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ABSTRACT

In the near future, die-stacked DRAM will be increas-
ingly present in conjunction with off-chip memories in
hybrid memory systems. Research on this subject re-
volves around using the stacked memory as a cache
or as part of a flat address space. This paper pro-
poses MemPod, a scalable and efficient memory man-
agement mechanism for flat address space hybrid mem-
ories. MemPod monitors memory activity and period-
ically migrates the most frequently accessed memory
pages to the faster on-chip memory. MemPod’s par-
titioned architectural organization allows for efficient
scaling with memory system capabilities. Further, a
big data analytics algorithm is adapted to develop an
efficient, low-cost activity tracking technique.

MemPod improves the average main memory access
time of multi-programmed workloads, by up to 29% (9%
on average) compared to the state of the art, and that
will increase as the differential between memory speeds
widens. MemPod’s novel activity tracking approach
leads to significant cost reduction (~12800x lower stor-
age space requirements) and improved future prediction
accuracy over prior work which maintains a separate
counter per page.
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1. INTRODUCTION

Die-stacked memory will increasingly be part of fu-
ture systems, attempting to alleviate the memory wall
[1]. Memory standards have been developed [2, 3, 4] and
processor manufacturers are already announcing prod-
ucts featuring 3D-stacked memory [5, 6, 7, 8]. Cur-
rently, this technology is limited to 8GB per stack [9]
which does not fully address the capacity demands of
modern systems. Therefore, die-stacked memories are
expected to coexist with larger, slower off-chip memo-
ries, such as DDR4 or emerging byte addressable NVRAM
[10, 11, 12] technologies, in a configuration often re-
ferred to as “Two-Level Memory” (TLM) [13, 14].

Stacked memory can be used as a large, high-bandwidth
last level cache, or as part of main memory in a “flat ad-
dress space”. When used as a cache, recent research [15,
16] demonstrates the need to re-evaluate traditional SRAM-
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based cache organizations. Tag placement and granu-
larity need to be re-evaluated, and we should avoid dou-
ble memory accesses for tag check and data retrieval.
Managing stacked memory as a cache is transparent to
the software and improves the performance of latency-
sensitive applications. However, capacity-sensitive ap-
plications do not gain significant improvements as the
stacked memory’s (typically significant) capacity is not
utilized for additional storage.

In a flat address space configuration, the capacity of
stacked memory can be allocated and used by appli-
cations. Dynamic memory managers proposed in the
literature [17, 14, 13] monitor and profile memory ac-
cesses and attempt to transparently migrate frequently
accessed pages to the fast portion of memory. While ex-
posing more memory to the system, profiling memory
accesses and performing transparent migrations often
come with power, performance, and space overheads.

Software migration schemes [14] have high perfor-
mance overheads and operate at coarse intervals, and
thus are slow to adapt to changes in application phases.
Recently proposed hardware managed schemes [17, 13]
operate at finer granularity than software by either us-
ing simple, cache-like demand-driven migration or using
a centralized management scheme. The former does not
consider “hotness” of data, whereas the latter will not
scale to large memories due to its centralized approach.

This paper introduces MemPod, a dynamic memory
manager for flat address space memory configurations
that is area efficient and high performance. It scales
particularly well to future technologies with higher mem-
ory technology performance differentials. MemPod’s
novel microarchitectural design clusters existing mem-
ory controllers into memory “Pods”. Each Pod operates
independently and in parallel allowing for better scala-
bility and integration to future systems with larger and
faster memories with possibly a higher number of chan-
nels. For MemPod’s activity tracking requirements we
incorporate the “Majority Element Algorithm” (MEA)
heuristic [18, 19], originally proposed for database man-
agement and big data analytics. Our evaluation shows
MEA to be capable of high prediction accuracy with
very low hardware overhead. To the best of our knowl-
edge, MEA has not previously been proposed for activ-
ity tracking in hardware.
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Our evaluation results with homogeneous and mixed
8-core multi-programmed workloads show MemPod to
outperform the current state-of-the-art by 9% on aver-
age and up to 29% in terms of Average Main Memory
Access Time (AMMAT) (i.e. the average time a re-
quest spends waiting for main memory). Modeling fu-
ture memory configurations, our results show MemPod
to be the most scalable mechanism as memory tech-
nology improves. The use of MEA activity tracking
requires ~ 0.01% of the storage space required by the
Full Counters (FC) approach used in previous research
studies which uses one access counter per memory page
or region, while at the same time achieving more accu-
rate prediction of future hot pages.

We identify the fundamental building blocks of any
flat address space dynamic memory management mech-
anism, and describe the solution for each block in prior
proposed systems and MemPod, along with their vari-
ous tradeoffs.

The contributions of this paper are:

e Novel activity tracking algorithm (Section 3).

e Breakdown of the basic building blocks of a flat ad-
dress space dynamic memory management mechanism
(Section 4).

e Novel clustered microarchitecture (Section 5).

e Evaluation of MemPod’s effectiveness and its sen-
sitivity to design parameters (Section 6).

2. RELATED WORK

A wide range of research proposals have sought to ad-
dress the memory wall. Techniques such as Bump/[20],
RMM/[21] and Superpages[22] attempt to optimize page
placement in memory to expose higher parallelism. How-
ever, these scheduling mechanisms do not take advan-
tage of a faster memory in a hybrid configuration.

Stacking DRAM dies in the processor package has
been shown to achieve significant performance improve-
ment. This technology cannot yet deliver large capaci-
ties [9]. Consequently, configurations combining stacked
and off-chip memories have been proposed [23, 16] and
can be found in the literature as “hybrid memories”
or “two-level memories”. The systems have proposed
the use of the stacked memory either as a large high-
bandwidth last level cache or as a “flat address space”,
where the capacity of the stacked memory is exposed to
the software.

Organizing stacked memory as a cache has been ex-
plored in several studies [16, 24, 25, 26, 27, 28]. These
approaches implement intelligent tag stores to allow
cache-like operation while mitigating the cost of reading
tags in DRAM. It has been demonstrated that tradi-
tional SRAM-tailored cache optimizations result in de-
graded performance when used in a DRAM cache and
as such we need to “de-optimize for performance” [16].
DRAM cache organizations have been shown to im-
prove performance significantly in latency-limited appli-
cations, while offering only marginal improvement with
capacity-limited applications. It’s been shown that ex-
posing the extra capacity to the application instead of
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using it as a cache can benefit capacity-limited appli-
cations. To this end, recent work [14, 17, 13] proposes
mechanisms to manage stacked memory as a flat ad-
dress space.

HMA [14] is a HW/SW mechanism that attempts to
predict frequently accessed pages in memory and, at
predefined intervals, migrate those pages to fast mem-
ory. HW support is required for profiling memory ac-
cesses using counters for each memory page, while the
migration is handled by the OS. Due to the costly OS
involvement, HMA'’s intervals are kept large. Addition-
ally, the hardware cost of its profiling counters is high.
However, HMA is capable of managing migrations in a
flat address space without the need of additional book-
keeping for finding migrated pages as the OS can update
page tables and TLBs to reflect migrations.

Sim, et al. proposed a technique for transparent
hardware management of a hybrid memory system [17],
which we will refer to as “THM”. THM does not re-
quire OS intervention while managing migrations. In
order to keep bookkeeping costs manageable, THM al-
lows migrations only within sets of pages (called seg-
ments). Each segment includes one fast memory page
and a set of slow memory pages. The slow pages of
each segment can only migrate to the one fast page lo-
cation, and any such migration results in the eviction
of the currently-residing page. THM monitors memory
accesses with one “competing counter” per segment re-
sulting in a low cost profiling solution. Finally, THM
supports caching part of its structures on chip while the
rest is stored in memory.

CAMEO [13] proposes a cache-like flat address space
memory management scheme in an attempt to close
the gap between cache and flat memory organizations.
CAMEO operates similarly to THM, however it does so
at the granularity of cache lines (64B). Migrations are
restricted within segments with one fast line location
per segment. Its bookkeeping structures are entirely
stored in memory, while a “Line Location Predictor”
attempts to save some bookkeeping-related accesses by
predicting the location of a line. CAMEO initiates a
line migration upon every access to slow memory.

Both THM and CAMEO sacrifice migration flexibil-
ity for area efficiency by restricting migrations in seg-
ments: if more than one hot page/line exists within the
same segment only one can reside in fast memory. If
no hot pages exist in a segment, its fast page cannot be
utilized by another segment. Further, THM’s compet-
ing counters can lead to false positives, allowing a cold
page to migrate to fast memory, while CAMEO can in-
cur high migration traffic as every access could induce
a migration.

Spatial locality of applications can affect performance
negatively when THM or CAMEO are used. Contin-
uous pages or lines that lie within the same segment
of each mechanism can be accessed frequently. THM
is less susceptible to such issues because of its coarser
granularity and the use of competing counters that will
prevent a “ping-pong” effect. CAMEOQ, however is sig-
nificantly affected. This issue is further exacerbated



Algorithm 1: Majority Element Algorithm

Input: X: Set of N elements

Input: K: Number of elements to output
Data: T: Map structure with K entries
Result: Set of K majority elements

Initialization: T <

foreach i € X do
if i € T then
\ T[] < T[i] + 1;
else if |T| < K — 1 then
| T[] =1;
else
forall j € T do
T« ThH] - L
if T[j]==0then T + T\ j;
end
end
end

when the ratio between slow and fast memory capaci-
ties is increased. In such scenarios, under a configura-
tion with 1:8 fast:slow memory ratio, both mechanisms
suffer from reduced migration flexibility, e.g. forcing
8 slow pages to fight over a single fast page or line. In
CAMEQ’s case, since every access to a slow line triggers
a migration, a high slow-fast capacity ratio can result
in the majority of accesses going to slow lines, causing
a migration in every case.

3. PREDICTING HOT REGIONS WITH
MEA

Migration mechanisms predict future hot pages to mi-
grate them into fast memory. Prediction accuracy is
critical to high performance, as each migration must be
amortized by many future accesses to justify the cost
of migration. A commonly used practice is to iden-
tify the hot regions within an interval and assume that
those regions will be hot in the next interval. To ac-
curately identify the hottest regions some mechanisms
use an access counter per region. At the end of each
interval the counters are sorted to identify the highest
ranked (i.e., most accessed) regions. However, applica-
tion phase changes could render this approach unsuc-
cessful. Additionally, the number of necessary counters
increases linearly as memory capacities grow.

To address the above limitations, we adopt a tech-
nique based on the Majority Element Algorithm (MEA).
MEA was originally proposed by Karp et al. [18] and
was studied in-depth by Charikar et al. [19] for database
management and big data analytics. This heuristic has
formally been proven to correctly identify the K most
frequently occuring elements of a set, when each of those
elements appears more than KLH (i.e. has majority),
where N is the number of elements in the input set.
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MEA is presented in Algorithm 1 as applied to an
array of integers X. A map structure T maps K element
IDs (in our integer array example, IDs are the integers’
values) to K counters. Looping through the array, if
the next integer exists in the map, its counter is incre-
mented by 1. Otherwise, if there’s enough room in the
map a new entry is added with a count of 1. If the
number does not exist in the map and all K counters
are occupied, MEA subtracts 1 from every counter, re-
moves the entries with a counter value of 0 and proceeds
to the next integer. Once the entire array is processed,
the map entries hold the majority elements.

A hardware implementation of MEA requires a map-
ping from page IDs to counters, as well as the area over-
head of the counters themselves. On each access, the
algorithm will perform one of the following operations:
(a) find and increase exactly one counter by one, (b)
add a new entry and set its counter value to 1 or (c)
subtract one from all counters regardless of the page ID
field and identify all the entries with a counter value of
zero. All possible operations are simple and can com-
plete within a single cycle if designed properly, using
parallel subtractions and comparisons for operation (c).

In our application of MEA to activity tracking, the
sequence of page addresses accessed correspond to the
array of integers in the above example. However, we
find that the sequence of accessed pages typically does
not meet the condition of MEA that guarantees it will
find the most-accessed pages; thus, it becomes an ap-
proximation. What makes MEA most useful, though, is
its failure mode — when it fails to find the most-accessed
pages, it does so by favoring recency over quantity. That
is, a page accessed several times near the end of an in-
terval can easily knock out a page accessed many more
times early in the interval. As a result, it combines both
access counting and temporal locality, at a fraction of
the cost of access counting alone.

MEA'’s area overhead grows slowly with the amount
of memory per pod. The number of counters can be
kept constant, but the size of the ID or tag grows with
the log of the memory size. Its O(N) complexity works
well for analyzing a stream of access requests in real
time, and eliminates the need for sorting the counters.

In this section, we seek to understand the effective-
ness of MEA’s counting and prediction accuracy, com-
pared against a Full Counters (FC) scheme, indepen-
dent of the MemPod architecture. We use memory
traces captured from multi-programmed 8-core work-
loads (the same traces used and described in Section
6) and simulate MEA and FC side-by-side with an in-
house off-line simulator that provides oracle knowledge
of future intervals.

The interval size for both MEA and FC was set at
5500 requests which is the average number of requests
serviced within a 50us window in our timing experi-
ments. For this experiment we use 128 MEA coun-
ters and FC requires 4.5M counters (assuming a 1+8GB
memory capacity). We do two comparisons in this study.
First, we examine the ability of MEA to identify the top
pages in the past interval, something the full counter
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Figure 1: MEA counting accuracy compared to Full Counters
on the top three tiers (ranks 1-10, 11-20, 21-30). Average results
for homogeneous(AVG HG), mixed (AVG MIX) and all (AVG
ALL) workloads shown.
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scheme will do perfectly. Second, we examine the abil-
ity of both schemes to predict the top pages in the next
interval. In both studies, we will examine the schemes’
ability to identify the 30 most-accessed pages, in bins
of 10 each (1-10, 11-20, and 21-30).

Figure 1 shows the counting accuracy of MEA for
the past interval, which should be compared with FC’s
perfect accuracy. In some workloads, MEA identified
up to 75% of the top pages. However, on average MEA
reports accuracy below 55% on the top tiers. Thus,
it is a surprisingly ineffective replacement for accurate
counters, if accurate counting were our priority. The
bias toward recent accesses has a strong effect on the
final value of the MEA counters.

When we instead examine the effectiveness in iden-
tifying future hot pages, we see a different story. Fig-
ure 2 presents a comparison of MEA and FC in terms
of prediction accuracy. We compare each mechanism’s
“predictions” against the top three page tiers of the fol-
lowing interval based on oracular knowledge. Using 128
counters, MEA will return up to 128 predictions based
on the past interval, while FC will return an overall
ranking of each page accessed. In order to be able to
directly compare accuracy, we take the top N pages from
the full counters each interval, where N is the number
of pages MEA returned.

Figure 2 plots the number of hits on predicted hot
pages from the previous interval. We also select inter-
esting individual benchmarks and show them in Figure
3 to provide a more detailed comparison.

On average, MEA achieves more future hits than
FC by 16%, 81% and 68% on the top three tiers re-
spectively. Figure 3 shows selected individual work-
loads that generated interesting results and provides a
more detailed comparison. Cactus' is the only work-
load where FC outperformed MEA’s prediction. In fact
it outperformed MEA on every tier.

Xalanc and mix9 are most representative of our over-
all results. We can see MEA outperforming FC’s pre-
diction accuracy in every bin. The last two workloads
we selected, bwaves and Ibm, show FC failing entirely to
predict the future (FC also scored zero future hits with
our libquantum workload). With bwaves (and libquan-

1'We use a single benchmark’s name as a shorthand for work-
loads running the same benchmark 8 times simultaneously
on 8 cores.
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presents the most interesting results from individual workloads.

tum) MEA reports a very low number of future hits but
not zero. These results can happen when an application
streams through large structures that exceed the size of
the interval. In that case, the past interval has little
overlap with the next interval, but recent accesses are
much more likely to be overlapped. Lbm shows an in-
teresting result, where MEA reports a high number of
hits (outside of the first tier) in a workload where FC
failed entirely. This can happen with a large working
set where the application does a fairly constant amount
of work per page. Full counters, then, will record the
highest access counts for pages the application is done
with, while MEA will favor pages the application was
still working on at the end of the interval.

MEA has not previously been used in any kind of ar-
chitectural event tracking; however, our results indicate
it is an attractive alternative to full counters at a very
small fraction of the hardware cost.

4. MIGRATION BUILDING BLOCKS

The design of a complete memory manager can be
broken down into the following 5 “building blocks”:

Migration flexibility: This is defined by the possi-
ble mappings in fast memory that a particular memory
region (page) can map to.

Remap table: A structure that keeps track of mi-
grated pages and is able to provide a relay address given
a requested address.

Activity tracking: Logic and structures needed to pro-



file memory requests and predict future “hot” pages.

Migration trigger: Defines when migration occurs.
Commonly the trigger can be event, interval, or threshold-

based.

Migration driver/datapath: Defines the path fol-
lowed and the hardware modules involved in performing
migrations.

Each of the above building blocks introduces some
trade-off. For example, allowing more flexibility in mi-
gration locations can lead to higher performance bene-
fits, at the cost of larger book-keeping structures. The
design choices for the various building blocks are largely
orthogonal. Thus, architects can select an approach to
each building block suitable to their system’s capabili-
ties and limitations and simply combine them to create
a desirable memory management mechanism.

4.1 Migration Flexibility and Remap Table Size

Migrating pages can provide the highest benefit when
no restrictions are imposed on the available migration
locations. This amount of flexibility, however, requires
more bookkeeping and can incur a higher cost.

A hardware-driven migration mechanism requires some
kind of remap table, commonly implemented as a hash
structure, indexed by a page’s address and pointing to
the migrated (or relay) page address if one exists. On
a page migration, the remap table is updated to reflect
the new address of a migrated page.

The remap table should provide the remap (relay) ad-
dress for each original page address. Some other struc-
tures may also be necessary to avoid expensive table
searches when an inverse lookup is needed (e.g., to iden-
tify pages currently mapped to slow or fast memory).

4.2 Activity Tracking

Activity tracking is a critical element of any manage-
ment mechanism for hybrid memories. In most studies
on the subject, activity tracking becomes a synonym
for identifying hot regions by counting the number of
accesses to each one. In a more generalized approach,
it could potentially be extended to track patterns, par-
allelism, bit flips/faults or any other information useful
to the underlying mechanism.

The overhead of maintaining a set of counters per
memory page (or other granularity) will be high. Space
requirements will increase linearly as memory capaci-
ties grow and the cost of sorting all the counters can
overshadow any potential benefits in performance. Fur-
thermore, our evaluation presented in Section 3 demon-
strates that using full counters to ensure 100% accu-
rate counting may still lead to poor prediction accu-
racy. Frequently encountered cost-reducing solutions in
the literature consist of increasing the activity tracking
granularity in order to reduce the number of counters
needed (i.e. track a group of pages together), limiting
the bit width of counters, and caching a subset of the
tracking state while the full set resides in main memory.

4.3 Migration Triggers
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Each memory management policy must decide when
to trigger migrations. Migrations add significant delays
to a system and any penalties incurred should be amor-
tized by the performance improvement from placing a
page in the fast memory. Requests that arrive while
migrations are being performed have to be delayed to
ensure functionally correct memory behavior. Through-
out the literature, three triggers are most commonly
used whenever state must be updated based on track-
ing information (MC scheduling, migrations, dynamic
voltage and frequency scaling etc.). Interval-based (or
epoch-based) triggers occur with a set frequency, while
threshold-based solutions trigger whenever a predeter-
mined criterion is met. Finally, event-based triggers
react to predefined events. Both interval-based and
threshold-based approaches face the same challenge of
identifying the optimal interval or threshold value.

4.4 Migration Datapath

Regardless of the choice for each migration building
block described so far, once migration is triggered, the
migration manager has to follow a number of steps:
First, migration candidates need to be identified. Tradi-
tionally, one page (or a segment/line depending on the
migration granularity) from the slow memory and one
from fast memory. Then, the two identified candidates
need to be swapped. During the swap process, one or
both pages will be read and stored in temporary buffers
and then written at their remapped locations.

Without dedicated migration driver hardware, migra-
tions will have to be orchestrated by the OS and CPU
cores. Consequences include communication delay, po-
tentially some pollution of the processors’ caches and
the unavailability of those CPUs during migration.

MemPod implements the migration driver within each
Pod. As each Pod has direct communication with its
member MCs, added delays are kept to a minimum,
and no traffic is generated at the global switch (saving
energy and eliminating contention). In HMA, the OS
orchestrates everything. Some CPU cores have to be
stalled and used to service the OS interrupt, causing
the migrated pages to traverse through communication
mediums and caches on each way. THM does not fully
describe its datapath, but it appears that CPUs are
used in this case as well. CAMEO describes its swap-
ping operation to be transparent to the OS by using
existing writeback and fill queues. Its mechanism re-
lies on the two memories sending writeback or demand
read requests to each other, which further implies some
added logic in Memory Controllers, as well as commu-
nication between MCs.

To make a generous comparison, we do not model the
penalty introduced by using CPUs or global communi-
cation mediums for migration in our HMA, THM, and
CAMEO simulations presented in Section 6.

S. ARCHITECTURE

Our clustered migration mechanism is designed to
address key challenges associated with the migration
problem. In this section, we first present a high-level



overview of MemPod’s proposed micro-architectural de-
sign, followed by a more detailed discussion regarding
each building block. Throughout this section we also
discuss some of the major design decisions of the state-
of-the-art mechanisms.

5.1 Clustered Migration Architecture

Figure 4 presents an overview of MemPod. Mem-
Pod’s design was kept modular to facilitate system in-
tegration and scalability. A number of memory “Pods”
are injected between the Last Level Cache (LLC) and
the system’s memory controllers (MCs). Each Pod clus-
ters a number of MCs and enforces migrations to only
occur among its member MCs. Pods do not communi-
cate with each other, preventing inter-Pod migrations.
To the rest of the system, Pods are exposed as MCs.
With MemPod’s transparent design, each Pod will now
be receiving all the requests originally addressed to any
of the Pod’s member MCs.

Cluster Cluster Cluster Cluster

HBM HBM  DDR i HBM HBM DDR !{ HBM HBM DDR {i HBM HBM  DDR

POD POD POD POD
LLC
| ! [ I ! !
Crossbar

A A A A A A
CPUs l l GPU l l l l
CPU eee CPU cu cu ese (U cu

Figure 4: MemPod high-level architecture

When a memory request arrives, the Pod monitors
the request, updates any necessary migration-related
activity tracking counters, and forwards the request to
the intended recipient MC. The migration logic within a
Pod does not need to be invoked during a response from
any MC and can be bypassed to reduce memory access
latency. A drawback of clustering MCs into Pods is the
serialization of potentially parallel requests to different
MCs of a single Pod. As such, activity tracking within
a Pod as well as the subsequent forwarding of requests
must be as efficient as possible.

MemPod’s clustered architecture also reduces global
traffic during migrations compared to non-partitioned
mechanisms. Because migration traffic happens within
a Pod, this architecture significantly reduces global traf-
fic and enables parallel migrations.

Memory Pod

The major architectural elements of a Pod are shown in
Figure 5. A Pod includes an activity tracking (MEA)
unit, a remap table for keeping track of migrated pages
and a forwarding unit that can re-encode a request with
the relay address and, based on that address, send the
request to the appropriate MC.

A designer can vary the parallelism and flexibility
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of MemPod by varying the number of Pods. A de-
sign with one Pod is equivalent to a centralized mi-
gration controller allowing any-to-any migration, while
a design with a Pod number equal to the number of
MCs would imply that migration is disabled. A reason-
able design point would be to set the number of Pods
equal to the number of slow-memory MCs. Such a con-
figuration inherently prevents migration between slow
off-chip channels, while at the same time maintaining
full channel-level parallelism on the system’s bottleneck:
the slow MCs. In a configuration where the number of
fast-memory MCs are not a multiple of slow-memory
MCs, Pods can be configured asymmetrically or some
MCs could be members of multiple Pods, with their
capacity partitioned to avoid crosstalk issues. In Fig-
ure 4 we present a system with eight MCs for the fast,
on-die stacked memory and four MCs for the slow off-
chip memory. Throughout this paper we use die-stacked
HBM as the fast memory [9] and DDR4-1600 as our off-
chip memory, and we set the number of Pods to four,
as shown in Figure 4.

5.2 Building Blocks

MemPod imposes few migration restrictions since each
slow page can migrate to any fast page location as long
as it’s within the same Pod. To support high flexibility
MemPod requires a Remap Table structure capable of
tracking all pages at each Pod and upon a lookup return
the new address. The page table is updated to reflect
changes with each migration. In addition to the remap
table, our algorithm also needs to identify all pages cur-
rently mapped to fast memory (to identify a candidate
to be evicted in favor of a new hot page). We do this
with a smaller, inverted table that gives the original
address of each page currently mapped to fast memory.

MemPod requires an MEA map structure of K en-
tries, where K is the number of hot pages we wish to
identify at each interval. Our evaluation presented in
Section 6 finds a good number of MEA counters to be
64. Each entry maps a page’s address to a counter.



Challenge Tradeoff THM HMA CAMEO MemPod

Page Relocation Flexibility / Time No Restrictions

Flexibility / Area

Only 1 Candidate Only 1 Candidate

1 entry per fast line (72kB)

Intra-Pod Migration

Remap Table Size 1 entry per fast page (1.5kB) No remap table 1 entry per page (2.8 MB / Pod)

Activity Tracking Accuracy / Area 8 bits per fast page (512kB) 16 bits per page (9MB) N/A 64 MEA entries (736 B)
Migration Trigger N/A Threshold Interval Event Interval

Tracking Organization | Simplicity / Parallelization | Fully centralized (Serialization) | Fully distributed Fully distributed Semi-distributed (Pods)
Migration Driver Latency CPU CPU (0S) MCs Pod

Migration Cost Time HW cost + CPU HW cost + SW + TLB + CPU | HW Cost + Communication | HW

Table 1: Breakdown of state-of-the-art designs

Through our evaluation, we identified a good counter
size to be 2 bits and 21 bits are needed to address
each page within a Pod, leading to a total storage cost
of 736B. Using the MEA counters, MemPod’s activity
tracking profiles every page in memory with minimal
hardware cost.

MemPod uses timing intervals. At each interval a
Pod will migrate up to K pages into its fast memory,
where K is the number of MEA counters used. Mem-
Pod is transparent to the system, rendering costly OS
intervention unnecessary. Since each one of the N Pods
will attempt to migrate up to K pages, up to NxK mi-
grations can happen within each interval. However, all
Pods can perform their migrations in parallel. Due to
MemPod’s lightweight activity tracking, intervals can
be kept very small, allowing each Pod to better adapt to
the application’s phase changes. Our evaluation shows
a good interval length to be 50us.

With the use of MEA counters, identifying the fast-
memory page candidate is as simple as checking that
it’s not part of the K hot pages. The identification
algorithm starts at the very first fast memory location
and iterates sequentially until it detects a page address
that is not in the set of hottest pages. For the next
migration, the identification algorithm simply continues
from where it left off. If a hot page already resides in
the fast memory it is ignored.

In the state of the art mechanisms presented and eval-
uated in this paper, building block decisions vary sig-
nificantly. HMA does not require a remap table due
to the OS updating the existing system’s structures.
For activity tracking it uses Full Counters. The costly
OS involvement and the high penalty for sorting all its
counters force HMA to operate at very large intervals,
weakening its adaptability to phase changes. However,
HMA offers full flexibility for migrations.

THM offers significantly limited flexibility by restrict-
ing migrations withing segments, however this decision

reduces bookkeeping costs significantly. Competing coun-

ters in each segment are used for activity tracking, oc-
casionally leading to false (threshold-based) migration
triggering if a cold page gets accessed at the right time.
Identifying migration candidates incurs very little over-
head since there is exactly one fast memory location for
each slow memory page that triggers migration.
CAMEO operates similarly to THM, restricting mi-
grations within segments (called congruence groups) but
it operates at a finer granularity. Due to its finer gran-
ularity, it requires a larger remap table structure than
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THM. CAMEO does not require activity tracking since
it uses an event based migration trigger performing a
swap at each slow memory access. The process for iden-
tifying migration candidates is identical to THM’s.

Table 1 shows a detailed comparison of all mecha-
nisms’ building block decisions, comparing their costs
and presenting the tradeoff impact of each one.

5.3 Distributed Migration Controllers

Migration mechanisms in the literature [17, 13] as-
sume a centralized migration controller which all mem-
ory requests have to go through before reaching the
memory, in order to monitor memory activity, read remap
tables and control migrations. MemPod’s distributed
migration controllers control every aspect of the migra-
tion process. The use of four Pods breaks the problem
into smaller pieces in a divide-and-conquer approach.
Instead of trying to identify the N best pages to migrate
from the entire memory, each Pod now has to identify
the % pages per Pod. Each Pod will also require lower
bandwidth than a centralized unit as it handles a frac-
tion of the traffic.

Prior publications [29] demonstrate that the layout
and address interleaving of main memory and last level
cache can be co-designed and benefit a system by in-
creasing efficiency and reducing global traffic. The pro-
posed designs align cache “banks” with main memory
banks (among other optimizations). Even though not
specifically proposed for 3D-stacked memories, if such
a design is assumed, a centralized migration controller
would be detrimental to the carefully designed align-
ment since all LLC misses will now have to go through
the centralized unit and then fan back out to their re-
spective MCs.

Finally, a clustered design ensures that we are never
moving data across the entire system. Migration can
only occur within a Pod and between “sibling” MCs. By
limiting migration distance, MemPod imposes a tighter
ceiling on data movement energy which can lead to
migration-related energy savings when compared to a
centralized design.

6. RESULTS

6.1 Evaluation Framework

The goal of our evaluation framework is to quan-
titatively and qualitatively assess MemPod’s capabil-
ities and compare it against state-of-the-art proposed
mechanisms. Throughout our evaluation section, we



Processor

Cores 8 @ 3.2GHz
Pipeline 4 wide out-of-order
Caches

L1 I-Cache(private) 64KB, 2 way, 4 cycles

L1 D-Cache (private) 16KB, 4 way, 4 cycles

L2 Cache (shared) 8MB, 16 way, 11 cycles
HBM DDR4-1600

Capacity 1GB 8GB

Bus Frequency 1GHz 800 MHz

Bus Width (bits) 128 64

Channels 8 4

Ranks 1 1

Banks 16 16

Row Buffer Size 8KB 8KB

tCAS-tRCD-tRP-tRAS 7-7-7-17 11-11-11-28

Table 2: Experimental framework configuration

study MemPod’s performance running with an eight-
core CPU. We extend Ramulator [30] to support flat
address space hybrid memories. We model the Mem-
Pod architecture, as well as HMA, THM, and CAMEO
in our simulation framework. Ramulator enables cycle-
level memory simulation and includes a simple CPU
front-end capable of approximating resource-induced stalls.
We evaluate MemPod under a realistic memory con-
figuration consisting of 1GB 3D-stacked HBM [9] and
8GB of off-chip DDR4-1600. Table 2 Provides a more
detailed description of the simulated system’s configu-
ration.

6.2 Experimental Methodology

We use benchmarks from the SPEC2006 suite [31] as
our workloads. Using Sniper [32], we record memory
request traces while simultaneously executing 8 bench-
marks on a simulated 8-core CPU. We then feed these
multi-programmed memory traces into Ramulator, ex-
ecuting all workloads to completion. Our complete set
of workloads consists of 15 “homogeneous” workloads,
where 8 copies of the same benchmark are run in par-
allel (we simply refer to these workloads by the bench-
mark’s name in later results), as well as 12 workloads
featuring a random mix of 8 benchmarks each (referred
to as mix1-12). Each benchmark is executed and traced
under its reference input. When running homogeneous
workloads, Sniper ensures that memory pages are not
shared between workloads. A breakdown of the mixed
workloads is shown in Table 3.

We also extended Ramulator with caching for the ac-
tivity tracking and/or remap tables depending on the
simulated mechanism. Bookkeeping-related cache misses
inject memory requests into the stream of requests fed
by our trace files to retrieve the missing information.
No priority is given to these cache miss requests over
regular requests. In experiments where the caches for
hybrid memory management techniques are disabled,
the simulator assumes that any information needed by
any mechanism exists on chip and is accessible without
any delay. The migration process was implemented in
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Table 3: Mixed workloads description

detail as well. In order to read an entire 2KB DRAM
page from memory, 32 read requests need to be sent for
each of the two migration candidates and then another
set of 32 requests for each of the two write-backs.

As we use Ramulator with recorded traces, we report
Average Main Memory Access Time (AMMAT) in our
results. Even though Ramulator has the ability to ap-
proximate IPC with a simple CPU model, AMMAT is
computed with much greater fidelity with this tool, as
it models the memory system in great detail. AMMAT
is the average time spent accessing and waiting for main
memory by each request (lower is better).

In our AMMAT experiments, we typically introduce
additional accesses to the system (migrations, book-
keeping cache misses). The overhead of the additional
misses is accounted to the total memory stall time, but
the total memory stall time is divided by the number of
original LLC misses (main memory requests) captured
in our traces — that is, the denominator in our AM-
MAT equation does not change between experiments
and equals the number of requests in our trace file.

Due to space limitations we are not able to show re-
sults for individual workloads in most of the graphs in
this paper. In those graphs, we only present the aver-
age of all mixed workloads, average of all homogeneous
workloads, and overall average.

6.3 Simulation Results

6.3.1 Page Tracking and Migration Design Space

MemPod’s activity tracking overhead and migration
traffic is impacted by the number and size of the MEA
counters, as well as the epoch (interval) size over which
the counters accumulate. We examine each of these
design space parameters in this section. The number
of MEA counters dictates the highest possible number
of migrations that can be performed at each interval
by each Pod, while the epoch length will determine
MemPod’s ability to better adapt to phase changes in a
workload. Furthermore, a small number of counters fa-
vors less aggressive migration at each interval boundary.
The size of each MEA counter sacrifices accuracy when
smaller counters are used but can also save space on the



chip. Smaller counters also sacrifice previous-interval
counter accuracy for recency, as it makes it easier to
replace a counter for a previously hot page no longer
being accessed.

We first identify the optimal number of counters and
epoch length by running a series of experiments. We
executed all combinations of epoch length and number
of counters pairs with epoch lengths of 25-500us. We
also exponentially increase the number of MEA counters
per pod from 16 to 512. In order to minimize the impact
of other factors, we execute this experiment with 16 bits
per counter and remap table caches disabled.
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Figure 6: Average AMMAT from all workloads under various
MemPod configurations.

Figure 6 shows our results obtained by taking the
average AMMAT from all workloads under each Mem-
Pod configuration. Based on the results we derive some
observations:

e MemPod achieves the best performance (lower AM-
MAT) with 50us intervals and 64 counters per Pod.
MemPod’s lightweight operation allows for such small
intervals. For comparison purposes, HMA [14] identi-
fied the best epoch length to be 100ms (2000x larger)
in order to support all the lengthy processes that take
place during a migration event for that method.

e The lowest AMMAT values lie on the diagonal of
our result matrix. This implies that the key determi-
nant is the number of migrations, as the maximum mi-
gration rate is (very roughly) a constant across the di-
agonal.

o Few counters and long intervals (inability to react
well to phase changes), at least in this sweep of parame-
ters, appears to be worse than many counters and small
intervals (overly aggressive migration activity).

The size (in bits) of each counter defines the area re-
quirements of our MEA tracking mechanism. Figure
7a presents AMMAT results normalized to a configura-
tion with 2-bit counters as well as the average number
of migrations per Pod per epoch (secondary axis). We

441

first observe that 8 bits are sufficient for our workloads,
as larger sizes report identical results. We also observe
that reducing the counter size to even less than 8 bits
benefits performance, although very marginally. Small
counters, as mentioned, favors recency. The smaller the
interval, the more important recency becomes over ac-
curate counting; plus, the fewer bits required for accu-
rate counting since there are fewer events. Finally, for
50 us intervals, 2 bit counters offer the best performance
(but again, the differences are small).

Figure 7b shows the same experiment with Mem-
Pod’s parameters set to 100us intervals and 128 coun-
ters. This figure demonstrates that as the interval and
number of counters increases (i.e. less focus on tem-
poral locality required), the optimal counter size grows
from 2 to 4 bits.
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Figure 7: Counter size (in bits) Vs Normalized AMMAT (pri-
mary axis) and average # of Migrations per Pod per interval
(secondary axis)

Based on these results, we use 64 MEA 2-bit coun-
ters over 50us intervals for subsequent results in this
paper. Each one of the 64 MEA entries needs 21 bits
for addressing the 1.1M pages per Pod and 2 bits for its
counter, leading to an area cost of only 184B per Pod
and 736B total. Compared to the state of the art, Mem-
Pod’s activity tracking requirement is ~712x smaller
than THM’s (512KB) and ~12800x smaller than HMA’s
(9MB).

6.3.2  Performance Comparison

Figure 8 presents a performance comparison of Mem-
Pod, HMA, THM, CAMEO and a configuration with
9GBs of on-chip HBM memory, normalized to the per-
formance of a hybrid memory configuration without mi-
gration capabilities. We evaluat all mechanisms with
migration-related caching disabled.

In order to model HMA'’s penalties more accurately,
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Figure 8: Performance Comparison: AMMAT is normalized to a hybrid memory without any migration mechanism.

we profiled sorting 4.5M integers using quicksort ( NlogN
complexity) on a real system with a recent Intel Core i7
processor running at 2.1GHz. Our experiment showed
that sorting all of HMA'’s activity tracking counters, at
these memory sizes, takes 1.95s on average. When we
scale this overhead to our simulated 3.2GHz core, the
expected delay would be approximately 1.2s, which is
much larger than the proposed optimal interval size for
HMA. We instead assumed a very generously reduced
overhead of 7ms per interval, assuming we could sort in
parallel and discard obvious low values before sorting.

Based on the results we make the following observa-
tions:

e MemPod outperforms the state-of-the-art competi-
tors in the majority of our workloads, and in several
cases is very close to an HBM-only configuration. Mem-
Pod improves AMMAT over a two-level memory with-
out migrations by 19% on average.

e On average, CAMEO reports AMMAT degrada-
tion of 41% over the no-migration scheme. The nega-
tive impact is caused by our high ratio of slow to fast
memory capacity. Given CAMEOQ’s algorithm, 9 slow
lines compete for one fast line. At that ratio, it is much
more likely for two or more lines to thrash competing
for the one spot. From our experiments, we observe
CAMEO to force the most movement despite the fact
that each move is much smaller. CAMEO moves 3.9GB
of data on average per 8-core experiment. For com-
parison purposes, MemPod moved 3.1GB on average,
however migration traffic was divided between Pods,
resulting in 804MB per Pod. THM moved 865MB on
average and HMA moved 578 MB due to its large inter-
vals. We also frequently observe wasted migrations with
CAMEQO, where a line is evicted before it is touched.

e On average MemPod reports 21% higher AMMAT
than HBM-only, while THM and HMA report 33% and
40% respectively.

e In some workloads migration overall is harmful to
performance, as observed with the bwaves workload,
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where a no-migration scheme reports higher performance
(lower AMMAT'). We observe that in those cases, Mem-
Pod leads to deteriorated performance compared to the
other mechanisms. However, in the cases of Ibm and
zeusmp, MemPod increases performance, while THM,
HMA and CAMEO report higher AMMAT than the
no-migration scheme.

e HMA and MemPod outperform HBM-only when
executing the libquantum experiment. In the case of
libquantum, the working set size fits entirely in our
fast memory. As a result, after some migrations, the
entire working set will be present in HBM. With an
HBM-only system and no migrations, pages are inserted
sequentially by address. In a migration-based system,
simultaneously-hot pages are inserted together after each
epoch. As the DRAM row buffer is bigger than a page,
we find that the co-location of simultaneously-hot pages
increases row buffer hit rate from 7% (HBM only) to
90% (MemPod), with 87% of those taking place in fast
memory. HMA also sees an improvement in row buffer
hit rate. THM and CAMEO cannot take advantage
of the small footprint due to their restricted migration
flexibility (only one hot page/line per segment can re-
side in fast memory).

6.3.3 Caching Effect

Migration mechanisms will be forced to include a
cache as activity tracking and remap table structures
are too large to store on-chip. The use of a cache will
unavoidably hinder performance. Each mechanism has
different cache requirements. THM caches its counters
and remap table together with its SRT structure. HMA
has no need for a remap table but has high storage re-
quirements for its counting mechanism. MemPod must
cache only its remap table as MEA counters easily fit
on chip.

In this experiment we evaluate the impact of a cache
on MemPod’s performance and we also compare it against
HMA and THM when operating with a cache. Mem-
Pod was configured with the optimal parameter values



identified over the course of this section. Every mech-
anism was evaluated with 16, 32 and 64 KB of cache.
For MemPod, the cache capacity is distributed equally
over its four Pods. A part of stacked memory was par-
titioned to serve as each mechanism’s backing store.

In our implementation, each cache miss injects a read
request to retrieve missing data. Since all of MemPod’s
cache misses will occur due to Remap Table updates or
lookups it becomes a blocking request for the affected
page. All incoming requests to that page need to be
delayed until the missing data is retrieved. In-flight
requests are not affected by incoming cache misses.
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Figure 9: Sensitivity analysis: Cache size. AMMAT normalized
to a TLM memory.

Figure 9 shows our results obtained by taking the av-
erage AMMAT from all our workloads for each cache
size for each mechanism. We present AMMAT results
normalized to a two-level memory configuration with-
out any migration mechanism. With 16, 32 and 64kB of
cache, MemPod reports 4, 7 and 9% AMMAT improve-
ment over a 2-Level Memory (2LM) with no migration
capability and outperforms the other mechanisms.

For 16, 32 and 64kB of cache, the impact on Mem-
Pod’s performance (when compared to its performance
without a cache) is 16, 14 and 12% respectively. THM
reports impacts of 12, 10 and 9%. Interestingly, HMA
reports lower performance impact with smaller cache
sizes rather than larger. Our investigation revealed that
the extra cache misses caused by a smaller cache lead
to a reduced number of incoming requests to be ser-
viced per interval. As a result, HMA’s activity tracking
counters have lower values at the end of the interval,
leading to fewer migrations. As demonstrated earlier in
Section 3, HMA (using Full Counters) has a low pre-
diction accuracy. As such, by reducing the number of
migrations, we observe the number of requests serviced
by the fast memory to increase, due to hot pages that
were not replaced as aggressively.

6.3.4 Scalability

MemPod is designed to be scalable with future tech-
nology. If we grow memory sizes by increasing the num-
ber of pods, the size of the remap table and the size of
the MEA counters will remain constant (per pod, and
thus per memory page) if the memory per pod remains
constant. If instead we increase memory capacity per
pod, the size of the remap table (per memory page) will
go up only with the log of the per-pod memory. If we
choose to scale the number of counters with the size of
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memory per pod, it will go up similarly; however, if we
do not scale up the counters at the same rate (e.g., four
times the memory, but double the counters), then the
cost of the counters (per memory page) will go down.

Additionally, the memory traffic caused by migra-
tions will remain distributed and off the primary pro-
cessor interconnect.

We also expect the latency differential between main
memory levels to continue to grow. This will happen
as 3D memory parts mature, and as we integrate new
memory technologies into the system (e.g. hybrid volatile
and non-volatile memory systems). To examine this,
we model a system where both the 3D DRAM and the
DDR memory are faster, but the 3D DRAM is acceler-
ated further resulting in a higher latency ratio between
the two. In particular, we simulate a 4GHz HBM as
our stacked memory and a DDR4-2400 as our off-chip
memory. Since we are modelling a future system, we re-
duced the fixed penalty for HMA’s sorting process from
7ms to 4.2ms (40% reduction) in order to model future
faster processors. We assume no caching effects in this
experiment.
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Figure 10: Scalability to faster memories. AMMAT normalized
to a DDR4-only memory.

Figure 10 shows our AMMAT results, normalized to
a configuration with 9GBs of off-chip DDR4-2400. The
label “HBMoc” shows a 9GB configuration with over-
clocked HBM only. We first observe that CAMEO now
reports a 1% AMMAT degradation. The increase in
speed differential between stacked and off-chip mem-
ory appears to be beneficial for CAMEOQO, however we
can still observe the impacts of intra-segment conflicts.
Compared to a configuration with no migration sup-
port (TLM), HMA improves AMMAT by 2%, THM by
13% and MemPod by 24%. The overclocked HBM-only
configuration is 40% faster compared to TLM.

7. CONCLUSIONS

MemPod is a scalable, modular and efficient dynamic
memory management mechanism. Our analysis demon-
strates significant gains compared to state-of-the-art pro-
posals. The modular design achieved with the use of
Pods allows for a more scalable migration mechanism
while at the same time enforcing small limitations on
migration opportunities.

MemPod uses MEA counters to track page access ac-
tivity and identify hot pages. They are dramatically
smaller than prior tracking mechanisms while captur-



ing activity counts and temporal recency in a way that
provides more effective prediction of future page access.
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