PATTERSON-SULLIVAN CURRENTS, GENERIC STRETCHING FACTORS AND THE
ASYMMETRIC LIPSCHITZ METRIC FOR OUTER SPACE

ILYA KAPOVICH AND MARTIN LUSTIG

ABSTRACT. We quantitatively relate the Patterson-Sullivant currents and generic stretching factors for free
group automorphisms to the asymmetric Lipschitz metric on Outer space and to Guirardel’s intersection
number. Thus we show that, given N > 2 and € > 0, there exists a constant ¢ = ¢(N,e) > 0 such that for
any two trees T, S € cvy of co-volume 1 and injectivity radius > € we have

[log(S, pr) — dr(T,S)| < c

where dy, is the asymmetric Lipschitz metric on the Culler-Vogtmann Outer space and where pr is the
(appropriately normalized) Patterson-Sullivan current corresponding to 7. As a corollary, we show that
there exist constants C1 = C1(N,e) > 1,02 = C2(N ¢) > 1 such that for any T, S as above we have

1
o logic(T,S) — C2 < log(S, ur) < Crlogic(T,S) + Co,
1

where i. is the combinatorial version of Guirardel’s intersection number. We apply these results to the
properties of generic stretching factors of free group automorphisms. In particular, we show that for any
N > 2 there exists a constant 0 < py < 1 such that for every automorphism ¢ of Fy = F(A) we have

Aal(e)
0<py < AP <,
Aa(e)
Here A 4 is the generic stretching factor of ¢ with respect to the free basis A of Fiy and A 4 () is the extremal
stretching factor of ¢ with respect to A.

1. INTRODUCTION

For an integer N > 2 the unprojectivized Outer space cvy is the set of all R-trees equipped with a free
discrete minimal isometric action of Fy, considered up to an Fy-equivariant isometry. We denote by cv},
the set of all T € cvy such that that the metric graph T/Fx has volume 1. The closure tvy of cvy
with respect to the equivariant Gromov-Hausdorff convergence topology (or equivalently [49], with respect
to the hyperbolic length function topology) consists of all very small minimal isometric actions of F on
R-trees, again up to an Fy-equivariant isometry. There is a natural action of Ry on ¢vy my multiplying
the metric on a tree by a positive scalar. The subset cvy of ¢V is invariant under this action, and the
quotient CVy = cvny/Rs is the projectivized Outer space, originally introduced by Culler and Vogtmann
in [22]. The quotient CVy = vy /R is compact, and is called the Thurston compactification of CV .
All of the above spaces admit natural Out(Fy)-actions. The space CV y is naturally Out(Fy )-equivariantly
homeomorphic to cvh,, but it is useful to remember that technically cv and CVy are distinct objects.

There are three main quantitative tools for studying points of ¢vy. The first is the so-called “asymmetric
Lipschitz distance”. If T € cvy and S € Ty, the extremal Lipschitz distortion is given by A(T,S) :=

||wlls

sup
weFy~{1} |[W]|7
infimum of the Lipschitz constants of all the Fyy-equivariant Lipschitz maps T" — S. It is also known that
for all T, S € cvl; we have A(T,S) > 1, and that the equality holds if and only if T = S. The asymmetric
Lipschitz distance is defined as dy, (T, S) := log A(T, S) where T, S € cv};. Although it is usually the case that

. It is known (see [24] for details) that this sup is actually a max, and that A(T,S) is the
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dr(T,S) # dr(S,T), the asymmetric distance dj, satisfies all the other properties of being a metric, and it is
known that the topology defined by dy, on cv}; coincides with the standard subspace topology for cvl, C cvy.
Moreover, for any T, S € cv) there exists an (in general non-unique) dy-geodesic path from T to S in cvl;,
given by natural “folding lines” [24]. The asymmetric distance dy, is a useful tool in the study of the geometry
of Out(Fy) and it has found significant recent applications, see, for example, [1, 2, 3, 5, 24, 25, 44, 53].

Another two important quantitative tools for studying Outer space are two notions of a “geometric
intersection number”. The first of these was introduced by Guirardel in [29] in the general setting of
groups acting by isometries on R-trees. Guirardel’s intersection number i(7,S) (where T,S € cvy) is
defined as the co-volume of the “core” for the action of Fiy on T x S. Guirardel’s intersection number is
symmetric and Out(Fy )-invariant, and for T,S € cvy one always has 0 < (T, S) < oco. However, for trees
in devy = TN \ cvy it is often the case that i(7,S) = oo and i(-,-) is discontinuous when viewed as a
function on ¢vy x cvy. Still, Guirardel’s intersection number is a highly useful tool when studying the
asymptotic geometry of cvyy itself, particularly when looking at orbits of subgroups of Out(Fy) in cvl and
cvy. Examples of such applications can be found in [4, 12, 13, 14, 29, 32].

The second notion of a “geometric intersection number” was introduced by Kapovich and Lustig in [39].
They constructed a geometric intersection form (-,-) : @y X Curr(Fn) — R>q, where Curr(Fy) is the
space of geodesic currents on Fy. See Section 2.3 below and [35, 36, 38, 39] for the more information and
the background on geodesic currents. The geometric intersection form is continuous, Out(Fy)-equivariant,
and, importantly, it always gives a finite output, that is, for every T" € tvy and g € Curr(Fy) one has
0<(T,u) <oco. If T ecvy and g € Fy \ {1} then (T, n,) = ||g||r, where n, € Curr(Fy) is the “counting
current” associated with g. By its very definition, (-, ) is an asymmetric gadget. However, its good properties,
including finiteness and global continuity on ¢vy, make the geometric intersection form a useful tool that
has also found a number of significant applications to the study of the dynamics and geometry of Out(Fy).
See, for example, [8, 9, 11, 15, 18, 20, 30, 31, 39, 40, 41, 47, 51].

For € > 0 we denote by CV}V}E the set of all T' € cv); such that the length of the shortest simple closed
loop in T'/Fy is > e. The set CV}V’E is called the e-thick part of CV}V. Horbez [32] showed that, for any fixed

e>0,if T,S € CV}v,m one has
1
(i) EIOgZC(T7S)_K2 SdL(TaS) SKlloch(Tﬂs)—’_KQ

for some constants K7 > 1, Ky > 0 depending only on N and . Here i.(T, S) is the combinatorial version of
Guirardel’s intersection number, where (7T, .S) is defined as the number of 2-cells in Core(T x S)/Fy, while
i(T,S) is defined as the sum of the areas of all the 2-cells in Core(T x S)/Fy. Thus if, for S,T € cv}, the
trees Ty, So € cvy are obtained from T and S by making all edges have length 1, then i.(T,S) := i(Tp, So).
Also, following the usual convention, in (1) we interpret log0 as log0 = 0.

In the present paper, for T, S € CV}V,E we relate A(T,S) to a natural quantity defined in terms of (-,-).
Via Horbez’ result, this connection also relates the geometric intersection form (-, -) to Guirardel’s geometric
intersection number i(-,-). Following the results of Furman [26] in the general set-up of word-hyperbolic
groups, in [42] Kapovich and Nagnibeda associated to every T € cvy its Patterson-Sullivan current. In
general, the Patterson-Sullivan current is naturally defined only up to a multiplication by a positive scalar.
Normalizing by the geometric intersection number with T provides a canonical choice. Thus for a tree
T € cvy we denote by up € Curr(Fy) the Patterson-Sullivan current associated to T', normalized so that
(T,ur) = 1. We refer the reader to Section 4 below and to [26, 42, 43] for the precise definitions and
background information about the Patterson-Sullivan currents. A key result obtained by Kapovich and
Nagnibeda in [42] shows that the map Jpg : vl — Curr(Fy), T — pr is a continuous Out(Fy )-equivariant
embedding.

Our main result (c.f. Theorem 4.2 below) is:

Theorem 1.1. Let N > 2 and € > 0. Then there exist constants 0 < §; < do such that for every T € cv}\,’E
and every S € cun we have:

<Sa ,U'T>
AT, 5)

0 < < do
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Therefore there exists a constant ¢ = ¢(N,e) > 0 such that for every T € cv}\ﬂ8 and S € cvy we have:
|10g<S, .UJT> - dL(T7 S)' <c

Using the result of Horbez [32] stated in (f) above, Theorem 1.1 directly implies (using the notation
introduced after (1)):

Corollary 1.2. Let N > 2 and € > 0. Then there exist constants Cv,Co > 1 such that for any T, S € cv}\,’E
we have
Ci logi.(T,S) — Cy <log(S, ur) < Crlogi.(T,S) + Cs.
1

The proof of Theorem 1.1 relies on several results regarding geodesic currents, particularly the result
of Kapovich and Lustig [39] about the continuity of the geometric intersection form on ¢vy x Curr(Fy),
mentioned above, and the result of Kapovich and Nagnibeda [42] that the Patterson-Sullivan map cvi —
Curr(Fy), T — pr, is a continuous Out( Fy )-equivariant embedding. The most crucial point in the argument
uses a result of Kapovich and Lustig [42] which characterizes the case (S,v) = 0, where S € vy and
v € Curr(Fy) are arbitrary. In particular, this characterization implies that every current p with full
support (such as the Patterson-Sullivan current pur for T € cv) is filling, that is, satisfies (S, pu) > 0 for
every S € cvy. Modulo the tools mentioned above, the proof of Theorem 1.1 is not difficult (although
the proof does require an extra trick exploiting the Out(Fy)-equivariant nature of certain functions and
some nice properties of dr). Still, Theorem 1.1 and its applications obtained here do provide a conceptual
clarification regarding the quantitative relationships between the two notions of a geometric intersection
number used in the study of Out(Fy), and about their relationship to the asymmetric Lipschitz distance.

One of our main motivations for this paper has been to better understand the properties of “generic
stretching factors” for free group automorphisms.

Proposition-Definition 1.3. [34] For any free basis A of Fiy and any S € TV there exists a number
Aa(S) > 0 with the following properly.

For a.e. trajectory £ = y1y2 ... ¥y ... of the simple non-backtracking random walk on Fy with respect to
A (that is, for a “random” geodesic ray € = 412 ... Yn ... over AT! with y; € A*!) we have ||y1y2 ... Ynl|la =
n 4+ o(n) and

lim w = lim M = )\A(S)
n—00 n n—00 Hy1y2'--yn||A

The number A4 (S) is called [36, 34] the generic stretching factor of S with respect to A.

The term “non-backtracking” in “non-backtracking simple random walk” refers to the fact that for this
random walk, if z,y € AU A~ the transition probability for = to be followed by ¥ is equal to 1/(2N — 1)
if y # 27! and is equal to 0 if y = 2~'. Thus the trajectories of this random walk are semi-infinite
freely reduced words over A*!. Informally, the generic stretching factor A4(S) > 0 captures the distortion

lyz-vnlls where y, ...y, is a “random” freely reduced word of length n over A, as n tends to infinity. The

existence of A A(S) > 0 follows from general ergodic-theoretic considerations, as observed in [34]. As noted
in Remark 4.6 below, one actually has A4(S) > 0 for every S € cvy.

Let A be a free basis of Fiy and consider the Cayley tree T4 € cvy, with all edges of length 1/N, so that
T € cvk. Thus for every w € Fy we have ||w||4 = N|Jw||r, where ||w||4 is the cyclically reduced length
of w over A¥!. It is known that the Patterson-Sullivan current ur, is equal to the “uniform current” v4
on Fy corresponding to A. Using the interpretation of (S,v4) as the “generic stretching factor” Aa(S) of
S € cvy with respect to A [36], as a consequence of Theorem 1.1 we also obtain (see Theorem 4.7 below):

Corollary 1.4. Let N > 2. There exists a constant 6 = 6(N) € (0,1) with the following property:
For any free basis A of Fx and any S € ¢y we have
Aa(S) 1

(f) 0<6§mgﬁ.
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We are particularly interested in relationships between generic stretching factors and extremal stretching
factors in the context of Cayley trees of Fiy and of elements of Out(Fx). Note that if A is a free basis of A
then NT4 € cvy is the standard Cayley graph of Fy with respect to A, where all edges have length 1.

If ¢ € Out(Fy) and w € Fy, then, since ¢ is an outer automorphism, it acts on the conjugacy classes
of elements of Fiy (rather than on elements of Fiy). By convention, for ¢ € Out(Fy) and w € Fy, if ¢(w)
appears in an expression that depends only on the conjugacy class p([w]), we will use ¢(w) to mean any
representative of that conjugacy class.

Definition 1.5 (Extremal and generic stretching factors of automorphisms). Let A be a free basis of Fy
and let ¢ € Out(Fy).

Denote

Aa(p) := A(Ta, Tap) = sup lleCollla _ i (ramae)
wl  |[w]la

and refer to A4 () as the extremal stretching factor for ¢ with respect to A.

Also, denote Aa(p) := Aa(NTap) = NAa(Tayp).

Thus for a.e. trajectory € =y ...y, ... of the simple non-backtracking random walk on F with respect
to A we have

)\A(Sﬁ): lim ||90(y1y2~..yn)||A — lim ||g0(y1y2yn)|\A
nee n n=o |[y1y2 ... Ynlla

We call M a(p) the generic stretching factor of ¢ with respect to A.

Lolld as w varies over all non-trivial elements of Fly,

while Aa(¢) captures the “generic distortion” , where w is a “long random” freely reduced (or

lwlla
cyclically reduced) word over A*!. In practice, A4(¢p) is easy to compute since it is known (see, e.g. [24])

that Aa(p) = MAaX] <[y <2 IIAﬁSs‘)l)LIA

The generic stretching factors Aa(¢) were introduced in [34] and further studied in [23, 36, 40, 52]. In
particular, it is proved in [34] that for every ¢ € Out(Fy) the number Aa(y) is rational and moreover,
2NAa(p) € Z|zw—] and that there exists an algorithm that, given ¢, computes Aa(y). The definitions
directly imply that Aa(¢) < Aa(p). However, other than this fact, the quantitative relationship between
Aa(p) and Aa(p) remained unclear.

Let N > 2 and Fy = F(ay,...,ayx) with A ={ay,...,an}. Define

. Aa(p)
PN = inf
N ocOut(ry) Aalyp)

Since for every ¢ € Out(Fy) we have Ty, Tap € cv}vﬁ with ¢ = ﬁ, Corollary 1.4 directly implies:
Theorem 1.6. For every N > 2 we have py > 0.

Therefore for every ¢ € Out(Fy) we have

Aa(p)
Aa(p)

Our proof that py > 0 does not give any explicit quantitative information about py. It would be
interesting to find some explicit bounds from above and below for py, and perhaps to even compute py, at
least for small values of N. We show in Proposition 7.1 that A}im pn = 0 and that py = O().

—00

0<pn <

<1

As another application, we obtain (c.f. Corollary 5.3 below):

Corollary 1.7. Let N > 2 and Fy = F(ay,...,a,) with A = {a1,...,an}. There exists D = D(N) > 1
such that for every ¢ € Out(Fy) we have

1
5 logda(p) <logAa(p™") < DlogAa(e).
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Let ¢ € Out(Fn). Recall that the algebraic stretching factor A(p) is defined as

n

A(@) = sup lim {/[|p"(w)]]s

weF N, w#l
where S € cvy is an arbitrary base point. It is known that the limit in the last equality always exists, that
this definition of A(y) does not depend on the choice of S € cvy, and that we always have A(¢) > 1. An
element ¢ € Out(Fy) is called exponentially growing if M\(p) > 1, and polynomially growing if A\(p) = 1.
Indeed, it is known (see for example [45]), that ¢ is polynomially growing if and only if for every w € Fy
and S € cvy the sequence ||¢™(w)]||s is bounded above by a polynomial in n.

The algebraic stretching factor A(y) can be read-off from any relative train-track representative f : I' — T
of ¢ as the maximum of the Perron-Frobenius eigenvalues for any of the canonical irreducible diagonal blocks
of the (non-negative) transition matrix M(f).

As another application of the results of this paper, we explain how the generic stretching factor Aa(p™)
grows in terms of n for an arbitrary ¢ € Out(Fy). Thus we obtain (c.f. Theorem 5.6 below) the following
result, which answers Problem 9.2 posed in [34]:

Theorem 1.8. Let A be a free basis of Fy and let ¢ € Out(Fn) and let A(¢) be the algebraic stretching
factor of p. Then there exist constants c1,co > 0 and an integer m > 0 such that for every n > 1 we have

ci A(@)"n™ < Aa(e") < ca M) n™.

Moreover, if ¢ admits an expanding train-track representative with an irreducible transition matriz (e.g. if
@ is fully irreducible), then m =0 and A(p) > 1.

The “polynomial growth degree” m in this result is bounded above by the number of strata of any relative
train track representative f as above which have PF-eigenvalue equal to A, and it has been determined
precisely by Levitt in [45], see the proof of Proposition 5.4 below.

Acknowledgements: We thank Matt Clay and Camille Horbez for useful discussions about Guirardel’s
intersection number. We are also grateful to Brian Ray and Paul Schupp for conducting helpful computer
experiments with generic stretching factors of free group automorphisms.

2. PRELIMINARIES

2.1. Basic terminology and notations related to Outer space. We denote by cvy the unprojectivized
Outer space, that is the space of all free discrete minimal isometric actions of Fy on R-trees, considered up to
Fn-equivariant isometry. Denote by ¢vy the closure of cvy in the equivariant Gromov-Hausdorff convergence
topology (or, equivalently, in the hyperbolic length functions topology). It is known [7, 16, 28] that vy
consists of all the very small non-trivial minimal isometric actions of Fy on R-trees, again considered up
to Fiy-equivariant isometry. Recall that a point 7" € tv is uniquely determined by its translation length
function || - || : Fy — [0,00), where for w € Fy we have ||w||r = inf,er d(z, wz) = minger d(x, wz).

The space ¢y has a natural right Out(Fy)-action, where for w € Fy and T € cvy we have ||w||7, =

l|[p(w)||7. It is sometimes useful to convert this action to a left Out(Fy)-action by setting ¢T := Tt

Denote cvl; := {T € cvy | vol(T/Fy) = 1} and refer to cv}, as the volume-normalized Outer space or just
normalized Outer space. Then cvy is an open dense Out(Fy)-invariant subset of ¢vy, and CV}V is a closed
Out(Fy)-invariant subset of cvy (but of course cv); is not closed in vy ).

There is a natural action of R~y on cvy and vy by scalar multiplication, which yields the corresponding
projectivizations CVy = cvy/Rsg and CVy = &y /Rsg. For a tree T € cvy we denote its projective
class in CVy by [T]. Thus [T] = {c¢T | ¢ > 0}. Note that CVy is canonically Out(Fy) equivariantly
homeomorphic to cvl;, but it is still important to remember that technically CVy and cv} are distinct
objects.

For € > 0 we denote by cv}\hs the set of all T' € cv} such that the shortest non-trivial immersed circuit
in the metric graph T'/Fy has length > ¢. Equivalently, CV}V,E is the set of all T € cv}; such that for every
w € Fn ~ {1} we have ||w||r > . For every ¢ > 0 the set CV}\LE C cvl is a closed Out(Fy)-invariant

subspace, and the quotient CV}VVE/Out(FN) is compact.
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A chart on Fy is an isomorphism « : Fy — m1(I", p) where I is a finite connected graph with all vertices
of degree > 3 and where p is a base vertex in I' (which is usually suppressed). Every such « defines an open
cone in cvy consisting of assigning arbitrary positive lengths to edges of I' and then lifting this assignment
to the universal cover I' to get an element 7' € cvy. The intersection of such an open cone with cv}; is an
open simplex A in cv} of dimension m — 1, where m is the number of unoriented edges of I'. Every point
T € cvy belongs to a unique open cone of this form, and every point of cv}, belongs to a unique such open
simplex A.

The space CVy is known to be compact and finite-dimensional.

2.2. Asymmetric Lipschitz distance. For points T € cvy and S € ¢vy denote
[lwlls
weFy~{1} [[w[lT

If T, S € cvly, we also denote d,(T, S) := log A(T, S). As noted in the Introduction, for T, S € cv};, the
quantity dr, (T, S) is often called the asymmetric Lipschitz distance from T to S.

A(T,S) =

Remark 2.1. If if T € cvy and S € cvy then 0 < A(T, S) < co. Moreover, it is known [24, 53] that for any
open simplex A C cv]l\, as in subsection 2.1 there exists a finite subset Ca C Fy ~ {1} such that for every
T € A and every S € cvy we have

A(T,S) = max HwHS
welCa HwHT

The set Ca can be chosen to be contained in the subset of all elements which are represented by paths that
cross at most twice over every non-oriented edge of I' = T/ Fy, for T € A.

Note also that from the definition we see that for every T € cvy, S € @y and ¢ € Out(Fy) one has
AT, S) = AT, 9S).

2.3. Geodesic currents. We refer the reader to [36, 38, 39, 40] for detailed background on geodesic currents,
and we only recall a few basic definitions and facts here. Let 0°Fy = 0Fx x OFn ~ diag, and endow 0% Fy
with the subspace topology and with the diagonal Fiy-action by translations. A geodesic current on Fy is a
positive Borel measure p on 02 Fy such that y is finite on compact subsets, Fy-invariant and “flip”-invariant
(where the “flip” map 8?Fy — 0*Fy interchanges the two coordinates). The space of all geodesic currents
on Fy is denoted Curr(Fy). The space Curr(Fy) comes equipped with a natural weak*-topology and a
natural left Out(Fy)-action by affine homeomorphisms.

Let o : Fy — m (L, p) be a chart on Fl, and consider [ with the simplicial metric where every edge
has length 1. Then there is a natural Fy-equivariant quasi-isometry (given for any point p € r by the
orbit map Fy — f, g +— gp) between Fy and f, which induces a canonical F-equivariant homeomorphism
between OFy and dI'. We will therefore identify 0F N with or using this homeomorphism without invoking
it explicitly, whenever it is convenient. _

A non-degenerate geodesic segment « is I' defines a cylinder set Cyl,(7) consisting of all (X,Y) € 8*Fn
such that the geodesic from X to Y in I' passes through ~ (in the correct direction). The sets Cyla(7), as
~ varies among all non degenerate geodesic edge-paths in f, are compact and open, and form a basis for
the topology on 9?Fy. Note that for w € Fy we have Cyl,(wy) = wCyly(7y). If p € Curr(Fy) and v is a
non-degenerate reduced edge-path in I', we define the weight (v, u)o := (Cyls(y)) where ~ is any lift of v.
Since the measure p is Fy-invariant, this definition does not depend on the specific choice of the lift v of v to
I. A current 1 is uniquely determined by its collection of weights with respect to a given chart. Moreover,
if pp,p € Curr(F) and « is a chart as above, then lim, o, = p in Curr(Fy) if and only if for every
non-degenerate reduced edge-path v in I' we have lim, oo (v, tin)a = (U, () a-

For every w € Fiy ~{1} there is an associated counting current n,, € Curr(Fy), which depends only on the
conjugacy class [w] of w in Fyy and satisfies 1,1 = 1, and n,» = nmn,, for all integers n > 1, and such that
©Nw = Ny(w) forall o € Out(F), w € Fy~{1}. The precise definition of 7,, is not important at the moment,
but we will recall some of its basic properties later, as necessary. The set {¢n,, | ¢ > 0,w € Fy,w # 1} of
the so-called rational currents is dense in Curr(Fl).
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Be aware that in general for a representative (even a train-track representative) f : I' — I" of ¢ one has
(v, 010 # ([f(v)], 1t)a, where [f(v)] denotes the edge-path obtained from f(v) by reduction (= iterative
contraction of any backtracking path).

2.4. Intersection form. In [39] Kapovich and Lustig proved the existence of a continuous geometric inter-
section form between points of vy and geodesic currents:

Proposition 2.2. [39] There exists a unique continuos function (-,-) : €y X Curr(Fn) — [0,00), called the
geometric intersection form, with the following properties:
(1) For any p1,us € Curr(Fn), T € ¢on, c1,c2 > 0 and r > 0 we have:

(rT,cipn + capa) = rer(T, py) + rea(T, pa)
(2) For any T € Con, p € Curr(Fy) and ¢ € Out(Fy) we have:
(T o) = (T, p)
(3) For any T € cun and w € Fy ~ {1} we have:
(T, 1) = [|wllr
(4) For any T € cun (with the associated chart « : Fy — m(T/Fyn)) and any pu € Curr(Fy) we have:
1
(Ty= D>, Glewa
ecEdges(T/Fn)

where the summation is taken over all oriented edges of the graph T/Fy .

3. TREE-CURRENT MORPHISMS AND EXTREMAL LIPSCHITZ DISTORTION

Recall that a current p € Curr(Fy) is called filling if for every S € cvy we have (S, u) > 0.

We proved in [40] that for a current u € Curr(Fy) and a tree T' € vy we have (T, u) = 0 if and only if
the support of p is contained in the “dual algebraic lamination” of T (in the sense of [19]). Using this fact,
it was shown in [40] that if p is a current with full support, then u is filling. We denote by Curr 7;;(Fn) the
set of all filling p € Curr(Fy), and endow Curry;(Fn) with the subspace topology given by the inclusion
Currfm(FN) g Curr(FN).

Definition 3.1 (Tree-current morphism). A tree-current morphism is a continuous function J : cvl —
Curr(Fy) such that for every T € cvh, and every ¢ € Out(Fx) we have J(¢T) = ¢ J(T).
A filling tree-current morphism is a tree-current morphism J : cvy — Curr(Fy) such that for every

T € cvl the current J(T') € Curr(Fy) is filling.
Lemma 3.2. The function cvl, x coy — R, (T,S) — A(T,S), is continuous.

Proof. Let T € cv be arbitrary.
Let Aq,..., A, be all the open simplicies in c¢vl; whose closures in cv}; contain 7.
Set Cr = U™ Ca,. Note that U = Ay U---UA,, is a neighborhood of T in cvl;.
Thus for every 7" € U and every S € cvy we have

AT, S) = max [lwlls .
weCr ||w]|z
Therefore the function A(7”,S) is continuous on U x &vy. Since T € cv}, was arbitrary, the conclusion of
the lemma follows. |
Let J be a filling tree-current morphism. Then for any S € ¢vy and ¢ > 0 we have <i(‘IT(g> = ﬁ‘?if g?

Note also that since J(T') is a filling current, for every S € ¢y we have (S, J(T')) > 0. Therefore we have a
well defined function
f:cvh x CVy — (0,00)

given by f(T,[S]) = <i’(§(g>, where T € cvl; and S € cvy.
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Lemma 3.3. Let J be a filling tree-current morphism. Then the function

fievy x CVy — (0,00), (T’S)Hm

s continuous.

Proof. The conclusion of the lemma follows directly from Lemma 3.2 together with the continuity of the the
geometric intersection form (-, ). O

Corollary 3.4. Let K C cvy be a compact subset, and let J : cv — Currey(Fn) be a filling tree-current
morphism.

Then there exist 61 = 61(K,J) > 0 and 02 = 02(K, J) > 0 such that for every T € K and every S € Cuy
we have 61 < f(K,[S]) < ba.

Proof. The set K x CVy is a compact Hausdorff space and, by Lemma 3.3, f : K x CVy — (O,oo)iis a
continuous function. Therefore f achieves a positive minimum ¢§; and a positive maximum d, on K x CV y,
and the conclusion of the corollary follows. (I

Corollary 3.5. Let K C cvk be a compact subset, let Ty = U<pe0ut(FN)90K and let J : cvyy — Curr(Fy)

be a filling tree-current morphism.
Let furthermore 61 = 61(K,J) > 0 and 63 = 63(K, .J) > 0 be the constants provided by Corollary 3.4.
Then for every T € Tx and every [S] € CVy we have

(5, J(T))

<
0= 0= KT, 5)

< dy < 0.
Proof. Let T € T and [S] € CVy be arbitrary.
Then there exist 7" € K and ¢ € Out(Fy) such that T = ¢T’. By ¢-equivariance of J we have
J(T) = @J(T"). Denote S’ = =18, so that ¢S’ = S. Then
(S, J(T)) _ (oS, 9J(T)) _ (5, J(T))

AT, S) - A(pT", S - AT, 5" = f(T",[S"]) € [01.62],

where the last inclusion holds by Corollary 3.4 since T' € K. O

Note that Corollary 3.5 does not require the tree-current morphism J : cvi, — Curr st (F) to be injective,
although in the specific applications of interest to us J will be injective.

4. PATTERSON-SULLIVAN CURRENTS AND EXTREMAL LIPSCHITZ DISTORTION

4.1. Volume entropy and the Patterson-Sullivan currents. We only give here a brief summary of basic
definitions and facts regarding Patterson-Sullivan currents for points of cvy. We refer the reader to [26, 17,
33, 42] for more detailed background information about Patterson-Sullivan measures and Patterson-Sullivan
currents in the context of word-hyperbolic groups and Gromov-hyperbolic spaces.

Let T € cvy, where N > 2. Since Fy and T are Fy-equivariantly quasi-isometric, there is a natural
identification of OFy and 0T, which we will use later on.

The volume entropy h(T) of T is defined as

WT) = gim (08w € Px | dr(p,wp) < RY)
R—o0 R

where p € T is an arbitrary base point. It is known that the above definition does not depend on the choice
of a base-point p € T and that we have h(T') > 0 for every T' € cvy. It is also known that h(T) is exactly
the critical exponent of the Poincare series

II,(s) = Z e sdr(pwp)

weFN
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In other words, II,(s) converges for all s > h(T") and diverges for all s < A(T'). It is also known that as

s — h+, any weak limit v of the measures
1

T O ¢ Dinac(u)

weEFN

is a probability measure supported on 9T = OFy. Any such v is called a Patterson-Sullivan measure on
OFn corresponding to T', and the measure class of v is canonically determined by 7. As follows from general
results of Furman [26], in this case there exists a unique, up to a scalar multiple, geodesic current p in the
measure class of v x v on 9?Fy. We call the unique scalar multiple ur of u such that (T, ur) = 1, the
Patterson-Sullivan current for T € cvy. One also has that the current pp has full support (this follows,
for example, both from the general results of Furman [26] and from the explicit formulas for pr obtained in
[42]).

Proposition 4.1. The map
Jps : cv}v — Curr(Fn), T — pr

is a filling tree-current morphism.

Proof. Since pp has full support, by a result of Kapovich and Lustig [40, Corollary 1.3], it follows that
pwr € Currgy(Fn). The fact that Jpg is a continuous Out(Fy)-equivariant map was proved by Kapovich
and Nagnibeda [42]. Thus Jpg is indeed a filling tree-current morphism, as claimed. O

The fact that for T € cv the Patterson-Sullivan current pr is filling, i.e. that (S,ur) # 0 for every
S € TVy, is quite non-trivial and does not follow directly from Proposition 2.2. This fact, which requires a
general result from [40] characterizing the case where (S, u) = 0 (where S € ¢y and u € Curr(Fy)), is, in
a sense, the place where the real “magic” in the proofs of the main results of the present paper happens.
We now obtain Theorem 1.1 from the Introduction:

Theorem 4.2. Let N > 2 and e > 0. Then there exist constants 6 > 2 > 0 such that for every T € cuy _,
S € ¢oy we have:

(S, pr)
s A(T,g)

Therefore there exists a constant ¢ > 0 such that for every T € cv}\,ﬁ and S € cvl we have:

log (S, i) — du (T, S)| < c.

< 0o

Proof. Since cv}\,,E /Out(Fy) is compact and the action of Out(Fy) on cv}vﬁ is properly discontinuous, there
exists a compact subset K C cvy _ such that cvy . = T = U,eOut(ry) P By Proposition 4.1, the map

Jps : cv}\, — Curr(Fy) is a filling tree-current morphism. The conclusion of the theorem now follows from
Corollary 3.5. O

4.2. Uniform currents and generic stretching factors. Kapovich and Nagnibeda also provide reason-
ably explicit description of ur in terms of its weights on the “cylinder subsets” of 92Fx. The details of that
description are not immediately relevant for the present paper. However, in the case where T € cv} and
where T/Fy is a regular metric graph (that is, a regular graph where all edges have the same length), one
can give a more precise description of up as a “uniform current” corresponding to 7" and relate pp to the
exit measure of the simple non-backtracking random walk on 7. We briefly recall here the description of
uniform currents for the standard N-roses, that is for points of cv}, corresponding to free bases of F.

Let A = {a1,...,an} be a free basis of Fiy. Let Ry be the graph given by a wedge of N loop-edges
e1,...,en at a vertex xg. By identifying e; with a; € Fiy we get an identification of a4 : Fiy = m1 (RN, o),
that is, a chart on Fy. We give each edge of Ry length 1/N, so that Ry becomes a metric graph of volume
1. Then the universal cover T4 := ﬁN is an R-tree, which can be thought of as the Cayley graph of Fy with
respect to A, but where all edges have length 1/N. The group Fy has a natural free and discrete isometric
left action on T4 by covering transformations, with T /Fn = Ry. Thus T4 is a point of CV}\,.
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The uniform current v4 on Fy corresponding to A is defined explicitly by its weights. Namely, for every
non-trivial freely reduced word v over A*! we have

1
N(2N — 1)lvl=t"
One can check that this assignment of weights does define a geodesic current and that (T4, v4) = 1. Moreover,
in this case we also have:

<’U7VA>(1A -

Proposition 4.3. Let N > 2 and let A be a free basis of Fiy. Then ur, = va, that is, the Patterson-Sullivan
current corresponding to T is exactly the uniform current va.

The above fact is not explicitly stated in [42] but it easily follows from the explicit formulas for the
weights for Patterson-Sullivan currents obtained in [42]. Alternatively, one knows, for example by the results
of [17, 46] that for T4 the uniform visibility measure m 4 on 0Fy = 0T, is a Patterson-Sullivan measure for
T4. Since v4 € Curr(Fy) is in the measure class of my x m4 and since (Ta,v4) = 1, it follows from the
definition of the Patterson-Sullivan current that pr, = v4. Note that for any other S € cvy the intersection
number (S, v4) measures the distortion of a “long random geodesic” in T4 with respect to S.

Recall that in the Introduction, given a free basis A of F, S € &y and ¢ € Out(Fy), we defined the
generic stretching factors A4(S) and A4 (p).

Lemma 4.4. For any free basis A of Fy and any S € cuy we have:

AA(8) < AT, 5).

Proof. Since all edges in T4 have length 1/N, for every w € Fy we have ||w||l4 = N||w||r,. Then for a
random trajectory & = y1y2 ...Yn ... of the simple non-backtracking random walk on F with respect to A
we have:

Aa(S) = Tim lyr-ymlls _ o My nlls
n=o0 [|y1...ynlla  n=oe Nlyi...ynllr,

lyr---yulls _ 1 [lwlls _ 1
N n—oo Hyl .. -yn”TA N w#1 ||w||TA N ( )

O

A key fact about generic stretching factors, originally established in [36, Proposition 9.1] in slightly more
limited context, is:

Proposition 4.5. Let A be a free basis of Fy (where N > 2) and let S € ¢un. Then
<S, VA> = )\A(S).

Proof. By [36, Proposition 7.3], for a.e. trajectory & = y1y2 ...y ... of the simple non-backtracking random
walk on Fy with respect to A, we have

1

lim — =vy4.
n— 00 nny1~-<yn A

Therefore, by Proposition 2.2, for any S € ¢y we have

(S,v4) = lim l(S, Nyy..y,) = lim M- yulls =2a(9)

n—oo n n—0o0 n

O

Remark 4.6. Since the current v4 has full support and therefore v 4 is filling, Proposition 4.5 implies that
for every S € €Wn we have A4(S) > 0. (From the definition of A4(S) one only knows that A4(S) > 0 and it
is not a priori obvious, that the case A4(S) = 0 cannot occur.)

We can now obtain Corollary 1.4 from the Introduction:
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Theorem 4.7. Let N > 2. Then there exists a constant 6 = 6(N) € (0,1) with the following property:
For any free basis A of Fy and any S € ¢uy we have
Aa(S) 1

< —r < —.
0<0= T, SN

)\A(S) < 1

A(Ta,8) = N*
Let 6 = d1(g, N) > 0 be the constant provided by Theorem 4.2. By decreasing this consta(bnt if)necessary,
we can always assume that 0 < §; < 1. Note that the length of the shortest essential circuit in T4 is equal
to 1/N.
Since 0 < & < 1/N, it follows that that T € cvjy .. Since pur, = va and (S,va) = Aa(S), by Theorem 4.2
we have

Proof. Let A be a free basis of Fiy and let S € v be arbitrary. By Lemma 4.4, we have

<S7MTA> <S7 VA> )‘A(S) 1
< = = < —
00 S X709 ~ AMTw,S)  ATwS) = N

as required. O

5. EXTREMAL, GENERIC AND ALGEBRAIC STRETCHING FACTORS FOR FREE GROUP AUTOMORPHISMS
We recall the notions of extremal and generic stretching factors from Definition 1.5 in the Introduction:

Definition 5.1 (Extremal and generic stretching factors of automorphisms). Let A be a free basis of Fi
and let ¢ € Out(Fu).

Denote

Aa(p) := AM(Ta, Tap) = sup lleCollla _ i (ramae)
w1 ||wl[a

and refer to Aa(p) as the extremal stretching factor for ¢ with respect to A.

Also, denote Aa(p) := Aa(NTap) = NAa(Tap).

Thus for a.e. trajectory £ =y ...y, ... of the simple non-backtracking random walk on F with respect
to A we have

Aa(g) = lim ey yallla _ y lle@rya - yn)lla
nree n n—=oo ||y1y2. . Ynlla

We call A g(p) the generic stretching factor of ¢ with respect to A.
First, we obtain, in a slightly restated form, Theorem 1.6 from the Introduction:

Theorem 5.2. For every N > 2 there exists 0 < 7y < 1 such that if A is a free basis of Fx and ¢ € Out(Fy)
then

Aalp)

0<7my <

Aa(p)

Proof. Let A be a free basis of Fy. Recall that, by definition, for ¢ € Out(Fy) we have Aa(p) = NAa(Tap)

and Aa(p) = A(T4,Tap). Therefore, by Lemma 4.4, we have Aa(p) < Aa(p), so that iiii; < 1. Since for

any ¢ € Out(Fy) we have Ty, Tayp € CV}V’E with € = 1/N, the statement of the theorem now follows directly

from Theorem 4.7. (|

<1

For two sequences x,, > 0,y, > 0 (where n > 1) we say that x,, grows like y,, if there exist 0 < ¢ < ¢ < 00
such that for every n > 1 we have ¢ < ”n <c.
We now obtain Corollary 1.7 from the Introduction:

Corollary 5.3. Let N > 2 and Fy = F(ay,...,a,) with A = {ay,...,an}. There exists D = D(N) > 1
such that for every ¢ € Out(Fn) we have

1
5 logda(p) <logAa(p™") < DlogAa(e).
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Proof. Tt follows from a result of Algom-Kfir and Bestvina [3, Theorem 24] that there exists D’ = D'(N) > 1
such that for every ¢ € Out(Fy) we have

1
ﬁdL(TAvTAQD) <dp(Tap,Ta) < D'd(Ta, Tayp).

Note that dr,(Ta,Tap) =log A(Ta,Tap) =log Aa(p) and that
di(Tap,Ta) = dp(Ta, Tap™") = log A(Ta, Tap™ ') = log Aa(¢ ™).
Theorem 5.2 now implies that there exists D” = D”(N) > 1 such that for every ¢ € Out(Fy) we have

1
() T logAa(p) — D" <logAa(p™") < D"log Aa(p) + D",

It was proved in [23, 40] (and also follows from Theorem 5.2) that the set Qn := {Aa(p) | ¢ € Out(Fn)}
is a discrete subset of [1,00). It was established in [34] that for As(p) = 1 if and only if ¢ is a permuta-
tional automorphism with respect to A, that is, if and only if, after a possible composition with an inner
automorphism, ¢ is induced by a permutation of A, with possibly inverting some elements of A. Note that
¢ is permutational with respect to A if and only if ¢! is permutational with respect to A, so that for
© € Out(Fy) Ma(p™!) = 1 if and only if Aa(p) = 1. It was also proved in [34] that the minimum of
Aa(p), taken over all non-permutational ¢, is equal to 1+ ﬁvj\é:%. Therefore (x+) implies that there exists
D = D(N) > 1 such that for every non-permutational ¢ € Out(Fy) we have

(%) %log Aa(p) <logAa(p™!) < Dlog Aa(yp)

If ¢ is permutational, then so is ¢ 1. In this case we have log Aa(p 1) = logAa(¢) = 0 and (&) holds as

well. Thus (&) holds for every ¢ € Out(Fy ), which completes the proof. O

Recall that for ¢ € Out(Fy) the algebraic stretching factor A(p) is defined as

)= sup  lim /[ (w)ls
wEFN,w#1 M 70
where S € cvy is an arbitrary base-point. As noted earlier, this definition of A(¢) does not depend on
the choice of S € cvy. The algebraic stretching factor A(¢) can be read-off from any relative train-track
representative f : I' — I' of ¢ as the maximum of the Perron-Frobenius eigenvalues for any of the canonical
irreducible diagonal blocks of the (non-negative) transition matrix M (f).

Corollary 5.5 below describes, given ¢ € Out(Fy), the asymptotics of A(S, S¢™) as n tends to infinity
(where S € vy is an arbitrary point, the choice of which does not affect this asymptotics). The statement
of Corollary 5.5 is probably known to the experts. Since the proof is not yet available in the literature, and
since we need Corollary 5.5 for the applications in this paper, we include the proof here.

Proposition 5.4. Let ¢ € Out(Fy).

(1) Let ¢ > 1 and let a = ¢ admit an improved relative train-track (in the sense of [10]) representative
f:T —=T. Put X:=1if «ais polynomially growing (that is, if f has no exponentially growing strata)
and otherwise let A > 1 be the largest Perron-Frobenius eigenvalue of the exponentially growing strata
of f: T —T.

Then there exist and integer m > 0 such that for every S € cuy there are some constants constants
0 < C; <05 < o0 such that for every n > 1

CLANVIn™ < A(S, Sp™) < CoA™In™,

(2) If ¢ admits a train-track representative f : T' — I' with an irreducible transition matriz and with the
Perron-Frobenius eigenvalue A > 1, then for every S € cuy there exist 0 < C; < Cy < 00 such that
for everyn > 1

CIA™ < A(S, Sg™) < CoA™.
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Proof. (1) Let T € cv}; be the point corresponding to the improved relative train-track f : I' — T, where
all edges of T' are given equal length. Put L = {1} if f has no exponentially growing strata. Otherwise let
A1 > -+ > A > 1 be all the Perron-Frobenius eigenvalues of the exponentially growing strata of f and put
L ={\,..., A\, 1}. Finally put A = maxL. Thus A > 1 and A = 1 if and only if f has no exponential
strata.

A result of Levitt [45, Theorem 6.2] shows that there is a finite subset M of Z>( such that for every
non-trivial w € Fy there is some (N, m’) € L x M such that the sequence || (w)||r grows like (X)"n™ .
Moreover, there exists some element 1 # wy € Fy such that ||a™(wo)||r grows as A"n™ and such that if
some other w # 1 has || (w)||7 growing as A"n™ then m’ < m.

Let D = Ca be the finite subset of Fiy as in Remark 2.1, where A is the open simplex in cv}v containing
[la™ (w)||T
IEIES

T. Therefore for every n > 1 we have A(T,T¢™) = maxyep . Moreover, through replacing D by
D U{wy} we can assume that wy € D.

It follows that A(T,Ta™) = max,ep % grows like A"n™.

Now let n > 1 and write n = gn; + r where n; > 0 and 0 < r < g — 1 are integers. As we have seen,
AT, Ta™) = maxyep M grows like A™n?". Since 0 < r < g — 1, applying ¢" distorts ||.||z by a

TFllr :
lle" (w)l |z

Twlls ~ BLOWS as A"4(n/q)™, that is, as

bounded multiplicative amount. Therefore A(T, T¢™) = maxy,ep
A/ apm,

Since T' and S are F-equivariantly quasi-isometric, it follows that A(S, S¢™) = Aa(p™) also grows like
A*/ap™ and the conclusion of part (1) of the proposition follows.

(2) The proof of part (2) is known (e.g. see Theorem 8.1 in [24]) and is simpler than the proof of part
(1), and we leave the details to the reader. The key point is that in this case for every non-trivial w € Fly,

such that the conjugacy class of w is not @-periodic, the sequence ||¢™(w)||s grows like A™. O

Corollary 5.5. Let ¢ € Out(Fy), let S € cuy and let A(¢) be the algebraic stretching factor of .
Then there is an integer m > 0 such that for every S € cuy there are some Cq,Co > 0 such that

CrA(p)" n™ < A(S, S¢™) < Ca A(p)" n™
foralln > 1.
Proof. Tt is known [10] that some positive power @ = ¢? of ¢ admits an improved relative train track
representative.

In this case we have A(a) = A(¢?) = A()9, so that [A(a)]'/9 = A(¢). The conclusion of the corollary now
follows directly from part (1) of Proposition 5.4. O

Now Corollary 5.5 (applied to S = T4, which gives A(S, S¢™) = Aa(¢™)) and Theorem 5.2 directly imply
Theorem 1.8 from the Introduction:

Theorem 5.6. Let A be a free basis of Fy and let ¢ € Out(Fn) and let A(¢) be the algebraic stretching
factor of p. Then there exist constants c1,co > 0 and an integer m > 0 such that for every n > 1 we have

c1 A(p)" n™ < Aa(p") < ca ()" n™.
Moreover, if ¢ admits an expanding train-track representative with an irreducible transition matriz (e.g. if

@ is fully irreducible), then m =0 and A(p) > 1. O

Example 5.7. To demonstrate that the case A > 1,m > 0 in Theorem 5.6 can indeed occur, we consider
an example explained on p. 1138 in [45]. Let N = 4 and Fy = F(A) with A = {a;,b1,a2,b2}. Let an
automorphism ¢ : F(A) — F(A) be given by

p(ar) = ar1b, @(b1) = a1, ¢(az) = azbiar, @(b2) = as.

For the A-rose R4 the map f : Ry — R4, given by the same formula as ¢, is both a global train-track
and a 2-strata relative train-track representative for ¢. The bottom stratum is {a1, b1} and the top stratum



14 I. KAPOVICH AND M. LUSTIG

11 .
1 0}7 which has

g g] where

is {ag,b2}. The transition matrices for both strata are the same and are equal to B = [
the Perron-Frobenius eigenvalue A = 12—‘/3 The transition matrix for f has the form M = [

C = Ll) 8] By iterating M one can see that |[¢™(az2)||a grows like nA™. One can then show that in this

case Ay (™) also grows as nA". Therefore, by Theorem 5.2, A4(¢") grows as nA" as well.

6. OTHER EXAMPLES OF FILLING TREE-CURRENT MORPHISMS

The Patterson-Sullivan map Jpg : cvy — Curr(Fy), T — pur, is just one, albeit natural and useful,
example of a filling tree-current morphism. There are many other filling tree-current morphisms J : cvk —
Curr(Fy ), and Corollary 3.5 is applicable to all such J. We indicate here some sources of such J, following
the approach of Reiner Martin [48]. The main idea is that if ¢ — p(¢) > 0 is a monotone decreasing continuous
function which approaches 0 as t — oo “sufficiently quickly”, then

J, evy — Curr(Fy), T Z o(||w]]7)Nw
[w]#[1]

is a filling tree-current morphism.

The summation here can be taken either over all non-trivial conjugacy classes [w] of elements of Fi (or
over an Out(Fy )-invariant set of such conjugacy classes although in the latter case one has to take additional
care to ensure that the current J,(7') is filling).

Let us first observe that such a function J, is, by its construction, always Out(Fx )-equivariant: For any
T € cvl and ¢ € Out(Fy) we have

o0 = D plllwllr)eme) = Y plllwllr)npww

[w]#[1] [w]#[1]

and

To@T) = 3" plllwllor)ne = Y pllle™ @)llr)m
[w]#[1] [w]#£[1]
= Z pl[ull)new) = (Jo(T)),

with u:w*l (w) [l 2(1]

so that J, is indeed Out(F)-equivariant.
We provide here a representative result of the kind described above:

Proposition 6.1. The function

J: ey — Curr(Fy), T Z efe‘lwl‘an
[w]#[1]

where the sum is taken over all non-trivial root-free conjugacy classes [w] of elements of Fy, is an injective
filling tree-current morphism.

Proof. Fix a free basis A of Fy and let T4 € cv, be the Cayley graph of Fyy with respect to A, where all
edges in T4 have length 1/N. For w € Fy denote by ||w|| 4 the cyclically reduced length of w over A*!. Thus
[lwl|la = Nl||wl||r,. We let Ry = Ta/Fn be the quotient metric graph, which is a wedge of N loop-edges of
length 1/N corresponding to elements of A. Let as : Fiy — m1(R4) be the associated chart.

Let T € cvl be arbitrary and let U be a compact neighborhood of 7' in cv},. There exists a constant
C > 1 such that for every w € Fy and every T € U we have ||w||r/C < ||w]|a < C||w||z-. Note that for
n > 1 the number of conjugacy classes [w] with ||w||4 < n is < (2N)™.

To show that for each 77 € U J(T") is a geodesic current we only need to verify that J(7”) takes finite
values on all the two-sided cylinder sets in 8?Fy determined by the chart a4. Since every cylinder is



PATTERSON-SULLIVAN CURRENTS AND AND THE LIPSCHITZ METRIC 15

contained in a cylinder determined by a single edge, it suffices to show that for every oriented edge e of R4
we have (e, J(T"))q, < 0.
Let 7" € U and let e be an edge of R4. For every integer n > 1 set

bale.T) = > e e s

0.9n<||[w][|a<1.1n

Then (€, J(T"))a, < D opeybn(e,T"). The weight (€,7y)a, is equal to 1/N times the number of occur-
rences of e*! in the cyclically reduced circuit ,, in R4 representing [w]. Hence (e, nw)a, < +||w|a. Since
T' € U, we have ||w||p > ||w||a/C. Hence for every n > 1 and 7" € U we have

bn(e’T/> = Z e_el‘wHT/ <ea77w>aA <

0.9n<||[w]||a<1.1n

1 _ollwlla/c 1 _09m/C
= 3 e lwlla < > e Lln <

0.9n<||[w]||a<1.1n 0.9n<||[w]||a<L1.1n

1.1 on 1.1 on
J\fne—e0 on/C (2N)11n — Nne—eog /Cel.lnlog(QN) —
1'1nel.1nlog(2N)7eo‘9"’/c

N

From here we see that
(e, J(T))an <Y bale,T") < Cy
n=1

where C; = C1(U) < oo is some constant depending only on U.

Thus for every 77 € U J(T") is indeed a geodesic current on Fy, and, in particular, J(T') € Curr(Fy).

Note that the current .J(7") has full support. Indeed, for every non-trivial freely reduced word v over A*!
there exists a root-free cyclically reduced word w over A*! containing v as a subword. Then (v, 7y)a, > 0
and hence, from the definition of J(T'), we see that (v, J(T))s, > 0. Thus indeed J(T') has full support and
therefore, by a result of Kapovich-Lustig [40], the current J(T') is filling.

Since an automorphism of Fy permutes the set of all root-free non-trivial conjugacy classes in Fl, it
follows from the definition of J that for every T' € cv}, and every ¢ € Out(Fy) we have J(pT) = pJ(T).

Thus we have constructed an Out(Fy )-equivariant map J : ev — Curr iy (Fn).

We next observe that the map J is continuous. The proof of continuity of J is similar to the proof that
J(T) is a current. Let T € v, U be a compact neighborhood of T in cv}, and let v be a non-trivial freely
reduced word over A*!. Then for every T’ € U we have

_ellwllpr _ellwllpr
(v, T oy = Z<U76 T Nw)as = Ze < T (v, w)a,

[w] [w]

One can then show, by an argument similar to that used above, that there exist positive constants
M, > 0 (also depending on U and v but independent of 7" € U) such that for every T € U we
have e~¢'"!'™” (v,W)ay < My and that }5,, M, < co. By the Weirstrass M-test, it follows that series

Z[w] e—er (v, W4 ,, viewed as the sum of a functions on U, converges uniformly on U and that its sum
v,T") , is a continuous function on U.
A
Since v was arbitrary, the explicit description of the topology on Curr(Fy) (see [36]) implies that J is a

continuous function on cvl;, as required.

It remains to show that J is injective. Fix an enumeration, without repetitions, wi,ws, ..., of represen-
tatives of all the non-trivial root-free conjugacy classes in Fjy. Thus for every root-free non-trivial w € Fy
there exist unique distinct m,n > 1 such that [w] = [w,,] and [w™] = [w,].

For every i > 1 set ¢; = (w; >, w$®) € 0*Fy and set Q; = {¢;}. Note that for ¢, > 1 we have n,,(Q;) =1
if [wy] = [wfl] and 7, (Q;) = 0 otherwise. Then, by definition of J, for every T' € c¢v}, and i > 1 we have
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J()(Q:) = 2¢=¢"""'T  Since the function ¢ > 2e=¢ is strictly monotone and thus injective, it follows that
knowing the current J(T') we can recover ||w;||r for all ¢ > 1. Hence we can recover the length function

[| - llT : Fv — R and so we can also recover T itself. Thus J is injective, as required.
O

7. OPEN PROBLEMS

As we have seen in Theorem 1.6, if N > 2, A = {ay,...,an} is a fixed free basis of Fiy = F(A), then for

on = Aaly)
eeOut(rFy) Aa (90)

we have py > 0. In fact, one can show:

Proposition 7.1. We have A}im pn = 0, and moreover, pn = O(%), that is limsup Npy < 0.

—00 N—oco
Proof. For N > 2 and m > 1 let onm : F'(A) = F(A) be given by ¢onm(a1) = ai1ad” and onm(ai) = a;
for 2 < i < N. It is not hard to see that Aa(pnm) = sup,.q llexm@lla — 4 1. For any freely

MTwla
reduced w € F(A) we have ||on,m(w)|la < (m+1)(a1;w)a + Zfiz(ai; w) 4, where (a;;w)4 is the number
of occurrences of afl in w. On the other hand, if w, € F(A) a “long random” freely reduced word of length

n, then asymptotically we have W e + fori=1,...,N. Therefore
_(mA ) (aw)a + 2N (a5 w)a 1 N-1 m
A m) < 1 = = Nt ——=—+1
Alpnm) < lim. n m+l)g+—Fx=n*
Hence
1o m
on < AA(SONm) < + N )
AA(QON,m) m+1
2 n o0 . .
By taking m = N, we see that py < 3 0. Thus lim py = 0 and limsup Npy < oc. O
N+1 N—o0 N—o0

Theorem 1.6 and Proposition 7.1 naturally raise the following:

Problem 7.2. Are the values py algorithmically computable in terms of N7 What are the exact values of
pn for small N, say for N = 2,3,47 Is it true that py € Q7 What can be said about the precise asymptotics
of py as N — co? (Note that Proposition 7.1 shows that pn decays at least as fast as 1/N.)

Theorem 1.1 also motivates the definition of a new notion of a continuous symmetric and Out(Fy)-
invariant intersection number I : cvl xcvl — R, where for T', S € cvi, we define I(T, S) := (S, ur) (T, us).
The function I(-, -) was originally suggested to us by Arnaud Hilion as it appears to be relevant for attempting
to define an analogue of the Weil-Petersson metric on cv}.

Since the Patterson-Sullivan currents are normalized so that (T, ur) = 1, for T'= S we have I(T,T) = 1.

Problem 7.3.
(a) Is it true that for every T, S € cvly we have I(T,S) > 17

(b) Is it true that for T, S € cvk we have I(T,S) =1 if and only if T' = S ?

It was shown in [34] that if A is a free basis of Fiy and ¢ € Out(Fn) then Ag(p) > 1 and that As(p) =1
if and only if Tae = T4. If B is another free basis of Fiy and ¢ € Aut(Fy) is such that Ty = Tp, then
(T, pury) = Aa(p) and (Ta, pry) = Aa(¢ ™). It follows that if A, B are free bases of Fy then I(T4,Tg) > 1
and that I(T4,Tg) = 1 if and only if Ty = T. However, beyond this fact nothing appears to be known
about the above question.

Recently Pollicott and Sharp [50], using a different approach, defined and studied a Weil-Petersson type
metric on cvh. It would be interesting to investigate the relationship of their metric to the quantity I(7',S)
defined above.
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