential inconsistencies revealed two
types of potential errors: missing subtype relations and incorrect
subtype relations in GO, and achieved an accuracy of 56.33%
for detecting such errors. This indicates that this lexical-based
inference approach using the set-of-words model is a promising
way to facilitate quality improvement of GO.

I. INTRODUCTION

Biomedical ontologies, such as the Gene Ontology (GO) [1]
and SNOMED CT [2], provide essential domain knowledge to
drive data annotation, data integration, information extraction,
and decision support in biomedicine [3], [4], [5], [6], [7].
In particular, GO is recognized as a tool for the unification
of biology [8], and has been widely adopted for codifying,
managing, and sharing biological knowledge.

GO provides a controlled vocabulary of terms for describing
gene and gene product characteristics and related annotation
data from GO Consortium members [1]. Since GO is con-
stantly evolving to keep pace with the rapid discovery of
biological knowledge, inconsistencies or errors may be intro-
duced during the terminology management lifecycle. Quality
assurance or auditing of GO is an important task, since quality
issues may affect all GO-driven downstream applications.
However, auditing GO becomes more challenging due to
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the ever-increasing size and structural complexity of GO. It
is time-consuming and labor-intensive to manually uncover
potential quality issues in the ontology. Thus, there is an
urgent need to develop automated and effective approaches
to detecting potential quality issues in GO.

In this paper, we introduce a lexical-based inference ap-
proach to auditing GO by automatically deriving inconsis-
tencies in hierarchically linked and unlinked concept-pairs.
Such inconsistencies may indicate missing subtype (i.e., is-a)
relations or incorrect subtype relations in GO. Domain experts
reviewed a random sample of inconsistencies to evaluate the
effectiveness of this approach.

II. BACKGROUND

A. Gene Ontology (GO)

GO was constructed as a collaborative effort to address
the need for consistent description of genes and their related
gene products across databases [1], [9]. It contains three sub-
hierarchies which describe gene products in terms of their
associated Biological Processes, Cellular Components, and
Molecular Functions [9]. It contains over 40,000 biological
concepts, which are constantly revised to reflect latest discov-
eries and current biological knowledge.

B. Quality Assurance of GO

Various approaches have been introduced [10] for quality
assurance of GO. Ochs et al. [11] have applied abstraction net-
work (AbN) based methods to audit GO. They have developed
two kinds of AbNs: area taxonomy and partial-area taxonomy,
for GO hierarchies and derived specifically for the biological
process sub-hierarchy of GO. Xing et al. [12] have developed
an effective dynamic-programming-based algorithm to detect
redundant hierarchical relations, and applied it to two biomed-
ical ontologies including GO. Bodenreider et al.[13] have
introduced three non-lexical approaches: computing similarity
in a vector space model, statistical analysis of co-occurrence
of GO terms in annotation databases, and association rule
mining, to identify associative relations across hierarchies in
GO. Mougin [14] has studied a method to identify redundant
and missing relations in GO. Reasoning over relationships
has been exploited to identify redundant relations between
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Fig. 1. A: Unlinked PMCP and its unlinked ITP; B: Linked PMCP and its linked ITP. This example reveals a potentially missing subtype relation in A,
that is, GO:0010373 (negative regulation of gibberellin biosynthetic process) is-a GO:0032353 (negative regulation of gibberellin hormone process).

concepts. Compositional structure of the preferred names of
GO concepts has been used to detect missing necessary and
sufficient conditions. Ceusters [15] has shown how realism-
based principles for ontology evolution can be used for termi-
nology auditing in GO.

III. METHODS

In this work, we introduce a lexical-based inference ap-
proach to identify potentially missing subtype relations and
incorrect subtype relations. Firstly, we represent the name of
each GO concept as a set of words. Then, we generate partial
matching pairs of concepts that are hierarchically linked or
unlinked. We further derive linked and unlinked term-pairs
from the concept-pairs. Then, we detect potential subtype
inconsistencies between concept-pairs that share the same
term-pair. Finally, domain experts evaluate a random sample
of detected potential inconsistencies and suggest the potential
errors indicated by those inconsistencies.

A. Modeling GO Concept Names

For each concept in GO, we represent the name of the
concept as a set of words. For example, the name of the
concept GO:0009785 (the unique identifier) is blue light sig-
naling pathway; and its unordered set-of-words representation
is {blue, light, signaling, pathway}.

B. Generating Partial Matching Concept Pairs (PMCPs)

We define a pair of concepts as a partial matching concept
pair (PMCP), if the names of the two concepts have the same
number of words, and contain a single different word and at
least one word in common. For instance, GO:0009739 (re-
sponse to gibberellin) and GO:0009725 (response to hormone)
is a PMCP.

We further define two categories of PMCPs as follows:
• Linked PMCP: If the two concepts in a PMCP are

connected through a subtype relation (either direct or
indirect), then we say that this pair of concepts is a linked
PMCP.

• Unlinked PMCP: If the two concepts in a PMCP are not
connected through a subtype relation, then we say that
this pair of concepts is an unlinked PMCP.

For example, Fig. 1A shows an example of an unlinked PMCP,
where the two concepts GO:0010373 (negative regulation of
gibberellin biosynthetic process) and GO:0032353 (negative
regulation of hormone biosynthetic process) differ in a single

word – gibberellin versus hormone. Fig. 1B shows an example
of a linked PMCP, where the two concepts GO:0009739 (re-
sponse to gibberellin) and GO:0009725 (response to hormone)
also differ in a single word – gibberellin versus hormone.

Note that we leverage the pre-computed transitive closure
of the subtype relation (i.e., direct and indirect is-a relations)
to determine if a PMCP is linked or unlinked. That is, if a
PMCP is in the transitive closure, then it is linked; other-
wise, it is unlinked. For instance, the PMCP (GO:0009739,
GO:0009725) in Fig. 1B is in the transitive closure; thus it is
linked. However, the PMCP (GO:0010373, GO:0032353) in
Fig. 1A is not in the transitive closure; thus it is unlinked.

C. Deriving Inferred Term Pairs (ITPs)

For each PMCP (C1, C2), we use the different words
between the names of C1 and C2 to derive an Inferred Term
Pair (ITP). We further define two categories of ITPs based on
the corresponding PMCPs:

• Linked ITP: If an ITP is derived from a linked PMCP,
then we say it is a linked ITP.

• Unlinked ITP: If an ITP is derived from an unlinked
PMCP, then we say it is an unlinked ITP.

Take Fig. 1A as an example, the unlinked concepts
GO:0010373 (negative regulation of gibberellin biosynthetic
process) and GO:0032353 (negative regulation of hormone
biosynthetic process) derives an unlinked ITP (gibberellin,
hormone).

D. Detecting Potential Inconsistencies

If an unlinked PMCP and a linked PMCP derive the
same ITP, we consider these two PMCPs a potential subtype
inconsistency. For instance, the unlinked PMCP (GO:0010373,
GO:0032353) in Fig. 1A and the linked PMCP (GO:0009739,
GO:0009725) in Fig. 1B is considered a potential inconsis-
tency, since they derive the same ITP (gibberellin, hormone).

E. Evaluating Detected Inconsistencies

For the evaluation of the potential subtype inconsistencies
detected above, we classify them into three categories: missing
subtype relations, incorrect existing subtype relations, and
false positives. We describe each category in detail as follows.
Given an inconsistency I consisting of an unlinked PMCP (U1,
U2) and a linked PMCP (L1, L2).
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Fig. 2. A: Unlinked PMCP and its unlinked ITP; B: Linked PMCP and its linked ITP. This example reveals a potentially incorrect existing subtype relation
in B, that is, GO:1901770 (daunorubicin catabolic process) is not a subtype of GO:0009109 (coenzyme catabolic process).

TABLE I
EXAMPLES OF THE SUBTYPE INCONSISTENCIES FOUND.

ITP Unlinked PMCP Linked PMCP Inconsistency type
(telencephalon, forebrain) GO:0021537: telencephalon development GO:0022029: telencephalon cell migration Incorrect relation

GO:0030900: forebrain development GO:0021885: forebrain cell migration

(oxidase, dehydrogenase) GO:0003884: D-amino-acid oxidase activity GO:0004158: dihydroorotate oxidase activity Incorrect relation
GO:0008718: D-amino-acid dehydrogenase activity GO:0004152: dihydroorotate dehydrogenase activity

(methotrexate, drug) GO:0031427: response to methotrexate GO:0051870: methotrexate binding Missing relation
GO:0042493: response to drug GO:0008144: drug binding

(ethanolamine, peptide) GO:0046336: ethanolamine catabolic process GO:0006580: ethanolamine metabolic process Missing relation
GO:0044248: cellular catabolic process GO:0044237: cellular metabolic process

(cortisol, hormone) GO:0034651: cortisol biosynthetic process GO:0043400: cortisol secretion Missing relation
GO:0042446: hormone biosynthetic process GO:0046879: hormone secretion

1) Missing subtype relations: If the unlinked PMCP (U1,
U2) indeed forms a valid subtype relation, then it is regarded as
a missing subtype relation in GO (i.e., U1 should be a subtype
of U2).

2) Incorrect existing subtype relations: If the linked PMCP
(L1, L2) is found to be an invalid subtype relation, then it
is regarded as an incorrect existing subtype relation (i.e., L1

should not be a subtype of L2).
3) False positives: If the linked PMCP (L1, L2) is indeed

a valid subtype relation and the unlinked PMCP (U1, U2) is
found to be an invalid subtype relation, then I is regarded as
a false positive that is identified by our approach.

A random sample of potential inconsistencies was selected
and evaluated by two domain experts (authors EWH and
HNBM), to assess the effectiveness of our lexical-based in-
ference approach in detecting inconsistencies. The two do-
main experts reviewed the samples independently and then
discussed the samples together to resolve disagreements.

IV. RESULTS

A. Summary Results

Using the 03/28/2017 release of GO, a total of 33,463 linked
PMCPs were obtained, and derived 15,299 (distinct) linked
ITPs. A total of 4,293,953 unlinked PMCPs were obtained, and
derived 2,763,106 (distinct) unlinked ITPs. The ITPs derived
include (telencephalon, forebrain), (ethanolamine, peptide),
(methotrexate, drug), (ethanolamine, peptide), and (cortisol,
hormone). A total of 3,715 potential inconsistencies were
found.

B. Evaluation

Each detected inconsistency indicates a potentially missing
subtype relation or an incorrect existing subtype relation in GO
(a valid inconsistency), or is a falsely identified inconsistency
(an invalid inconsistency).

A random sample of 158 detected inconsistencies was
reviewed by the domain experts, and 89 were found to be
valid inconsistencies. Among these, 62 were missing subtype
relations and 27 were incorrect existing subtype relations.
Therefore, the overall accuracy of our method is 56.33% (=
89/158).

Fig. 2 shows an example of incorrect existing subtype
relation in GO, where the linked PMCP (GO:1901770,
GO:0009109) in Fig. 2B is found to be an invalid subtype
relation, because daunorubicin is not a coenzyme, it is a
small molecule intercalating agent that inserts directly into
the structure of DNA. That is, GO:1901770 (daunorubicin
catabolic process) should not be a subtype of GO:0009109
(coenzyme catabolic process).

Table I lists 5 examples of the valid inconsistencies con-
firmed by the domain experts. Each example consists of the
ITP, unlinked PMCP, linked PMCP, and inconsistency type
(i.e., missing subtype relation or incorrect subtype relation).

V. DISCUSSION

In this paper, we investigated a lexical-based inference
method to audit GO by detecting potential inconsistencies
between linked and unlinked inferred term pairs. This method
is not only applicable to GO, but also applicable to other
terminologies for quality assurance analysis.



A. Distinction with Related Work

In [16], Agrawal et al. introduced the notion of Posi-
tional Similarity Set (PSS) to aid in the process of auditing
SNOMED CT. PSSs are defined as lexically similar concepts
having only one different word at the same position of their
names. PSSs in combination with the concepts’ structural
definitions were used to identify unjustified modeling incon-
sistencies in SNOMED CT. While they studied modeling
inconsistencies within a PSS, our work is focusing on detecting
subtype defects in GO by leveraging the inconsistent ITPs
derived across linked and unlinked PMCPs.

In [17], we investigated a structural-lexical approach to
auditing the NCI Thesaurus, where one of the lexical patterns
leveraged inferred terms in non-lattice subgraphs to suggest
potentially missing is-a relations. In this work, although we
share a similar idea of using lexical-based inference, we
exhaustively consider all the linked and unlinked PMCPs for
investigating potential inconsistencies in GO without limiting
to any substructure. Furthermore, this work identifies poten-
tially incorrect existing is-a relations in addition to missing
is-a relations.

B. Limitations and Future Work

A limitation of this work is that we only considered hierar-
chical is-a relations in this work. Since some of the unlinked
concept pairs identified by our method have already been
linked through part-of relations in GO rather than is-a, we
plan to incorporate part-of relations to our work in the future.

VI. CONCLUSION

In this paper, we investigated a lexical-based inference ap-
proach to audit Gene Ontology based on the inconsistencies of
inferred term-pairs derived from linked and unlinked concept-
pairs. This approach is found to be an effective way to detect
subtype inconsistencies, which may indicate missing subtype
relations as well as incorrect subtype relations in GO. This
approach is also applicable to other biomedical terminologies
for quality assurance analysis.
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