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Abstract—Analog network coding (ANC) is a throughput
increasing technique for the two-way relay channel (TWRC)
whereby two end nodes transmit simultaneously to a relay at
the same time and band, followed by the relay broadcasting the
received sum of signals to the end nodes. Coherent reception
under ANC is challenging due to requiring oscillator synchro-
nization for all nodes, a problem further exacerbated by Doppler
shift. This work develops a noncoherent M-ary frequency-shift
keyed (FSK) demodulator implementing ANC. The demodulator
produces soft outputs suitable for use with capacity-approaching
channel codes and supports information feedback from the chan-
nel decoder. A unique aspect of the formulation is the presence
of an infinite summation in the received symbol probability
density function. Detection and channel decoding succeed when
the truncated summation contains a sufficient number of terms.
Bit error rate performance is investigated by Monte Carlo
simulation, considering modulation orders two, four and eight,
channel coded and uncoded operation, and with and without
information feedback from decoder to demodulator. The channel
code considered for simulation is the LDPC code defined by the
DVB-S2 standard. To our knowledge this work is the first to
develop a noncoherent soft-output demodulator for ANC.

I. INTRODUCTION

In the two-way relay channel (TWRC) two end nodes
exchange information through an intermediate relay node.
The end nodes have no direct radio link to each other,
and are both in range of the relay. Physical-layer network
coding (PNC) [1] is a transmission scheme which reduces the
number of time slots required for information exchange. The
exchange is divided into the multiple-access (MA) phase and
broadcast (BC) phase. In the MA phase, the sources transmit
simultaneously, and the relay receives the electromagnetic sum
of transmissions. In the BC phase, the relay broadcasts the
combination of signals to the end nodes, each of which detect
the information transmitted by the opposite end node.

A primary distinction between PNC schemes is the forward-
ing technique applied by the relay [2]. In the case that the relay
amplifies and forwards the signal received from the end nodes
during the MA phase, the forwarding technique is termed PNC
over an infinite field or analog network coding (ANC) [3].
When the relay demodulates and optionally performs channel
decoding, the forwarding technique is referred to as PNC over
a finite field or digital network coding (DNC) [4], as the
relay detects and forwards information symbols over a discrete
and finite set, such as an M-ary frequency-shift keyed (FSK)
constellation.

A significant challenge in developing practical PNC re-
ceivers for the TWRC is achieving phase synchronization
between the three nodes in the network, which is required for
coherent reception. Variations in transmitted signal frequen-
cies due to oscillator imperfections and Doppler shifts make
synchronization challenging. While it may be straightforward
to synchronize oscillators between two nodes, the third will
still exhibit an offset that must be taken into account in

receiver design. Phase synchronization challenges motivate the
investigation of noncoherent reception.

Our previous work developed a soft-output noncoherent M-
FSK demodulator for DNC at the relay in the TWRC [5] [6]
[7]. The current work develops a soft-output noncoherent M-
FSK demodulator for ANC at the end nodes in the TWRC, the
first of its kind to our knowledge. The demodulator supports
power-of-two modulation orders and produces log-likelihood
ratios (LLRs) suitable for use with capacity approaching soft-
decision decoding techniques. The performance of LDPC
channel coding coupled with ANC is investigated in this work.
As a noncoherent formulation, the demodulator is capable
of operating without any knowledge of the channel and
without phase synchronization between the end node and relay
oscillators.

Previous work on ANC analyzes achievable transmission
rates, compares with other TWRC protocols, and develops
noncoherent receivers. An analysis of the achievable rates
for ANC for a variety of network topologies is considered
in [8]. Closed form expressions for the bit-error rate of
noncoherent FSK in the passive RFID channel are derived
in [9]. The passive RFID channel is analytically similar to
the broadcast channel under ANC, as both consider a signal
transmitted over two Rayleigh fading channels, an instance
of double Rayleigh fading [10]. The relationship between
bit error rate, transmission rate, and transmit power for the
ANC TWRC is analyzed in [11], forming the basis for a rate
and power adaptation scheme. A noncoherent receiver for the
ANC TWRC using uncoded differential PSK modulation is
developed in [12]. The BER of the receiver is derived and
an optimal power allocation scheme is developed assuming
constant fading coefficients per frame.

The following organization is applied for the rest of the
work. Section II describes the system model. Section III
presents the ANC demodulator, developing the probability
distribution of the symbols and bits received at the end nodes.
Section IV provides the simulation procedure and performance
results used to investigate the performance of the developed
demodulator. Concluding remarks are provided in Section V.

II. SYSTEM MODEL

This section describes the system model assumed for
derivation and simulation of the ANC soft-output end node
demodulator. The channel model is described, followed by
end node modulation with and without channel coding. Relay
operation is described. End node reception using the developed
demodulator with and without channel decoding is described.
Symbol and frame synchronization is assumed throughout.
The system model is shown in Fig. 1.

A. Transmission by End Nodes
Two end nodes N1 and N2 generate information bit se-

quences ui = [u1,i, ..., uK,i], i ∈ {1, 2} having length K.
Under channel coded operation, each ui is encoded by an
LDPC code having rate rS , yielding a length L = K/rS
channel codeword, denoted by b′i = [b1,i..., bL,i]. Under
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uncoded operation, bi = ui and L = K. The codeword
is passed through an interleaver, modeled as a permutation
matrix Π having dimensionality L × L : bi = b′iΠ. The
number of bits per symbol is µ = log2M . The codeword
bi is partitioned into Nq = L/µ sets of bits. Each set of µ
bits is mapped to an M -ary FSK symbol qk,i ∈ D, where
k denotes the symbol index, and i denotes the end node,
and D = {0, ...,M − 1} denotes the set of integer indices
corresponding to each FSK tone.

The modulated signal transmitted by each end node during
interval kTs ≤ t < (k + 1)Ts is

sk,i(t) =

√
2

Ts
cos

[
2π

(
f +

qk,i
Ts

)
(t− kTs)

]
(1)

where f is the end node carrier frequency and Ts is the
symbol period. A vector model is assumed where each vector
dimension models the output of a matched filter tuned to
a particular FSK frequency, and the frequency spacing is
chosen such that the tones are orthogonal. A transmitted
symbol is represented by the column vector xk,i, where k
is the symbol interval and i denotes the i-th end node. The
vector xk,i has length M , and contains a 1 at vector position
corresponding to the transmitted tone qk,i, and 0 elsewhere.
The frame of modulated symbols transmitted by end node Ni
is represented by the matrix of symbols Xi = [x1,i, ...,xNq,i],
having dimensionality M ×Nq.

B. Channel Model for Multiple Access Phase
In the MA phase, a frequency-flat fading model is assumed

where the channel gains are independent for every symbol
period. The gain from nodeNi to the relay during signaling in-
terval k is modeled as a circularly symmetric complex jointly
Gaussian random variable denoted by hk,i,R ∼ Nc(0, Ei),
where Ei is the variance. In polar form the gain is represented
as hk,i,R = αk,i,Re

jθk,i,R , where αk,i,R is the Rayleigh
distributed amplitude and θk,i,R is the phase, uniformly dis-
tributed between [0, 2π). The variances are chosen such that
the energy received at the relay from transmission by node Ni
is Ei

E[|hk,i,R|2] = E[α2
k,i,R] = Ei. (2)

The received signal at the relay after transmission of a single
symbol frame by each end node is

YR = X1H1,R + X2H2,R + NR (3)

where Hi,R is a square diagonal matrix of fading coefficients
with dimensions Nq × Nq modeling the fading between end
node Ni and the relay. The matrix takes value hk,i,R at row
and column (k, k) and 0 elsewhere. The matrix NR is an
M×Nq noise matrix. Denote the k-th column of NR by nk,R.
Each column is composed of zero-mean circularly symmetric
complex jointly Gaussian random variables having covariance
matrix N0IM ; i.e., nk,R ∼ Nc(0, N0IM ). N0 is the one-sided
noise spectral density, and IM is the M -by-M identity matrix.
A single signaling interval is represented by a single column
of YR and is denoted by yk,R. In terms of this definition,
YR = [y1,R, ...,yk,R, ...,yNq,R].

C. Analog Network Coding at the Relay
During the BC phase, the purpose of the relay is to

broadcast the frame of received symbols YR to the end nodes
after scaling to satisfy the power constraint. Consider a single
received symbol yk,R. The relay forms a symbol to transmit
by scaling yk,R as
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Fig. 1. System Model - Analog Network Coded Two-way Relay Channel.
The configuration of End Node 2 is identical to 1, and has been omitted from
the figure.

xk,R =βyk,R
=β(hk,1,Rxk,1 + hk,2,Rxk,2 + nk,R) (4)

where xk,R denotes the k-th symbol formed for transmission
by the relay, and β is a real-valued scaling factor which
constrains the average transmitted energy. The relay forms
a frame of symbols to broadcast to the end nodes as XR =
[βy1,R, ..., βyNq,R] = [x1,R, ...,xNq,R].

The value of the scaling factor β which normalizes the
transmitted energy depends on the statistics of the received
symbols. Under noncoherent operation, the exact values of
the fading coefficients hk,i are not known at the relay. It is
assumed that the relay can estimate the statistics of the fading
coefficients and additive noise. Specifically, the variances of
the fading coefficients Ei and additive noise N0 are assumed
known through estimation.

Consider reception of a single symbol yk,R at the relay.
The total energy of the received symbol is

Ek =

M−1∑
m=0

|ym|2 (5)

where m denotes the m-th dimension of yk,R. The average
energy received during a symbol period is computed as

ĒR =E

[
M−1∑
m=0

|ym|2
]

=N0M + E1 + E2 (6)

where it is assumed that the end nodes transmit all symbols
with equal probability. The average energy transmitted by the
relay is normalized to unity by setting the scaling factor as

β =
1√

N0M + E1 + E2
. (7)

Since the scaling factor depends only on the statistics of the
fading coefficients rather than the exact values, it is constant
for a particular realization of the statistics.

D. End Node Reception
The goal of reception at each end node is to detect the infor-

mation bits transmitted by the opposite end node. During the
BC phase, each end node receives the symbol frame broadcast
by the relay after the frame has traversed a fading channel.
Demodulation and optional channel decoding is performed
to detect the desired information bits. Each end node knows
the symbol frame it transmitted during the multiple access



phase,andthisinformationisusedtocomputetheconditional
probabilityofreceivingparticularsymbolsfromtheopposite
node.

TheframereceivedatendnodeNiduringthebroadcast
phaseis

Yi=XRHR,i +Ni (8)

whereHR,i denotesthediagonalmatrixoffadingcoefficients
forthechannelbetweentherelayandendnodeNi,having
dimensionsNq×Nq,andNiisanM×Nqnoisematrixhaving
thesamedistributionasNR. Thechannelgainsforming
thediagonalfor matrixHR,i aredenotedbyhk,R,i andare
distributedascircularlysymmetriccomplexjointlyGaussian
Nc(0,ER).The matrixHR,i takesvaluehk,R,i atrowand
column(k,k)and0elsewhere.

Thedemodulatortakesasinputthesymbolsreceivedfrom
therelayYR,thesymbolstransmittedbytheendnodeduring
themultipleaccessphaseXi,anda-prioriprobability(APP)
informationregardingthebitsunderdetectionva.Asoutput,
thedemodulatorproducesa-posterioriinformationregarding
thebitsunderdetectionz.Thea-posterioriinformationis
deinterleavedtoproducez=zΠ−1andpassedtothechannel
decoder.Thedecoderrefinestheestimateofz,producing
a-posterioriinformationvo.Thedecoderinputissubtracted
fromthedecoderoutputtoproduceextrinsicinformation
ve=vo−zwhichisinterleavedtoproduceve=veΠ and
returnedtothedemodulator.Thedecoderoutputbecomesthe
demodulatora-prioriinputva=ve.

Theendnodesareassumedtoknowtheaveragenoise
powerN0andfadingstatisticsintheformofvariancesE1,E2
andER.Thisinformationcanbeobtainedthroughavarietyof
techniquessuchaspilotsymbolsandcontrolchannelsbetween
therelayandendnodes.Knowledgeofthenoisepowerand
fadingstatisticsareassumedknownintheformulationofthe
endnodedemodulator.

FormulationofthedemodulatorisdescribedinSectionIII.
Detailsofthechanneldecoderhavebeendescribedatlength
intheliteratureandwillnotbediscussedinthiswork.

III. NONCOHERENTENDNODEDEMODULATOR

Thissectiondevelopstheendnodesoft-outputdemodulator.
Theprobabilitydistributionofthesymbolsreceivedattheend
nodesisdeveloped,followedbythemodelforiterativedemod-
ulationanddecodingattheendnode.Sincedemodulationis
performedonasinglesymbolatatime,forthepurposeof
formulatingthedemodulator,wemaydropthedependenceon
symbolperiodkthroughouttosimplifythenotation.

A.EndNodeReceivedSymbolDistribution

ConsiderasinglereceivedsymbolatendnodeNi

yi=hR,ixR +ni

=βhR,i(h1,Rx1+h2,Rx2+nR)+ni. (9)

ThetermxR isformedbythesumofthreevectors,each
havingcomponentswhicharecircularlysymmetriccomplex
jointly Gaussianrandomvariables,andallcomponentsare
independent. Sincethesumofcomplexjointly Gaussian
randomvariablesisalsocomplexandjointly Gaussian,the
componentsofxR aredistributedNc(0,σ2m)whereσ2

m isthe
varianceofthem-thvectorcomponentxm,R.Thevaluesof
thevariancesdependonthesymbolstransmittedbytheend
nodes

σ2
m =






N0 xm,1=0,xm,2=0
N0+E1 xm,1=1,xm,2=0
N0+E2 xm,1=0,xm,2=0
N0+E1+E2 xm,1=1,xm,2=1.

(10)

Nowconsiderthedistributionoftheproductofthefading
coefficienthR,i andthesymboltransmittedbytherelay

µ=hR,ixR

=[hR,ix0,R,...,hR,ixM −1,R]T.

=β[α0eiθ0,..., αM −1eiθM 1 ]T. (11)

Eachcomponentof µ istheproductoftwoindependent
circularlysymmetriccomplex Gaussianrandomvariables,
whichyieldsthecomplexdoubleGaussiandistributionhaving
PDF[13]

pµm (αm,θm)=
2αm

πERσ2
m

K0
2αm√
ERσm

(12)

whereK0(·)isthemodifiedBesselfunctionofthesecondkind
[14].

Wenowderivethedistributionofthereceivedsymbol
whichdoesnotdependonknowledgeofthefadingamplitudes
andphases.Denotetheamplitudesofthecomponentsofµas
α=[α0,..., αM −1]andthephasesasθ=[θ0,...,θM −1].
Thedistributionofthereceivedsymbolconditionedonαand
θbecomes

p(y|α,θ)=
1

πN0

M

exp−
||y−µ||2

N0

=
1

πN0

M M −1

m=0

exp−
|ym −βαmeiθm |2

N0
.

(13)

Notethatthejoint distribution oftheamplitudeand
phasegivenby(12)istheproductof marginaldistributions
pµm

(αm,θm)=p(αm)p(θm),where

p(αm)=
4αm

ERσ2
m

K0
2αm√
ERσm

(14)

andp(θm) = 1
2π,0≤ θm < 2π,thus,we may marginalize

overtheamplitudeandphaseseparately.
Marginalizingoverthephasesyields

p(y|α)=
2π

0

p(y|α,θ)p(θ)dθ

=
1

πN0

M M −1

m=0

2π

0

exp−
|ym −βαmeiθm |2

N0

1

2π
dθm

=
1

πN0

M

exp





−

M −1

m=0
|ym|2

N0





×...

M −1

m=0

exp−
β2α2

m

N0
I0

2βαm|ym|

N0
(15)

whereI0(·)isthemodifiedBesselfunctionofthefirstkind
[14].



Marginalizing over the amplitudes yields

p(y) =

∫ ∞
0

p(y|α)p(α)dα

=

(
1

πN0

)M
exp

−
M−1∑
m=0
|ym|2

N0

( 4

ER

)M
× ...

M−1∏
m=0

1

σ2
m

∫ ∞
0

exp

[
−β

2α2
m

N0

]
I0

(
2βαm|ym|

N0

)
× ...

αmK0

(
2αm√
ERσm

)
dαm (16)

For the purpose of performing the integration given by (16),
we may neglect the terms outside the integral for a moment,
yielding∫ ∞

0

αm exp

[
−β

2α2
m

N0

]
I0

(
2βαm|ym|

N0

)
× ...

K0

(
2αm√
ERσm

)
dαm. (17)

To perform the integration, we represent the modified Bessel
function of the first kind as a series [14]

I0(x) =

∞∑
n=0

x2n

4nn!2
(18)

After substituting (18) into (17), the integral becomes∫ ∞
0

αm exp

[
−β

2α2
m

N0

] ∞∑
n=0

(c1αm)2n

4nn!2
K0

(
2αm√
ERσm

)
dαm

(19)

where c1 = 2β|ym|/N0. Factoring out constants with respect
to the integration and rearranging, (19) becomes
∞∑
n=0

c2n1
4nn!2

∫ ∞
0

α2n+1
m exp

[
−β

2α2
m

N0

]
K0

(
2αm√
ERσm

)
dαm

(20)

Define c2 = β2/N0. We then make the change of variable
u = c2α

2
m and du = 2c2αmdαm. Then αm =

√
u/c2 and

dαm = du/(2c2αm). Substituting the change of variable into
(20)

1

2

∞∑
n=0

c2n1
4nn!2cn+1

2

∫ ∞
0

un exp(−u)K0

(
c4
√
u
)
du (21)

where c4 = 2/(ERσ2
m

√
c2). Applying integration formula

(6.643-3) in [15], (21) becomes

exp
(
c24/8

)
c4

∞∑
n=0

c2n1
4n

W−(n+1/2),0

(
c24
4

)
(22)

where Wa,b(x) is the Whittaker-W function [14] having
parameters a and b and argument x.

Substituting the result of integration (22) into (16) yields
the PDF of the received symbol having no dependence on the

channel state

p(y) = ...(
1

π
√
N0

√
ERβ

)M
exp

[
M−1∑
m=0

(
−|ym|

2

N0
+

N0

2ERσ2
mβ

2

)]
×

M−1∏
m=0

1

σm

∞∑
n=0

(
|ym|2

N0

)n
W−(n+1/2),0

(
N0

ERσ2
mβ

2

)
. (23)

This expression is suitable for performing noncoherent soft
output detection at the end nodes. The PDF contains an infinite
summation, which is truncated for implementation.

B. Iterative Demodulation and Decoding
The end node demodulator maps the symbols received

from the relay during the broadcast phase to log-likelihood
ratios of the bits transmitted by the opposite end node. In
the following section, without loss of generality, consider
reception at end node N1, where the goal is to recover the
information sequence u2 transmitted byN2. Iterative decoding
is performed whereby the channel decoder feeds information
back to the demodulator, which refines the bit estimates and
sends them back to the channel decoder. A hard decision is
made on the bits after the specified iteration count has been
reached.

The soft mapper (SOMAP) [16] operates on a symbol-by-
symbol basis, transforming symbol probabilities p(y|x1 =
a,x2) to the set of µ log-likelihood ratios associated with each
bit mapped to symbol x2. The term a is the symbol transmitted
by the receiving end node during the symbol period under
consideration, which is available, since the end node knows
the data that it transmitted. The SOMAP takes as input the
symbol probabilities and a-priori information fed back from
the channel decoder about the bits mapped to the symbols va.
The SOMAP produces a-posteriori log-likelihood ratios of the
bits mapped to the channel symbols z. On the first iteration,
no decoding has been performed, and the bit probabilities are
assumed equally likely, yielding va = 0.

The a-priori log-likelihood ratio of the m-th bit mapped to
input symbol x2 is

vk = log
P (uk = 1; I)

P (uk = 0; I)
, 0 ≤ k ≤ µ− 1. (24)

The a-posteriori SOMAP output is the log-likelihood ratio of
the k-th bit mapped to x2

zk = log
P (uk = 1;O)

P (uk = 0;O)
, 0 ≤ k ≤ µ− 1. (25)

The SOMAP input is transformed to output according to

P (uk = `;O) =
∑

x2:uk=`

p(y|x1 = a,x2)

µ−1∏
j=0
j 6=m

P (uj ; I) (26)

Substituting (24) into the expression for output (26),

P (uk = `;O) =
∑

x2:uk=`

p(y|x1 = a,x2)

µ−1∏
j=0
j 6=m

eujvj

1 + evj
(27)

The SOMAP out log-likelihood ratio may be found by
combining (27) and (25):



zk = log

∑
x2:uk=1

p(y|x1 = a,x2)

µ−1∏
j=0
j 6=m

eujvj

∑
x2:uk=0

p(y|x1 = a,x2)

µ−1∏
j=0
j 6=m

eujvj

(28)

where the term (1+evj ) cancels in the ratio. When implement-
ing (28), simplification using the max-star operator provides
numerical stability. The max-star operator is defined as

max∗
i
{xi} = log

{∑
i

exi

}
(29)

where the binary max-star operator is max ∗(x, y) =
max(x, y) + log(1 + e−|x−y|) and multiple arguments are re-
cursive. For example, in the case of three arguments, max-star
becomes max ∗(x, y, z) = max ∗(x,max ∗(y, z)). Applying
the max-star operator to (28)

zk = max∗
x2:uk=1

log p(y|x1 = a,x2) +

µ−1∑
j=0
j 6=k

ujvj



− max∗
x2:uk=0

log p(y|x1 = a,x2) +

µ−1∑
j=0
j 6=k

ujvj

 . (30)

A non-iterative demodulator does not use decoder feedback,
and is implemented using (30) setting all vj = 0.

The term log p(y|x1 = a,x2) in (30) is computed by taking
the logarithm of (23), yielding

log p(y|x1,x2) =

M−1∑
m=0

[
N0

2ERσ2
mβ

2
− log σm

]
+ ...

M−1∑
m=0

max∗
0≤n≤Nt

[
2n log |ym| − n logN0 + ...

logW−(n+1/2),0

(
N0

σ2
Rσ

2
mβ

2

)]
. (31)

where the infinite series has been truncated to a finite number
of terms Nt. Note that the following terms in (23)(

1

π
√
N0

√
ERβ

)M
exp

[
M−1∑
m=0

(
−|ym|

2

N0

)]
(32)

cancel in the ratio given by (30), and are not included in
(31). Demodulator performance as a function of the truncation
length Nt is investigated in Section IV.

IV. DEMODULATOR PERFORMANCE

This section presents Monte Carlo simulated error rate
performance for the demodulator derived in Section III. Error
rate performance is simulated using different values of modu-
lation order, demodulator summation terms, with and without
channel coding, with and without decoder feedback to the
demodulator (BICM vs BICM-ID) and signal-to-noise ratio.
Both end nodes and the relay transmit each each symbol with
unit energy, making the variance of the fading coefficients
E1 = E2 = ER = 1. The channel code considered is the
LDPC code defined by the DVB-S2 standard [17].
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Fig. 2. Bit error rate performance with no channel coding at the end node
in the two-way relay channel broadcast phase under Rayleigh fading. The
modulation orders considered are M = {2, 4}. The number of demodulator
infinite series terms considered are Nt = {5, 15, 25, 50}.

A. Error Rate Performance
The results of error rate simulation are presented in this

subsection. All uncoded simulations use frame size K = 2048
bits. Coded simulations use the DVB-S2 LDPC code with
codeword length L = 16200 and rate K/L = 1/2. All coded
simulations apply 100 decoding iterations. When no informa-
tion is fed back from the decoder to the demodulator (BICM),
all decoding iterations are performed by the decoder. When
information is fed back from the decoder to the demodulator
(BICM-ID), a single channel decoder iteration is performed
for every iteration between the decoder and the demodulator.
BICM-ID is performed for modulation orders M > 2, as there
it provides no benefit for M = 2. The FSK modulation orders
considered are M = {2, 4, 8}. Computation of the infinite
series in the expression for received symbol probabilities (31)
is truncated to finite values Nt = {5, 10, 15, 20, 50}. For all
simulations, enough trials are run to yield smooth error rate
curves.

Uncoded end node error rate performance as a function of
modulation order and number of demodulator infinite series
terms is shown in Fig. 2. For both modulation orders M = 2
and M = 4 and Nt < 50, a behavior is observed where
detection fails completely after a particular SNR threshold
is reached. At Nt = {5, 15, 25}, the error threshold occurs
at error rates ≈ 10−1, ≈ 10−3, and ≈ 10−4 respectively.
For Nt = 50, no threshold is observed for the error rates
considered. These results suggest that a minimum number of
terms must be computed to operate at a particular error rate.

Channel coded error rate performance as a function of
modulation order and number of infinite series terms is shown
in Fig. 3. In all cases, BICM with no decoder to demodulator
feedback was used. As in the uncoded case, performance
is affected by the number of infinite series terms computed
Nt, however, an error threshold is only observed for the
case Nt = 5. When channel coding is applied, the number
of infinite series terms affects the location of the decoding
waterfall region. For modulation order M = 4, the worst
performing waterfall at Nt = 10 is about 0.9 dB worse
than the best performing waterfall at Nt = 50. The same
difference is observed for modulation order M = 8. In the
coded case, generally, fewer infinite series terms are required
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Fig. 3. LDPC coded bit error rate performance at the end node in the two-
way relay channel broadcast phase under Rayleigh fading as a function of
demodulator infinite series terms. The LDPC code parameters are codeword
length L = 16200 and rate rS = 1/2. The modulation orders considered are
M = {4, 8} The number of demodulator infinite series terms considered are
Nt = {5, 15, 25, 50}. All simulations use BICM decoding.
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Fig. 4. LDPC coded bit error rate performance at the end node in the two-way
relay channel broadcast phase under Rayleigh fading as a function of decoder
feedback (BICM vs BICM-ID). The LDPC code parameters are codeword
length L = 16200 and rate rS = 1/2. The modulation orders considered are
M = {4, 8}. All codes are simulated using Nt = 50 infinite series terms at
the demodulator.

for successful decoding than in the uncoded case, suggesting
a tradeoff between demodulation and decoding complexity.

Channel coded error rate performance as a function of
modulation order and decoder feedback is shown in Fig. 4.
All codes are simulated using Nt = 50 infinite series terms
at the demodulator. The purpose of this experiment is to
investigate the performance benefit yielded by information
feedback from decoder to demodulator, and the absolute

performance difference between modulation orders M = 4
and M = 8. For modulation order M = 4, the BICM-
ID exhibits a performance gain of 0.9 dB over BICM. For
M = 8, BICM-ID exhibits a gain of 1 dB. BICM for M = 8
outperforms BICM for M = 4 by approximately 1.5 dB.

V. CONCLUSION

This work developed a noncoherent soft output FSK de-
modulator the end nodes in the analog network-coded two-
way relay channel under Rayleigh fading. The demodulator
supports power of two modulation orders and iteration with
the channel decoder. The demodulator formulation contains an
infinite series which must be truncated for practical receiver
implementation. It is demonstrated the bit error rate perfor-
mance is sensitive to the infinite series truncation length. An
exact characterization of the convergence of the demodulator
as well as a closed form expression are left as future work.
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