Submitted exclusively to the London Mathematical Society
doi:10.1112/0000,/000000

Cannon-Thurston fibers for iwip automorphisms of Fly

Ilya Kapovich and Martin Lustig

ABSTRACT

For any atoroidal iwip ¢ € Out(Fn) the mapping torus group G, = Fn %, (t) is hyperbolic,
and, by a result of Mitra, the embedding ¢ : Fiv = G, induces a continuous, Fy-equivariant
and surjective Cannon-Thurston map ©: 0Fn — 0G,,.

We prove that for any ¢ as above, the map 7 is finite-to-one and that the preimage of every
point of 0G, has cardinality < 2N.

We also prove that every point S € dG, with > 3 preimages in 0Fy has the form (wt™)*
where w € Fiv,m # 0, and that there are at most 4N — 5 distinct Fn-orbits of such singular
points in 8G, (for the translation action of Fy on 9G.,).

By contrast, we show that for k¥ = 1,2 there are uncountably many points S € 0G, (and thus
uncountably many Fn-orbits of such S) with exactly k preimages in 9Fn.

1. Introduction

The notion of a Cannon-Thurston map goes back to a celebrated preprint of Cannon
and Thurston from 1984 that was eventually published in 2007 [11]. They consider a closed
hyperbolic 3-manifold M which fibers over a circle, with the fiber being a closed hyperbolic
surface}). Then the inclusion ¥ € M lifts to the map between their universal covers i : ¥ — M,
where > = H? and M = H®. Cannon and Thurston prove in [11] that the map i extends to a
continuous 7 (S)-equivariant map between the hyperbolic boundaries at infinity: 7 : 0, H? —
OsoH3, where 0, H? = S and 9, H? = S2. The map 7 is necessarily surjective, and so, being a
continuous map from S' to S?, it gives a space-filling curve. Moreover, the map 7 is finite-to-
one, and the full preimage of every point of S? has cardinality at most 4g — 2, where ¢ is the
genus of the fiber X.

In group-theoretic terms, in this example we have an inclusion H < G, where H = 71(%)
and G =m (M) are both word-hyperbolic, and their Gromov boundaries agree with the
corresponding hyperbolic boundaries at infinity: 0H = 0,,H? = S' and 0G = 0, H? = S2. The
natural question about possible generalizations of the Cannon-Thurston result led to the
following definition (see subsection 2.2 below for a more precise statement):

If G is a word-hyperbolic group and H a word-hyperbolic subgroup, and if the inclusion
t: H— G extends to a continuous map 7: 9H — G, then the map 7 is called the Cannon-
Thurston map; in this context this definition is due to Mitra [45, 46, 47]. In particular, if the
Cannon-Thurston map 7 : 9H — 9G exists, then this map is unique and for any sequence h,, €
H U 0H converging to some X € 9H in the topology of H U 9H, we have lim,, o, by, = 1(X) in
G U OG. It is known, see [30, Proposition 2.12], that if H is a non-elementary word-hyperbolic
subgroup of a word-hyperbolic group G, then a map 0H — O0G is the Cannon-Thurston map
if and only if this map is continuous and H-equivariant.
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It is well-known that, if H < G is a quasiconvex subgroup of a word-hyperbolic group G, then
H is word-hyperbolic and the inclusion H < G extends to a continuous topological embedding
OH — OG. Thus in this case the Cannon-Thurston map exists and, moreover, is injective.
Surprisingly, it turns out that the Cannon-Thurston map exists in many situations where
H < G is not quasiconvex, as shown by the work of Mitra in 1990s [45, 46, 47, 48].

In particular, a result of Mitra [46] states that whenever
1-H->G—->Q—1

is a short exact sequence of word-hyperbolic groups, then the inclusion H < G extends to a
continuous Cannon-Thurston map 7: 9H — JG. It is well-known [1] that in this situation, if
H and @ are infinite, then H < G is not quasiconvex. Also, if H is infinite, then the limit set
of H in 9G is equal to OG [35] and therefore the map 7: 9H — OG is onto. This result of
Mitra generalizes the original theorem of Cannon and Thurston mentioned above, since in that
context one has a short exact sequence 1 — m (%) = m (M) - Z — 1.

Until recently it has been unknown if there are any inclusions H < G (with H and G word-
hyperbolic) where the Cannon-Thurston map does not exist [47, 33]. A surprising new result
of Baker and Riley [2] constructs the first example of such an inclusion (with H = F3 ) where
the Cannon-Thurston map does not exist. Their results were subsequently further extended by
Matsuda and Oguni [40].

The result of Mitra, mentioned above, applies in particular to word-hyperbolic free-by-cyclic
groups. Recall that if ® € Aut(Fy) is an automorphism of Fy, then the mapping torus group
of @ is

Go = Fy % (t) = (Fy,t | tht™" = ®(h),h € Fy).

An automorphism ® of Fly is called hyperbolic if the group Gg is word-hyperbolic. It follows
from the Bestvina-Feighn Combination Theorem [5] and a result of Brinkmann [9] that ® €
Out(F) is hyperbolic if and only if @ is atoroidal, that is, does not have any nontrivial periodic
conjugacy classes in Fy (which is also equivalent to the condition that Gg does not contain
any Z x Z-subgroups). An element ¢ € Out(Fy) is called hyperbolic if some (equivalently,
any) representative ® € Aut(Fy) of ¢ is hyperbolic. It is easy to see that G¢ and the inclusion
Fn < Gg depend only on the outer automorphism class ¢ of @, so that for simplicity we will
write from now on G, instead of Gg. So, if ¢ € Out(F) is a hyperbolic automorphism then
we have a short exact sequence

1=-Fny—=G,—(t) =1

of three word-hyperbolic groups, and hence, as discussed above, there does exist a continuous
Fn-equivariant surjective Cannon-Thurston map 7: 0Fy — 0G,.

By now the properties of the Cannon-Thurston map in the original context of [11] of a closed
hyperbolic 3-manifold fibering over a circle are very well understood. By contrast, apart from
its existence, little has been known about the specific properties of the Cannon-Thurston map
for mapping torus groups of hyperbolic automorphisms of free groups. The most typical type
of hyperbolic automorphisms of free groups are so-called iwip or “fully irreducible” hyperbolic
automorphisms. Recall that an element ¢ € Out(Fy) is said to be irreducible with irreducible
powers (iwip, for short), or fully irreducible, if no positive power of ¢ preserves the conjugacy
class of a proper free factor of Fy. Bestvina and Handel proved [4] that if an iwip ¢ € Out(Fy)
fails to be atoroidal (i.e., in view of the above discussion, fails to be hyperbolic) then ¢ is induced
by a homeomorphism of a compact connected surface with a single boundary component. Thus,
for N > 3, “most” iwips are atoroidal. By contrast, it is easy to see that for N = 2 there are
no atoroidal elements in Out(F»). Moreover, in a sense made precise by Rivin [56], for N > 3
a “random” element of Out(Fy) is a hyperbolic iwip. Note also that, if ¢ € Out(Fy) is a
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hyperbolic iwip, then 0G,, is known (by combined results of [10], [36]) to be homeomorphic
to the Menger curve. As recently proved by Dowdall, Kapovich and Leininger in [19], for a
hyperbolic ¢ € Out(Fy) being fully irreducible is equivalent to being irreducible, in the sense
originally defined by Bestvina and Handel in [4].

If ¢ € Out(Fy) is a hyperbolic automorphism, for a point S € G, let the degree of S,
denoted deg(.S), be the cardinality of the set 71(S). Since 7 is surjective, for every S € OFy
we have deg(S) > 1.

We can now state the first result of this paper, proved in Section 5 below:

THEOREM A. Let ¢ € Out(Fy) be a hyperbolic iwip, and let G, = Fy %, 7Z be the
mapping torus group of ¢. Then for every S € 0G, we have:

deg(S) < 2N.

Moreover, as noted below in Remark 5.10, the 2N bound in Theorem A is sharp, that is, for
every IN > 3 there exist an automorphism ¢ as in Theorem A such that for some S € 9G, we
have deg(S) = 2N. By showing that in Theorem A the Cannon-Thurston map 7 : 0Fy — 0G.,,
Theorem A provides a positive answer, for the case of mapping tori of hyperbolic iwips, to
Problem 1.20, attributed to Swarup, in Bestvina’s Geometric Group Theory problem list [3].

In [45] Mitra gave a description of the fibers of the Cannon-Thurston map 7: 0H — 9@ for
any short exact sequence of three hyperbolic groups 1 - H — G — @ — 1. This description
is given in terms of “ending laminations” A., z € 9Q, where A, C 0*°H = {(X,Y) € 0H x
OH : X # Y}. Given a hyperbolic iwip ¢ € Out(Fy), there are several “laminations” C §%Fy
naturally associated to ¢ that arose in the study of Out(Fy): The laminations Lprg(¢*!) C
0?Fn were introduced by Bestvina, Feighn and Handel in [6] and are defined in terms of train
tracks representing . The laminations L(T4(p)) of the the trees Ty (p) are special cases of
the general notion of a ”dual” or ”"zero” lamination L(T) for an R-tree T with isometric Fiy-
action introduced in [15]. Here T4 (¢) define the attracting/repelling fixed points for the (right)
action of ¢ on the compactified Outer space CV y. In our earlier work [34] we showed that for
a hyperbolic iwip ¢ € Out(Fy) we have L(T_(p)) = diag(Lpru(p)), the “diagonal extension”
of Lprr(p). See Section 3 below for precise definition of these terms.

The first step in the proof of Theorem A is to relate, using our results from [34], Mitra’s
“ending laminations” A +1 , for the short exact sequence corresponding to the mapping torus
group of a hyperbolic iwip ¢ € Out(Fy), to the laminations L(Tx(p)). We prove:

Proposition 4.5: Let ¢ € Out(Fy) be a hyperbolic iwip. Then
Ay = L(T_(p)) = diag(Lpru(¢)) -

Then, by Mitra’s results from [45], Proposition 4.5 implies Corollary 4.6 which states that for
the Cannon-Thurston map 7 : 0Fy — 0G,, and for distinct X,Y € 0Fy we have 1(X) = i(Y)
if and only if (X,Y) € L(T-(¢)) U L(T'+(¢)). Corollary 4.6 is a key fact for our analysis of the
fibers of the Cannon-Thurston map. After obtaining Corollary 4.6, we use a description, due
to Coulbois, Hilion and Lustig in [15], of the dual lamination L(T"), where T is an R-tree with
dense F-orbits (e.g. T'= T (¢)) in terms of the so-called Q-map. We combine this description
of L(T+(p)) with the results of the “index” theory for trees that define points in CVy and
elements of Out(Fy), particularly a theorem of Coulbois-Hilion [12] which gives a bound for
the Q-index of Ty (), to derive the conclusion of Theorem A.

Proposition 4.5 corrects an error in Mitra’s paper [49] and can be used to fix a gap, created
by that error, in the proof of one of the main results of [49], namely Theorem 3.4 there
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regarding quasiconvexity of certain kinds of finitely generated subgroups in mapping tori of
hyperbolic iwips. Mitra’s Theorem 3.4 is relevant for the new result of Hagen and Wise [28]
about cubulating hyperbolic free-by-cyclic groups. We explain how to correct the proof of
Theorem 3.4 of [49] in Appendix A at the end of this paper.

Proposition 4.5 and Corollary 4.6 are also related to the general results of Bowditch [7] about
hyperbolic boundaries and the associated Cannon-Thurston maps for one-sided and two-sided
"hyperbolic stacks” of hyperbolic metric spaces.

After proving Theorem A, we undertake a more detailed study of the fibers of the Cannon-
Thurston map. In analogy to the classical Cannon-Thurston situation we say that S € 0G,
is simple if deg(S) = 1, that S is regular if deg(S) = 2, and that S is singular if deg(S) > 3.
It is straightforward to show that deg(S) = deg(gS) for any S € G, and g € G,. The group
G = G, acts on G, by translations, and hence so does Fiy < G,. When referring to G-orbits
or F-orbits of points in G, we will mean these translation actions. The Fn-orbit of S € 0G,
will be denoted by [S]F, ; as argued above, the degree deg([S]r, ) is well defined. The following
result (proved in section 5) gives fairly precise information about the singular points in 0G.,:

THEOREM B. Let ¢ € Out(Fy) be a hyperbolic iwip and let G, be its mapping torus
group. Then:
(i) Every singular point S € 0G,, has the form S = (wt™)> for some w € Fy and m # 0.
(ii) The number o of Fy-orbits of singular points in 0G, is finite and satisfies 2 < o <
4N — 5.
(iii) We have

> (deg([S]py) —2) <4N -5

where the sum is taken over all Fy-orbits [S]p, of singular points in 0G.,.

Theorem B implies that for every singular S € 9G, there exists a unique g € G, such that g
is not a proper power and such that ¢g> = S; moreover, there are < 4N — 5 conjugacy classes
of g € G with these properties.

We next summarize, in a simplified form, the remaining results (obtained in Section 5) about
fibers of v for G,.

THEOREM C. Let ¢ € Out be a hyperbolic iwip and let G, be its mapping torus group.
Then the following hold:
(i) Let g =wt™ € G, where w € Fy and m # 0. Then

deg(g>) + deg(g™>) < 4N — L.

(ii) Ifw € Fy,w # 1 then the point w™® € 0G,, is simple.

(iii) There are uncountably many G-orbits of simple points in 0G. (Since there are only
countably many rational points in 0G,, this also implies that there are uncountably
many G-orbits of irrational simple points in 9G,.)

(iv) There are uncountably many G,-orbits of regular points in 0G,. (Again, this also
implies that there are uncountably many G ,-orbits of irrational regular points in 9G,).

The results of this paper, together with the results of Dowdall, Kapovich and Leininger in
[19], indicate that there is a possible interesting relationship between the Cannon-Thurston
maps corresponding to different ways in which a given hyperbolic free-by-cyclic group G, splits
as the mapping torus group of a free group automorhism.
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Finally, we’d like to note that analogues and relatives of the Cannon-Thurston map have also
been investigated in other contexts arising in the study of hyperbolic 3-manifolds and mapping
class groups (e.g. see [7, 8, 37, 38, 41, 44, 51]), of relatively hyperbolic groups [21, 22, 23,
24, 52], and of the dynamics of complex polynomials (e.g. see [31, 43, 42, 57]).

Acknowledgements. The first author thanks Arnaud Hilion and Thierry Coulbois for useful
discussions regarding the Q-index. The authors also thank the refeee for useful suggestions.

2. Preliminraies
2.1. Iwip automorphisms of F

Throughout this paper F denotes the non-abelian free group of finite rank N > 2. An
automorphism ® € Aut(Fy), or its associated outer automorphism ¢ € Out(Fy), is called fully
irreducible or iwip (for irreducible with irreducible powers) if there is no non-trivial proper free
factor of Fy which is mapped by any positive power of ® to a conjugate of itself.

It follows directly that any such ¢ has infinite order, and any positive or negative power of
© is also iwip.

For any automorphism ® : Fy — F the semi-direct product

Go = Fy Xo <tq>> = <FN,tq> | tqﬂl}t;l = CID(w) for any w € FN> (&)

is called the mapping torus groups defined by ®. It is well known and easy to see that for
any two ®,®" € Aut(Fy) which define the same outer automorphism ¢ € Out(Fy) one has
G = Gg. Indeed, since Fy has trivial center, for ¢ # 1 there is a canonical identification
between G¢ and the full preimage of the cyclic group (p) C Out(Fy) under the quotient map
7 Aut(Fy) — Out(F ). Hence we will denote the group Go often by G.,.

The above identification G, = 71 ({)) is also useful to understand the canonical extension
of the G-action (by conjugation) on the normal subgroup Fn <G, to a G,-action on the
boundary 0Fy. In particular, for any X € 0Fy we obtain te(X) = ®(X).

REMARK 2.1. For any iwip automorphism ¢ € Out(Fy) the equivalence of the following

statements is well known (combined work of [5] and [9]):
(i) ¢ is atoroidal (i.e. no positive power of ¢ fixes any non-trivial conjugacy class [w] C Fy).

(ii) ¢ is not induced by a homeomorphism of a surface with boundary.

(ili) The mapping torus group G, is word-hyperbolic.
Note that, since any automorphism of F5 is induced by a homeomorphism of the punctured
torus, any iwip ¢, which satisfies the above three equivalent conditions, necessarily satisfies
N > 3. Furthermore, ¢ € Out(Fy) is a toroidal (= not atoroidal) iwip if and only if ¢’ is a
toroidal iwip, for any integer ¢ # 0.

2.2. The Cannon-Thurston map
For any atoroidal iwip ¢ € Out(Fy) the inclusion ¢ : Fiy = G, induces, by a more general

result of Mitra [46], a well defined Cannon-Thurston map
7 8FN — 8G¢
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which is continuous and Fy-equivariant. Moreover, with respect to the above explained G-
action on OFy, the Cannon-Thurston map 7 is easily seen to be actually G,-equivariant.

From the fact that Fiv is infinite and normal in G, and hence ©{0Fn) a non-empty and
G -invariant subset of G, one deduces:

PROPOSITION 2.2. For any atoroidal iwip ¢ € Out(Fy) the Cannon-Thurston map T :
OFN — 0G,, is surjective. [

2.3. R-trees and iwip automorphisms

R-trees T" with isometric F-action have become the object of much research in the past
30 years; one usually assumes that the tree T is minimal (i.e. there is no Fy-invariant proper
subtree in T). The group Out(Fy) acts properly discontinuously on Outer space CV y, which
consists of projective classes [T'] of such R-trees T', with the additional specifications that the
Fy-action on T is free and discrete. The action of Out(Fl) extends to the compactification
CVy, which still consists of projective classes of R-tree actions, but without the last two
specifications.

More specifically, the space CVy is the quotient of the “unprojectivized” space ¢y of very
small R-trees T'. Every T' € ¢vy is uniquely determined by its translation length function:

I-llr: Fy = R, gz = inf d(a, g2)

Two trees 11,75 € Ty are close if the functions || ||y, and ||+ ||z, are pointwise close on a
large ball in Fy. For more details see [18, 25, 26, 58]. A tree T € tvy is said to have dense
orbits if the Fn-orbit of some (or equivalently, of any) x € T is dense in T.

For any R-tree T' we denote by T its metric completion, and by 9T its Gromov boundary.
The Fy-action on T' extends canonically the union 7' := T UOT. In [16] a slight weakening
of the metric topology on T has been introduced, the so-called oberservers’ topology; on any
segment [z,y] C T the two topologies agree.

PROPOSITION 2.3.  [39, 16] Let T € tvy be an R-tree dense orbits.

(1) Then there exists a surjective Fn-equivariant map Q : 0Fy — T which is continuous with
respect to the observers’ topology on T (but in general not with respect to the metric topology).

(2) Furthermore, for any P € T the map Q arises from extending continuously (with respect
to the observers’ topology) the map Qp : Fy — T, w — wP, and as such Q is unique. (]

Any iwip ¢ € Out(Fy) acts on CVy with locally uniform North-South dynamics (see [39]),
and the two projectively fixed trees on the Thurston boundary OCVy := CVy ~ CVy, called
T, =Ty (p) and T_ = T_(¢) both have the property that the Fi-action is free, and that they
have dense orbits.

The fact that both Ty and T_ are projectively fixed by ¢ translates, for any lift ® € Aut(Fy)
of ¢, into the existence of homotheties H, : Ty — T, and H_ : T_ — T_ with stretching
factors Ay > 1 and % < 1 respectively, which realize ® in the following sense:

For any w € Fy and any = € T5 (for 6 = + or 0 = —) one has Hs(wz) = ®(w)Hs(x), or
equivalently

<I>(w) = ngH(;l Ts — Ty .
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In this case, the action of Fy on Ts by isometries extends canonically to an action of G, by
homotheties, by defining oz = Hs (x) for any x € T5. As above for the Fiy-action, the G ,-action
too extends naturally to Ts. Part (2) of Proposition 2.3 implies directly the following:

PROPOSITION 2.4.  For any atoroidal iwip ¢ € Out(Fy) the two maps Q4 : 0Fy — T, and
Q_ : 0Fy — T_ are G ,-equivariant. [

2.4. The Q-index

Coulbois and Hilion introduced in [12] the notion of a Q-index for R-trees with isometric Fi-
action and dense orbits. They first define a local Q-index for any point € T'; their definition
involves also the stabilizer in F)y of z. Since we are here only concerned with free actions, we
restrict ourselves to this case, which simplifies things considerably. In this case their definition
amounts to:

indo(z) := card(Q () — 2

Since the map Q is Fy-invariant, the O-index is an invariant of the Fy-orbit [z]p, of z,
so that the term indg([z]py) := indg(z) is well defined. The summation over the Fy-orbits
with non-negative index gives the Q-index of T; however, it should be pointed out that the
summation has to be taken over all Fy-orbits in the metric completion T of T and not just in
T.

DEFINITION 2.5. Let T be an R-tree with isometric Fy-action which is free and has dense
orbits. The 9-index of T is defined as follows:

indo(T):= Y. max{0,indo([z]ry)}.
[€]Fy €T/Fn

The following important general fact was recently established by Coulbois and Hilion in [12].

PROPOSITION 2.6. Let T € ¢viy be a tree T' with dense orbits. Then one has:

indg(T) < 2N — 2

3. Algebraic laminations
3.1. Basic facts and definitions

As before, let Fiy be the free group of rank N > 2. We denote by
O*Fy ={(X,Y) | X,Y € 0Fy, and X # Y}

the double boundary of F. As a subspace of OFy x OFy one inherits on 9?>Fy the induced
topology. The left translation action of Fjy on 0Fy induces a natural diagonal action of Fiy
on 8?Fy by homeomorphisms. The space 0?Fy comes equipped with the canonical “fip” map
given by (X,Y) — (Y, X) for any (X,Y) € 0*Fy.
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DEFINITION 3.1. An algebraic lamination is a closed Fy-invariant and flip-invariant subset
L C 9?Fy. We also require L to be non-empty.

If L C 9?Fy is an algebraic lamination, and Ly C L, we say that Lg is a sublamination of L
if Ly C 0%Fy is itself an algebraic lamination.

For X,Y € 0Fy such that (X,Y) € L we say that (X,Y) is a leaf of L. For X € 0Fy we
say that X is a half-leaf of L if there exists Y € 0Fy such that (X,Y) € L. We denote by L'
the set of half-leaves of the lamination L.

Algebraic laminations have been introduced and studied in [14]; some background material
for the use of laminations in our context can also be found in [34].
Any element w € Fiy \ {1} defines an algebraic lamination

L, =Fyn- - (w®w ) U Fy - (w™>w™>)

where we mean by w™ € 9Fy the limit of the elements w* for k — oco. Clearly, the rational
lamination L., depends only on the conjugacy class [w] C Fy of w.

REMARK 3.2. (1) Whenever one fixes a basis A of the free group Fx one obtains a
canonical identification between the group Fy and the set F(A) of reduced words in AU AL,
which extends to an identification between 0Fn and the set of infinite reduced words OF (A).
When working with laminations, the combinatorial objects from F(A) or 9F(A) have many
advantages and are often simply more concrete to work with; however, a basis free approach
has the advantage of greater conceptual clarity. In the sequel we will freely pass from one
viewpoint to the other, as the transition is indeed canonical.

(2) For example, the above defined point w® € dFy corresponds to the reduced infinite
eventually periodic word which is obtained from reducing the infinite periodic word www . . ..

(3) Similarly, the combinatorial object corresponding to a pair (X,Y) € 9?Fy is the biinfinite
reduced word Y;lX 4, where X 4 and Y4 are the reduced infinite words in A*! that represent
X and Y respectively, Ygl is the left-infinite reduced word obtained by “inverting” Y4, and
Y;lX A 18 obtained from the “product” Y;l - X 4 by reduction at the multiplication locus.

DEFINITION 3.3. (a) For any infinite set © of conjugacy classes [w;] € Q the lamination
L(§2) generated by ) is given as the set of accumulation points of the union of all L,,, (where
“accumulation points” is meant in the classical meaning for a subset of a topological space).

Alternatively, for any fixed basis A of Fy, the lamination L(2) consists precisely of all leaves
(X,Y) such that any finite subword of the reduced biinfinite word Y;lX A is also a subword
of one of the reduced cyclic words @; which represent [w;] € Q, or of w; *.

(b) Similarly, for any boundary point X € 0Fy we define the lamination L(X) generated by
X as the intersection of all laminations L(2), where € is the set of conjugacy classes that is
given by any family of elements wy € Fy which satisfy lim w; = X.

Again, for any fixed basis A of Fiy one can define L(X) alternatively as the set of all leaves
(Y, Z) such that any finite subword of the reduced biinfinite word Z;'Y,4 is also a subword of
X 4 or of X;ll.

REMARK 3.4. It follows directly that for any algebraic lamination L the following are
equivalent:
(i) L is minimal with respect to the inclusion.
(ii) For any leaf (X,Y) € L the union of the two orbits Fiv - (X,Y) U Fy - (Y, X) is dense
in L.
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(iii) Any half-leaf X of L generates L, i.e. L = L(X).
As a consequence we see that two minimal laminations L, Lo are either equal, or else they are
disjoint, with disjoint sets of half leaves:

LinLy=10

REMARK 3.5. For any lamination L a boundary point X € dF} is called an end of L if X
satisfies:

L(X)CL

The set of ends of L is denoted by Ends(L). We would like to warn the reader that even for a
minimal lamination L there exist boundary points X € 0Fy which are ends but not half-leaves
of L.

The following statements for minimal laminations are well known in the context of symbolic
dynamics; we only indicate the arguments:

REMARK 3.6. (1) Every minimal lamination which is not rational contains a singular leaf,
i.e. there are two distinct leaves (X, Z), (Y, Z) € L which have a common half-leaf Z.

This is shown by first observing that every not eventually periodic half-leaf X, written as
infinite reduced word X 4 = 125 ... in some basis A of Fly, contains arbitrary large “special
subwords” Tgm = Tk ...ZTm, 1. there exist indices k',m’ with g ., = Tp m, k # k' and
Tm+41 7 Tmr41. One then uses the finiteness of the set of words of any given length to find
a nested sequence of such special subwords, and the fact that L C §%Fl is closed to construct
the singular leaf.

(2) The set of half-leaves of any minimal non-rational lamination L is uncountable.
Again, one uses the existence of special subwords on every half-leaf and a standard diagonal
argument to get uncountability.

(3) For any finite set Ly, ... L of minimal laminations there exist uncountably many points in
OFN which are not half-leaves of any of the Lj;.

This follows from the fact that there are infinitely many distinct minimal non-rational
laminations in 9?Fy, each of them has uncountably many half-leaves (by fact (2) above),
and no two of them have a common half-leaf (by Remark 3.4 (3)).

3.2. The diagonal extension

DEFINITION 3.7 Diagonal extension. For any subset R C 9?Fy the diagonal extension of
R, denoted diag(R), is defined as:
diag(R) = {(X,Y) € 0?Fy | there exits Zo = X, Z1,..., Zpm =Y
such that (Z;,Z;41) € Rfor 0 <i<m—1}

If R satisfies R = diag(R), then we say that R is diagonally closed.

Note that the definition of diag(R) is purely set-theoretic. In particular, for R C 9> Fy the
set diag(R) need not be closed in 8% Fy, and a diagonally closed subset of 9% Fy need not be a
closed subset. Clearly R’ C R implies diag(R’) C diag(R). Using m = 1 in the above definition
we see that R C diag(R) for every R C §*Fy.
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LEMMA 3.8. Let R= RiUR, be the union of two sets Ri, Ry C 0*°Fy. Assume that R
is diagonally closed, and that diag(R1) N diag(R2) = 0. Then both, R; and Ry must also be
diagonally closed.

Proof. Any leaf (X,Y) € diag(R;) ~ R; must be contained in diag(R) = R = R; U Ra,
and hence in Ry C diag(R2). This contradicts the assumption diag(R;) N diag(R2) = 0. Hence
diag(R1) . Ry must be empty, or equivalently: R; is diagonally closed. By symmetry the same
applies to Rs. O

Note that, a priori, if L C §*Fy is an algebraic lamination, then diag(L) need not be an
algebraic lamination, since diag(L) may fail to be a closed subset of 92 Fy.

REMARK 3.9. If L and diag(L) are both algebraic laminations, then their sets of half-leaves
are equal:

L' = diag(L)*

This follows directly from the above definition of the diagonal extension.

Let Ry, Ry C 9*Fy be two disjoint sets. Then it is quite possible that diag(R;) N diag(Rz)
is non-empty. However, it follows directly from Definition 3.7 that in this case R; and Rs must
have a common half-leaf X € 0Fy, i.e. there must be further elements Y, Z € OFy such that
(X,Y) € Ry and (X,Z) € Rs.

LEMMA 3.10. Let L and L’ two distinct minimal lamination over F. Then one has:

diag(L) N diag(L") = 0.

Proof. Since L is minimal, it follows (see Remark 3.4 (3)) that laminations are either equal
or disjoint. Furthermore, for any half-leaf X of L the lamination L(X) generated by X is equal
to L. The same is true for L'.

We observed above that diag(L) and diag(L’) are either disjoint, or else L and L’ have a
common half-leaf X € Fy. Thus we obtain that diag(L) N diag(L’) # 0 implies L = L(X) = L'.

|

REMARK 3.11. The following assertions are direct consequences of the above definitions.
(a) Let B be any set and let j : 9Fy — B be any map. Then the set
L(j) = {(X,Y) € *Fn | j(X) = j(Y)}
is diagonally closed, that is, L(j) = diag(L(j)). Note that this is a set-theoretic fact, and the
set B need not be a topological space here, and the map j need not be continuous.

(b) If B is a topological space endowed with an Fy-action by homeomorphisms, and if j :
OFN — B is a continuous Fy-equivariant map which is not injective, then the set L(j) C §*Fy
is an algebraic lamination (which is diagonally closed).

3.3. The dual lamination of an R-tree

In [15] the “dual” or “zero” lamination L(T') of an R-tree T  has been defined and investigated:
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DEFINITION 3.12. Consider any R-tree T' € cvy.
(i) For any € > 0 let Q.(T') be the set of conjugacy classes [w] C Fx ~\ {1} with translation
length ||w||r < e, and let L.(T) =: L(2(T)) (for the notation see Definition 3.3 (a)).
(ii) Define L(T) := () L(T).
e>0

For the reader who prefers the “hands on” combinatorial approach through fixing a base A
of F, the lamination L(T) can be described alternatively as the set of leaves (X,Y) € 9*Fy
which have the property that for any € > 0 and any finite subword v of the reduced biinfinite
word Y ' X 4 (compare Remark 3.2 (3)) there is an element w € Fy with translation length
[|lw||r < e such that the corresponding cyclically reduced cyclic word @ contains v as subword.

LEMMA 3.13. Let T € ¢vy, and let  be an infinite set of conjugacy classes [w;] C Fy with
the property that lim ||w;||7 = 0. Then the lamination generated by Q) satisfies:
1—> 00

L(€) € L(T)

Proof. This follows directly from Definition 3.12, since the hypothesis lim ||w;||lT =0
71— 00
implies (see Definition 3.3 (a)) that L(Q) C L.(T') for any £ > 0. O

If T has dense orbits (see subsection 2.3), then there is an alternative description of L(T') in
terms of the map Q : 0Fy — T =T U 9T from Proposition 2.3:

PROPOSITION 3.14. Let T € vy be a tree with dense F-orbits. Then one has:
(1)[15, Proposition 8.5] For X,Y € 0Fy, X #Y we have (X,Y) € L(T) if and only if Q(X) =
QY).
(2)[15, Proposition 5.8] If X € OFy and Q(X) € T then one has L(X) C L(T) (i.e. X is an
end of L(T'), see Remark 3.5).
(3)[20, Lemma 3.5], [12, Proposition 5.2] If X € OFy and P := Q(X) € 0T then Q~'(P) =
{X?} holds. O

Note that Lemma 3.5 in [20] uses older terminology than the currently standard one. For
the explanation of the transition to the terminology presently in use see Proposition 3.1 of [39]
together with the paragraph before and after it.

REMARK 3.15. From parts (2) and (3) of the last proposition we obtain the following
inclusions:

L(T)! € Q\(T) € Ends(L(T))

However, the reader should be warned that in general (including in the case T = Ty (p)) both
of these inclusions are strict.

We thus obtain as a direct consequence of Remark 3.11 (a):

PROPOSITION 3.16.  Let T' € ¢vy be an R-tree with dense orbits. Then L(T') is diagonally
closed:

L(T) = diag(L(T)).
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O

DEFINITION 3.17. For any algebraic lamination L we consider the associated equivalence
relation ~p,, by which we mean the equivalence relation on 9Fy which is generated by the
relation:

X~Y = (X,Y)eL

PROPOSITION 3.18. Let L C 0?Fy be any diagonally closed algebraic lamination, and let
~1, be the associated equivalence relation on OF}.

Then the quotient set OFy/ ~p, provided with the quotient topology is a compact Hausdorff
space.

Proof. By definition of the diagonal closure the set L = diag(L) is equal to the transitive
closure of L in 9 Fy. Since furthermore L is flip-invariant, the subset L U {(X, X) | X € Fx} C
OFN x OFy defines a relation that is reflexive, symmetric and transitive, so that it must agree
with the graph of the equivalence relation ~j, generated by L.

But as lamination L is a closed subset of 9Fy, which means precisely that L U {(X, X) |
X € Fy}is closed in OFy x OFy.

Therefore OFy/ ~p, with the quotient topology, inherits from OFy that it is a compact
Hausdorff space. ]

REMARK 3.19. For any R-tree T € cvy with dense orbits we can consider the zero
lamination L(T) and the associated equivalence relation ~pr). It has been shown in [16]
that in this case the quotient space Fy/ ~rr) is precisely the completed tree f, equipped
with the observers’ topology, and the quotient map Fy — Fix/ ~p(7) is precisely the map Q,
see subsection 2.3.

3.4. Bestvina-Feighn-Handel laminations

In [6] Bestvina, Feighn and Handel introduced for every iwip automorphism ¢ € Out(Fy)
a stable lamination which we denote by Lgrm(p). This algebraic lamination was defined by
the use of train track maps that represent ¢: very roughly, it arises from iterating the train
track map on any edge and passing to the limit. For more details, also concerning the following
proposition, the reader is referred to [34], in particular to its subsection 3.6. It is shown there
that the leaves of Lpru(p) have a uniform expanding property under iteration of ¢, while
those of Lprg(p~!) are uniformly contracting.

PROPOSITION 3.20. Let ¢ € Out(Fy) be iwip. Then we have:
(i) [6, Proposition 1.8], [34, Proposition 3.38] The lamination Lgrp(p) is minimal.
(ii) [6, Lemma 3.5] The laminations Lpru(p) and Lpru(p~') are distinct (and thus
disjoint, by Remark 3.4).

In [34] we established the precise relationship between Lppp(p) and L(T-(p)). This
result has been subsequently generalized by Coulbois, Hilion and Reynolds [17] to arbitrary
“indecomposable” (in the sense of [27]) trees T € TV .



CANNON-THURSTON FIBERS FOR IWIP AUTOMORPHISMS OF Fy Page 13 of 22

THEOREM 3.21. Let ¢ € Out(Fx) be an atoroidal iwip. Then we have:

L(T_(¢)) = diag (Lpru(#))
In particular, Lgpp(p) is the only minimal sublamination of L(T—_(p)). O

Via Proposition 3.20 and Lemma 3.10, the last proposition directly implies the following fact,
previously considered “folk knowledge”, namely that for any atoroidal iwip ¢ the laminations
L(T4(p)) and L(T_(p)) are disjoint in the following strong sense:

PROPOSITION 3.22. Let ¢ € Out(Fy) be an atoroidal iwip. Then L(Ty(¢)) N L(T—(p)) =
(. Moreover, if (X,Y) € L(T+(¢)) then there does not exist Z € OFy such that (X,Z) €
L(T_(p)); that is, the laminations L(T4(¢)) and L(T—(y)) have no common half-leaves. O

4. Mitra’s lamination

In [45] Mitra gives, in a more general context, and with a slightly different vocabulary than
used here, a definition which translates to the following;:

DEFINITION 4.1.  For any h € Fy ~ {1} let
ALy = L{e"([(h]) | n > 0})

and

A,:= U AL, .
Y hern~f1y PP

If we fix a basis A of Fy, then the laminations Ai,h consist precisely of those leaves (X,Y) €
0? Fy which have the following property: For any finite subword v of the biinfinite reduced word
Y;lXA (see Remark 3.2 (3)) exists an iterate ¢™ with n > 0 such that v or v~ is subword of
the cyclically reduced cyclic word /f;n which represents the conjugacy class ¢™([h]).

REMARK 4.2. (In [45] Mitra doesn’t quite use the lamination Aih as defined above, but
rather works with a set A, ; which is close to Ai,h but isn’t quite an algebraic lamination in
our sense (as he omits in the definition the “or in v=!” from the previous sentence, so that his

Ay, is not, in general, flip-invariant). However, A, , UA, 5 = Ai, , so that U AT h=
’ ’ ’ P,n hEFN\{l} P
. U . }A%h and thus the definition of A, given above agrees with the definition given in
ceFny~{1

[45].

Mitra’s main result in [45], specialized to the case of mapping tori of hyperbolic
automorphisms of free groups, implies:

THEOREM 4.3. [45] Let ¢ € Out(Fx) be a hyperbolic automorphism, and let ©: 0Fy —
0G be the Cannon-Thurston map.
Then for (X,Y) € 0*Fy we have 1(X) = 1(Y) if and only if

(X,Y) € Ag, UA¢—1.
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REMARK 4.4. Using Remark 3.11 we observe that Theorem 4.3 implies directly that A, U
o—1 is an algebraic lamination, and that it is diagonally closed.

However, the fact that each of A, and A,-1 are also laminations (and also diagonally closed)
only follows from the following proposition.

A

PROPOSITION 4.5. Let ¢ € Out(Fy) be an atoroidal iwip. Then

A, = L(T-(p)) = diag (Lpru(¢)) -

Proof. Recall from subsection 2.3 that T_¢p = %T, with A_ > 1, so that for every h €
Fn ~ {1} and n > 1 we have:

n 1 n—oo
1™ (DIl = lIllz_on = - Illz- =370,

By Definition 4.1 we have AZ, = L({¢"([h]) | n > 0}). Thus Lemma 3.13 implies A}, C
L(T_). Since A, is the union of all Ai,hv we deduce:

Ay C L(T.)

From Theorem 3.21 we know that Lgpg(p) is the only minimal sublamination of L(T_), so
that it has to be contained in any sublamination of L(7T_), such as any of the Aih, and thus
in particular in A,. We obtain:

L(T-) = diag(Lpru(p)) C diag(A,) C diag(L(T-)) = L(T-)

Thus all these laminations must be equal.

By symmetry, we obtain the analogous equalities for ¢ =% and 7',. From Remark 3.20 we
know that the laminations Lprpr(p) and Lprm(p~!) are both minimal, and that they are
distinct. Thus Lemma 3.10 implies that diag(Lprm(¢)) N diag(Lpru(p~1)) = 0. Above we
derived diag(Lpru(p)) = diag(A,) and diag(Lpru(¢~')) = diag(A,-1), so that we have:

diag(A,) Ndiag(Ay-1) =0

By Remark 4.4 the union A, U A,-1 is diagonally closed, so that we see from Lemma 3.8
that both, A, and A, -1 must also be diagonally closed. Hence the above derived equality
diag(A,) = L(T-) = diag(Lru(y)) specifies to

Ay = L(T_) = diag(Lpru(p)) .

Proposition 4.5 and Theorem 4.3 immediately imply:

COROLLARY 4.6. Let ¢ € Out(Fy) be an atoroidal iwip and let ©: 0Fn — 0G,, be the
Cannon-Thurston map.
Then for (X,Y) € 0*Fy we have 1(X) = 1(Y) if and only if

(X,Y) € L(T1(#)) U L(T-(#))-

We denote by ~ the equivalence relation defined by the lamination lamination L :=
L(T4(¢)) U L(T-(p)), see Definition 3.17.
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PROPOSITION 4.7. Let ¢ € Out(Fy) be an atoroidal iwip and let T: 0Fn — 0G, be the
Cannon-Thurston map.
Then 0G,, is homeomorphic to OFy/ ~,, where the latter is considered with the quotient

topology.

Proof.  'We apply Proposition 3.18 to L = L, to obtain that 0Fy/ ~, is a compact Hausdorff
topological space. By Corollary 4.6, the surjective map 7: 0Fny — 0G,, induces a well defined
quotient map map r : 0Fy/ ~,— 0G,, which is by definition continuous and injective, and
thus, by the surjectivity of 7, bijective. Thus r is a continuous bijection between two compact
Hausdorff topological spaces 0Fn/ ~, and 0G.,, and therefore r is the desired homeomorphism.

O

PROPOSITION 4.8.  The map ©: 0Fy — 0G, splits over the maps Q4 : OF N — ﬁr(@) and
Q_ :9Fy — T_(¢), and thus induces well defined maps

Ry :Ti(p) — oG, and R_: f_(gp) — 0G,

which are surjective, Fi-equivariant, and furthermore continuous with respect to both, the
metric and the observer’s topology on T () and T—(¢p).

Proof.  This follows directly from Proposition 4.7 and Remark 3.14 (1) together with the
fact that on the trees T4 (¢) and T_(p) the metric topology is stronger than the observer’s

topology, with respect to which the maps Q and Q_ are continuous (see Proposition 2.3 (1)).
O

For the sequel we would like to note the following properties of the above defined map
R_ :T_(p) = 0G,, where we use the abbreviations T} := T4 (¢) and T_ :=T_(yp):

LEMMA 4.9. (1) R_(T_)NR_(T_ ~T_) = 0.

(2) The restriction R_|7 of R_ to the metric completion of T_ is injective.

Proof. Since = TR_ o @_, the only points on which R_ is non-injective are the Q_-images
of the half-leaves of the lamination L(T ), by Corollary 4.6. But from Proposition 3.22 we know
that a half-leaf X of L(T) cannot satisfy L(X) C L(7T-); thus Proposition 3.14 (2) ensures
that @_(X) must lie in 9T_. This shows both assertions (1) and (2). O

5. The fibers of the Cannon-Thurston map

Throughout this section we assume that ¢ € Out(Fy) is an atoroidal iwip, that ® € Aut(Fy)
is a representative of the outer automorphism class ¢ and that the mapping torus group
G, is given by presentation (&) (see Section 2.1) in the generators Fi,ts. We will use the
abbreviations Ty := T (p) and T— := T_ (). Before starting the proofs of our main results we
need to establish some terminology for the boundary points of G.:

A point S € 0G,, is called rational if it is the fixed point of an element g € G \ {1}. We
write S =g if § = nlin;o g™ (in the topology of the Gromov compactification of hyperbolic
groups).

Note that the G-action on 0G,, induces canonically an action of (p) = G,/Fy on the
Fxn-orbits of points of 0G,. We have:
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LEMMA 5.1. Let S € 0G,. Then S = g* for some g € G,,g & F if and only if the Fy-
orbit of S is p-periodic.

Proof. Suppose that the Fy-orbit of S is p-periodic. Then there exist n > 1 and w € Fy
such that ¢3S = wS. Hence g5 = S for g = w™'t}. Since G,, is torsion-free word-hyperbolic
and g # 1, the fact that ¢S = .S implies that S = ¢g*° or S = ¢g~°, as required.

Suppose now that S = ¢g* for some g € G,, g € Fiv. Thus g = ut} for some n # 0 and u €
Fy. Then gS = S, so that ut?2S =S and ¢35 = u~1S. Thus the Fy-orbit of S is p-periodic,
as required. ]

DEFINITION 5.2. Let S € 0G,. We define:

(1) The degree deg(S) of S denotes the cardinality of the full preimage of S under the map
T:0FN — 0G,.
(2) We define the following classes of points S € 0G.,:
(i) the point S is simple if deg(S) = 1;
(ii) the point S is regular if deg(S) = 2;
(iii) the point S is singular if deg(S) > 3.

(3) We further subdivide the classes of regular and singular points into two types, as follows:
(a) S is of p-type if for every two distinct Z-preimages X,Y € 0Fn of S we have (X,Y) €
L(T-), and
(b) S is of p~1-type if for every two distinct 7-preimages X,Y € Fy of S we have (X,Y) €
L(T,).

Notice that, by Corollary 4.6 and Proposition 3.22, if S is not simple, then it must either be
of - or of p~!-type, so that one obtains:

PROPOSITION 5.3. If X € OFy is rational, then 7(X) must be simple. O

Note that the degree, the class and the type of the points S in 0G, and also whether or
not S is rational, are properties which are invariant under the action of G. This is a direct
consequence of the G,-equivariance of the map 7.

Thus in particular for every Fy-orbit [S]r, of points S € 9G, the degree is well defined
through deg([S]ry ) := deg(5).

THEOREM 5.4. Let ¢ € Out(Fy) be an atoroidal iwip and let ©: 0Fy — 0G, be the
Cannon-Thurston map. Then one has:

> (deg([S]py) —2) < 2N —2

where the summation is taken over all Fn-orbits [S]r, of singular points S in 0G, that are of
p-type.

The same inequality holds if the summation is taken over all Fy-orbits [S]F, of singular
points of o~ !-type.

Proof. Every singular (or regular) point S € G, which is of ¢-type has by definition as
-preimage only half-leaves of the lamination L(T-_), and those are mapped by Q_ to the
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metric completion T (by Proposition 3.14 (3)). From i =TR_oQ_ it follows that S must be
contained in R_(T_). R

From Lemma 4.9 (1) we know that R_(T_)NR_(T_ ~T_) = . Furthermore we know
from Lemma 4.9 (2) that R_|7 is injective, so that for any singular S € 0G, of ¢-type there
is a unique x5 € T_ with R_(zg) = S. It follows that the Z~fiber of S must be equal to the
Q_-fiber of the point 25 € T_, and hence deg(S) — 2 must be equal to indg(zs).

Conversely, if x € T_ has 3 or more distinct Q_-preimages, then those belong to L(7_) and
(again by i = R_ o
mathcal@_) are mapped by 7 to the point S := R_(x), so that S € 0G,, is a singular point of
p-type, with * = zg as above.

From the Fy-equivariance of
mathcal R_ it follows that the latter induces a bijection between Fy-orbits in T_ and Fy-
orbits in R_(T_) C 0Gy, and hence in particular between Fj-orbits of points z € T_ with
indg(x) > 0 and Fy-orbits of singular points S in 0G,, that are of ¢-type.

Thus we obtain now immediately that the desired inequality is a direct consequence of the
Q-index formula of Coulbois-Hilion [12], see Theorem 2.6. O

As consequence we obtain a number of interesting insights:

THEOREM 5.5. Let ¢ € Out(Fy) be an atoroidal iwip and let ©: 0Fy — 0G, be the
Cannon-Thurston map. Then the following holds:

(i) For every S € 0G, we have:
deg(S) < 2N

(ii) The number of Fy-orbits of singular points of ¢-type (respectively of ¢~ '-type) in G,
satisfies:

card{Fy - S C 0G,, | S singular of ¢—type} < 2N —2

(iii) Every singular point S € 0G,, is rational. More precisely, there exists g € G, \ F such
that S = g.

Proof. Assertions (1) and (2) are direct consequences of the inequality stated in Theorem
5.4.

By Theorem 5.4, there are only finitely many Fy-orbits of singular points, so that necessarily
each of them must be periodic under the action of . Hence assertion (3) of Theorem 5.5 follows
from Lemma 5.1.

O

PROPOSITION 5.6. Let S and g be as in Theorem 5.5 (3). If S is of ¢-type then g must be
of the form g = wty, with w € Fy and m > 1.
Similarly, if S is of ¢~ '-type then g is of the form g = vt§', with v € Fiy and m < 1.

Proof. From the argument given in the proof of Theorem 5.5 we see that S is the fixed
point of some element g € G, of the form g = wtg, with w € Fy and m # 1.

In particular, we can assume, by possibly replacing g by its inverse, that m > 1, so that g acts
on T_ as homothety H, with stretching factor A\, < 1 (compare subsection 2.3), and it has a
unique fixed point P_(g) € T_. From the assumption that S is of ¢-type, i.e. the -preimage of
S are half-leaves of L(T_), we obtain (using Proposition 3.14 (3)) that Q_(771(S) is contained
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in T_. It follows from the G,-equivariance of the map R_ and the injectivity of its restriction
to T_ (Lemma 4.9 (2)) that R_(P_(g)) = S.

We now consider any point Z € T_ which is distinct from P_(g), and hence (since H, is a
homothety) not fixed by g. Since the stretching factor of H, satisfies A\, < 1, it follows that
ILm g"Z = P_(g). Hence it follows from the G -equivariance and the continuity of R_ that
Z" (0702_(2)) converges towards R_(P_(g)) = S: This implies S = ¢°°, since ¢gZ # Z and hence
R_(Z) # g(R_(Z)), by Lemma 4.9 (2). O

COROLLARY 5.7. For any atoroidal iwip ¢ € Out(Fy) we have:

Z (deg([S]py) —2) < AN =5
[STry

where the sum is taken over all Fy-orbits [S]p, of singular points S in 0G.,.
Moreover, the number of Fy-orbits of singular points in 0G, is bounded above by 4N — 5.

Proof. By splitting the sum on the left of the claimed inequality into two partial sums, one
for all S of o-type, and one for all S of p~!-type, we obtain directly from the inequality of
Theorem 5.4 the upper bound 4N — 4 on the right hand side of the inequality. However, the
only way to get equality would be if both of the above partial sums add up to 2N — 2. But this
happens if and only if both trees Ty and T_ are geometric (see [13]), which in turn implies (see
[27, 13]) that ¢ is induced by a homeomorphisms of a surface with boundary, contradicting
the assumption that ¢ is atoroidal (see Remark 2.1).

The bound on the number of orbits of singular points is an immediate consequence of this
inequality, since each such orbit has degree > 3. |

REMARK 5.8. It follows from Remark 3.6 (1) (or alternatively, from using the action of G,
on the attracting tree Ty rather than on T_) that there exists at least one singular point of
¢-type and at least one singular point of ¢~ !-type in dG,,. In particular, there exist at least 2
distinct Fy-orbits of singular points in 0G,,.

THEOREM 5.9. Let ¢ € Out(Fy) be an atoroidal iwip, let ©: 0Fy — 0G, be the Cannon-
Thurston map, and let g € G, ~ {1} be arbitrary.
Then

deg(g™) + deg(g~>) <4N — 1.

Proof. If at least one of g> or g~°° is simple or regular, the inequality follows directly from
Theorem 5.5 (1). Otherwise we obtain from Proposition 5.6 that precisely one of g, g~ is
of p-type and one is of ¢~ !-type, and hence they can not belong to the same G.-orbit. Hence
the asserted inequality is a direct consequence of Corollary 5.7. O

REMARK 5.10. The upper bounds given in Theorem 5.4, Theorem 5.5 (1), Corollary 5.7
and Theorem 5.9 are sharp: A concrete example, for every N > 3, where for each of these
statements the given inequality is actually an equality, has been worked out in [29].

The same examples show also that the “lower bound” given in Remark 5.8 is sharp: In these
examples there is only one Fy-orbit of singular point of ¢-type and only one of p~!-type.

Examples for G, with only one Fiy-orbit of singular points S of ¢-type, with deg(S) =3
have been worked out by C. Pfaff, for the case N = 3 (see [54]).
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Recall that for any non-elementary hyperbolic group G the Gromov boundary OG has
uncountable cardinality. Since G is finitely generated and hence countable, it follows that
there are uncountably many G-orbits G - S of points S € 0G.

PROPOSITION 5.11. Let ¢ € Out(Fy) be an atoroidal iwip. Then there are uncountably
many simple points in G, and hence also uncountably many G-orbits of such simple points.

Proof. From Lemma 3.9 and Theorem 3.21 we know for the zero laminations L(T) and
L(T-) that their sets of half-leaves satisfy L'(T_) = LY. (¢) and LY (T}) = LY o (071).
Since Lpru(p) and Lpryp(¢~!) are minimal (see Remark 3.20) we can apply Remark 3.6
(2) to obtain that the complement Fy ~ (L*(T}) U L*(T_)) is uncountable. It follows from
Corollary 4.6 that all of these complementary points are mapped by 7 to distinct points of
0G,, and that those are all simple. |

PROPOSITION 5.12.
The set of regular points in 0G, is uncountable. In particular, there are uncountably many
G ,-orbits of regular points in 0G.,.

Proof.

From Remark 3.20 (1) and Remark 3.6 (3) we know that both, L(T}) and L(T-), are
uncountable sets, and hence there are uncountably many F-orbits in each of them. From
Theorem 5.5 we know that there are only finitely many Fn-orbits of singular points in G,
and that their degree is bounded by 2N. Hence it follows from Corollary 4.6 that there are
uncountably many regular points in G, and hence also uncountably many Fy-orbits. |

Appendix A. Mitra’s results on quasiconvexity of subgroups in hyperbolic free-by-cyclic
groups

Let L be an algebraic lamination on F and let H < F)y be a finitely generated subgroup.
Thus H is quasi-isometrically embedded in Fy and hence 0H C 9F . Following [6], we say that
aleaf (X,Y) € L is carried by H if there exist w € Fy and X', Y’ € 0H such that (X,Y) =
w(X',Y’). We say that L is minimally filling in Fy if no leaf of L is carried by a finitely
generated subgroup of infinite index in Fiy.

Proposition 4.5 shows that for a hyperbolic iwip ¢ € Out(Fy) we have A, = L(T_-) =
diag (Lpru(yp)) and Ay—1 = L(Ty) = diag (Lppu(p~")). This relationship between A, +1 and
Lprr(p*?!) is more delicate than one might suspect upon initial examination of the definitions
of these objects, and there do exist some incorrect claims on this topic in the literature.

Thus in a 1999 article [49] Mitra mistakenly claims, with a reference to Proposition 1.6
in [6], that A, = Lpru(p) and A,-1 = Leru(p~1); that mistake is based on misreading
the definition of weak convergence (Definition 1.5 in [6]) and consequently misapplying
Proposition 1.6 of [6]. The mistaken claim that A,+1 = Lppg(¢*!) is then used in the proof
of one of the main results of [49], Theorem 3.4 there:

THEOREM A.l. [49] Let ® € Aut(Fy) be a hyperbolic iwip and let G = Fy X Z (s0
that Go is word-hyperbolic). Then a finitely generated subgroup Hy of Fy is quasiconvex in
G if and only if H; has infinite index in Fiy.
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Since, as noted above, Lpry(p*!) are contained in but not equal to Ag+1, this creates a
gap in the proof of Theorem 3.4 given in [49]. This gap can be fixed, using, for example,
Proposition 4.5, in the following way. To obtain Theorem 3.4 in [49], Mitra uses Theorem 3.3
in [49], whose proof does go through if one knows that for a hyperbolic iwip ¢ € Out(Fy) each
A =1 is minimally filling in Fy. Proposition 2.4 in [6] shows that for any iwip ¢ € Out(Fy) the
laminations Lppry(¢*!) are minimally filling in Fyy. But, as noted above, since laminations
Ag+1 are bigger than Lpry (o*!) and have more leaves than the latter, Proposition 2.4 in [6]
does not directly imply that A 1 are minimally filling in Fiv also.

We can show that A <1 are minimally filling in Fv, thereby fixing the proofs of Theorems 3.3
and 3.4 in [49], in a couple of different ways:

PROPOSITION A.2. Let ¢ € Out(Fyn) be a hyperbolic iwip. Then the laminations A, is
minimally filling in Fy.

Proof. The proof of Proposition 2.4 in [6] goes through verbatim for half-leaves of Lppg(¢)
(in the sense of Definition 3.1). This proof (see also the proof of Proposition 4.6 in [32]) shows
that if (X,Y) € Lpru(p) and H; < Fy is a finitely generated subgroup of infinite index, then
there do not exist w € Fyy, Y’ € 0H; such that wY’ =Y. Suppose now that (X,Y) € A, is a
leaf of A, such that (X,Y") is carried by a finitely generated subgroup H; of infinite index in
Fy, that is (X,Y) = w(X',Y’) for some w € F and X', Y' € 0H;. Since, by Proposition 4.5,
A, = diag (Lpru(p)), it follows that there exists X; € OFn such that (X1,Y) € Lgru(p).
Since Y = wY”’ and Y’ € OH;, we get a contradiction with the modified ”half-leaf” version of
Proposition 2.4 in [6] stated above. Hence A, is minimally filling, as required.

Another way to see that A, is minimally filling is via a recent general result of Reynolds [55].
In [55] he proves that if T' € ¢Wy is a free Fiy-tree which is ”indecomposable” (in the sense
of Guirardel [27]), then L(T) is minimally filling. It is well-known that for a hyperbolic iwip
© the trees Ty are Fi-free; as shown recently by Coulbois and Hilion [13], the trees T are
also indecomposable. Hence L(Ty) are filling. The proof of Proposition 4.5 above shows that
establishing the inclusion A, C L(T_) (rather than actual equality) is fairly straightforward
and does not require invoking Proposition 3.21. Thus A, C L(7_) and since L(7_) is minimally
filling, it follows that A, is minimally filling as well. |

The above arguments fill the gap in the proof of Theorem 3.4 in [49]. See an updated and
corrected (September 2012) version [50] of Mitra’s 1999 paper [49] for additional details.
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