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Abstract—To improve the renewable energy utilization of
distributed microgrid systems, this paper presents an optimal
Distributed Model Predictive Control (DMPC) strategy to coordi-
nate energy management among microgrid systems. In particular,
through information exchange among systems, each microgrid
in the network, which includes renewable generation, storage
systems and some controllable loads, can maintain its own
system-wide supply and demand balance. With our mechanism,
the closed-loop stability of the distributed microgrid systems can
be guaranteed. In addition, we provide evaluation criteria of
renewable energy utilization to validate our proposed method.
Simulations show that the supply-demand balance in each micro-
grid is achieved while, at the same time, the system operation cost
is reduced, which demonstrates the effectiveness and efficiency
of our proposed policy.

Index Terms—Microgrids, Energy Management Strategy, Dis-
tributed Model Predictive Control, Renewable Energy Sources,
Coordinated Scheduling.

I. INTRODUCTION

THE proliferation of Distributed Energy Resources (DERs)
and the advent of controllable loads have brought about

the concept of microgrids [1], [2]. A microgrid is defined as
a cluster of distributed generation (DG), distributed storage
(DS) and loads, serviced by a distribution system, and can
be operated in either islanded or grid-connected mode [3].
DG within microgrids include photovoltaics (PVs) and wind
turbines (WTs). DS units are mainly batteries. Sound operation
of a microgrid requires an Energy Management Strategy
(EMS). The essential problem of EMS is energy balance by
coordinating power among the DER units in order to supply
the loads with required energy in real time.

The development and evolution of microgrids will result
in the plug-and-play integration of intelligent structures called
multi-microgrid systems, which will be linked with each other
through particular channels for power, information and control
signal exchange [4]. Energy management in microgrids is
needed not only to optimize of each microgrid, but also to
achieve global optimization by coordinating power flow among
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microgrids. Therefore, many researchers have focused their
interests on energy management for multi-microgrid systems.
In the literature, there are two approaches for the develop-

ment of microgrid energy management. The first one is the
centralized approach, which ensures economic operation and
maintains the balance between the power production and con-
sumption [5]–[13]. To that end, Model Predictive Control (M-
PC) is an effective control policy for multi-microgrids which
can handle the uncertainties between supply and demand as
well as the system constraints, such as generator capacity
and ramp rate. [8] introduces a look-ahead optimal control
algorithm for dispatching the available generation resources
with the objective of minimizing generation and environmental
costs. In [9], a novel mixed integer linear approach embedded
within an MPC framework is proposed to optimize microgrid
operations efficiently while satisfying time-varing request and
operation constraints. [10], [11] present an MPC-based EMS
for multiple microgrids to optimally manage and coordinate
energy supply and demand, which aims at minimizing the
overall costs of each microgrid. Especially, a power flow
management method for a network of cooperating microgrids
is proposed by formulating the problem in a centralized MPC
framework and the supply and demand is balanced with
maximization of Renewable Energy Source (RES) [12]. How-
ever, a centralized EMS requires advanced capabilities at the
MicroGrid Central Controller (MGCC) [14]. As the number of
devices in microgrids increase and microgrids are combined
to form smart grids, the centralized solutions might be less
efficient [15].
The second approach for microgrid energy management is

the distributed control architecture, which is efficient, scal-
able and privacy preserving, especially for multi-microgrids
with large size [16]–[19]. [16] proposes a distributed power
scheduling approach so that the aggregate demand equals
the supply, but ignores the power distribution network and
system operational constraints. A privacy-preserving energy
scheduling problem is formulated with privacy constraints in
[17]. In [18], a distributed peer-to-peer multi-agent framework
is proposed for managing the power sharing in microgrids
with inverter-interfaced distributed energy resources. A flexi-
ble and modular control scheme based on distributed model
predictive control is presented to allow virtual power plant
(VPP) operation in [20]. In [21], DMPC is herein extended to
calculate market-based on-line energy pricing while minimiz-
ing the generation cost and emissions. [22] presents a control
scheme based on distributed MPC for coordinating flexible
heterogeneous DER in the Smart Grid with minimum system
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integration effort.
Above all, many centralized approaches are applied in

keeping the supply-demand balance with maximization of
renewable energy efficiency through appropriate information
exchange. However, as the number of microgrids increases,
the calculation burden is heavy and the demand for com-
munication bandwidth is high. So, it is impractical to apply
centralized methods in microgrid systems of such a large
scale. Considering the practical requirements and distribution,
distributed MPC appears to be an appropriate framework
for the optimization problem. Nevertheless, existing DMPC
schemes mainly focus on minimizing the economic cost and
ignore the utilization of surplus RESs from other subsystems.
Few works have attempted to improve the RES utilization to
meet the supply-demand balance by using DMPC methods.

This paper not only presents a collective energy dispatch
solution embedded within an DMPC framework for coordi-
nating renewable energy among microgrids [23], [24], but
also verifies the performance of the proposed algorithm. To
summarize, the novel contributions of this paper are as fol-
lows: Taking the coordinated information exchange among
microgrids into account, we develop a DMPC algorithm for
microgrids to optimize utilization of renewable energy sources.
The proposed methodology can handle multiple constraints in
microgrids, reduce the operation cost of energy management,
as well as guarantee the overall optimal performance of the
system. Deep charging of the battery in the DSM is also explic-
itly defined. Furthermore, we not only derive the condition to
guarantee closed-loop stability of the overall system, but also
provide an evaluation function of renewable energy utilization.
Corresponding distributed model predictive controllers are also
presented.

The remainder of this paper is organized as follows. Section
II presents the system description and modelling. Section III
introduces the distributed MPC. In Section IV, the numerical
results are provided. Section V concludes the paper summa-
rizing the major findings.

II. SYSTEM DESCRIPTION AND MODELLING

In this section, the system topology followed by the DG, DS
and load is given, then the dynamics and behavior of microgrid
components are modeled, and finally the objective of the EMS
is proposed.

A. System Overview

A network of microgrids including m nodes is illustrated
in Fig. 1. It should be noted that this methodology can be
extended to a larger number of microgrids as well. It is
assumed that microgrids supply loads both in islanded and
in grid connected modes. Each microgrid contains batteries as
the DS units, controllable loads and DG units. For microgrid
i, the generated power at each time instant depends on renew-
able generation power (PV, WT, fuel cells, etc.) and surplus
power from neighbours. All microgrids are connected to the
distribution network, which interfaces with the main grid at
the point of common coupling.
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Fig. 1. A typical microgrid system.

B. System Dynamics and Constraints

1) DS Model: The storage system is a key ingredient for
all microgrids since it allows to smooth intermittent RES
power flow and provide peak power load shaving. As its basic
core benefit, it will make microgrids successful in matching
supply and demand over a 24 hour period. In this case of
microgrids, storage system acts as the backup while all the
power generated cannot meet the load demand. Hence, let
Ei(k) denote the energy stored in the ith battery at time k and
P b
i (k) the electric power exchanged with the storage. Then,

the dynamics of the storage capacities are modelled as follows:

Ei(k + 1) = Ei(k) + ηiP
b
i (k), (1)

E ≤ Ei(k) ≤ E, (2)

where
ηi =

{
ηch, P b

i (k) > 0,
1/ηdch, otherwise.

Typically ηi is the efficiency of the energy charg-
ing/discharging process, that is, ηch is the efficiency of the
charging process and ηdch is the efficiency of the discharging
process, with 0 < ηch, ηdch < 1. E and E are the minimum
and maximum allowed energy stored in the battery, respec-
tively.
A cost function to capture the damages to the battery is

considered, where deep discharging is the main concern. The
battery cost is modelled as

Cb(P
b
i ) ,

∞∑
k=1

(
min

(
Ei(k)− αbE, 0

))2

, (3)

where αb is a positive constant and represents a deep discharg-
ing penalty when the energy stored in the battery Ei(k) is less
than αb of the battery capacity E.
2) Load Model: We consider interruptible loads as one type

of controllable loads. For an interruptible load, the consumed
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energy is bounded by

PL
i ≤ PL

i (k) ≤ P
L

i , (4)

where PL
i and P

L

i are the minimum and maximum active
power, respectively.

For each load, a cost function measures the dissatisfaction
of the customer using the demand schedule PL

i (k). The cost
function of an interruptible load can be defined as

Cl(P
L
i ) ,

∞∑
k=1

αl

(
min

(
PLf
i (k)− PL

i (k), 0

))2

, (5)

where PLf
i is the satisfactory level and αl is a positive

constant. The daily load profile can be obtained in real time
using short-term electricity demand forecasting techniques
[12]. The above cost function is nonzero only when there is
load shedding, i.e., PL

i (k) > PLf
i (k).

3) DG Model: Renewable DGs are considered in micro-
grids. Controllable DGs such as fuel cells are dispatchable. It
is assumed that the output power PC

i (k) over the scheduling
horizon is given.

PV generators or wind turbines are not controllable and
their output power is dependent on the utilization of the
natural sources (i.e., sun irradiance or wind). Hence, their
future profiles over a certain finite horizon time interval can
be obtained in real time using several forecasting models [25],
where the precision of forecast is significant in the energy
management. The renewable DG can be modelled using the
method of exponential smoothing, which is designed to use the
forecast error in the previous period to correct and improve
the forecast of the current period. In equation form:

PRES
i (k + 1) = PRES

i (k) + αr(P
r
i (k)− PRES

i (k)), (6)

PRES
i ≤ PRES

i (k) ≤ P
RES

i , (7)

where PRES
i (k) is the predictive power produced by the ith

renewable source, αr is a smoothing constant (0 < αr < 1),
P r
i (k) is the actual active power during period k, and PRES

i

and P
RES

i are the minimum and maximum output power
produced by the renewable source, respectively.

4) Power Balance: It is assumed that all the microgrids
supply loads are in island modes. Based on the cooperative
microgrid systems, the supply and demand balance is achieved
not only in the local microgrid whose power is generated
from DGs and storage, but also in the neighbor systems which
have surplus renewable energy. Hence, the following equality
constraints hold, respectively for the electric components:

P b
i (k) = PS

i (k) + Pij(k) + PC
i (k), (8)

PS
i (k) = PRES

i (k)− PL
i (k), (9)

Pij(k) =
∑
j ̸=i

aijP
S
j (k), (10)

Pij(k) ≥ 0. (11)

Above, we denote the difference between renewable gener-
ation and local demand as PS

i (k). Note that the exchanged
power with the storage P b

i (k) at each time instant depends
on the energy mismatch PS

i (k), the controllable generation

PC
i (k) and the surplus power from other microgrids Pij(k),

with coordinated factor aij . Due to the priority use of renew-
able power in order to satisfy the local demand, Pij(k) is
greater than or equal to zero.

C. System Modelling

According to the above system dynamics in (1) and (6),
power balance constraints (8) − (10), we have the following
subsystem model:

xi(k + 1) =Mixi(k) +Qiui(k) +

m∑
j=1,j ̸=i

Aijxj(k)

+
m∑

j=1,j ̸=i

Bijuj(k) + Liwi(k), i = 1, . . . ,m,

(12)

where

xi(k) = [(1/ηi)Ei(k) PRES
i (k) PC

i (k)]T ,

ui(k) = [PL
i (k)],

wi(k) = [P r
i (k)],

Mi =

 1 1 1
0 1− αri 0
0 0 1

 , Qi =

 −10
0

 ,

Aij =

 0 aij 0
0 0 0
0 0 0

 , Bij =

 −aij0
0

 ,

Li =

 0
αri

0

 , i, j = 1, . . . ,m.

Here xi(k) are the states of subsystem i, ui(k) is the ith
subsystem input, and wi(k) are external inputs from other
subsystems that influence subsystem i at sample step k. The
matrices Mi, Qi, Li are the relevant state-space matrices.

III. DISTRIBUTED MODEL PREDICTIVE CONTROL

The optimal schedule will be affected by uncertainties
due to RESs, storage, and load forecasting. Thus, an DMPC
strategy with operation constraints is proposed to coordinate
the surplus energy among the microgrid systems, where local
controllers not only have to take into account local infor-
mation, but also exchange the state information among the
microgrid systems.
In this section, the implementation of a DMPC controller

is first outlined, and then in the following section the corre-
sponding control policy is discussed.

A. Prediction Model

By augmenting the states in each microgrid, we obtain the
prediction model for all the microgrids, which is equal to

x(k + 1|k) =Ax(k|k) +Bu(k|k), (13)

where,

x(k|k) = [x1(k|k) · · · xm(k|k)]T ,
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u(k|k) = [u1(k|k) · · · um(k|k)]T ,

and the system matrices A and B are as follows:

A =


M1 A12 · · · A1m

A21 M2 · · · A2m

... · · ·
. . .

...
Am1 Am2 · · · Mm

 ,

B =


Q1 B12 · · · B1m

B21 Q2 · · · B2m

... · · ·
. . .

...
Bm1 Bm2 · · · Qm

 .

Note that in the equation above that is used for prediction,
Liwi(k) is omitted since it describes the uncertainties from
RES which are neglected here. Based on the model in (13),
the predicted states, x(k + n|k) can be calculated by:

Anx(k|k) +An−1Bu(k|k) + · · ·+Bu(k + n− 1|k), (14)

where u(k+ n|k) ≡ u(k+Nu − 1|k) if Nu < n ≤ Np. Both
Np and Nu are integers, representing the prediction horizon
and control horizon, respectively. By defining the augmented
vectors as

X(k) = [x(k + 1|k) · · · x(k +Np|k)]T ,
U(k) = [u(k|k) · · · u(k +Nu − 1|k)]T ,

the predicted state sequency X(k) can be also expressed in
the form of augmented matrices as follows:

X(k) = Fxx(k|k) +GxU(k), (15)

where

Fx = [AT · · · (ANu)T · · · (ANp)T ]T ,

Gx =



B 0 · · · 0
...

...
...

...
ANu−1B ANu−2B · · · B

...
...

...
...

ANp−1B ANp−2B · · · ANp−NuB+
· · ·+B


.

Note that the future predicted states X(k) depend on the
information at the current time x(k|k), namely, an n-step
ahead prediction based on the measurements at time k, which
simplifies the calculation of the prediction model.

B. Control Policy
The control policy for each microgrid selects the control

variables based on information available at the current time.
Known information includes measured states of the DERs and
loads from the local and neighbor microgrids. This information
is then used to calculate and minimize the total cost. Through
this optimization process, the control policy determines the
power schedules of each controller onsite.

Due to the low cost of power generated from renewable
sources, each microgrid will supply the requested power by the

renewable sources generated. When at some point the amount
of produced renewable power within the microgrid i is less
than the demand, we first shed the loads if the demand is
above some maximum level. Otherwise, we find a neighbor,
say microgrid j, whose renewable generation is higher than
its demand; in this case, microgrid i will obtain the surplus
power from microgrid j. Moreover, if the total RESs supplied
from the local system and neighbors is still less than the power
demand of system loads, fuel cells and storage inside the local
microgrid are regarded as generators which supply power to
loads.
Four power sources are mainly considered in the microgrid:

PV, WT, fuel cells and battery. Because of the renewable
energy benefits (less gas emission and low operation lost),
PV and WT are considered as the prior source, and fuel cells
and battery are considered as backup sources.
According to daily predictions of the available power,

energy from the RESs, and energy of the loads, the electric
power P b

i (k) exchanged with the storage must be determined.
Algorithm 1 shows flow of the power coordination scheduling.
The task of the primary control is to prioritize the use of
renewable energy. The primary control is included inside each
local energy management of electric components.

Algorithm 1 Power Coordination Scheduling
1: Initialization Ei(0), PRES

i (0), PC
i (0), PL

i (0), PS
i (0),

∀i = 1, . . . ,m
2: for k = 1 do
3: Measure PRES

i (k), PL
i (k) and compute PS

i (k).
4: if PRES

i (k) > PL
i (k) then

5: P b
i (k) = PS

i (k).
6: else if PL

i (k) > PLf
i (k) then

7: Shed the loads.
8: else if

∣∣PS
i (k)

∣∣ < Pij(k) then
9: P b

i (k) = PS
i (k) + Pij(k).

10: else if
∣∣PS

i (k)
∣∣ < Pij(k) + PC

i (k) then
11: P b

i (k) = PS
i (k) + Pij(k) + PC

i (k).
12: else
13: Discharge local battery.
14: end if
15: k ← k + 1 and go to step 3.
16: end for

Case 1: If the amount of produced renewable power within
the microgrid i is higher than the demand, priority is given
to local renewable energy and at such time fuel cells and the
battery are backup. The electric power exchanged with the
storage satisfies

P b
i (k) = PS

i (k) > 0. (16)

Case 2: When the amount of produced renewable power
within the microgrid i is less than the demand, first we will
shed the loads if the demand is greater than a corresponding
maximum level. If or not, priority is given to the neighbor
microgrids, whose renewable generation is higher than their
own demand and the surplus RES PS

j (k) can provide enough
power to microgrid i. The power exchanged with the storage:
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P b
i (k) = PS

i (k) + Pij(k). (17)

Case 3: If the surplus power from neighbor microgrids is not
enough to meet the local demand, it uses its fuel cells to satisfy
the demand, and the power exchanged with the storage satisfies

P b
i (k) = PS

i (k) + Pij(k) + PC
i (k). (18)

Case 4: Otherwise, the local system will use the electricity
discharged from the battery.

C. Optimization
The purpose of the research is to design an on-line method

for active-power dispatching to maintain the renewable gen-
eration power as close as possible to load demand for all the
microgrids. Hence the objective of the EMS is to: 1) improve
the availability of renewable energy sources; 2) minimize the
dissatisfactions of the customers in the DSM; 3) minimize
deep discharging of the battery. Then the optimization problem
for each subsystem can be written as:

min ξr

∞∑
n=1

(PL
i (k + n|k)− PRES

i (k + n|k))2

+ ξbCb(P
b
i (k + n|k)) + ξLCL(P

L
i (k + n|k))

s.t. (2), (4), (7), (11), (13).
(19)

where ξr, ξb and ξL are the parameters to trade off among the
electric components.

A complete description of the proposed distributed EMS
can be found in Algorithm 2, where the private information
of the DERs and the loads is stored at the local controller.
The MGCC solves the problem using the system information,
such as the topology, the measured state information, etc.
The information exchanged between the MGCC and the LCs
include only the control signals and the schedules.

Note that by Algorithm 2, two objectives are derived: Firstly,
the renewable power generation and the state of the storage can
be predicted; secondly, difference between the demand and the
renewable generation of each microgrid can be compensated
through proper coordination.

D. Stability of Multi-Microgrid Systems
Definition 1. The system in (13) is stable if for all finite x(k),
there exists a positive definite Lyapunov quadratic form V (k)
such that

∆V (k) : = V (k + 1)− V (k) < 0. (20)

Theorem 1. The augmented system in (13) is stable if there
exists a state feedback control law

u(k + n|k) =− (BTPB + S1)
−1((BTPA− S2)x(k + n|k)

− ST
5 )

(21)

and the following optimization problem subject to the LMI
constraints is solvable:

min
γ,Q

γ (22)

Algorithm 2 Proposed Distributed MPC
1: Initialization Ei(0), PRES

i (0), PC
i (0), PS

i (0), ∀i =
1, . . . ,m

2: for k = 1 do
3: Measure PRES

i (k) for the previous iteration. Set
xi(k|k) = xi(k).

4: Make a measurement of the state Ei(k) to make energy
charging or discharging decisions.

5: Solve the corresponding optimization problem (19).
6: Send P̂S

i (k) to neighboring agents j, collect P̂S
j (k)

from them, and go to step 5.
7: until convergence
8: Implement the optimal control action u∗

i (k).
9: k ← k + 1 and go to step 3.
10: end for

subject to: [
−γ xT (k)
∗ −Q

]
< 0, (23)


−Q ∆12 ∆13 ∆14

∗ −S5S
−1
1 ST

5 + S6 (BS−1
1 ST

5 )
T 0

∗ ∗ −Q−BS−1
1 BT 0

∗ ∗ ∗ −I

 < 0,

(24)[
−S3 ST

2

S2 −S1

]
< 0, (25)

where the symbol ∗ depicts a symmetric structure, I is an
appropriately dimensioned identity matrix, Q ≻ 0, S1 ≻
0, S2, S3 ≻ 0, S4, S5 are the matrix variables with appropriate
dimensions, S6 is positive scalar variable, γ > 0 and:

∆12 = −QST
2 S

−1
1 ST

5 −QST
4 ,

∆13 = Q(A+BS−1
1 S2)

T ,

∆14 = Q(S3 − ST
2 S

−1
1 S2)

1/2,

Q = P−1, e = αbE, fi(k) = PLf
i (k),

lr = [0 1 0], lb = [ηi 0 0],

S1 =

 ξr + ξL
. . .

ξr + ξL

 ,

S2 =

 ξrlr
. . .

ξrlr

 ,

S3 =

 lTr ξrlr + lTb ξblb
. . .

lTr ξrlr + lTb ξblb

 ,

S4 =
[
eξblb · · · eξblb

]
,

S5 =
[
f1(k)ξL · · · fm(k)ξL

]
,

S6 = me2ξb +
m∑
i=1

(f2
i (k)ξL).
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Proof. The optimization problem can be divided into four
cases. We choose the worst case among of them, i.e., there
exists deep discharging in the battery and load shedding.
Rewriting the objective function in (19) into the augmented
matrix based on the distributed discrete-time system model
(13), we have

J(k) =

∞∑
n=0

m∑
i=1

(∥ ui(k + n|k)− lrxi(k + n|k) ∥2ξr

+ ∥ lbxi(k + n|k)− e ∥2ξb + ∥ ui(k + n|k)− fi(k) ∥2ξL)

=

∞∑
n=0

(

m∑
i=1

(uT
i (k + n|k)(ξr + ξL)ui(k + n|k)

− 2uT
i (k + n|k)ξrlrxi(k + n|k) + e2ξb + fi(k)

2ξL

+ xT
i (k + n|k)(lTr ξrlr + lTb ξblb)xi(k + n|k)

− 2eξblbxi(k + n|k)− 2fi(k)ξLui(k + n|k)))

=
∞∑

n=0

[uT (k + n|k)S1u(k + n|k)

− 2uT (k + n|k)S2x(k + n|k)
+ xT (k + n|k)S3x(k + n|k)
− 2S4x(k + n|k)− 2S5u(k + n|k) + S6] ≥ 0. (26)

Let a positive definite quadratic function V (k) =
xT (k)Px(k). Then we have the following equation:

V (k + n+ 1|k)− V (k + n|k) + J(k + n|k)
=uT (k + n|k)(BTPB + S1)u(k + n|k)

+ 2uT (k + n|k)(BTPA− S2)x(k + n|k)
− 2S5u(k + n|k) + xT (k + n|k)(ATPA

− P + S3)x(k + n|k)− 2S4x(k + n|k) + S6

=(u(k + n|k) + (BTPB + S1)
−1((BTPA− S2)x(k + n|k)

− ST
5 ))

T (BTPB + S1)(u(k + n|k)
+ (BTPB + S1)

−1((BTPA− S2)x(k + n|k)− ST
5 ))

+

[
x(k + n|k)

I

]T
Ξ

[
x(k + n|k)

I

]
,

(27)

where

Ξ =

[
Ω11 Ω12

∗ Ω22

]
,

Ω11 = S3 − P − ST
2 S

−1
1 S2

+ (A+BS−1
1 S2)

T (P−1 +BS−1
1 BT )−1(A+BS−1

1

S2),

Ω12 = −ST
2 S

−1
1 ST

5 − ST
4

+ (A+BS−1
1 S2)

T (P−1 +BS−1
1 BT )−1BS−1

1 ST
5 ,

Ω22 = S6 − S5S
−1
1 ST

5 + S5S
−1
1 BT (P−1 +BS−1

1 BT )−1

BS−1
1 ST

5 .

If the matrix inequality (24) holds, pre-multiplying and post-
multiplying (24) by diag(P, I, I, I), we obtain:


−P −ST

2 S
−1
1 ST

5 − ST
4

∗ −S5S
−1
1 ST

5 + S6

∗ ∗
∗ ∗
(A+BS−1

1 S2)
T (S3 − ST

2 S
−1
1 S2)

1/2

(BS−1
1 ST

5 )
T 0

−P−1 −BS−1
1 BT 0

∗ −I

 < 0. (28)

By Schur complements and combining (25) with (28), it is
easy to derive the following inequality:

Ξ < 0. (29)

If the controller is taken as

u(k + n|k) =− (BTPB + S1)
−1((BTPA− S2)x(k + n|k)

− ST
5 ),

then we have

V (k + n+ 1|k)− V (k + n|k) + J(k + n|k)

=

[
x(k + n|k)

I

]T
Ξ

[
x(k + n|k)

I

]
< 0,

which implies

V (k + n+ 1|k)− V (k + n|k) < −J(k + n|k) ≤ 0 (30)

since J(k + n|k) ≥ 0. The system stability is guaranteed.
By Schur Complements, we can rewrite the LMI constraint in
(23) as V (k) < γ. Summarizing (30) from n = 0 to n =∞,
we have

V (∞|k)− V (k|k) < −J(k),

which yields

J(k) < V (k) < γ. (31)

If the inequality constraint (31) holds for a given γ, the
optimization problem (22) is solvable. Thus, the proof is
completed.

IV. VALIDATION RESULTS AND DISCUSSION

A. Simulation Setup

We use the Matlab optimization toolbox to verify the effec-
tiveness of our proposed control algorithm. The simulation
was run using the continuous solver ode23tb. The system
composed of three microgrids with PV, WT, fuel cells, battery
and local loads is illustrated in Fig. 2, which implies that there
is collaboration within the network. For these simulations,
we used an MPC time horizon of N = 24, a length of the
optimization window Np = 4, and control horizon Nu = 1.
This corresponds to one hour intervals over a 24 hour period
and is a typical horizon and time step for schedule updates. It
should be noted that all the values reported in this section are
converted to power unit (p.u.).
The capacity of the battery E is 5 p.u., E is chosen to be

60 p.u., and ηch = 0.7, ηdch = 0.65. The initial value of the
battery is set to Ei(0) = 40 p.u., ∀i = 1, 2, 3. The capacity of
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Fig. 2. An example illustrating the cooperation between microgrids in a
network.
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Fig. 3. Demand profile and daily power generated by the renewable energy
sources.

the fuel cell is 10 p.u.. Let the positive constant of interruptible
loads be αl = 10, the depth of the discharge αb = 0.2 and the
smoothing constant is αr = 0.3.

B. Results

We compute the DMPC using the setup described above.
The parameters in the algorithm are chosen as ξr = 0.5, ξb =
0.5, ξl = 1. The difference between the demand and the re-
newable generation is used to generate the reference trajectory
for each microgrid shown in Fig. 3, where solid lines represent
demand and dashed lines represent RESs. It is easy to see that:
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Fig. 4. Predicted and actual renewable sources.

the produced renewable power within microgrid ♯1 is less than
the demand from 7 am to 7 pm, while the renewable energy
nearly equals the demand in microgrid ♯2, while renewable
generation in microgrid ♯3 is higher than the demand.
In order to compensate for the difference between the

demand and RESs, the microgrid systems need to coordinate
by exchanging energy. We evaluate the predictive values of
system states from each microgrid by taking advantage of our
proposed DMPC algorithm. Fig. 4 shows a comparison of the
daily forecasted and actual power generation for the renewable
source of each microgird. The forecasted curves are shown
by red dashed lines while the actual profiles are shown in
blue solid lines. It can be seen that the predicted renewable
generation at each time step can track the actual value very
well. In addition, the optimization of battery is shown in Fig.
5. When renewable sources from local and other microgrids
are able to meet users’ demand, the battery is considered as a
backup device; otherwise the battery is discharging. According
to the simulation result, it is clear that deep dischaging is
penalized when the energy stored in the battery is less than
12 p.u. (20% of the total capacity of the battery).
Fig. 6 illustrated how the loads are shedded, where the load

is reduced in microgrid ♯1 from 11 am to 3 pm and from 6
pm to midnight, microgrid ♯2 from 9 am to 3 pm and from 6
pm to 10 pm, and microgrid ♯3 from 4 pm to 10 pm. As can
be expected, the loads are shedded in response to PL

i (k) >
PLf
i (k), which is mainly used to balance the local supply.
Then the coordinated energy distribution based on the

proposed control policy is shown in Fig. 7, where PV, WT,
external grid exchanges Pij , fuel cells and battery are shown
with blue, blue-green, black, green and yellow respectively. It
can be seen that when renewable supply is enough to meet the
demand (red curve), e.g., in microgrid ♯2 from 9 am to 2 pm,
the renewable sources are the only ones being utilized. If the
produced renewable power is unable to meet users’ demand,
e.g., in microgrid ♯1 from 8 am to 4 pm, it receives surplus
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Fig. 5. Profiles of state of storage device.
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Fig. 6. Demand reduction of the loads.

power from others. Note that the surplus power from neighbor
microgrids is not enough to meet the local demand at 7 pm, at
that time it will use local fuel cells first and then the battery.

In order to assess the level of RESs effficiency utilization,
we define REUR (Renewable Energy Utilization Ratio) as

REUR =

m∑
i=1

PREU
i (k)

m∑
i=1

PL
i (k)

, (32)

where PREU
i (k) denotes total consumption of RESs at time

instant k. In Fig. 8, we compare the RESs utilization under our
coordination strategy with noncooperative plannning. It can
be seen that our coordinated policy significantly improve the
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Fig. 7. Profiles of energy dispatch coordinated scheduling.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0%

20%

40%

60%

80%

100%

Time(hour)

R
E

S
 U

ti
liz

a
it
o

n

Our policy

Noncooperation

Fig. 8. Comparison of RES utilization.

utilization of renewable energy in all microgrids, especially
during that time when there are sufficient solar and wind
sources.
Stability analysis results are shown in Fig. 9-10. The value

of the γ upper bound based on Theorem 1 is 9.3. The reduced
operation cost is 2.7. Fig. 9 gives the state responses of RESs
in each subsystem. We can see that the trends of the state
responses are in line with that shown in Fig. 4. It is clear
that the performance of the system has been changed with the
variance of RESs. Finally, the states of all three subsystems
converged together to their equilibrium points. In addition,
optimal control inputs of the three subsystems are also shown
in Fig. 10.

V. CONCLUSION

In this paper, a distributed model predictive control strategy
is proposed to optimize energy management in microgrids,
where the surplus renewable energy exchange has been taken
into account among a cooperative network of heterogeneous
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microgrids. According to the dynamics and behaviour of mi-
crogrid components, a discrete time formulation is presented.
Moreover, a multi-objective function is introduced to improve
the availability of renewable energy sources. It is shown
that the proposed distributed MPC strategy guarantees closed-
loop stability of the overall system. The simulation results
demonstrate the effectiveness of our proposed method.
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mpc-based energy management system for multiple residential micro-
grids,” in Proc. IEEE Int. Conf. Automation Science and Engineering
(CASE), 2015, pp. 7–14.

[12] A. Hooshmand, H. A. Malki, and J. Mohammadpour, “Power flow
management of microgrid networks using model predictive control,”
Computers & Mathematics with Applications, vol. 64, no. 5, pp. 869–
876, 2012.

[13] G. Gambino, F. Verrilli, D. Meola, M. Himanka, G. Palmieri, C. Del Vec-
chio, and L. Glielmo, “Model predictive control for optimization of com-
bined heat and electric power microgrid,” IFAC Proceedings Volumes,
vol. 47, no. 3, pp. 2201–2206, 2014.

[14] W. Shi, X. Xie, C.-C. Chu, and R. Gadh, “Distributed optimal energy
management in microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp.
1137–1146, 2015.

[15] N. Rahbari-Asr, Y. Zhang, and M.-Y. Chow, “Cooperative distributed
scheduling for storage devices in microgrids using dynamic kkt multi-
pliers and consensus networks,” in Proc. IEEE PES Gen. Meet., 2015,
pp. 1–5.

[16] Y. Zhang, N. Gatsis, and G. B. Giannakis, “Robust energy management
for microgrids with high-penetration renewables,” IEEE Trans. Sustain.
Energy, vol. 4, no. 4, pp. 944–953, 2013.

[17] Z. Wang, K. Yang, and X. Wang, “Privacy-preserving energy scheduling
in microgrid systems,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1810–
1820, 2013.

[18] M. Rahman and A. Oo, “Distributed multi-agent based coordinated
power management and control strategy for microgrids with distributed
energy resources,” Energy Conversion and Management, vol. 139, pp.
20–32, 2017.

[19] A. Parisio, C. Wiezorek, T. Kyntäjä, J. Elo, K. Strunz, and K. H.
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