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ILYA KAPOVICH AND MARTIN LUSTIG

Abstract. We prove that, if ϕ,ψ ∈ Out(FN ) are hyperbolic iwips (ir-
reducible with irreducible powers) such that 〈ϕ,ψ〉 ⊆ Out(FN ) is not
virtually cyclic, then some high powers of ϕ and ψ generate a free sub-
group of rank two for which all non-trivial elements are again hyperbolic
iwips. Being a hyperbolic iwip element of Out(FN ) is strongly analogous
to being a pseudo-Anosov element of a mapping class group, so the above
result provides analogues of “purely pseudo-Anosov” free subgroups in
Out(FN ).
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1. Introduction

One of the most important sources for understanding free group automor-
phisms is the analogy with surface groups and mapping classes. Many key
concepts from Thurston’s approach to Teichmüller theory have been success-
fully carried over to the Out(FN ) world, most notably Culler-Vogtmann’s
Outer space [18], and Bestvina-Handel’s train track representatives [3]. How-
ever, often the situation for Out(FN ) turns out to be more difficult (but also
much richer in interesting phenomena) than in the parallel mapping class
cosmos. One such fundamental situation arises with the translation of the
concept of pseudo-Anosov homeomorphisms to free group automorphisms.
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2 I. KAPOVICH AND M. LUSTIG

It turns out that there are two such possible translations, both natural and
interesting:

The first translation is based on the characterization of pseudo-Anosov
homeomorphisms h : Σ → Σ (where Σ is a closed hyperbolic surface) as
precisely those which give a mapping torus ΣohS1 that admits a hyperbolic
structure.

This is equivalent to the condition that π1(ΣohS1) is Gromov-hyperbolic.
By analogy, one can consider hyperbolic automorphisms Φ : FN → FN ,
defined by the fact that the mapping torus group GΦ = FN oΦ Z is word-
hyperbolic. The Bestvina-Feighn Combination Theorem [1] implies that an
automorphism Φ of FN is hyperbolic if and only if for some (and hence any)
free basis A of FN there exist M ≥ 1 and λ > 1 such that for every w ∈ FN
we have λ|w|A ≤ max{|ΦM (w)|A, |Φ−M (w)|A}. This latter condition is often
taken as the definition of an automorphism Φ of FN for being hyperbolic. It
is not hard to see that whether Φ ∈ Aut(FN ) is hyperbolic or not depends
only on the outer automorphism class ϕ of Φ in Out(FN ). An important
result of Brinkmann [12] shows that ϕ ∈ Out(FN ) is hyperbolic if and only
if ϕ is atoroidal, that is, if there does not exist a non-trivial conjugacy class
in FN that is fixed by some positive power of ϕ.

The second translation of the notion of being pseudo-Anosov to the free
group setting is based on the dynamical properties of pseudo-Anosov home-
omorphisms: a homeomorphism h : Σ → Σ is pseudo-Anosov if and only
if h and hence any positive power of h is not reducible. However, in the
free group setting the notion of reducible automorphisms Φ : FN → FN is
much more delicate than for surfaces: If h fixes (up to isotopy) an essential
subsurface of Σ, than it also fixes the complementary subsurface. But is
is easy to find examples where Φ fixes a proper free factor of FN , but no
complementary free factor is is mapped to a conjugate of itself.

In this context, the notion of being irreducible for elements of Out(FN )
(see Definition 3.1 below) has been proposed in [3], but contrary to “pseudo-
Anosov”, the property “irreducible” is not stable under replacing the auto-
morphism by a positive power. More useful seems the following notion: An
element ϕ ∈ Out(FN ) (or any of its lifts Φ ∈ Aut(FN )) is said to be ir-
reducible with irreducible powers or an iwip for short, if for every n ≥ 1
the power ϕn is irreducible (sometimes such automorphisms are also called
fully irreducible). It is not hard to see that ϕ ∈ Out(FN ) is an iwip if and
only if no positive power of ϕ preserves the conjugacy class of a proper free
factor of FN (and one can take the latter condition as the definition of be-
ing an iwip). It is easy to construct examples of elements of Out(FN ) that
are hyperbolic but reducible. Similarly, there exists non-hyperbolic iwips
(they come from pseudo-Anosov homeomorphisms of once-punctured sur-
faces). Thus the notions of being iwip and being hyperbolic are logically
independent.

Both of these free group analogues of being pseudo-Anosov play an impor-
tant role in the study of Out(FN ). Iwips have nicer properties: for example,
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they act with “North-South” dynamics on the Thurston compactification of
Outer space [41] (just as pseudo-Anosovs do on Teichmüller space and its
Thurston boundary). Hyperbolic automorphisms, on the other hand, are
easier to come by. For example, it has been shown by Bestvina, Feighn and
Handel [5] that every subgroup of Out(FN ), which contains a hyperbolic
iwip and which is not virtually cyclic, contains a free subgroup of rank two
where every non-trivial element is hyperbolic.

The main result of this paper is the analogous statement of this last result
for hyperbolic iwips (c.f. Theorem 6.2 below):

Theorem 1.1. Let N ≥ 3 and let ϕ,ψ ∈ Out(FN ) be hyperbolic iwips such
that the subgroup 〈ϕ,ψ〉 ⊆ Out(FN ) is not virtually cyclic. Then there exists
m,n ≥ 1 such that the subgroup G = 〈ϕm, ψn〉 ⊆ Out(FN ) is free of rank
two and such that every nontrivial element of G is again a hyperbolic iwip.

Thus the group G in Theorem 1.1 is “purely hyperbolic iwip”. It was
already known by the results of [5] that one can ensure for every nontrivial
element of G as in Theorem 1.1 to be a hyperbolic automorphism, and the
new result here is the iwip property. Nevertheless, we also provide a complete
and independent proof of the ”purely hyperbolic” property as well.

By Corollary 3.11 for two hyperbolic iwips ϕ,ψ ∈ Out(FN ) the condition
that they don’t generate a virtually cyclic subgroup is equivalent to the
condition that they don’t have any common non-trivial powers, that is 〈ϕ〉∩
〈ψ〉 = {1}.

As a consequence of Theorem 1.1, we obtain (c.f. Corollary 6.3 below):

Corollary 1.2. Let G ⊆ Out(FN ) be a non-virtually-cyclic subgroup that
contains a hyperbolic iwip. Then G contains a non-abelian free subgroup
where all non-trivial elements are hyperbolic iwips.

Note that results similar to the statement of Theorem 1.1 play an impor-
tant role in the study of mapping class groups. Namely, for the mapping
class group Mod(Σ) of a closed hyperbolic surface Σ it is interesting to find
purely pseudo-Anosov subgroups of Mod(Σ), i.e. subgroups where all non-
trivial elements are pseudo-Anosov. One of the motivations in looking for
purely pseudo-Anosov subgroups of Mod(Σ) is in trying to find new ex-
amples of word-hyperbolic extensions of π1(Σ) by groups other than infinite
cyclic ones. An important early example of a non-abelian free purely pseudo-
Anosov subgroup Mod(Σ) is due to Mosher [46] who used it to construct a
word-hyperbolic extension of π1(Σ) by the free group F2. Mosher’s example
was based on exploiting ping-pong considerations for the action of Schottky-
type subgroups of Mod(Σ) on the boundary of the Teichmuller space; these
types of subgroups are basic examples of convex-cocompact subgroups of
mapping class groups. Another important source of purely pseudo-Anosov
subgroups of mapping class groups comes from the work of Whittlesey [49].
This topic plays a key role in the theory of convex-cocompact subgroups
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of mapping class groups [19, 24, 39, 40], and it is known that every such
convex-cocompact subgroup is purely pseudo-Anosov.

A recent result of Handel and Mosher [27] characterizes those subgroups
of Out(FN ) that do not contain an iwip and shows that such subgroups have
a rather special structure: if a subgroup G ⊆ Out(FN ) does not contain an
iwip then there is a subgroup of finite index H ⊆ G such that H preserves
the conjugacy class of a proper free factor of FN .

Theorem 1.1 can also be derived from a recent result of Bestvina and
Feighn [8] about the existence of a hyperbolic graph with an Out(FN )-action,
given a finite collection of independent hyperbolic iwips. Our proof is based
on rather different and more direct arguments and we believe that it has
substantial independent value, especially in view of the goal of developing the
theory of convex-cocompactness for subgroups of Out(FN ). Note also, that a
new paper of Clay and Pettet [13] provides a proof of a related statement to
our Theorem 1.1: they prove that given two ”sufficiently transverse” Dehn
twists ϕ,ψ ∈ Out(FN ), for some sufficiently large m,n ≥ 1 the subgroup
〈ϕm, ψn〉 ≤ Out(FN ) is free of rank two and every nontrivial element of
that subgroup, except those that are conjugate to powers of ϕm, ψn, is a
hyperbolic iwip. This result of Clay and Pettet and our Theorem 1.1 are
logically independent and the proofs are very different. Theorem 1.1 was
applied and pushed further in a new paper of Hamenstädt [26].

We establish Theorem 1.1 via studying the dynamics of the action of
Out(FN ) and of its subgroups on the space cvN of very small isometric R-
tree actions of FN (which is the closure of the Outer space cvN in the length
function topology) and on the space Curr(FN ) of geodesic currents on FN .
A geodesic current is a measure-theoretic analogue of the notion of a conju-
gacy class in a free group (or a free homotopy class of a closed curve on the
surface). Geodesic currents in the context of hyperbolic surfaces were intro-
duced by Bonahon who used them to study the geometry of the Teichmüller
space [9, 10]. In the context of free groups geodesic currents were first intro-
duced in the Ph.D.-thesis of Reiner Martin [44] and later re-introduced and
studied systematically by Kapovich [30, 31, 32], Kapovich-Lustig [33, 34, 35]
and others [20, 38]. Recent applications of geodesic currents include results
related to free group analogues of the curve complex (Kapovich-Lustig [34],
Bestvina-Feighn [8]) and to bounded cohomology of Out(FN ) and of its sub-
groups (Hamenstadt [25]). A key component in these results, as well as in
the proofs of the main results of the present paper, is the geometric intersec-
tion form. The latter pairs very small FN -trees and geodesic currents and
shares important features in common with Bonahon’s notion of a geometric
intersection number between two geodesic currents. This intersection form
was initially constructed in [31], [43] for the ordinary unprojectivized Outer
space cvN and recently extended in our joint paper [34] to the closure cvN
of cvN .
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We start by exploiting the fact that a hyperbolic iwip ϕ ∈ Out(FN )
acts with a “North-South” dynamics on both the projectivization CVN of
cvN and on the projectivization PCurr(FN ) of Curr(FN ). In the process we
introduce, using the intersection form, natural “height functions” associated
to ϕ on each of CVN and PCurr(FN ), which provide useful stratifications of
these spaces. As a corollary of the “North-South” dynamics for the action
of hyperbolic iwips on PCurr(FN ), we obtain a new proof (Theorem 4.17) of
the following result of Bestvina, Feighn and Handel [5]: If ϕ,ψ ∈ Out(FN )
are as in Theorem 1.1 and Φ,Ψ ∈ Aut(FN ) are their representatives in
Aut(FN ), then for sufficiently high powers Φn,Ψm of Φ and Ψ, the semi-
direct product Gn,m = FN o 〈Φn,Ψm〉 is word-hyperbolic. In this case the
subgroups 〈ϕn, ψm〉 ⊆ Out(FN ) and 〈Φn,Ψm〉 ⊆ Aut(FN ) are free of rank
two and, as noted in Remark 4.18 below, the hyperbolicity of Gn,m already
implies that every non-trivial element of 〈ϕn, ψm〉 is hyperbolic.

Establishing the “purely iwip” part of Theorem 1.1 requires a much more
delicate analysis and new tools and ideas, in order to rule out the existence
of non-trivial reducible elements in free subgroups of Out(FN ) generated by
two large powers of hyperbolic iwips. In particular, we exploit the inter-
play between the right ping-pong action of such subgroups on cvN and their
simultaneous left ping-pong action on PCurr(FN ). Thus ping-pong argu-
ments play a key role in the proof Theorem 1.1. Note that ping-pong type
arguments, in different settings, are also important in the proof of the Tits
Alternative for Out(FN ) by Bestvina, Feighn and Handel [5, 6, 7]. Also,
ping-pong arguments for iwips and the existence of Schottky-type free sub-
groups in Out(FN ) yielded by such arguments, are a key tool in the proof by
Bridson and de la Harpe [11] that Out(FN ) is C∗-simple for N ≥ 3. Both [5]
and [11] use the ping-pong arguments (and their consequences) for the ac-
tion of Out(FN ) on the set of the “legal” or “stable” laminations associated
to all iwip elements of Out(FN ) and exploit the fact that this set admits an
Out(FN )-equivariant embedding in CVN .

A careful analysis of the proof of Theorem 1.1 shows that its conclusion
holds for an arbitrary finite number of hyperbolic iwips:

Corollary 1.3. Let ϕ1, . . . , ϕk ∈ Out(FN ) be hyperbolic iwips such that for
every 1 ≤ i < j ≤ k the subgroup 〈ϕi, ϕj〉 is not virtually cyclic. Then there
exist n1, . . . , nk ≥ 1 such that the subgroup G = 〈ϕn1

1 , . . . , ϕnk
k 〉 ⊆ Out(FN )

is free of rank k, and such that every nontrivial element of G is again a
hyperbolic iwip.

An interesting goal for future work would be to develop a theory of
“convex-cocompact” subgroups of Out(FN ) that resembles the theory of
convex-cocompact subgroups of mapping class groups. A first step for such
a theory is given in [36]. We informally call the free subgroups of Out(FN )
generated by two large powers of hyperbolic iwips, that appear in the con-
clusion of Theorem 1.1, Shottky-type subgroups of Out(FN ). We believe
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that Schottky-type subgroups should provide basic examples of convex-
cocompact subgroups of of Out(FN ) and we hope that analyzing their prop-
erties will lead to a successful formulation of the convex-cocompactness the-
ory in the Out(FN ) context.
Acknowledgement:

The authors are grateful to Chris Leininger for useful conversations. The
authors also thank the referee for a careful reading of the paper and for
many helpful suggestions.

2. Outer space and the space of geodesic currents

We give here only a brief overview of basic facts related to Outer space
and the space of geodesic currents. We refer the reader to [18, 31] for more
detailed background information.

2.1. Outer space. Let N ≥ 2. The unprojectivized Outer space cvN con-
sists of all minimal free and discrete isometric actions on FN on R-trees
(where two such actions are considered equal if there exists an FN -equivariant
isometry between the corresponding trees). There are several different topolo-
gies on cvN that are known to coincide, in particular the equivariant Gromov-
Hausdorff convergence topology and the so-called axis or length function
topology. Every T ∈ cvN is uniquely determined by its translation length
function ||.||T : FN → R, where ||g||T is the translation length of g on T .
Two trees T1, T2 ∈ cvN are close if the functions ||.||T1 and ||.||T1 are close
pointwise on a large ball in FN . The closure cvN of cvN in either of these
two topologies is well-understood and known to consists precisely of all the
so-called very small minimal isometric actions of FN on R-trees, see [4] and
[14]. The outer automorphism group Out(FN ) has a natural continuous right
action on cvN (that leaves cvN invariant) given at the level of length func-
tions as follows: for T ∈ cvN and ϕ ∈ Out(FN ) we have ||g||Tϕ = ||Φ(g)||T ,
with g ∈ FN and Φ ∈ Aut(FN ) representing ϕ ∈ Out(Fn). In terms of
tree actions, Tϕ is equal to T as a metric space, but the action of FN is
modified to give g ·

Tϕ
x = Φ(g) ·

T
x, where x ∈ T , g ∈ FN are arbitrary

and where Φ ∈ Aut(FN ) represents as before of the outer automorphism
ϕ. The projectivized Outer space CVN = PcvN is defined as the quotient
cvN/ ∼ where for T1 ∼ T2 whenever T2 = cT1 for some c > 0. One sim-
ilarly defines the projectivization CVN = PcvN of cvN as cvN/ ∼ where
∼ is the same as above. The space CVN is compact and contains CVN as
a dense Out(FN )-invariant subset. The compactification CVN of CVN is
a free group analogue of the Thurston compactification of the Teichmüller
space. For T ∈ cvN its ∼-equivalence class is denoted by [T ], so that [T ]
is the image of T in CVN . The unprojectivized Outer space cvN contains
an Out(FN )-invariant closed subspace cv1

N which is Out(FN )-equivariantly
homeomorphic to CVN . Namely, cv1

N consists of all trees T ∈ cvN such that
the quotient metric graph T/FN has volume one (that is, the sum of the
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lengths of its edges is equal to one). Many sources identify CVN and cv1
N

but we will distinguish these objects in the present paper.

2.2. Geodesic currents. Let ∂2FN := {(x, y)|x, y ∈ ∂FN , x 6= y}. The
action of FN by translations on its hyperbolic boundary ∂FN defines a nat-
ural diagonal action of FN on ∂2FN . A geodesic current on FN is a positive
Radon measure on ∂2FN that is FN -invariant and is also invariant under
the “flip” map ∂2FN → ∂2FN , (x, y) 7→ (y, x). The space Curr(FN ) of all
geodesic currents on FN has a natural R≥0-linear structure and is equipped
with the weak*-topology of pointwise convergence on continuous functions.
Every point T ∈ cvN defines a simplicial chart on Curr(FN ) which allows
one to think about geodesic currents as systems of nonnegative weights sat-
isfying certain Kirchhoff-type equations; see [31] for details. We briefly recall
the simplicial chart construction for the case where TA ∈ cvN is the Cayley
tree corresponding to a free basis A of FN . For a nondegenerate geodesic
segment γ = [p, q] in TA the two-sided cylinder CylA(γ) ⊆ ∂2FN consists of
all (x, y) ∈ ∂2FN such that the geodesic from x to y in TA passes through
γ = [p, q]. Given a nontrivial freely reduced word v ∈ F (A) = FN and a cur-
rent µ ∈ Curr(FN ), the “weight” 〈v, µ〉A is defined as µ(CylA(γ)) where γ is
any segment in the Cayley graph TA labelled by v (the fact that the measure
µ is FN -invariant implies that a particular choice of γ does not matter). A
current µ is uniquely determined by a family of weights

(
〈v, µ〉A

)
v∈FN−{1}

.
The weak*-topology on Curr(FN ) corresponds to pointwise convergence of
the weights for every v ∈ FN , v 6= 1.

There is a natural left action of Out(FN ) on Curr(FN ) by continuous
linear transformations. Specifically, let µ ∈ Curr(FN ), ϕ ∈ Out(FN ) and
let Φ ∈ Aut(FN ) be a representative of ϕ in Aut(FN ). Since Φ is a quasi-
isometry of FN , it extends to a homeomorphism of ∂FN and, diagonally,
defines a homeomorphism of ∂2FN . The measure ϕµ on ∂2FN is defined as
follows. For a Borel subset S ⊆ ∂2FN we have (ϕµ)(S) := µ(Φ−1(S)). One
then checks that ϕµ is a current and that it does not depend on the choice
of a representative Φ of ϕ.

For every g ∈ FN , g 6= 1 there is an associated counting current ηg ∈
Curr(FN ). If A is a free basis of FN and the conjugacy class [g] of g is
realized by a “cyclic word” W (that is a cyclically reduced word in F (A)
written on a circle with no specified base-vertex), then for every nontrivial
freely reduced word v ∈ F (A) = FN the weight 〈v, ηg〉A is equal to the total
number of occurrences of v±1 in W (where an occurrence of v in W is a
vertex on W such that we can read v in W clockwise without going off the
circle). We refer the reader to [31] for a detailed exposition on the topic. By
construction the counting current ηg depends only on the conjugacy class [g]
of [g] and it also satisfies ηg = ηg−1 . One can check [31] that for ϕ ∈ Out(FN )
and g ∈ FN , g 6= 1 we have ϕηg = ηϕ(g). Scalar multiples cηg ∈ Curr(FN ),
where c ≥ 0, g ∈ FN , g 6= 1 are called rational currents. A key fact about
Curr(FN ) states that the set of all rational currents is dense in Curr(FN ).
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The space of projectivized geodesic currents is defined as PCurr(FN ) =
Curr(FN ) − {0}/ ∼ where µ1 ∼ µ2 whenever there exists c > 0 such that
µ2 = cµ1. The ∼-equivalence class of µ ∈ Curr(FN ) − {0} is denoted by
[µ]. The action of Out(FN ) on Curr(FN ) descends to a continuous action
of Out(FN ) on PCurr(FN ). The space PCurr(FN ) is compact and the set
{[ηg] g ∈ FN , g 6= 1} is a dense subset of it.

2.3. Intersection form. In [34] we constructed a natural geometric inter-
section form which pairs trees and currents:

Proposition 2.1. [34] Let N ≥ 2. There exists a unique continuous map
〈 , 〉 : cvN × Curr(FN )→ R≥0 with the following properties:

(1) We have 〈T, c1µ1 + c2µ2〉 = c1〈T, µ1〉 + c2〈T, µ2〉 for any T ∈ cvN ,
µ1, µ2 ∈ Curr(FN ), c1, c2 ≥ 0.

(2) We have 〈cT, µ〉 = c〈T, µ〉 for any T ∈ cvN , µ ∈ Curr(FN ) and
c ≥ 0.

(3) We have 〈Tϕ, µ〉 = 〈T, ϕµ〉 for any T ∈ cvN , µ ∈ Curr(FN ) and
ϕ ∈ Out(FN ).

(4) We have 〈T, ηg〉 = ||g||T for any T ∈ cvN and g ∈ FN , g 6= 1.

Note that here we work with the right action of Out(FN ) on cvN , which
is related to the left action of Out(FN ) on cvN considered in [34] via Tϕ =
ϕ−1T , where T ∈ cvN , ϕ ∈ Out(FN ). This accounts for the difference in how
part (3) of Proposition 2.1 is stated above compared with the formulation
of the main result in [34].

3. Stabilizers of eigentrees and eigencurrents

Definition 3.1. An element ϕ ∈ Out(FN ) is reducible if there exists a free
product decomposition FN = C1 ∗ . . . Ck ∗ F ′, where k ≥ 1 and Ci 6= {1},
such that ϕ permutes the conjugacy classes of subgroups C1, . . . , Ck in FN .
An element ϕ ∈ Out(FN ) is called irreducible if it is not reducible. An
element ϕ ∈ Out(FN ) is said to be irreducible with irreducible powers or an
iwip for short, if for every n ≥ 1 the power ϕn is irreducible (sometimes
such automorphisms are also called fully irreducible). This is equivalent to
the property that no positive power of ϕ fixes a conjugacy class of a proper
free factor of FN

An outer automorphism ϕ ∈ Out(FN ) is hyperbolic or atoroidal if no
positive power of ϕ fixes the conjugacy class of a nontrivial element of FN .

An automorphism Φ ∈ Aut(FN ), is called hyperbolic or atoroidal if the
outer automorphism ϕ ∈ Out(FN ) defined by Φ is atoroidal.

A result of Brinkmann [12], together with the Combination Theorem of
Bestvina and Feighn [1], implies that Φ ∈ Aut(FN ) is atoroidal if and only
if the mapping torus group FN oΦ Z is word-hyperbolic.

The following result is due to Reiner Martin [44]:
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Proposition 3.2. Let ϕ ∈ Out(FN ) be a hyperbolic iwip. Then there exist
unique [µ+], [µ−] ∈ PCurr(FN ) with the following properties:

(1) The elements [µ+], [µ−] ∈ PCurr(FN ) are the only fixed points of ϕ
in PCurr(FN ).

(2) For any [µ] 6= [µ−] we have limn→∞ ϕ
n[µ] = [µ+] and for any [µ] 6=

[µ+] we have limn→∞ ϕ
−n[µ] = [µ−].

(3) We have ϕµ+ = λ+µ+ and ϕ−1µ− = λ−µ− where λ+ > 1 and λ− >
1. Moreover λ+ is the Perron-Frobenius eigenvalue of any train-
track representative of ϕ and λ− is the Perron-Frobenius eigenvalue
of any train-track representative of ϕ−1.

Note that if ϕ ∈ Out(FN ) is a non-hyperbolic iwip, the conclusion of
Proposition 3.2 still holds if PCurr(FN ) is replaced by the minimal set M⊆
PCurr(FN ), whereM is the closure in PCurr(FN ) of the set of all [ηa], where
a ∈ FN is a primitive element (see [44]).

A similar statement is known for CVN by a result of Levitt and Lustig [41]:

Proposition 3.3. Let ϕ ∈ Out(FN ) be an iwip. Then there exist unique
[T+], [T−] ∈ CVN with the following properties:

(1) The elements [T+], [T−] ∈ CVN are the only fixed points of ϕ in
CVN .

(2) For any [T ] ∈ CVN , [T ] 6= [T−] we have limn→∞[Tϕn] = [T+] and
for any [T ] ∈ CVN , [T ] 6= [T+] we have limn→∞[Tϕ−n] = [T−].

(3) We have T+ϕ = λ+T and T−ϕ−1 = λ−T− where λ+ > 1 and λ− > 1.
Moreover λ+ is the Perron-Frobenius eigenvalue of any train-track
representative of ϕ and λ− is the Perron-Frobenius eigenvalue of any
train-track representative of ϕ−1.

Moreover, in both [41] and [44] it is proved that the convergence to [T+]
and [µ+] in the above statements is uniform on compact subsets. More
precisely:

Proposition 3.4. Let ϕ ∈ Out(FN ) be a hyperbolic iwip. Let [T+], [T−] ∈
CVN and [µ+], [µ−] ∈ PCurr(FN ) be as in Proposition 3.3 and Proposi-
tion 3.2 above.

Let U,U ′ be open neighborhoods in CVN of [T+] and [T−] respectively and
let V, V ′ be open neighborhoods in PCurr(FN ) of [µ+] and [µ−] respectively.
Then there exists a constant M ≥ 1 such that for every n ≥ M we have
(CVN − U ′)ϕn ⊆ U and ϕn(PCurr(FN )− V ′) ⊆ V .

Proposition 3.4 immediately implies, via the standard ping-pong argu-
ment, the following:

Corollary 3.5. Let ϕ,ψ ∈ Out(FN ) be hyperbolic iwips such that [T±(ϕ)],
[T±(ψ)] ∈ CVN are four distinct points or that [µ±(ϕ)], [µ±(ψ)] ∈ PCurr(FN )
are four distinct points. Then there exists M ≥ 1 such that for every
m,n ≥ M the subgroup 〈ϕm, ψn〉 ⊆ Out(FN ) is free of rank two with free
basis ϕm, ψn. tu
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We show in Section 4 below (specifically, see Proposition 4.10) that Propo-
sition 3.4 can actually be formally derived from pointwise convergence to
[T+] and [µ+] in Proposition 3.3 and Proposition 3.2. This will give an
alternative proof of Proposition 3.4.

In [35] we gave a characterization of the situation where 〈T, µ〉 = 0, in
terms of the dual algebraic lamination L2(T ) of the R-tree T and the support
Supp(µ) of the current µ (see [35] for a precise definition of these terms):

Theorem 3.6. [35] Let T ∈ cvN and µ ∈ Curr(FN ). Then 〈T, µ〉 = 0 if
and only if Supp(µ) ⊆ L2(T ).

As a consequence, we proved [35]:

Proposition 3.7. [35] Let ϕ ∈ Out(FN ) be a hyperbolic iwip, and let
[T+], [T−] ∈ CVN and [µ+], [µ−] ∈ PCurr(FN ) be as in Proposition 3.3 and
Proposition 3.2 above. Then the following hold:

(1) For T ∈ cv(FN ) we have 〈T, µ+〉 = 0 if and only if [T ] = [T−] and
we have 〈T, µ−〉 = 0 if and only if [T ] = [T+].

(2) For µ ∈ Curr(FN ), µ 6= 0 we have 〈T+, µ〉 = 0 if and only if [µ] =
[µ−] and we have 〈T−, µ〉 = 0 if and only if [µ] = [µ+].

(3) In particular, we have 〈T+, µ+〉 > 0 and 〈T−, µ−〉 > 0.

Note also that, as a direct comparison of the definitions shows, if ϕ ∈
Out(FN ) is a hyperbolic iwip, then Supp(µ+(ϕ)) is exactly what was termed
the “stable lamination” Λ+

ϕ of ϕ in [5].
A result of [5], which is reproved in [37] via different methods, states:

Proposition 3.8. [5, 37] Let N ≥ 3 and let ϕ ∈ Out(FN ) be an iwip. Then
StabOut(FN )([T+(ϕ)]) is virtually cyclic and contains 〈ϕ〉 as a subgroup of
finite index.

As a consequence, we derive:

Proposition 3.9. Let ϕ ∈ Out(FN ) be a hyperbolic iwip. Then

StabOut(FN )([T+(ϕ)]) = StabOut(FN )(Supp(µ−(ϕ))) = StabOut(FN )([µ−(ϕ)]) ,

and this stabilizer is virtually cyclic.

Proof. Proposition 3.7 implies that StabOut(FN )([T+]) = StabOut(FN )([µ−]).
Indeed, suppose ϕ ∈ StabOut(FN )([T+]), so that T+ϕ = cT+ for some c > 0.
Then

〈T+, ϕµ−〉 = 〈T+ϕ, µ−〉 = 〈cT+, µ−〉 = c〈T+, µ−〉 = 0
Therefore ϕ[µ−] = [µ−] by part 2 of Proposition 3.7 and hence StabOut(FN )([T+]) ⊆
StabOut(FN )([µ−]). A similar argument using part (1) of Proposition 3.7
shows that StabOut(FN )([µ−]) ⊆ StabOut(FN )([T+]), and hence StabOut(FN )([T+]) =
StabOut(FN )([µ−]).

We claim that StabOut(FN )(Supp(µ−)) = StabOut(FN )([µ−]). Indeed, the
inclusion StabOut(FN )([µ−]) ⊆ StabOut(FN )(Supp(µ−)) is obvious.
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Suppose now that ϕ ∈ StabOut(FN )(Supp(µ−)). Then Supp(ϕµ−) =
Supp(µ−).

From Proposition 3.7 we know that 〈T+, µ−〉 = 0. Thus we derive from
Theorem 3.6 that Supp(ϕµ−) = Supp(µ−) is contained in the dual lamina-
tion L2(T+) of T+, so that the converse implication of Theorem 3.6 implies
that 〈T+, ϕµ−〉 = 0. Therefore, by part (2) of Proposition 3.7, we have
ϕ[µ−] = [µ−]. Thus StabOut(FN )(Supp(µ−)) ⊆ StabOut(FN )([µ−]) and hence
StabOut(FN )(Supp(µ−)) = StabOut(FN )([µ−]), as claimed. tu

In [5] it is first proved that for an iwip ϕ the stabilizer StabOut(FN )(Λ+
ϕ )

is virtually cyclic and then that StabOut(FN )(Λ+
ϕ ) = StabOut(FN )([T+(ϕ)]).

Proposition 3.9 above recovers these results, for a hyperbolic iwip ϕ, as a con-
sequence of Proposition 3.8 about virtual cyclicity of StabOut(FN )([T+(ϕ)]),
for which [37] provided an alternative proof to the argument given in [5].

Proposition 3.10. Let G ⊆ Out(FN ) be a subgroup and such that there ex-
ists a hyperbolic iwip ϕ ∈ G. Let [T+(ϕ)], [T−(ϕ)] ∈ CVN , [µ+(ϕ)], [µ−(ϕ)] ∈
PCurr(FN ) be the attracting and repelling fixed points of g in CVN and
PCurr(FN ) accordingly. Then exactly one of the following occurs:

(1) The group G is virtually cyclic and preserves the sets {[T+(ϕ)],
[T−(ϕ)]} ⊆ CVN , {[µ+(ϕ)], [µ−(ϕ)]} ⊆ PCurr(FN ).

(2) The group G contains a hyperbolic iwip ψ = gϕg−1 for some g ∈ G
such that {[T+(ϕ)], [T−(ϕ)]}∩{[T+(ψ)], [T−(ψ)]} = ∅ and {[µ+(ϕ)], [µ−(ϕ)]}∩
{[µ+(ψ)], [µ−(ψ)]} = ∅. Moreover, in this case there exists M ≥ 1
such that the subgroup 〈ϕM , ψM 〉 ⊆ G is free of rank two.

Proof. Recall that by Proposition 3.9 we have StabOut(FN )[T+(ϕ)] =
StabOut(FN )[µ−(ϕ)] and StabOut(FN )[T−(ϕ)] = StabOut(FN )[µ+(ϕ)] and both
of these are virtually cyclic and contain 〈ϕ〉 as a subgroup of finite index.

If G preserves the set {[T+(ϕ)], [T−(ϕ)]}, then G has a subgroup of in-
dex at most 2 that fixes each of [T±(ϕ)] and hence G is virtually cyclic.
Thus we may assume that G does not preserve {[T+(ϕ)], [T−(ϕ)]}. So there
exists g ∈ G such that [T+(ϕ)]g 6∈ {[T+(ϕ)], [T−(ϕ)]} or that [T−(ϕ)]g 6∈
{[T+(ϕ)], [T−(ϕ)]}. We assume the former as the other case is symmetric.
Thus [T+(ϕ)]g 6= [T±(ϕ)]. Note that ψ = g−1ϕg ∈ G is also an atoriodal
iwip and that [T+(ψ)] = [T+(ϕ)]g. We claim that [T−(ϕ)] 6= [T±(ϕ)]g.
Indeed, otherwise we have [T−(g−1ϕg)] = [T±(ϕ)] and hence g−1ϕg ∈
StabOut(FN )[T+(ϕ)] or g−1ϕg ∈ StabOut(FN )[T−(ϕ)]. In either case (since
both stabilizers contain 〈ϕ〉 as subgroup of finite index) g−1ϕkg = ϕl for
some k 6= 0, l 6= 0 and therefore g−1ϕkg has the same fixed points in CVN

as does ϕl, namely, [T±(ϕ)]. This contradicts the fact that g−1ϕg fixes the
point [T+(ϕ)]g 6= [T±(ϕ)]. Thus [T±(ϕ)], [T±(ψ)] are four distinct points.
Therefore, by Corollary 3.5, sufficiently high powers ϕM , ψM freely generate
a free subgroup of rank two in G, as required. Note that in this case we also
have that [µ±(ϕ)], [µ±(ψ)] are four distinct points by Proposition 3.7. tu
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Corollary 3.11. Let ϕ,ψ ∈ Out(FN ) be hyperbolic iwips. Then the follow-
ing conditions are equivalent:

(1) The subgroup 〈ϕ,ψ〉 ⊆ Out(FN ) is not virtually cyclic.
(2) There exist m,n ≥ 1 such that 〈ϕm, ψn〉 is free of rank two.
(3) We have 〈ϕ〉 ∩ 〈ψ〉 = {1}.
(4) The points [T±(ϕ)], [T±(ψ)] are four distinct elements in CVN .
(5) The points [µ±(ϕ)], [µ±(ψ)] are four distinct elements in PCurr(FN ).

Proof. It is obvious that (2) implies (1) and that (2) implies (3).
Suppose that (3) holds. We claim that [T±(ϕ)], [T±(ψ)] are four distinct

points in CVN . Indeed, suppose that one of [T±(ϕ)] is equal to one of
[T±(ψ)]. This means that both ϕ and ψ have a common fixed point in CVN

which is a pole of a hyperbolic iwip. The Out(FN )-stabilizer of that point
is virtually infinite cyclic by Proposition 3.9, which implies that ϕ and ψ
have some equal nonzero powers, contradicting the assumption 〈ϕ〉 ∩ 〈ψ〉 =
{1}. Thus [T±(ϕ)], [T±(ψ)] are four distinct points in CVN . Therefore by
Corollary 3.5 below, sufficiently high powers ϕM , ψM freely generate a free
subgroup of rank two in Out(FN ), so that (2) holds. Thus (3) implies (2)
and, therefore (2) is equivalent to (3).

Suppose now that (1) holds. Suppose that (3) fails and there exist nonzero
n,m such that ϕn = ψm. Since ϕ has the same fixed points in CVN as ϕn

and since ψ has the same fixed points in CVN as ψn, it follows that ϕ and
ψ have a common fixed point in CVN . Therefore 〈ϕ,ψ〉 is contained in
the Out(FN )-stabilizer of that point, which, by Proposition 3.9, is virtually
cyclic. This implies that 〈ϕ,ψ〉 is virtually cyclic, contrary to our assumption
(1). Thus (1) implies (3), which shows that (1), (2) and (3) are equivalent.

The fact that (4) and (5) are equivalent follows from Proposition 3.7. The
proof that (3) implies (2) above also shows that (3) implies (4). The fact
that (4) implies (2) follows from Corollary 3.5. This completes the proof. tu

Corollary 3.12. Let ϕ ∈ Out(FN ) be a hyperbolic iwip and let [T±] be the
attracting and repelling fixed points of ϕ in CVN . Then StabOut(FN )([T+]) =
StabOut(FN )([T−]).

Proof. Suppose there exists g ∈ StabOut(FN )([T+]) such that g 6∈ StabOut(FN )([T−]).
Thus [T−]g 6= [T−]. Since g fixes T+, and since g is a homeomorphism of
CVN , it follows that [T−]g 6= [T+] and hence {[T−], [T+]}g 6= {[T−], [T+]}.
Put G = 〈g, ψ〉. Then G does not leave the set {[T−], [T+]} invariant and
hence G contains a free subgroup of rank two by Proposition 3.10 and by
Corollary 4.14. On the other hand G ⊆ StabOut(FN )([T+]) and hence G is
virtually cyclic, yielding a contradiction.

Thus StabOut(FN )([T+]) ⊆ StabOut(FN )([T−]) and hence, by symmetry, we
also have StabOut(FN )([T−]) ⊆ StabOut(FN )([T+]).

Therefore StabOut(FN )([T+]) = StabOut(FN )([T−]), as required. tu



PING-PONG AND OUTER SPACE 13

Note that, in Corollary 3.12, if [µ±] are the fixed points of ϕ in PCurr(FN ),
then Corollary 3.12 and Proposition 3.9 imply that we in fact have

StabOut(FN )([T+]) = StabOut(FN )([µ−]) = StabOut(FN )([T−]) = StabOut(FN )([µ+]).

4. North-South Dynamics, standard neighborhoods and height
functions

Convention 4.1. For the remainder of this section, unless specified oth-
erwise, let ϕ ∈ Out(FN ), where N ≥ 3, be a hyperbolic iwip and let
[µ+], [µ−] ∈ PCurr(FN ), [T+], [T−] ∈ CVN and λ+ > 1, λ− > 1 be as in
Proposition 3.2 and Proposition 3.3.

Throughout this section we fix the (arbitrarily chosen) non-projectivized
representatives T+ of [T+], T− of [T−], µ+ of [µ+] and µ− of [µ−].

Definition 4.2 (Standard Neighborhoods). Let

U+ = {[µ] ∈ PCurr(FN ) : 〈T−, µ〉 < 〈T+, µ〉}
and

U− = {[µ] ∈ PCurr(FN ) : 〈T−, µ〉 > 〈T+, µ〉}.

Note that by Proposition 3.7 for any [µ] 6= [µ±] we have 〈T+, µ〉 > 0 and
〈T−, µ〉 > 0. Therefore the following function is well-defined:

Definition 4.3 (Height function). Define

f : PCurr(FN )− {[µ+], [µ−]} → R
as

f([µ]) := log
〈T+, µ〉
〈T−, µ〉

.

It is clear that f : PCurr(FN ) − {[µ+], [µ−]} → R is continuous and,
moreover, if we put f([µ+]) =∞ and f([µ−]) = −∞, this gives a continuous
extension of f to f : PCurr(FN )→ R∪{±∞}. We call f the extended height
function. Note that U+ = (f)−1((0,∞]) and U− = (f)−1([−∞, 0)).

Lemma 4.4. For any [µ] 6= [µ±] we have

f(ϕ[µ]) = f([µ]) + log(λ+λ−).

Proof. Let [µ] 6= [µ±]. Then

f(ϕ[µ]) = log
〈T+, ϕµ〉
〈T−, ϕµ〉

= log
〈T+ϕ, µ〉
〈T−ϕ, µ〉

=

= log
〈λ+T+, µ〉
〈λ−1
− T−, µ〉

= log
(
λ+λ−

〈T+, µ〉
〈T−, µ〉

)
= f([µ]) + log(λ+λ−).

tu

The continuity of the intersection form and Proposition 3.7 imply that
U+, U− are disjoint open subsets of PCurr(FN ) and that [µ+] ∈ U+ and
[µ−] ∈ U−.
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Lemma 4.5. We have ϕ(U+) ⊆ U+ and ϕ−1(U−) ⊆ U−.

Proof. Let [µ] ∈ U+ so that 〈T−, µ〉 < 〈T+, µ〉. We have 〈T−, ϕµ〉 =
〈T−ϕ, µ〉 = 〈 1

λ−
T−, µ〉 = 1

λ−
〈T−, µ〉. Similarly, 〈T+, ϕµ〉 = 〈T+ϕ, µ〉 =

λ+〈T+, µ〉. Hence

〈T−, ϕµ〉 =
1
λ−
〈T−, µ〉 ≤ 〈T−, µ〉 < 〈T+, µ〉 ≤ λ+〈T+, µ〉 = 〈T+, ϕµ〉

so that [ϕµ] ∈ U+ by definition of U+. The proof that ϕ−1(U−) ⊆ U− is
symmetric. tu

Note that Lemma 4.5 implies that ϕ(U+) ⊆ U+ and ϕ−1(U−) ⊆ U−.

Lemma 4.6. We have:
(1) ∩∞n=1ϕ

n(U+) = {[µ+]} and ∩∞n=1ϕ
−n(U−) = {[µ−]}.

(2) For any neighborhood V of [µ+] there exists n ≥ 1 such that ϕn(U+) ⊆
V and for any neighborhood V ′ of [µ−] there exists n ≥ 1 such that
ϕ−n(U−) ⊆ V ′.

Proof. (1) Since [µ+] is fixed by ϕ, it follows that [µ+] ∈ ϕn(U+) for every
n ≥ 1 so that [µ+] ∈ ∩∞n=1ϕ

nU+. Suppose there exists [µ] ∈ ∩∞n=1ϕ
nU+

such that [µ] 6= [µ+]. Let [µn] = ϕ−n[µ] for n ≥ 1. Thus [µn] ∈ U+ for
every n ≥ 1. On the other hand [µ] 6= [µ+] implies that limn→∞ ϕ

−n[µ] =
[µ−]. Since U− is open neighborhood of [µ−], there exists n0 ≥ 1 such that
[µn0 ] = ϕ−n0 [µ] ∈ U−. Thus µn0 ∈ U+ ∩ U− which contradicts the fact
that U+ ⊆ {[ν] ∈ PCurr(FN ) : 〈T−, ν〉 ≤ 〈T+, ν〉} and U− are disjoint. This
establishes part (1) of the lemma.

(2) Let V be an open neighborhood of [µ+] and suppose that there is
no n ≥ 1 such that ϕn(U+) ⊆ V . Then there exists a sequence [µn] ∈
ϕn(U+)−V . After passing to a subsequence, we have [µni ]→ [µ] as i→∞.
Since PCurr(FN )− V is closed, we have [µ] 6∈ V . Since [µni ] ∈ ϕni(U+) and
since the closed sets ϕn(U+) are nested, it follows that [µ] ∈ ∩n≥1ϕ

n(U+).
Therefore by part (1) we have [µ] = [µ+], which contradicts the fact that
[µ] 6∈ V . tu

Lemma 4.7. For any neighborhoods U of [µ+] and V of [µ−] there exists
M ≥ 1 such that for every n ≥ M we have ϕn(PCurr(FN ) − V ) ⊆ U and
ϕ−n(PCurr(FN )− U) ⊆ V .

Proof. By applying Lemma 4.6 and making U, V smaller if necessary, we
may assume that U and V are disjoint open neighborhoods of [µ+] and [µ−]
accordingly such that ϕ(U) ⊆ U and ϕ−1(V ) ⊆ V . Let K = PCurr(FN ) −
(U ∪ V ). Thus K is a compact subset of PCurr(FN ). Since [µ−] 6∈ K, part
(2) of Proposition 3.2 implies that

K ⊆ ∪∞n=1ϕ
−n(U).

Since the sets ϕ−n(U) are open and K is compact, there exists p ≥ 1 such
that K ⊆ ∪pn=1ϕ

−n(U+). The assumption that ϕ(U) ⊆ U implies that
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∪pn=1ϕ
−n(U) = ϕ−p(U). Thus K ⊆ ϕ−p(U), so that ϕp(K) ⊆ U+. Since

ϕn(U) ⊆ U for every n ≥ 1, it follows that ϕn(K) ⊆ U for every n ≥ p+ 1
and, obviously ϕn(U) ⊆ U for every n ≥ p+1. Hence ϕn(PCurr(FN )−V ) ⊆
U for every n ≥ p+ 1, as required. The argument for ϕ−n is symmetric. tu

Corollary 4.8. The group 〈ϕ〉 acts properly discontinuously and co-compactly
on PCurr(FN )− {[µ+], [µ−]}.

Proof. Let K ⊆ PCurr(FN ) − {[µ+], [µ−]} be a compact subset. Choose
open neighborhoods U+ of [µ+] and U− of [µ−] in PCurr(FN ) so that the
sets U+, U−,K are pairwise disjoint. Let M ≥ 1 be as in Lemma 4.7.
Therefore for any n ∈ Z with |n| ≥M we have K ∩ϕnK = ∅ since ϕn(K) ⊆
U+∪U−. This shows that 〈ϕ〉 acts properly discontinuously on PCurr(FN )−
{[µ+], [µ−]}.

To see that the action of 〈ϕ〉 on PCurr(FN )− {[µ+], [µ−]} is co-compact,
put

K := {[µ] ∈ PCurr(FN )− {[µ+], [µ−]} | 0 ≤ f(µ) ≤ log(λ+λ−)}

where f is the height function as in Definition 4.3. The set K is com-
pact since the extended height function f : PCurr(FN ) → R ∪ {±∞}
is continuous and K = (f)−1([0, log(λ+λ−)]). Lemma 4.4 implies that
〈ϕ〉K = PCurr(FN )− {[µ+], [µ−]}. Thus the action of 〈ϕ〉 on PCurr(FN )−
{[µ+], [µ−]} is co-compact, as required. tu

We summarize the preceding results in the following:

Proposition 4.9. Let ϕ, T+, T−, µ+, µ− be as in Convention 4.1. Let
U+, U− be as in Definition 4.2. Then the following hold:

(1) U+ is an open neighborhood of [µ+] and U− is an open neighborhood
of [µ−] in PCurr(FN ) such that ϕ(U+) ⊆ U+ and ϕ−1(U−) ⊆ U−.

(2) ∩n≥1ϕ
n(U+) = {[µ+]} and ∩n≥1ϕ

−n(V −) = {[µ−]}.
(3) For any neighborhood U of [µ+] there exists n ≥ 1 such that ϕn(U+) ⊆

U and for any neighborhood U ′ of [µ−] there is n ≥ 1 such that
ϕ−n(U−) ⊆ U ′.

(4) For any neighborhoods U of [µ+] and U ′ of [µ−] in PCurr(FN ) there
exists M ≥ 1 such that for every n ≥ M we have ϕn(PCurr(FN ) −
U ′) ⊆ U and ϕ−n(PCurr(FN )− U) ⊆ U ′.

(5) The action of 〈ϕ〉 on PCurr(FN ) − {[µ+], [µ−]} is properly discon-
tinuous and cocompact.

A symmetric argument gives analogous statements for neighborhoods of
[T+] and [T−] in CVN . (The only difference is that in the proofs the result
of Reiner Martin about the North-South dynamics for the action of ϕ on
PCurr(FN ) has to be replaced by the corresponding result of Levitt-Lustig
about the North-South dynamics for the action of ϕ on CVN ).

We summarize them in the following:
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Proposition 4.10. Let ϕ, T+, T−, µ+, µ− be as in Convention 4.1. Define

V+ = {[T ] ∈ CVN : 〈T, µ−〉 < 〈T, µ+〉},
V− = {[T ] ∈ CVN : 〈T, µ−〉 > 〈T, µ+〉}

Then the following hold:
(1) V+ is an open neighborhood of [T+] and V− is an open neighborhood

of [T−] in CVN such that V+ϕ ⊆ V+ and V−ϕ−1 ⊆ V−.
(2) ∩n≥1V +ϕ

n = {[T+]} and ∩n≥1V −ϕ
−n = {[T−]}.

(3) For any neighborhood V of [T+] there exists n ≥ 1 such that V+ϕ
n ⊆

V and for any neighborhood V ′ of [T−] there is n ≥ 1 such that
V−ϕ

−n ⊆ V ′.
(4) For any neighborhoods V of [T+] and V ′ of [T−] in CVN there exists

M ≥ 1 such that for every n ≥M we have (CVN − V ′)ϕn ⊆ V and
(CVN − V )ϕ−n ⊆ V ′.

(5) The action of 〈ϕ〉 on CVN − {[T+], [T−]} is properly discontinuous
and cocompact.

Remark 4.11. Note that Proposition 4.10 implies Proposition 3.4, and
gives a new proof of the latter, using only the pointwise nature of the “North-
South” dynamics for hyperbolic iwips. This in turn also yields another proof
of Corollary 3.5.

Lemma 4.12. Let ϕ, µ+, µ− be as in Convention 4.1, and let A be a free
basis of FN . Then there exist an open set U ⊆ PCurr(FN ) containing [µ+]
and an integer M0 ≥ 1 with the following property:

For every [µ] ∈ U and every n ≥M0 we have 〈TA, ϕnµ〉 ≥ 2〈TA, µ〉.

Proof. Let f : Γ → Γ be a train-track representative of ϕ. There is an
integer L1 ≥ 1, an integer M1 ≥ 1 and a constant λ1 > 1 such that the
following holds. If γ = γ1γ2γ3 is a reduced concatenation of three reduced
paths in Γ where γ2 is legal of simplicial length ≥ L1 then for any n ≥M1 in
the cancellation between the tightened forms of fnγ1, fnγ2, fnγ3, a segment
of fnγ2 of simplicial length at least λ1|γ2| survives.

Let U be the neighborhood of [µ+] defined by the condition that for
[µ] ∈ U the frequencies with respect to the simplicial metric on Γ of all
legal paths of simplicial length L1 in [µ] are almost the same as they are
for the corresponding frequencies in [µ+] and the frequencies of illegal turns
are sufficiently close to zero. Here for a reduced path v in Γ and a nonzero
current µ by a frequency of v in µ we mean the ratio 〈v,µ〉Γ〈TΓ,µ〉 . It is easy to
see that this frequency depends only on TΓ and the projective class [µ] of µ.
See [31] for more details. Then for any rational current [ηw] ∈ U , where w is
a reduced cyclic path in Γ, when we write w as a concatenation of maximal
legal segments, the legal segments of length ≥ L1 each will constitute at
least 1/2 of the simplicial length of w. Then for any k ≥ 1 there is M ≥ 1
independent of w such that |[fnw]| ≥ 2k|w| for every w as above and every
n ≥M . Therefore for every [µ] ∈ U we have 〈TΓ, ϕ

nµ〉 ≥ 2k〈TΓ, µ〉 for every
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n ≥M . Here TΓ is the universal cover of Γ with the simplicial metric. Since
the translation length functions on FN corresponding to the trees TA and
on TΓ are bi-Lipschitz equivalent, it follows that, by choosing a sufficiently
large k, there exists M0 ≥ 1 such that for every n ≥ M0 and every [µ] ∈ U
we have 〈TA, ϕnµ〉 ≥ 2〈TA, µ〉, as required. tu

Corollary 4.13. Let ϕ, µ+, µ− be as in Convention 4.1, and let A be a
free basis of FN .

Then for any neighborhood V of [µ−] in PCurr(FN ) there exists an integer
M1 = M1(V, ϕ) ≥ 1 such that for every [µ] ∈ PCurr(FN ) − V , for every
[T ] ∈ CVN − U and any n ≥M1 we have 〈TA, ϕnµ〉 ≥ 2〈TA, µ〉.

Proof. Let U and M0 be provided by Lemma 4.12. By making V smaller
we may assume that V is disjoint from U . By making U smaller, via ap-
plication of Lemma 4.5 and Lemma 4.6 we may assume that, in addition to
the conditions guaranteed by Lemma 4.12, we have ϕ(U) ⊆ U . Note that
since ϕ(U) ⊆ U , then for every [ν] ∈ U and every integer k ≥ 1 we have
〈TA, ϕkM0ν〉 ≥ 2k〈TA, ν〉.

By Lemma 4.7 there exists M ≥ 1 such that ϕn(PCurr(FN )−V ) ⊆ U for
every n ≥M . Since M , M0 are fixed, there exists C > 0 such that for every
µ ∈ Curr(FN ) we have 〈TA, ϕMµ〉 ≥ C〈TA, µ〉. Let k ≥ 1 be an arbitrary
integer. Let [µ] ∈ PCurr(FN ) − V be arbitrary. We have ϕn([µ]) ∈ U for
every n ≥ M . We also have 〈TA, ϕMµ〉 ≥ C〈TA, µ〉 and 〈TA, ϕkM0+Mµ〉 ≥
2k〈TA, ϕMµ〉 by Lemma 4.12. Therefore 〈TA, ϕkM0+Mµ〉 ≥ 2kC〈TA, µ〉. The
statement of the corollary now easily follows. tu

Corollary 4.14. Let ϕ,ψ ∈ Out(FN ) be hyperbolic iwips such that 〈ϕ,ψ〉 is
not virtually cyclic. Then there exists M ≥ 1 such that for any n,m ≥ M
the subgroup 〈ϕn, ψm〉 is free of rank two.

Proof. Corollary 3.11 implies that [T±(ϕ)] and [T±(ψ)] are four distinct
points of CVN . Therefore the statement follows from Corollary 3.5. tu

Note that by Proposition 3.7 for hyperbolic iwips ϕ,ψ the assumption
that [T±(ϕ)], [T±(ψ)] are four distinct points of CVN is equivalent to the
condition that [µ±(ϕ)], [µ±(ψ)] are four distinct points of PCurr(FN ).

Lemma 4.15. Let ϕ,ψ ∈ Out(FN ) be hyperbolic iwips such that 〈ϕ,ψ〉 ⊆
Out(FN ) is not virtually cyclic. Let A be a free basis of FN . Then there
exists M ≥ 1 with the following property:

For any µ ∈ Curr(FN ) and for any n,m ≥ M , for at least three out of
four elements α of {ϕn, ψm, ϕ−n, ψ−m} we have

2〈TA, µ〉 ≤ 〈TA, αµ〉.

Proof. Since 〈ϕ,ψ〉 ⊆ Out(FN ) is not virtually cyclic, the four eigencurrents
[µ+(ϕ)], [µ+(ψ)], [µ−(ϕ)], [µ−(ψ)] are four distinct elements in PCurr(FN ).
Take four disjoint open neighborhoods U+(ϕ), U+(ψ), U−(ϕ), U−(ψ).
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LetM ≥ 1 be the maximum of the the constants M1(U−(ϕ), ϕ), M1(U−(ψ), ψ),
M1(U+(ϕ), ϕ−1), M1(U+(ψ), ψ−1) provided by Corollary 4.13. Let µ ∈
Curr(FN ), µ 6= 0 be arbitrary. Then there are at least three of the four
sets U+(ϕ), U+(ψ), U−(ϕ), U−(ψ) that [µ] does not belong to, and the
statement of the lemma follows from Corollary 4.13 tu

Lemma 4.15 immediately implies:

Corollary 4.16. Let ϕ,ψ ∈ Out(FN ) be hyperbolic iwips such that 〈ϕ,ψ〉 ⊆
Out(FN ) is not virtually cyclic. Let A be a free basis of FN . Then there exists
M ≥ 1 with the following property: For any w ∈ FN and any n,m ≥M , for
at least three out of four elements α of {ϕn, ψm, ϕ−n, ψ−m} we have

2||w||A ≤ ||α(w)||A.

Via a standard argument (c.f. the proof of Theorem 5.2 in [5]), Corol-
lary 4.16 and the Bestvina-Feighn Combination Theorem [1] imply:

Theorem 4.17. Let N ≥ 3 and let ϕ,ψ ∈ Out(FN ) be hyperbolic iwips such
that 〈ϕ,ψ〉 ⊆ Out(FN ) is not virtually cyclic and let Φ,Ψ ∈ Aut(FN ) be such
that Φ represents ϕ and Ψ represents ψ. There exists M ≥ 1 such that for
any n,m ≥ M the subgroup 〈ϕn, ψm〉 ⊆ Out(FN ) is free of rank two, every
nontrivial element of this subgroup is hyperbolic and the group

Gn,m = 〈FN , t, s|t−1wt = Φn(w), s−1ws = Ψm(w) for every w ∈ FN 〉

is word-hyperbolic.

The “3 out of 4” condition in Corollary 4.16 was first introduced by Lee
Mosher for surface homeomorphisms in [46] where he used it to construct an
example of a (closed surface)-by-(free of rank two) word-hyperbolic group.
Similarly, the “3 out of 4” condition was used by Bestvina, Feign and Han-
del [5] to construct a free-by-free word-hyperbolic group. Our proof of the “3
out of 4” condition in Corollary 4.16 is different from both the approaches of
Mosher and of Bestvina-Feighn-Handel: our method is based on exploiting
North-South dynamics of hyperbolic iwips acting on the space of projec-
tivized currents rather than on the space of laminations.

Remark 4.18. In Theorem 4.17 it is also easy to conclude that for every
nontrivial element θ ∈ 〈Φ,Ψ〉 ⊆ Aut(FN ) the automorphism θ is hyperbolic.
This can be seen directly from the Annuli Flare Condition [1] for the group
Gn,m above. Alternatively, suppose θ is not hyperbolic. Then θ is not
atoroidal, that is to say θ has a periodic conjugacy class. This yields a Z×Z-
subgroup in Gni,m which contradicts the fact that Gn,m is word-hyperbolic.

Remark 4.19. The same proof as that of Theorem 4.17 shows that the
conclusion of this theorem holds if instead of two elements of Out(FN ) we
use k ≥ 2 hyperbolic iwip elements ϕ1, . . . , ϕk with the property that for
every 1 ≤ i < j ≤ k the subgroup 〈ϕi, ϕj〉 ⊆ Out(FN ) is not virtually cyclic.
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5. Ping-pong for Schottky type groups and its consequences

Definition 5.1. Let G be a group that acts on a non-empty set X (either
on the left or on the right). Suppose that the group G is generated by two
specified elements g and h, and that X contains pairwise disjoint geographical
nonempty subsets N (= “North”), S (= “South”), E (= “East”) an W (=
“West”), such that g maps X − S into N , g−1 maps X − N into S, and
similarly h with E and W . We call this action of G on X a 2-generator
ping-pong action with respect to g and h.

For the rest of this section, unless specified otherwise we assume that we
are given a 2-generator ping-pong action of G on X with respect to g and
h.

It follows from Felix Klein’s classical argument that in the above situation
G is free with a free basis {g, h}. Notice that we purposefully did not specify
whether G acts from the left or from the right on X. For any reduced and
cyclically reduced word w = x1 . . . xq in {g, h}±1 we define the final acting
letter to be the xi that acts last on X. Thus, if we have a left action, then
the final acting letter of w is the first letter x1, and in case of a right action
it is the last letter xq.

We define the forward limit region of w (reduced and cyclically reduced)
as the nested intersections of the images of Y under wn, for positive n, where
Y = N if w has the final acting letter g, Y = S if w has the final acting
letter g−1, and similarly Y = E or Y = W if w has the final acting letter h
or h−1.

Remark 5.2. It follows directly from the above set-up that for a cyclically
reduced w, any fixed point of w in X must be contained either in the forward
limit region of w or in that of w−1 (one could call the latter the backward
limit region of w).

Definition 5.3. A 2-generator ping-pong action of G on X as above is called
open if in addition X is a topological space, G acts by homeomorphisms on
X, and the geographical subsets N,S,E and W are open.

Notice also that the restriction of any 2-generator ping-pong action to
a G-invariant subset X ′ ⊆ X is also 2-generator ping-pong: One simply
redefines the set North as X ′ ∩ N , South as X ′ ∩ S, etc. Of course, if the
action on X is open, then so is the action on X ′.

Suppose now that ϕ,ψ ∈ Out(FN ) are hyperbolic iwips such that 〈ϕ,ψ〉
is not virtually cyclic. We already know by the results of Section 4 that
there is M ≥ 1 such that for every n,m ≥ M the actions of G = 〈ϕn, ψm〉
on both, CVN (from the right) and on PCurr(FN ) (from the left) are open
2-generator ping-pong actions with respect to ϕn, ψm. Note that in this case
for the left action of G on PCurr(FN ), the “north” set N contains [µ+(ϕ)],
the “south” set S contains [µ−(ϕ)], the “east” set E contains [µ+(ψ)] and
the “west” set W contains [µ−(ψ)]. Similarly, for the right action of G on
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CVN the geographical sets N , S, E, W contain [T+(ϕ)], [T−(ϕ)], [T+(ψ)],
and [T−(ψ)] respectively.

The main goal of this section is to prove the following:

Proposition 5.4. Let ϕ,ψ ∈ Out(FN ) be hyperbolic iwips, and assume that
the actions of G = 〈ϕ,ψ〉 on both, CVN (from the right) and on PCurr(FN )
(from the left) are open 2-generator ping-pong actions with respect to ϕ,ψ.

Then there exist constants m0, n0 ≥ 1 with the following property. Sup-
pose m ≥ m0, n ≥ n0 and w is a cyclically reduced word in ϕ±1, ψ±1 which
starts in ϕm and ends in ϕn, and suppose [µ] ∈ PCurr(FN ) is such that [µ]
is contained in the forward limit region of w and such for some λ 6= 1 we
have wµ = λµ.

Then λ > 1.

For the remainder of this section we suppose that the assumptions of
Proposition 5.4 are satisfied. In order to prove this proposition we need first
some preliminary considerations.

Recall that CVN = PcvN is the projectivization of cvN . We consider
the (right) action of G on CVN . Denote by cv1

N ⊆ cvN the lift of CVN to
cvN where every tree has covolume 1. Note that cv1

N is invariant under the
action of Out(FN ) on cvN , and that the group G = 〈ϕ,ψ〉 acts on cv1

N again
as open 2-generator ping-pong group, since by the hypothesis of Proposition
5.4 it does so on CVN and thus on CVN .

Convention 5.5. Let ϕ ∈ Out(FN ) be a hyperbolic iwip. Let [µ+] =
[µ+(ϕ)] be an expanding fixed projectivized current of ϕ, i.e. ϕµ+ = λ+µ+,
with λ+ > 1. Let [T−] be a contracting fixed projectivized R-tree of ϕ,
i.e. T−ϕ = λ−1

− T−, with λ− > 1. We recall that, by Proposition 3.2 and
Proposition 3.3, both µ+ and T− are uniquely determined by ϕ up to scalar
multiplication, and that 〈T−, µ+〉 = 0. Moreover, by Proposition 3.7, up to
scalar multiples, T− is the unique tree T ∈ cvN satisfying 〈T, µ+〉 = 0.

Similarly, let [µ−] = [µ−(ϕ)] and [T+] = [T+(ϕ)] be the contracting fixed
projectivized current and expanding fixed projectivized tree for ϕ. Note
that T+ϕ = λ+T+ and ϕ−1µ− = λ−µ−.

For any subset V ⊆ cvN we denote by PV ⊆ CVN its canonical image
under projectivization. Note that the closure V of V in cvN projects to a
subset PV ⊆ CVN which is contained in the closure PV of PV in CVN , but
that in general the two are not equal:

PV ⊆ PV .

Lemma 5.6. Let V be a subset of cv1
N with the property that [T−] 6∈ PV .

Suppose also that for some constant c > 0 we have

〈T, µ+〉 ≥ c
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for all T in V . Then for some sufficiently small neighborhood U ⊆ Curr(FN )
of µ+ one has

〈T, µ〉 ≥ c

2
for any T in V and for any µ ∈ U .

Proof. Suppose that the statement of the lemma is false. Then there exist
a sequence of currents µi ∈ Curr(FN ) converging to µ+, and a sequence of
trees Ti ∈ V , which all satisfy

〈Ti, µi〉 <
c

2
≤ 〈Ti, µ+〉

2
.

By compactness of CVN we can extract a subsequence of the Ti, which we
still denote Ti, which converges projectively to some R-tree T∞ in cvN . Let
λi > 0 be such that limi→∞ λiTi = T∞ in cvN .

By continuity and linearity of the intersection form we have:

〈T∞, µ+〉 = 〈limλiTi, limµi〉 = limλi〈Ti, µi〉

≤ lim
λi〈Ti, µ+〉

2
=
〈limλiTi, µ+〉

2
=
〈T∞, µ+〉

2
Hence 〈T∞, µ+〉 = 0 and therefore, by Proposition 3.7, [T∞] = [T−].

However, [T∞] is contained in the closure of PV in CVN , which contradicts
our assumption that [T−] 6∈ PV . tu

Lemma 5.7. There exists a non-empty subset V ⊆ cv1
N with the following

properties:
(1) [T−] /∈ PV
(2) c := inf{〈T, µ+〉 | T ∈ V } > 0
(3) V ϕ ⊆ V , and 〈Tϕ, µ+〉 = λ+〈T, µ+〉 for any T ∈ V .
(4) There exists a tree T0 ∈ V such that for every reduced word w in

ϕ±1 and ψ±1 that does not end in ϕ−1, the tree T0w lies in V .

Proof. Let N,S,E,W ⊆ CVN be the geographical subsets for the ping-pong
action of G = 〈ϕ,ψ〉 on CVN . Recall that N and S are open neighborhoods
of [T+] = [T+(ϕ)] and [T−] = [T−(ϕ)] accordingly. Choose an arbitrary
T0 ∈ cv1

N such that [T0] 6∈ N ∪ S ∪ E ∪W .
Put

V = {T ∈ T0Out(FN ) : [T ] 6∈ S}.
We claim that these choices of V and T0 satisfy all the requirements of

the lemma. Indeed, conditions (1), (3) and (4) follow immediately from
the definitions of V and T0 and from the ping-pong properties of the ac-
tion of G on CVN . Suppose that condition (2) fails. Then there exists a
sequence αn ∈ Out(FN ) such that limn→∞〈T0αn, µ+〉 = 0. After passing to
a further subsequence, we may assume that limn→∞[T0αn] = [T∞] and that
limn→∞ cnT0αn = T∞ for some T∞ ∈ cvN and some cn > 0. Note that [T∞]
belongs to the closure of PV and hence [T∞] 6= [T−]. Note that because
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T0 ∈ cv1
N , we have 〈T0αn, µ+〉 > 0. After passing to a further subsequence

we may also assume that all αn are distinct and that

0 < 〈T0αn, µ+〉 ≤ 1

for all n ≥ 1. Since αn are distinct and the action of Out(FN ) on cv1
N is

properly discontinuous, it follows that [T∞] ∈ ∂CVN = CVN − CVN . This
in turn implies that limn→∞ cn = 0 (see [35] for details).

By the linearity of the intersection form we have:

〈cnT0αn, µ+〉 = cn〈T0αn, µ+〉 ≤ cn →n→∞ 0

Hence, by continuity, 〈T∞, µ+〉 = 0 which, by Proposition 3.7, implies that
[T∞] = [T−]. This contradicts our earlier conclusion that [T∞] 6= [T−]. tu

Lemma 5.8. There exists a tree T0 ∈ cv1
N , a constant n0 ≥ 0 and a neigh-

borhood U ⊆ Curr(FN ) of µ+, such that for any reduced word w in ϕ±1 and
ψ±1 that does not end in ϕ−1, for any n ≥ n0, and for any µ ∈ U , one has:

〈T0, wϕ
nµ〉 > 〈T0, µ〉.

Proof. Consider a set V ⊆ cv1
N and a tree T0 ∈ V as in Lemma 5.7. By

definition we have λ+ > 1, and by Lemma 5.7(2), the infimum c of all
〈T, µ+〉, for any T ∈ V , satisfies c > 0. Thus we can pick n0 ≥ 0 so that
λn0

+ c > 100〈T0, µ+〉. From the continuity of the intersection form we deduce

λn+c

2
> 〈T0, µ〉

for all n ≥ n0 and for any µ in some sufficiently small neighborhood U0 of
µ+.

By part (4) of Lemma 5.7 the tree T0w is contained in V , and hence T0wϕ
n

is contained in V ϕn. From parts (2) and (3) of Lemma 5.7 we deduce that
every T ∈ V ϕn satisfies:

〈T, µ+〉 ≥ λn+c
Now Lemma 5.6, whose hypotheses are guaranteed by Lemma 5.7 (1) and
(2), implies that

〈T, µ〉 ≥
λn+c

2
for any T ∈ V ϕn and any µ in a sufficiently small neighborhood U ′ ⊆
Curr(FN ) of µ+. It follows from our above choice of n0 that

〈T0, wϕ
nµ〉 = 〈T0wϕ

n, µ〉 ≥
λn+c

2
> 〈T0, µ〉

for any µ in U := U ′ ∩ U0. tu

We now consider the (left) action of G on PCurr(FN ), which by the hy-
potheses of Proposition 5.4 is again an open 2-generator ping-pong action.

By the North-South dynamics of iwips (see the results of Section 4) for
any sufficiently large m ≥ 1 the power ϕm maps any compact subset of
PCurr(FN ), that excludes the repelling fixed point [µ−] of ϕ, into PU ⊆
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PCurr(FN ). Here PU ⊆ PCurr(FN ) means the image of a neighborhood
U ⊆ Curr(FN ) of the ϕ-expanding eigencurrent µ+ as above. As an easy
consequence of the open 2-generator ping-pong assumption of the G-action
on PCurr(FN ) we thus obtain:

Lemma 5.9. For every neighborhood U ⊆ Curr(FN ) of µ+ there exists
m1 ≥ 1 such that for all m ≥ m1 and for every reduced word w in ϕ±1 and
ψ±1 which does not start or end with ϕ−1, the forward limit region of ϕmw
in PCurr(FN ) is contained in PU .

We can now prove Proposition 5.4:

Proof of Proposition 5.4. Let U , T0, n0 and m1 be as given in Lemma 5.8
and Lemma 5.9, so that both apply to the given word w = ϕmw′ϕn, where
w′ is a reduced word in ϕ±1 and ψ±1 which does not start or end with ϕ−1,
and where n ≥ n0 and m ≥ m0 := max(m1, n0) holds.

Recall that by assumptions of Proposition 5.4, we are given a projective
current [µ] in the forward limit region of w such that [µ] is fixed by w, so
that wµ = λµ for some λ > 0. We need to prove that λ > 1.

Since [µ] contained in the forward limit region of w in PCurr(FN ), it
follows that [µ] is contained in the set PU , by Lemma 5.9. Hence some
scalar multiple µ′ of µ is contained in U , and we deduce from Lemma 5.8
that:

〈T0, wµ
′〉 = 〈T0, ϕ

mw′ϕnµ′〉 > 〈T0, µ
′〉

But since µ is projectively fixed by w = ϕmw′ϕn, we have:

〈T0, wµ〉 = 〈T0, λµ〉 = λ〈T0, µ〉

Hence λ〈T0, µ〉 > 〈T0, µ〉. Note that T0 is a tree with a free simplicial action
of FN , which implies 〈T0, µ〉 6= 0. Therefore

λ > 1 ,

which proves Proposition 5.4. tu

An interesting feature of the above proof is that it needs the ping-pong
property of the action of G on both spaces, CVN and PCurr(FN ). As one of
these actions is a left action and the other one a right action, the words w
considered must both, start and end in large powers of ϕ. However, this is
not a problem for the application in the next section, since the property of
an automorphism to be an iwip is invariant under conjugation in Out(FN ).

Recall that ϕ, µ+ = µ+(ϕ) and µ− = µ−(ϕ) are as in Convention 5.5.
We finish this section with a lemma that will be used in the next section:

Lemma 5.10. There exists neighborhoods U+(ϕ) ⊆ Curr(FN ) of µ+ and
U−(ϕ) ⊆ Curr(FN ) of µ− such that

〈T, µ′+〉+ 〈T, µ′−〉 > 0

for any T ∈ cvN and any µ′+ ∈ U+, µ
′
− ∈ U−.
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Proof. It suffices to recall that, by Proposition 3.7, the above inequality is
true for µ′+ = µ+ and µ′− = µ−, and to use the continuity of the intersection
form. tu

6. Every Schottky group contains a rank-two free iwip
subgroup

We first prove a property that characterizes those hyperbolic automor-
phisms of FN which are not iwips.

Proposition 6.1. For every Φ ∈ Aut(FN ) which is hyperbolic but not an
iwip there exist k ≥ 1, a tree T0 ∈ cvN and currents ν+, ν− ∈ Curr(FN )r{0}
with the following properties:

(1) Φk(ν+) = ρ+ν+ and Φk(ν−) = ρ−1
− ν− , for some ρ+, ρ− > 1.

(2) 〈T0, ν+〉 = 〈T0, ν−〉 = 0.

Proof. The R-tree T0 is constructed as described in [21] from a relative train
track representative (in the sense of [3]) f : τ → τ of Φ using a (row)
eigenvector of the transition matrix M(f) which has non-zero coefficients
only for the top stratum of τ . The translation length with respect to T0

satisfies
||w||T0 = 0

for all conjugacy classes [w] ⊆ FN which are represented by a loop in τ that
does not traverse any edge of the top stratum. Note that T0 is projectively
Φ-invariant, but that the stretching factor may well be equal to 1, in which
case T0 is simplicial.

Since Φ has a reducible power, we can choose a proper free factor U of
FN which is (up to conjugation) fixed by some power Φk with k ≥ 1, and
which does not contain properly any non-trivial free factor of FN that is
Φh-invariant (up to conjugation) for any h ≥ 1. After composing Ψ = Φk

with an inner automorphism if necessary, we may assume that Ψ(U) = U .
Note that U is not cyclic since by assumption Φ is hyperbolic.

We claim that, moreover, U can be chosen in such a way that U fixes a
point of T0. Indeed, since every maximal elliptic subgroup for the above tree
T0 is (up to conjugation) a Φ-invariant free factor of FN , if such a subgroup
is non-trivial, it must contain the Φ-orbit of some free factor U as above. It
thus remains to argue that there exist at least one elliptic subgroup of T0

which is non-trivial. If T0 is simplicial, this is obvious, as otherwise the action
of FN on T0 would be free, and since T0 is Φ-invariant, the automorphism
Φ would be periodic (up to conjugation) and hence not hyperbolic. In
the complementary case, where T0 is not simplicial, the top stratum of the
above train track map f : τ → τ must be exponentially growing. Thus, if τ
has more than one stratum, every lower stratum contributes to the elliptic
subgroups of T0, and hence the bottom stratum would define a non-trivial
elliptic subgroup for T0, as required. Finally, if there is only one stratum
in τ , then either Φ was an iwip, or else, by Proposition 5.1 of [29] (see also
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chapter 7 of [42]), one of the vertices of τ can be blown-up to give a new Φ-
invariant train track with a periodic top stratum. For this new train track
τ ′ its stable tree T ′0 will be simplicial (as explained in detail in the proof
of Proposition 5.1 of [29]), and the previous arguments would apply. Thus
indeed U and T0 can be chosen so that U fixes a point in T0.

By the choice of U , the restriction Ψ|U ∈ Aut(U) is an iwip automophism
of U . Moreover, Ψ|U has no periodic conjugacy classes (since Φ has no
periodic conjugacy classes), so that Ψ|U ∈ Aut(U) is also atoroidal.

Therefore there exist a projectively unique Ψ|U -invariant expanding cur-
rent µU+ and a projectively unique Ψ|U -invariant contracting current µU− in
Curr(U). More precisely, Ψ|U (µU+) = ρ+µ

U
+ and (Ψ|U )−1(µU−) = ρ−µ

U
− for

some ρ+, ρ− > 1.
Recall that, as shown in [31], the inclusion ι : U → FN defines a continu-

ous linear map ι∗ : Curr(U)→ Curr(FN ) which extends the obvious map on
conjugacy classes. Namely, for any nontrivial u ∈ U we have ι∗(ηUu ) = ηFN

u

where ηUu ∈ Curr(U) and ηFN
u ∈ Curr(FN ) are the rational currents defined

by u on U and FN respectively. Moreover, the map ι∗ has a particularly
simple form in a simplicial chart corresponding to a free basis A of FN of
the form A = B t C where B is a free basis of U . Namely, if we use A as
a simplicial chart on FN and B as a simplicial chart on U then for every
µ ∈ Curr(U) and every nontrivial freely reduced word v ∈ F (A) we have:

〈v, ι∗µ〉A =

{
〈v, µ〉B, if v ∈ F (B) = U

0, otherwise.

Put ν+ = ι∗(µU+) and ν− = ι∗(µU−).
By the main result of [35], since the supports of ν+ and ν− are carried by

U and since every element of U has translation length zero on T0, it follows
that 〈T0, ν+〉 = 〈T0, ν−〉 = 0.

We claim that Ψν+ = ρ+ν+ and Ψν− = ρ−1
− ν−. Indeed, choose a nontriv-

ial element a ∈ U . We know that (up to rescaling ν+),

µU+ = lim
n→∞

Ψ|nU (ηa)
ρn+

= lim
n→∞

ηUΨn|U (a)

ρn+

and therefore by linearity and continuity of ι∗ and using the fact that
ι∗(ηUu ) = ηFN

u for u ∈ U, u 6= 1, we have:

ν+ = ι∗(µU+) = lim
n→∞

ηFN

Ψn(a)

ρn+
.
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Using the fact that Ψ|U (µU+) = ρ+µ
U
+, we conclude:

Ψν+ = lim
n→∞

Ψ
ηFN

Ψn(a)

ρn+
= lim

n→∞

ηFN

Ψn+1(a)

ρn+
=

lim
n→∞

ι∗(ηUΨ|n+1
U (a)

)

ρn+
= ι∗( lim

n→∞

ηU
Ψ|n+1

U (a)

ρn+
) = ι∗(Ψ|U (µU+)) =

ι∗(ρ+µ
U
+) = ρ+ν+.

A similar argument shows that Ψ−1ν− = ρ−ν−.
Thus T0, ν+ and ν− have all the properties required by the conclusion of

the proposition.
tu

Theorem 6.2. Let ϕ0, ψ0 ∈ Out(FN ) be hyperbolic iwips such that the sub-
group 〈ϕ0, ψ0〉 ⊆ Out(FN ) is not virtually cyclic. Then there exist n,m ≥ 1
such that G = 〈ϕn0 , ψm0 〉 ⊆ Out(FN ) is free of rank two and every non-trivial
element of G is a hyperbolic iwip.

Proof. We already know by the results of Section 4 that if M0 is sufficiently
big and n,m ≥ M0 then G = 〈ϕn0 , ψm0 〉 is free of rank two, that every
nontrivial element of G is atoriodal (i.e. hyperbolic) and that G acts as
Schottky group on both, CVN and PCurr(FN ) (in the precise sense that the
two actions are open 2-generator ping-pong as in Definition 5.3).

Denote ϕ = ϕM0
0 and ψ = ψM0

0 .
We define G1 to be the subgroup of Out(FN ) generated by ϕM and ψM ,

for M ≥ 1 large. Every element α of G1 − {1} is either conjugate in G to
some ϕk or ψk, with k ∈ Z r {0}, and thus iwip, or else it is conjugate in
G to a reduced and cyclically reduced word u in ϕ,ψ which contains the
subword ϕ±M . After possibly replacing α by α−1, we may assume that u
contains ϕM as a subword. Hence u is conjugate in G to a reduced word u1

in ϕ,ψ that begins with ϕm and ends with ϕn where m,n ≥ M
2 −1 and that

represents α1 ∈ Out(FN ) (which is a conjugate of α).
Suppose that α is not an iwip, so that α1 is not an iwip either. Then by

Proposition 6.1 there exist k ≥ 1, T0 ∈ cvN , ν± ∈ Curr(FN ) − {0}, ρ± > 1
such that 〈T0, ν+〉 = 〈T0, ν−〉 = 0 and αk1ν+ = ρ+ν+, αk1ν− = ρ−1

− ν−. Then
αk1 = uk1 and the word w = uk1 in ϕ,ψ still begins with ϕm and ends with
ϕn and has the form w = uk1 = ϕmw′ϕn.

Let [µ±(ϕ)] ∈ PCurr(FN ) be the two fixed eigencurrents of ϕ and let
µ±(ϕ) ∈ Curr(FN ) be some representatives of them in Curr(FN ). Let U+ =
U+(ϕ) and U− = U−(ϕ) be neighborhoods of µ+(ϕ) and µ−(ϕ) in Curr(FN )
provided by Lemma 5.10.

If M is big enough, then n,m ≥ M
2 − 1 are also big enough so that

Proposition 5.4 can also be applied to w and w−1, and that furthermore, by
Lemma 5.9, the forward limit region of w is contained in the image PU+ of
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the neighborhood U+ of µ+(ϕ), and similarly for the forward limit region of
w−1 and U−.

It follows from Remark 5.2 that for every projectively w-fixed current µ
the image [µ] must be contained in PU+ ∪ PU−.

The current ν+ is projectively fixed by αk1 = w and hence it is contained
in the union of the forward and backward limit regions of w. Therefore
[ν+] ∈ PU+ ∪ PU−. Moreover, ν+ is projectively fixed by w and is w-
expanding (since ρ+ > 1) while by Proposition 5.4 every projectively fixed
current contained in the backward limit region of w is w-contracting. Hence
[ν+] ∈ PU+ so that some non-zero scalar multiple ν ′+ of ν+ satisfies ν ′+ ∈ U+.

A symmetric argument shows that [ν−] ∈ PU− so that some non-zero
scalar multiple ν ′− of ν− satisfies ν ′− ∈ U−.

Thus Lemma 5.10 applies to ν ′+ and ν ′−, so that we obtain 〈T0, ν
′
+〉 +

〈T0, ν
′
−〉 > 0. But this contradicts the fact that 〈T0, ν+〉 = 〈T0, ν−〉 = 0.

Hence α is an iwip, as required, which completes the proof of the theorem.
tu

Corollary 6.3. Let G ⊆ Out(FN ) be a subgroup which contains some hy-
perbolic iwip, and assume that G is not virtually cyclic. Then G contains a
free subgroup of rank two where all non-trivial elements are hyperbolic iwips.

Proof. By Proposition 3.10, G contains two hyperbolic iwips ϕ and ψ some
powers of which generate a free group of rank two. Therefore 〈ϕ,ψ〉 is not
virtually cyclic, and the statement of the corollary follows from Theorem 6.2.

tu
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[29] A. Jäger and M. Lustig, Free Group Automorphisms with Many Fixed Points at
Infinity, to appear in the Zieschang Gedenkschrift, G&T monograph series

[30] I. Kapovich, The frequency space of a free group, Internat. J. Alg. Comput. 15
(2005), no. 5-6, 939–969

[31] I. Kapovich, Currents on free groups, Topological and Asymptotic Aspects of
Group Theory (R. Grigorchuk, M. Mihalik, M. Sapir and Z. Sunik, Editors), AMS
Contemporary Mathematics Series, vol. 394, 2006, pp. 149-176

[32] I. Kapovich, Clusters, currents and Whitehead’s algorithm, Experimental Mathe-
matics 16 (2007), no. 1, 67–76

[33] I. Kapovich and M. Lustig, The actions of Out(Fk) on the boundary of outer space
and on the space of currents: minimal sets and equivariant incompatibility. Ergodic
Theory Dynam. Systems 27 (2007), no. 3, 827–847

[34] I. Kapovich and M. Lustig, Geometric Intersection Number and analogues of the
Curve Complex for free groups, Geometry & Topology 13 (2009), 1805–1833



PING-PONG AND OUTER SPACE 29

[35] I. Kapovich and M. Lustig, Intersection form, laminations and currents on free
groups, Geom. Funct. Analysis (GAFA) 19 (2010), no. 5, 1426–1467

[36] I. Kapovich and M. Lustig, Domains of proper dicontinuity on the boundary of
Outer space, Illinois J. Math, to appear; arXiv:0902.4263

[37] I. Kapovich and M. Lustig, Stabilizers of R-trees with free isometric actions of FN ,
preprint, 2009; ArXiv:0904.1881

[38] I. Kapovich and T. Nagnibeda, The Patterson-Sullivan embedding and minimal
volume entropy for Outer space, Geom. Funct. Anal. (GAFA) 17 (2007), no. 4,
1201–1236

[39] R. P. Kent, and C. J. Leininger, Subgroups of mapping class groups from the geo-
metrical viewpoint. In the tradition of Ahlfors-Bers. IV, 119–141, Contemp. Math.,
432, Amer. Math. Soc., Providence, RI, 2007

[40] R. P. Kent, and C. J. Leininger, Shadows of mapping class groups: capturing convex
cocompactness, Geom. Funct. Anal. 18 (2008), 1270–1325.

[41] G. Levitt and M. Lustig, Irreducible automorphisms of Fn have North-South dy-
namics on compactified outer space. J. Inst. Math. Jussieu 2 (2003), no. 1, 59–72

[42] M. Lustig, Conjugacy and centralizers for iwip automorphisms of free groups, in
“Geometric Group Theory”, Trends in Mathematics, 197–224. Birkhäuser Verlag,
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