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Abstract—Under Markovian assumptions, we leverage a Cen-
tral Limit Theorem (CLT) for the empirical measure in the
test statistic of the composite hypothesis Hoeffding test so as
to establish weak convergence results for the test statistic,
and, thereby, derive a new estimator for the threshold needed
by the test. We first show the advantages of our estimator
over an existing estimator by conducting extensive numerical
experiments. We find that our estimator controls better for false
alarms while maintaining satisfactory detection probabilities.
We then apply the Hoeffding test with our threshold estimator
to detect anomalies in two distinct applications domains: one
in communication networks and the other in transportation
networks. The former application seeks to enhance cyber security
and the latter aims at building smarter transportation systems
in cities.

Index Terms—Hoeffding test, weak convergence, false alarm
rate, Markov chains, network anomaly detection, cyber security,
non-typical traffic jams, smart cities.

I. INTRODUCTION

For a given system, Statistical Anomaly Detection (SAD)
involves learning from data the normal behavior of the sys-
tem and identifying/reporting time instances corresponding
to atypical system behavior. SAD has vast applications. For
instance, motivated by the importance of enhancing cyber se-
curity, recent literature has seen applications in communication
networks; see, e.g., [1], [2], [3], [4]. The behavior of the
system is typically represented as a time series of real vectors
and, in its most general version, anomaly detection is done
through some Composite Hypothesis Test (CHT).

Specifically, a CHT aims to test the hypothesis that a given
sequence of observations is drawn from a known Probability
Law (PL) (i.e., probability distribution) defined on a finite
alphabet [5]. Among numerous such tests, the one proposed
by Hoeffding [6] has been well known for decades. When
implementing the Hoeffding test in the context of SAD, one
must appropriately set a threshold 7 so as to ensure a low false
alarm rate while maintaining a reasonably high detection rate.
In the existing literature, this threshold is typically estimated
by using Sanov’s theorem [7] — a large deviations result. Note
that such an estimator (let us denote it by n*) is valid only
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in the asymptotic sense. In practice, however, only a finite
number of observations are available, and it can be observed
in simulations that 7*" is not accurate enough, especially for
relatively small sample sizes.

Our contributions in this paper include:

1) Under Markovian assumptions, we leverage a Central
Limit Theorem (CLT) for a selected empirical measure
related to the test statistic of the Hoeffding test, so as to
establish weak convergence results for the test statistic,
and derive a threshold estimator n™° therefrom, thus,
extending the work of [S] which tackles the problem
under independent and identically distributed (i.i.d.)
assumptions.

2) We propose algorithms to calculate the threshold esti-
mator n“° obtained above for the ordinary and a robust
version of the Hoeffding test, respectively. We assess the
advantages of our estimator over earlier work through
numerical experiments.

3) We apply the Hoeffding test with our threshold estimator
to two types of systems for the purpose of anomaly
detection: (¢) a communication network with flow data
simulated by the software package SADIT [8]; and (i%) a
real transportation network with traffic jam data reported
by Waze, a smartphone GPS navigation application.
To the best of our knowledge, the latter is a novel
application of anomaly detection.

A preliminary conference version of this work appeared in
[9]. The present paper includes detailed technical arguments,
derives results for the robust version of the Hoeffding test,
expands the numerical comparisons with earlier work, and
develops the traffic jam anomaly detection application.

The rest of this paper is organized as follows. In Section II
we review related work. We formulate the threshold estimation
problem in Section III and derive theoretical results in Sec-
tion IV. Section V contains experimental results. Concluding
remarks are in Section VI and a number of proofs appear in
the Appendix.

Notational conventions: All vectors are column vectors.
For economy of space, we write X = (Z1,...,Zdgim(x)) tO
denote the column vector x, where dim(x) is its dimension.
We use prime to denote the transpose of a matrix or vector.
Denote by N the set of all nonnegative integers. ||x|| denotes
the ¢5-norm of a vector x, |z] the integer part of a positive
number z, |A| the cardinality of a set A, log the natural
logarithm, P(A) the probability of an event A, E[X] the
expectation of a random variable X, and Cov(X;, Xs) the
covariance between two random variables X; and X5. We use
N(0,X) to denote a Gaussian distribution with zero mean
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and covariance matrix Y. X; ~ X, indicates that the two
random variables X; and X» have approximately the same

o . . d
distribution. 1{-} denotes the indicator function and ——

n—oo
(resp., 7,y denotes convergence in distribution (resp., with
n—oo
probability one) as n approaches infinity.

II. RELATED WORK

Modeling network traffic as stationary in time, [1] applies
two methods: one assumes the traffic to be an i.i.d. sequence
and the other assumes observations of system activity follow
a finite-state Markov chain. Both methods are extended in
[4] to the case where system activity is time-varying. When
implementing the Hoeffding test, however, both [1] and [4]
use the large deviations estimator n*" to calculate the detection
threshold in a finite sample-size setting, thus not being able
to control the false alarm rate well enough.

To derive a more accurate threshold estimator, [5], [10] use
a procedure commonly used by statisticians: deriving results
based on Weak Convergence (WC) of the test statistic in order
to approximate the error probabilities of the Hoeffding test.
Under i.i.d. assumptions, [5] (see also [10], [11]) proposes an
alternative estimator for n (let us denote it by n%¢), which
is typically more accurate than n*', especially when not that
many samples are available.

There has also been work on obtaining a tighter approx-
imation of 7 by refining Sanov’s theorem [12]. However,
such refinements of large deviation results are typically faced
with computational difficulty; for instance, as noted in [10],
using the results of [12] requires the computation of a surface
integral.

Several alternative anomaly detection approaches have been
proposed, using for instance change detection methods [13].
We refer the reader for a comprehensive review of alternative
methods to [13] and [1].

III. PROBLEM FORMULATION

To model the statistical properties of a general system, we
introduce a few more notational conventions and some defini-
tions. Let = = {&; ¢ =1,..., N} be a finite alphabet con-
taining N symbols &1,...,6n, and Y ={Y;; 1 =0,1,2,...}
a time series of observations. Define the null hypothesis 'H as:
Y is drawn according to a Markov chain with state set = and
transition matrix Q = [qij]gjzl. To further characterize the
stochastic properties of Y, we define the empirical Probability
Law (PL) by

1 n
T, (0:5) = nl;ﬂ{zl =0}, (1)
where Z; = (}/l—la }/l), l=1,...,n, 9” = (fi, fj) € B X
=,14,j5 =1,...,N. Denote the transformed alphabet ® =
{0i; 4,5 =1,...,N} = {éh k = 1,...,N?} and note
O =ExEwith 8y =011,...,0n :GlN,...,G(N,l)NH =
On1,...,0N52 = Onn. Let also the set of PLs on © be P(O).

The transformed observations Z = {Z;; | =1,2,...} form
a Markov chain evolving on ®; denote its transition matrix

by P = [p;] f\f;-:l and the stationary distribution by
m=(myj; i, j=1,...,N)=(7r; k=1,...,N%), (2

where m;; denotes the probability of seeing 0;;, and 71 =
7T11,...,7~TN = TIN,y--- s TN1y--- T
wnN. We have [7]

P03 |0r1) = 1{i = l}qs5,

which enables us to obtain P directly from Q; see Remark 2
for an example. We can now restate the null hypothesis H as:
the Markov chain Z = {Z;; 1 =1,2,...} is drawn from PL
.

To quantify the distance between the empirical PL T,
and the actual PL 7, one considers the relative entropy (or
divergence) between I',, and 7r:

yT(N-1)N+1 = y N2 =

k7lai7j:17"'7N7 (3)

N N N
L (0i)/ (21— Tn(0it)
D(T,||w) = > T(6i)log 2 = )’
i=1 j=1 7Tij/( >oim1 7Tit)
“)
and the empirical measure:
U, = Vn(T, — ), ®)
where 7 is defined in (2) and T',, is the vector

r, = (Fn(eu), .. .,Fn(elN), - 7Fn(9N1), .. .,Fn(QNN)).

Let now H,, be the output of a test that decides to accept
or to reject the null hypothesis  based on the first n
observations in the sequence Z. Under Markovian assumptions
(Assumption 1 in Section IV), the Hoeffding test [7] is given
by

H,, rejects H if and only if D(T,||7) > n, (6)

where D(T,||7) (cf. (4)) is the test statistic and 7 is a
threshold.

It is known that the Hoeffding test (6) satisfies asymptotic
Newman-Pearson optimality [1], [4], in the sense that it
maximizes the exponential decay rate of the misdetection
probability over all tests with a false positive probability with
exponential decay rate larger than 7. Thus, an appropriate
threshold 7 should enable the test to have a small false positive
rate while maintaining a satisfactorily high detection rate.

The theoretical false positive rate [5] of the test (6) is given
by

B =Pr(D(T, | 7) > ), ™)

where the subscript 7 indicates that the probability is taken
under the null hypothesis.

Given a tolerable (target) (3, by conducting an ROC (Re-
ceiver Operating Characteristic) analysis for the Hoeffding test
using labeled training data, we could “tune” 7 such that the
corresponding discrete test' [14] has a small false alarm rate
and a high detection rate. In particular, we could select an
n corresponding to a point close to the northwest corner of
the ROC graph. However, such tuning is too expensive and
depends heavily on the quality and quantity of the training
data. We can also, in principle, obtain the corresponding 7

A discrete test corresponds to a fixed value for 7 in (6).
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in (7) by directly simulating the samples of the test statistic
D(T,|| =), thus deriving an empirical Cumulative Distribution
Function (CDF) and using its (1 — f3)-quantile. However,
we will note in Remark 5 that this is also computationally
too expensive when applied through a so-called “windowing”
technique for purposes of anomaly detection. Thus, we seek to
estimate 7 without directly simulating the statistic. To that end,
existing work uses Sanov’s theorem [7] to derive an estimator
for 7. Specifically, for large enough n, by replacing the right
hand side in (7) with an exponential we can obtain a minimal
7 that suffices to bring the false positive rate below 5 [1], [4].
Such an 7 is given by

Mg ~ —(1/n)log(B), 8)

where we use the n, 3 subscript to denote the dependence of
this estimator on 3 and n and the label sv indicates that it is
obtained from Sanov’s theorem. We note that the estimator (8)
does not contain any direct distributional information of the
statistic D(T,, || 7r); this might be one of the causes leading to
inaccurate estimation of 7,, g, especially when the sample size
n is relatively small in practice. To see this more clearly, one
can consider an extreme scenario where N = 4, 3 = 1071000,
and n = 50 (this is a reasonably small value; comparable
to N2 = 16). Then by (8), Ny g Would be way larger than
necessary, tending to yield a test with zero false alarm rate
but also zero detection rate for a typical test set. The issue
arises because we use an asymptotic large deviations result for
a relatively modest value of n. Our primary goal in this paper
is to derive an alternative threshold estimator, which would
hopefully be more accurate than 7; 5 for modest values of n,
in terms of a certain metric that we will introduce in Section V.

IV. THEORETICAL RESULTS

We introduce the following assumption.

Assumption 1 Z = {Z;; 1 =1,2,...} is an aperiodic, irre-
ducible, and positive recurrent Markov chain ([15]) evolving
on © with transition matrix P, stationary distribution 7, and
with the same T as its initial distribution.

Remark 1 Since O is a finite set, Z is uniformly ergodic [15]
under Assumption 1. Assuming 7r as the initial distribution
is done for notational simplicity; our results apply for any
feasible initial distribution. Note also that, under Assumption
1, 7= must have full support over ®; i.e., each entry in 7 is
strictly positive.

Lemma 1 Suppose Assumption 1 holds. Then
Tij _

N T N
thl Tt thl T4

Proof: See Appendix A. [ |

'/Tij

Remark 2 Under Assumption 1, Remark 1 and Lemma 1
imply that all entries of Q are strictly positive, indicating that
any two states of the original chain Y are connected. This is a
stringent condition; yet, in practice, if some m;; in (9) is zero,
we can replace it with a small ¢ > 0, and then normalize

the modified vector 7, thus ensuring that Assumption 1 is
satisfied.

Another reason why we set the zero entries in 7w to € > 0
is for convenience of computing the original transition matrix
Q, hence P, via (9) and (3). If we simply eliminate the
corresponding states in Z, then it is possible that the number of
the remaining states is not the square of some integer /V; this
would prevent us from easily recovering P from 7. Consider
the following example: Assuming

01 02 07
Q=| 0 02 08 |,
0.6 0.15 0.25
then by (3) we have
(01 02 07 0 0 0 O 0 0
0O 0 0 0 02 08 0 0 0
0O 0 0 0O O 0 06 015 025
01 02 07 0 0 0O O O 0
P=| 0 0O 0 00208 0 0 0 |,
0O 0 0 0O 0O 0 06 015 025
01 02 07 0 0 0O O O 0
0O 0 0 0 02 08 0 0 0
| 0 0 0 0 0 0 06 015 025 |

and, by direct calculation, we obtain 7 = (0.03,0.07,0.23, 0,
0.05,0.14,0.3,0.07,0.11). Note that only 8 entries in 7 are
non-zero and 8 is not the square of some integer N. Thus, if
we eliminate the state corresponding to the zero entry in 7, it
will be hard to recover Q, hence P.

A. Weak Convergence of Empirical Measure

Let us first establish CLT results for one-dimensional em-
pirical measures

Uni = V(o) —71), k=1,...,N%2  (10)

For k € {1,...,N?} define
f(2) =1HZ =61} (11)
Lemma 2 Suppose Assumption [ holds. Then a Cen-
tral Limit Theorem (CLT) holds for U,y, that is,

Un.k # N(0, o) with o} = Cov(fx(Z1), fr(Z1)) +
23—y Cov(fi(Z1), fr(Ziym)) < oo

Proof: See Appendix B. [ ]
Now we state the CLT [16, Thm. 3.1] for the multidimen-
sional empirical measure U,, = (Upx; k = 1,...,N?) as

Lemma 3. Several different proofs for this result are available
in [16] and the references therein. For completeness, we
provide a proof that leverages the results from [15], in terms
of extending Lemma 2.

Lemma 3 ([16]) Suppose Assumption 1 holds. Then a multi-
dimensional CLT holds for U,,; that is,

U, —2 5 N(0,A),

n—oo

(12)
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. 2 . . .
with A = [Ay;]N;_, being an N? x N? covariance matrix
given by

~7)+ 3 (P

m=1

Aij =7 +7TJ(P§’Z—7TFL)],

(13)
where 1;; denotes the (i, j)-th entry of the identity matrix, and
P (resp., P7}) is the (i, j)-th (resp., (j, i)-th) entry of the
matrix P™ (the m-th power of P), i, j =1,..., N2

Proof: See Appendix C. [ |

B. Weak Convergence of Test Statistic

In this section, and to derive weak convergence results
for the test statistic D(v| ), we will leverage a method
commonly-used by statisticians in terms of combining a
Taylor’s series expansion for the test statistic and the CLT
result for the empirical measure [11]. Recently, under i.i.d.
assumptions, such a weak convergence analysis for certain test
statistics has been conducted in [10], [5].

To this end, for v € P(®) we consider

ZZleog Et L ”.
1=1j=1 Et 17

Let U ~ N(0,A) with A given by (13). Now, we are in a
position to derive weak convergence results for our test statistic
D(v|).

h(v) = D(v||m) = (14)

Theorem 1 Suppose Assumption 1 holds. Then we have the
following weak convergence results:

1
D(T,||) L Q—U’Vzh(w)U, (15)
D(Ty||7) m ankaIk’ (16)

where V2h(m) is the Hessian of h(v) evaluated at v =
T pu, k = 1,...,N? are the eigenvalues of the matrix
V2h(m)A, and X3, k =1,...,N? are N? independent x*
random variables with one degree of freedom.

Proof: Let us first compute the gradient of h(v). Ex-
panding the logarithm and after some algebra which leads to
cancellations of gradient terms with respect to v;; in Zi\;l Vit,
for all 4,7 =1,..., N, we obtain

oh(v) al al
5 = logv;; — log <Z yit) —log m;; + log (Z mt),
ij =1 t—1
(17)
which implies
Vh(m) = 0. (18)
Further, from (17), we compute the Hessian V2h(v) by
0, if k # 1,
O?h(v) ! ! ifk=dandl =
v — T =N = =2
—— = Vi ; 19
3%‘;‘ O J 1Zt:1 Vit (19)

——— ifk=dandl#j.
szfilyit

Evaluating all the terms in (19) at v = 7 yields V2h(w),
which will play a crucial role in approximating D(T',| 7). It
is seen that V2h(v) is continuous in a neighborhood of 7,
and we can utilize the second-order Taylor’s series expansion
of h(v) centered at 7 to express D(T',,||mw) = h(Ty,) — h().
Specifically, by (18) and (5) we have

2nD (T, ||7) = 2n (A (T),) —
=n(T, —
= U, V2h(T

h ()
) P2h(E,) (T, = m)

n)Un, (20)

where T'), = £,T',, + (1 — &,) 7 is determined with some &,, €
[0, 1]. From the ergodicity of the chain Z it follows I',, el

n—oo
7, leading to T',, 2L 7. By the continuity of V2h(v) we
n—oo
obtain

V2h(T,) —2Ls V2h(m). Q1)

n—oo
Applying Slutsky’s theorem [17], by (12), (20), and (21) we
attain

D(T,||7) = —U’ V2h(T,)U, —L— 5 1y 'V2h(m)U.
Finally, by means of a linear transformation [18] on the
quadratic form U’V2h(m)U, we derive the following alterna-

tive asymptotic result:

N2
1
D(T,|m) = U/ VAR U, —— =3 pihe
k=1

where py, k = 1,..., N2, are the eigenvalues of the matrix
V2h(m)A, and x3,, k = 1,..., N2, are N? independent x>
random variables with one degree of freedom. [ ]

C. Threshold Approximation

We use an empirical Cumulative Distribution Func-
tion (CDF) to approximate the actual CDF of D(T,| ).
In particular, it is seen from (15) that D(T,|w) =~
(1/(2n))U’'V2h(m)U for large n. Thus, to derive an empirical
CDF of D(T',,||7), we can generate a set of Gaussian sample
vectors independently according to N'(0,A) and then plug
each such sample vector into the right-hand side of (15) (i.e.,
replace U), thus, obtaining a set of sample scalars, as a reliable
proxy for samples of D(T',,||7).

Once we obtain an empirical CDF of D(T,||w), say,
denoted Fyy(-;n), then, by (7), we can estimate 7, g as
7777, NG] ~ ( 57 )7 (22)

where F.'(-;n) is the inverse of Fem(+;7). Note that the 7\
derived by (22) depends on the entries of the PL 7. In practice,
if 7r is not directly available, we can replace it by the empirical
PL evaluated over a long past sample path. For such cases, we
summarize the procedures of estimating the threshold based on
our weak convergence analysis as Algorithm 1, where 7 is a
good estimate for 7r. We note that the length ngy of the past
sample path should be sufficiently large (e.g., ng > 500N?) so
as to guarantee the validity of taking 7 to be 7r. In addition, the
small positive number ¢ (e.g., ¢ < 107%) introduced in Step
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1 is to avoid division by zero, thus ensuring the numerical
stability of the algorithm. If, on the other hand, the actual PL
7 is known, then we can still apply Algorithm 1 by replacing
the 7 therein with .

Similar to (22), we can derive another weak convergence-
based threshold estimator 7j,,°; from (16). However, an easy
way of calculating 7,;°; (also summarized in Algorithm 1)
still cannot avoid simulations; it is hard to conclude any
advantage of 7;°; over 7. As a matter of fact, calculating
the eigenvalues of V2h(mw)A makes the calculation of Mhes
numerically not as stable, compared to the calculation of 7,5
via Algorithm 1. Other methods for numerically obtaining 77,5
can be found, e.g., in [19] and the references therein. Another
fact we should point out is that, in [20, p. 30], a slightly
different statistic is considered and therefore an even sim-
pler asymptotic distribution can be derived correspondingly.
Moreover, some other papers, e.g., [21], [22], also considered
similar but different statistics.

We will illustrate by extensive experiments that our weak
convergence analysis can empirically produce more accurate
estimation of the threshold than Sanov’s theorem for moderate
values of n; the price we have to pay, however, is a relatively
long but still acceptable computation time.

Remark 3 In Algorithm 1, due to acceptable numerical er-
rors, the originally estimated A (Step 5) could be neither
symmetric nor positive semi-definite. Symmetry is imposed
by Step 6. Further, to ensure positive semi-definiteness we
can diagonalize A as

A = O~ 'diag(\y, ..., An2)O, (23)
where O is an orthogonal matrix and diag(A) a diagonal
matrix with the elements of A in the main diagonal. Due to
numerical errors, we might encounter cases where some \;
are either negative or too small; we can replace them with
small positive numbers and recalculate the right-hand side
of (23), thus obtaining an updated positive-definite A. For

implementation details, the reader is referred to [23].

D. A Robust Hoeffding Test

Many actual systems exhibit time-varying behavior. In this
section, we extend our methodology to accommodate such
systems and use a set of PLs (instead of a single PL =) to
model past system activity.

Let the null hypothesis H be defined as: Z =
{Z;; 1=1,2,...} is drawn according to the set of PLs
II={mx",..., 7™} C P(O), i.e., Z is drawn from one of
the PLs in IT but we do not know from which one. Consider
a robust version of the Hoeffding test [4], [5], [24] under
Markovian assumptions:

H,, rejects H if and only if in%D(FnHﬂ') >n. (24
e

Essentially, the test selects the most likely PL from II and

uses that to make a decision as in (6). Asymptotic Newman-

Pearson optimality of this test is shown in [4].

Algorithm 1 Threshold estimation for the ordinary Hoeffding
test under Markovian assumptions based on weak convergence
analysis.

Input: The sample size n, the target false positive rate 3, the

alphabet ® = {f;; k =1,..., N2}, a sample path of the
chain Z, denoted Z© = {Z}”, ..., Z{}, where ng is the
length, and the Boolean parameter \2 ;.

: Estimate 73, by

. 1 o -
Th :max{nOZ]l{ZéO) =0}, 5}, k=1,...,N?

i=1

where € > 0 is a small number.

. Estimate 7 as # = (7/5; k = 1,...,N?), where § =

2 A

NZ oz . lizi cant
> j=1 7; is a normalizing constant.

. Bstimate V2h(m) as V2h(#), by plugging 7 into (19)

(i.e., using 7r to replace v).

: Estimate P as P, via (cf. (3) and Lemma 1)

P(0i51011) = 1{i = 1}qj,

where §;; = ﬁijA/(Z,{il Tit)-

ki, j=1,...,N,

: Estimate A as A, using (by (13) in Lemma 3)

mo
Aij = mi(Li; — 7~Tj)+z {fn(P?} — )+ (P — )|
m=1

where my is a sufficiently large integer.

6: Update A by setting (A + A’)/2 to A.

10:

. if x2,,, = FALSE then

Generate T Gaussian sample vectors U®, ¢ =
1,...,T, according to N'(0, A).

Estimate =~ 7" samples of  D(T',|=x) as
(1/(2n)) U’ V2h(7)U®, t =1,...,T (cf. (15)).
Based on the 7" samples obtained in the last step, esti-
mate an empirical CDF of D(T',,||7), denoted Fip (-5 7).

Obtain an estimated value for 7, 5 by calculating 17,
via (22).

. else if 2, = TRUE then

Calculate the eigenvalues gy, k = 1,..., N 2, of the
matrix V2h(7)A. .
Generate T samples of (1/(2n)) Zszl PrX (cf. (16)).

Based on the 7" samples obtained in the last step, esti-
mate an empirical CDF of D(T',,||7), denoted Fep(+;n).

Obtain an estimated value for 7),, 5 by calculating 7;,;
via (22) with Fpn(+;n) replaced by Fun(+;n).

. end if
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For | = 1,...,L, let P® denote the transition matrix
corresponding to 7" and, similar to (2), we write
~ (1 2
w0 = (m)i,5=1,...,N)=(7,);k=1,...,N?).

Assume Z is drawn from PL 7w which satisfies Assumption
1. Let UY = /n(T,, — w®). By Lemma 3, we have

U —— N (0,AY), 25)
where A® = [A;IJ)]szl is given by
A;;) — #O(1, _ﬁ;z))
m=1

with P{)™ being the (i,j)-th entry of the matrix PO (the
m-th power of P®). Let U® ~ N(0,A®). Using (15) we
obtain

1
D(T,||7®) ~ —U(”’Vzh(ﬂ'(”)U(”,
n

which leads to an approximation for the infimum term in (24):

LUU)/v?h(ﬂ.(l))U(l)'

inf D(Ty,||w) ~ 0

well

inf
le{1,...,
By the right-hand side of (26), we can generate Gaussian
samples to compute a reliable proxy for the samples of
infrerr D(T'y,||7), thereby, obtaining an empirical CDF, de-
noted F'(;n), of infrerr D(T,||7). Thus, given a target
false positive rate 3, similar to (22), we can estimate the
threshold 7, g as

Mg & (Fa) ™ (1= Bin),

where (F'°)~1(.;n) denotes the inverse of FI%(-;n). Similar
to (16), we can also derive a y2-type asymptotic approxima-
tion to the distribution of inf e D(T'y,||7), thus obtaining
another weak convergence-based threshold estimator ﬁﬁfﬂ; for
economy of space, we omit the details. For the cases where the
PLs are not directly available, we summarize the calculation
of 7,5 for the robust Hoeffding test as Algorithm 2.

(26)

27)

V. EXPERIMENTAL RESULTS

In this section, we assess the accuracy of our threshold
estimator and the performance of the anomaly detection pro-
cedure. We start with a numerical evaluation of the threshold’s
accuracy and then perform anomaly detection in two applica-
tion settings using simulated and actual data.

A. Numerical Results for Threshold Approximation

In this subsection, for simplicity we consider the ordinary
(and not the robust) Hoeffding test. We have developed a
software package TAM [23] to perform the experiments. We
will use ® = {1,2,..., N?} to indicate the states and assume
the stationary distribution 7r to also be the initial distribution.

In the following numerical examples, we first randomly
create a valid (i.e., such that Assumption 1 holds) N x N
transition matrix Q, giving rise to an N2 x N? transition
matrix P, and then generate T test sample paths of the

Algorithm 2 Threshold estimation for the robust Hoeffding
test under Markovian assumptions based on weak convergence
analysis.

Input: The sample size n, the target false positive rate 3, the
alphabet ® = {f;; k = 1,...,N?}, and a sample path

of each PL w®, denoted Z'” = {Z{'”,..., Z(»}, where
ng is the length, l=1,...,L.
1: forl=1,. L do
2: Estlmate 7r ,k=1,...,N2, by
7:%;” = max {1 zo: H{Z" = ék},s},
o

i=1
where € > 0 is a small number.

3:  Estimate w as 7 = (7?;;)/3(” E=1,...
where §¢ = Z;\Zl 72r;-l) is normalizing constant.

4. Estimate V2h(7w®) as V2h(7®), by plugging #" into
(19) (i.e., using @ to replace v).

5. Estimate P® as P®, via (cf. (3) and Lemma 1)

()( ,]|9kl)—]l{z—l}q”, k,l,i,j=1,...,N,

where q(” = 71'(” (Zt LR
6: Estimate A© as A®, using (by (13) in Lemma 3)

m
_ 20 O B@m 2O
+E [ P() —m;)
2 (1)
7 >},

where my is a sufficiently large integer.

Update A® by setting (A® + A®')/2 to A©.

Generate T Gaussian sample vectors U9 ¢ =
., T, according to N'(0, A®).

7N2)’

2 (L) (P<L)m

9: end for

10: Estimate 7T samples of infrerp D(Ty,|jw)  as
infieqr 1y (1/20) 0 V2R(aO)U®, t = 1,...,T
(cf. (26)).

11: Based on the T samples obtained in the last step, es-
timate an empirical CDF of infrcrp D(T,||7), denoted
Fi(5m).

12: Obtain an estimated value for 7, g by calculating 7,5 via
27).

chain Z, each with length n, denoted Z® = {Z{t), AR
t=1,...,T. We use these samples to derive empirical CDF’s.
To simulate the case where the PL 7 is not directly available,
we generate one more independent reference sample path
Z© = {Z{",...,Z"} of length ng > [©] = N2, thus
enabling us to obtain a good estimate of 7. Note that we do
not rely on the test sample paths to estimate the PL 7. The
ground truth 7 is computed by taking any row of P™° for
some sufficiently large my.

Having the ground truth PL w at hand, with the test
sample paths Z® = {Z{",...,Z®P}, t = 1,...,T, we can
compute 7" samples of the scalar random variable D(T,||),
by (4). Using these samples, we obtain an empirical CDF
of D(T,||w), denoted F(-;n), which can be treated as a
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Fig. 1: Threshold versus sample size; scenarios corresponding
to 3 =0.001, N =2, 4,6, 8.

dependable proxy of the actual one. The threshold given by
(22) with Fyp(-;n) replaced by F(-;n) is then taken as a
reliable proxy of 7, 3. We denote this proxy by 7, ;. To
emphasize the dependence on N, we write 7, g (resp., 7, 3)
as 1,6(IV) (resp., 1, 5(IV)). Next, using the reference sample
path Z® and applying Algorithm 1, we obtain nng(N ) and
Mg (N).

Let the target false positive rate be 3 = 0.001. Consider four
different scenarios where N is 2, 4, 6, and 8, respectively. Set
e =10"19, T = 1000, mgy = 1000, and ny = 1000N?2. Here
we note that, in all our experiments, an estimate 7 for 7 with
| & — || < 107 can be obtained by executing Algorithm 1
with parameters ng > 500N? and € < 1078, In Figures la
through 1d, the red line plots 7, 5(IV), the blue line 7% (),
the magenta line 7,,% (V) and the green line ;) 5(N) (cf. (8)),
all as a function of the sample size n. Setting sample sizes n
reasonably small (n should at least be comparable to N?), it
can be seen that 7, (V') and 7,,°; (V') are more accurate than
My, > except for the case N = 2 where all estimators perform
approximately equally well. In particular, as N increases, the
estimation errors of 7,%(NN) and 7,;(N) are consistently
close to zero, while the approximation error of 7, ; increases
significantly. Moreover, for the scenarios N = 6, 8, 7,/%;(N)
and 7,/ () are very close.

Remark 4 In Figures la-1d, the red line representing the

“actual” value 77;‘“ 5 is not smooth; this is because each time
when varying the sample size n, we regenerate all the sample
paths Z® = {Z{",..., Z®}, t =1,...,T from scratch. On
the other hand, the blue (resp., magenta) line corresponding to
Mg (1€sp., 77,%5) is smooth because we only need to generate
the T Gaussian (resp., x2-type) sample vectors once. In our
experiments, most of the running time is spent generating the
sample paths Z* and calculating 1,  therefrom. In practice,
we will neither generate such samples nor calculate 7 s,
and only need to focus on obtaining 7,5 or 7, which is
computationally not expensive.

Remark 5 Theoretically speaking, we could use the “actual”
threshold 7, ; as obtained above, but it is of little practical
value; the reason is that in statistical anomaly detection
applications, we are typically faced with a long series of
observations and want to use a so-called windowing technique
(see Section V-C), which divides the observations into a
sequence of detection windows with the same time length.
The sample sizes n in different windows may not necessarily
be equal, leading to different threshold settings when sliding
the windows. If we use the simulated ‘“actual” threshold,
then, when varying the detection windows, we will need to
regenerate the corresponding samples (for threshold estima-
tion purposes) from scratch, which is computationally too
expensive, especially when there are many detection windows.
In contrast, to compute our estimator nr‘f’cﬁ (resp., 777“{’2,), we
only need to generate one set of Gaussian (resp., x“-type)
sample vectors (cf. Remark 4), which can be shared by all the
detection windows, thus, saving a lot of computation time. To
see this more clearly, let us denote by 7; the average running
time for generating a set of samples with 7' (T = 1000 is
empirically a good choice) Gaussian (resp., x2-type) vectors
according to (15) (resp., (16)), and 7o the average running time
for calculating a threshold via (22) given the corresponding
sample vectors required to derive the empirical CDF. Clearly,
we have 7y > 19 > 0. Assume we have W detection windows.
Then, if we directly simulate the statistic so as to estimate
the threshold for each and every detection window, the total
running time would be c1 Wt + coWro = (c171 + com2)W,
where c1,co > 0 are two scaling constants satisfying c¢;73 >
caTo. On the other hand, by simulating Gaussian (resp., x>-
type) samples, the total running time required to estimate
all the thresholds for the W detection windows would be
c3T1 + c4meW, where c3,cqy > 0 are two scaling constants
satisfying ¢4 = ca, leading to 0 < c470 < ¢171 + co72. Thus,
for large W we have c3m + c4eW < (111 + cam2)W.

To further investigate the performance of different classes
of threshold estimators, we now take the randomness of the
transition matrix P into account and define a simulation-based
metric d (7, n*;n, 3, N, K) to quantify the average squared
empirical estimation error, specified as follows:

K

- 1 ~(k e 2
d(iin BN K) = 2= 37 (i (V) = 15 (V)
k=1
(28)
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Fig. 2: Evaluation of average squared estimation errors for different types of threshold estimators.

Recall that N is a parameter representing the number of states
in the original chain Y. We denote by 7) the threshold estimator
class (could be n*", n™¢, or 7%¢), and by n* a proxy of the ac-
tual threshold class (derived by directly simulating the samples
of the test statistic). Denote by K the number of indepen-
dent repetitions of the calculation for (7}, (N) — 1,5 (N))?,
where 7, (N) (resp., 1,3 (V) denotes the class 7) (resp., %)
instantiated under parameters n, 3, N, and k € {1,...,K}.

Setting / = 0.001, K = 200, N € {2, 4,6, 8}, and
ne{n=2N?+ix |02N?+1|:n <6N?+5,ie Ny},
we evaluate d (7, n*;n,3, N, K). The results are shown in
Figure 2. Several observations can be made from Figures 2a-
2d: (i) Except for the case N = 2, both "¢ and 7' outperform
n®, that is, d (", n*;n,8,N,K) < d(n®,n*;n,B,N, K)
and d (7%, n*;n, 8, N,K) < d(n®,n*;n,3, N, K). (ii) For
the cases N = 6, 8, n%¢ and n™° perform almost equally well,
with both d (n“°,n*;n, B8, N, K) and d (7%, n*;n,8, N, K)
being very close to zero and, for the cases N =
2,4, n¥ outperforms 7%¢, ie., d(nV,n*;n,8,N,K) <
d (7%, n*;n, 5, N, K). (iii) Only for the case N = 2, n*
performs the best among the three estimators and, n™¢ per-
forms approximately equally well with n* in this case. More
extensive comparison results can be derived using TAM [23].
We may empirically conclude that "¢ performs consistently
the best among the three for almost all scenarios that we have
considered and, on the other hand, n*" performs unsatisfacto-
rily when N > 2. Further, 7™¢ is numerically not as stable as
n™“¢, especially for the cases where N < 4.

B. ROC Analysis for the Hoeffding Test with Different Thresh-
old Estimators

In this subsection, for simplicity and economy of space,
we again only consider the ordinary (and not the robust)
Hoeffding test. We note here that similar results can be derived
for the robust Hoeffding test. The numerical experiments are
conducted using the software package ROM [25].

Let ® = {1,2,..., N?} containing N? states. For a given
sample size n and a given target False Positive Rate (FPR)
{3, the three thresholds 7,5, 77,5, and 7, 5, respectively, give

n

TABLE I: ROC points vs. target FPR (IV = 4, n = 50).

HTWC-1 HTWC-2 HTSV
target FPR 5 ppp " "TPR  FPR  TPR  FPR  TPR
0001 0002 0885 00 0816 0402 0999
001 0011 0965 0002 0888 0.752 1.0
002 0018 0983 0003 0943 0.844 1.0
003 0025 099 001 096 0.898 1.0
004 0038 099 0018 0971 0927 1.0
005 0047 0991 0029 0981 0.945 1.0

TABLE II: ROC points vs. target FPR (/N = 6, n = 100).

HTWC-1 HTWC-2 HTSV
target FFR 5 ppp TPR ~ FPR  TPR  FPR TPR
0001 0001 1.0 00 10 0997 1.0

001 0008 10 0003 10 10 1.0

002 0017 10 0005 10 10 10

003 0028 10 0017 10 10 10

004 0037 10 0017 10 10 10

005 0055 10 0019 10 10 10

rise to three different discrete tests (denote them by “HTWC-
1, “HTWC-2,” and “HTSYV,” respectively). To compare their
performances, we will conduct the Receiver Operating Char-
acteristic (ROC) [14] analysis (detection rate vs. false alarm
rate) using simulated data.

Similar to what we have done in Section V-A, we first
randomly create a valid NV x N transition matrix Q, hence
an N2 x N? transition matrix P, and then generate T sam-
ple paths of the chain Z, each with length n, denoted by
Z0 ={z{,...,Z"}, t=1,...,T. From P we derive the
PL 7. Next, to simulate anomalies, we create another valid
N x N transition matrix Q hence an N2 x N2 transition matrix
P, and generate T sample paths of the corresponding chain
Z, each with length n, denoted by Z® = {Z{" ... ZW},
t = 1,...,T. Label each sample path of Z (resp., Z) with
length n as “positive” (resp., “negative”). Then, {Z® : ¢ €
{1,...,T}}U{Z® : t € {1,...,T}} will be our test set,
which contains 7" negative (Z”) and T positive (Z) sample
paths.

Now, by executing Algorithm 1 without estimating 7r (since
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Fig. 3: Results from ROC analysis of the ordinary Hoeffding test.

the ground truth is available), we obtain 7,;%; and 7,,;. Also,
by (8) we obtain 7, ;. For each sample path in the test set, we
compute D(T',[|7r) by (4). Next, using 1,5 (resp., 7, 1y, 5),
we can apply HTWC-1 (resp., HTWC-2, HTSV) to detect each
sample path as positive or negative. Then, we integrate these
reports with the ground truth labels so as to calculate the True
Positive Rate (TPR) and FPR, thereby, obtaining a point of the
ROC space.

In our experiments, we take 7" = 1000. Figure 3a (resp.,
3b) shows the ROC graphs of HTWC-1, HTWC-2, and
HTSV for a scenario corresponding to N = 4, n = 50
(resp., N = 6, n = 100); different points on the graph are
obtained by ( taking values from a predesignated finite set
{0.001}uU{0.01,0.02,...,0.19}. It is seen from Figure 3a (or
Figure 3b) that all TPR values are very close to 1, which is
good, but for most cases (each case corresponds to a specific
“small” target FPR 3) HTWC-1 and HTWC-2 have much
closer FPR values to the target FPR value than HTSV, meaning
HTWC-1 and HTWC-2 are able to control for false alarms
better than HTSV. To see this more clearly, we show a few
specific values of the (TPR, FPR) pair in Tables I and II. It is
worth noting that in the N = 6 scenario, HTSV is almost a
random guess for all the target FPR cases that are considered.
More extensive experiments show that, as /N increases, the
performance of HTSV gets worse and worse; in particular,
when N > 6, HTSV is very likely merely a random guess
yielding an ROC point close to (1, 1). During our experiments,
another observation is that, for each fixed NV and 3, when n
increases, all HTWC-1, HTWC-2, and HTSV perform better
and better; this is because with larger sample sizes, all the
three estimators 7%, 7,3, and 7, ; approximate the actual
7,3 better. We therefore conclude that HTWC-1 (or HTWC-2)
typically outperforms HTSV in the sense that the former has a
better capability of controlling the false alarm rate (i.e., FPR)
while maintaining a satisfactory detection rate (i.e., TPR).

Remark 6 A natural concern about the ROC analysis above
might be the setting of the target FPR () values; one may
ask: How about always setting (5 to a “very small” value, say,
10710, 107199 or even 10719902 We have actually already
discussed this partly in Section III. Setting a too small 3 would
typically lead to an unsatisfactory detection rate (TPR). In
addition, note that 7,5 (or 7;,°;) is numerically obtained from
an empirical CDF, say, G(z), of some scalar random variable;
we have G(z) nondecreasing, and lim, ., G(z) = 1,
implying that finding an “accurate” x such that G(z) =1—0
would be hard for a too small 8 € (0,1). An empirically

“good” choice of 3 is 0.001 (see Tables I and II), which is what
we use in our applications. Because HTWC-1 and HTWC-2
perform almost equally well in our experiments, but HTWC-1
is more stable and less computationally demanding, we will
only apply HTWC-1 in the following.

C. Simulation Results for Network Anomaly Detection

I
1

<t8/0

L & am cT3
CT5 normal computers in
the organization

Fig. 4: Simulation setting (from [4]).

In this subsection we test our approach in a communication
network traffic anomaly detection application. We will use the
term traffic and flow interchangeably. We perform the simu-
lations using the software package SADIT [8], which, based
on the fs-simulator [26], is capable of efficiently generating
flow-level network traffic datasets with annotated anomalies.

As shown in Figure 4, the simulated network consists
of an internal network involving eight normal users (CT1I-
CT8), a server (SRV) that stores sensitive information, and
three Internet nodes (INTI-INT3) that connect to the internal
network via a gateway (GATEWAY).

As in [4, Sec. III.A], to characterize the statistical properties
of the flow data, we use as features the flow duration and size
(bits). We also cluster the source/destination IP addresses and
use as features for each flow the assigned cluster ID and the
distance of the flow’s IP from the cluster center. For each
feature, we quantize its values into discrete symbols so as to
obtain a finite alphabet =, hence ®, for our model. Based on
the time stamps (the start times) of the flows, we divide the
flow data into a series of detection windows, each of which
contains a set of flow observations (see [4] for details).

To implement our anomaly detection approach, we first
estimate a PL 7 (resp., a PL set II) from the stationary (resp.,
time-varying) normal traffic. Note that, for either case, the
reference data should be anomaly-free ideally. However, in
our experiments, for the stationary case we use as reference
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Fig. 5: Detection results for Scenario V-C-1 with wyg = 50 s, ws = 200 s, k = 2, n1 = 1, no = 2, ng = 2; (a) threshold is
estimated by use of Sanov’s theorem; (b) threshold is estimated by use of the weak convergence result.

traffic the entire flow sequence with anomalies injected at some
time interval; this makes sense because the size of a typical
detection window is much smaller than that of the whole
flow sequence and the fraction of anomalies is indeed very
small, leading to an estimation for the PL with acceptable
accuracy. On the other hand, for the time-varying case we
generate the reference traffic without anomalies and the test
traffic with anomalies separately, sharing all the parameter
settings in the statistical model used in SADIT except the ones
for introducing anomalies. Note that, estimating a PL for the
stationary traffic is relatively easy, while, for the time-varying
traffic, we need to make an effort to estimate several different
PLs corresponding to certain periods of the day. We apply the
two-step procedure proposed in [4]; that is, we first generate
a relatively large PL set and then refine the candidate PLs
therein by solving a weighted set cover problem. Note also
that, if we already know the periodic system activity pattern,
then we can directly estimate the PL set period by period;
see another anomaly detection application in Section V-D for
example.

Now, having the reference PL (resp., PL set) at hand, we
persistently monitor the test traffic and report an anomaly
instantly as long as the relative entropy D(T',||w) (resp.,
infrerm D(T,[|7)) exceeds the threshold 7, for the current
detection window, where n is the number of flow samples
within the window. It is worth pointing out that, for the current
application, we will not seek to identify which flows belonging
to an abnormal detection window contribute mostly to causing
the anomaly, but, in some other applications, e.g., the one in
Section V-D, we will do so.

In the following, we consider two scenarios — one for
stationary traffic and the other for time-varying traffic.

1) Stationary Network Traffic — Scenario V-C-1: We mimic
anomalies caused by a large file download [3, Sec. IV.A.2].
The simulation time is 7000 s. A user increases its mean flow
size to 10 times the usual value between 1000 s and 1500 s.
The interval between the starting points of two consecutive
time windows is taken as wyq = 50 s, the window-size is set
to wy = 200 s, and the target false positive rate is set to
B = 0.001. The number of user clusters is £ = 2 and the
quantization level for flow duration, flow size, and distance
to cluster center is set to nqy = 1, ny = 2, and n3 = 2,
respectively. Thus, the original chain has N = 2x1x2x2 =8
states, and we have N2 = 64 states in the transformed chain.

The detection results are shown in Figures 5a and 5b, both of
which depict the relative entropy (divergence) metric defined

in (4). The green dashed line in Figure 5a is the threshold
estimated using Sanov’s theorem (i.e., 17, 5 given by (8), where
n is the sample size in each specific detection window). The
green dashed line in Figure 5b is the threshold given by
our estimator (i.e., 7,3 computed by Alg. 1). The interval
during which the divergence curve is above the threshold line
(the red segment) corresponds to the time instances reported
as abnormal. Figure 5a shows that, if 7;}; is used as the
threshold, then the Hoeffding test reports too many false
alarms, and, Figure 5b shows that, if, instead, we use nz’fﬁ
as the threshold, then the Hoeffding test does not report any
false alarm while successfully identifying the true anomalies
between 1000 s and 1500 s.

2) Time-Varying Network Traffic — Scenario V-C-2: Con-
sider the case where the network in Figure 4 is simulated
with a day-night traffic pattern in which the flow size follows
a log-normal distribution. We use precisely the same scenario
as that in [4, Sec. IV.B.2]. The ground truth anomaly (consider
an anomaly where node C72 increases its mean flow size by
30%) is injected beginning at 59 h and lasting for 80 minutes.

L ]
et e e e

[olelololo) d ol
ONPOOWON DO
T

divergence
000000000
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time (h)

Fig. 6: Detection result for Scenario V-C-2 with wgq = 1000
s, ws =1000s, k=1,n1 =1, ny =4, ng = 1.

Using the two-step procedure proposed in [4, Sec. III.C],
we first obtain 32 rough PL candidates. Then, using the PL
refinement algorithm given in [4, Sec. III.D] equipped with
the cross-entropy threshold parameter A = 0.028, which is
determined by applying Alg. 2, we finally obtain 6 PLs,
being active during morning, afternoon, evening, night, dawn,
and the transition time around sunrise, respectively. Note
that, since we have obtained the PL set in a different way,
in the following, when applying Alg. 2 for each detection
window, we can skip the first two steps (lines 2 and 3). In the
subsequent detection procedure, the chief difference between
our method and the one used in [4] is that we no longer set
the threshold universally as a constant; instead, we calculate
the threshold 772’?/3 for each detection window using Alg. 2.
Set k =1, ny = 1, ng = 4, and ng = 1. Thus, the original
chain has N = 1 x 1 x4 x 1 = 4 states, and we have N2 = 16
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Fig. 7: Location cluster centers and detected abnormal jams
for a circle area around Boston University.

states in the transformed chain for this case. Take wq = 1000
s, ws = 1000 s, and B = 0.001. We see from Figure 6 that the
anomaly is successfully detected, without any false alarms.

D. Anomaly Detection for Waze Jams

1) Dataset Description: The Waze datasets under inves-
tigation are kindly provided to us by the Department of
Innovation and Technology (DolT) in the City of Boston. The
datasets include three parts: the jam data J; (traffic slowdown
information generated by Waze based on users’ location and
speed; note that each jam consists of a set of points), the
corresponding point data J, (latitudes and longitudes of the
points within jams), and the alert data [J3 (traffic incidents
reported by active users; we will call such a user a “Wazer”).
For each part, we only list the features that we have used
in our algorithms. In particular, each entry (jam) in J; has
the following fields: uuid (unique jam ID), start time, end
time, speed (current average speed on jammed segments in
meters per second), delay (delay caused by the jam compared
to free flow speed, in seconds), and length (jam length in
meters). The information for each entry in J5 includes a jam
uuid and the locations (latitudes and longitudes) of the points
within the jam. The fields of each entry in [J3 include: uuid
(unique system ID; this is different from the jam ID in [J7),
location (latitude and longitude per report), type (event type;
e.g., accident, weather hazard, road closed, etc.), start time,
and end time. It is seen that, by combing 7; and [J», we can
denote each jam in [J; as

(7, uuid[é], locli], speed]i], delay|[i], length[é], startTime[i]),

where ¢ is the index, uuid is the unique jam ID, “loc” (resp.,
“startTime”) is the abbreviation for location (resp., start time).
Because we are only interested in detecting the abnormal jams
in real-time, we will not use the jam end times.

2) Anomaly Description: Typically we can observe lots of
jams in certain areas during rush hour, e.g., the AM/PM peaks,
and most of them are “normal” except those with extremely
atypical features (delay, length, etc.). On the other hand, if a
jam was observed outside of rush hours or typical areas, then
it would likely be “abnormal.”

3) Description of the Experiments: Treating Waze jams as a
counterpart of the network flows in Section V-C, we implement

the robust Hoeffding test on the quantized jam data in the
following experiments.

Consider an area around the Boston University (BU)
bridge, whose location is specified by latitude and longitude
(42.351848, —71.110730) (see the green marker in Figure 7).
Extract the jam data no farther than 3 kilometers from BU
(within the circle in Figure 7). Note that it is possible for
Waze to report several jams at the same time. To assign
each jam a unique time stamp, we slightly perturb the start
time of the jams that share the same time stamp in the raw
data. Such slight adjustments would not alter the original data
significantly.

Reference (resp., test) data are taken as jams reported
on March 9, 2016 (resp., March 16, 2016). Both dates are
Wednesdays, representing typical workdays. There are 3218
jams in the reference data, and 3882 jams in the test data.
Note that we have historical data for a relatively long time
period (compared to the test data within a detection window);
including all the jams reported within the selected reference
time period would not hurt the accuracy of the PLs (anomaly-
free ideally) to be estimated.

The features that we use for anomaly detection are location,
speed, delay, and length. The time stamp of a jam is taken as
its start time. To quantize the location, we need to define the
distance between two jams. For any valid index ¢, denote the
complete location data of jam ¢ by

10/\C[2] ={(@i1, Y1), (@iyin:Yirin)} (29)

where 2’s and y’s denote the latitudes and longitudes, respec-
tively, and ¢,, is the number of points in jam ¢ (typically, i,, is
greater than 4). Noting that most of the jams are approximately
linear in shape, we simplify (29) by using the 4 vertices of
the “smallest” rectangle that covers all the points in the jam
and update (29) by

IOC[i] = {(xi,mina yi,min>7 (-Ti,mina yi,max)7

(xi,maxv yi,min)v (xi,maxv yi,max)}v (30)
where  Zjmin = min{z1,...,Tii, b Timax =
maX{IZ‘J, e ,xi,in}, Yimin = min{yi,la cee 7yi,in}7 and

Yimax = Max{y;1,...,¥iq, . Note that loc[i] in (30) only
contains 4 points. Denote the point-to-point distance (in
meters) yielded by Vincenty’s formula [27] as dy (-, -). Then,
for any pair of jams, say, indexed ¢ and j, we define the
distance between them as

min{dy (21, 22); Vz1 € loc[i], z2 € loc[j]}.

Using the distance defined above and setting the quantization
level for “location” as 3, we apply the commonly used K-
means clustering method [28], thus obtaining 3 cluster centers
as depicted in Figure 7 (note that, by (30) each cluster center
is represented by 4 red markers).

In all our experiments, we take the quantization level to be
1 for “speed,” and set the target false alarm rate as 3 = 0.001.
The window size is taken as ws = 10 minutes, and the distance
between two consecutive windows is wg = 5 minutes. To
estimate the PLs, we divide a whole day into 4 subintervals:
5:00-10:00 (AM), 10:00-15:00 (MD), 15:00-19:00 (PM), and
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TABLE III: Key features of the detected abnormal jams.

index start time detected time latitude longitude delay (in seconds) length (in meters) alert type
788 12:25:0.302  12:30:0.0 42361951  -71.117963 232.0 3568.0 heavy traffic
1502 15:35:0.072  15:40:0.0 42.356275  -71.119852 585.0 844.0 heavy traffic
2412 19:25:0.365  19:30:0.0 42.342549  -71.085011 643.0 3568.0 heavy traffic
3005 21:25:0.238  21:30:0.0 42.349125  -71.10778 168.0 1962.0 weather hazard
3094 21:35:0.267  21:40:0.0 42.373336  -71.097731 509.0 897.0 road closed
3126 21:35:0.326  21:40:0.0 42.355048  -71.110335 528.0 1293.0 heavy traffic
.8 stamps and the alarm instances, we see that all of these 6
26 " jams would be reported as abnormal by our method within 5
54 :-'II‘. minutes from their start time; this is satisfactory in a real-time
'5(2) T traffic jam anomaly detection application. Note that we can
0 200 400 600 800 1000 1200 1400  tune wqy and ws such that the detection becomes even faster
me (min) while maintaining good accuracy in identifying anomalies.
(a) delay Specifically, smaller wq leads to faster detection while wj
10 TR ‘ should be reasonably big (the number of jams in a window
g0 A :.".".II: L should at least be comparable to N2). By comparing the
g 4t ,’.“,"-'-:‘.‘ : o y '.'.'" locations and time stamps, we map the jams in the final
© z’. ' s R anomaly list to the alert data 73, and find that one of them
0 200 00 600 800 1200 1400 was reported by Wazers as “road closed,” another as “weather
time (min) hazard,” and all the others as “jam heavy traffic.” In addition,
(b) length all of them occurred during non-peak hours. We list the

Fig. 8: Initial detection results for Waze jams.

19:00-5:00 (NT). So, for each scenario we end up with 4 PLs,
corresponding to the AM peak, the middle day, the PM peak,
and the night, respectively. To calculate the threshold 7, for
each detection window, we use Alg. 2.

4) Detection Results: First, let the quantization level for
“delay” be 2 and for “length” be 1. The original sample path
has N = 3x1x2x1 = 6 states. Thus, we have N2 = 36 states
in the transformed chain. We use relatively sparse quantization
levels for “delay” and “length” to avoid unnecessary compu-
tational overhead in the quantization subroutine for the jam
location data. After running our algorithm in the initial step,
910 out of 3882 jams are reported within abnormal detection
windows, which correspond to the red segments in Figure 8a.
We then perform a refinement procedure by selecting jams in
these windows with non-typical individual features as follows.
For each selected feature, we calculate the sample mean u
and sample standard deviation o using the reference data. We
then label as anomalous any jam with feature value exceeding
1+ 30. We first consider the delay feature. Using the 3o-rule
on delay, we obtain an anomaly list £; containing 4 jams.

Second, let the quantization level for “delay” be 1 and for
“length” be 2. Then, again, the original sample path has N =
3x1x1x2 =6 states, and we have N2 = 36 states in
the transformed chain. After rerunning the algorithm in the
initial step, 590 out of 3882 jams are reported within abnormal
detection windows, which correspond to the red segments in
Figure 8b, and, after refining by use of the 3o-rule on the
feature “length”, we end up with an anomaly list £ containing
2 jams.

Finally, we take £ = £; U L9 as our ultimate anomaly
list, which contains 6 jams in total. By checking the time

key features of these abnormal jams in Table III, where the
atypical values of the features “delay” and “length” have
been highlighted in bold red. It is worth pointing out that
jam 2412 is reported as abnormal based on “delay,” but its
length (highlighted in bold black) is also above the threshold
for refining the detection results based on “length.” Note
also that the latitude and longitude in each row of Table III
represent the closest location of the Wazer who reported the
alert for the corresponding jam (extracted from the alert data
J3); the shapes of the actual jams have been visualized as
colored bold curves in Figure 7. While in this application
we do not have ground truth, it is reassuring that the jams
we identify as anomalous have indeed been reported as non-
typical by Wazers. Clearly, depending on how such a detection
scheme will be used by a City’s transportation department, our
approach provides flexibility in setting thresholds to adjust
the volume of reported anomalous jams. This volume will
largely depend on the resources that City personnel have to
further investigate anomalous jams (e.g., using cameras) and
intervene.

Remark 7 If we directly apply the 3o-rule on the whole
test data without implementing the Hoeffding test to obtain
a potential anomaly list first, then we would very likely end
up with too many anomalies, which might include undesirable
false alarms. Indeed, when we apply the 3o-rule on the whole
test data for “delay” (resp., “length”), we obtain 38 (resp.,
62) “anomalies,” which are much more than those in our
final anomaly list (6 only). Thus, including the well-validated
Hoeffding test in our method ensures a good control of false
alarms.
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VI. CONCLUSIONS AND FUTURE WORK

We have established weak convergence results for the
relative entropy in the Hoeffding test under Markovian as-
sumptions, which enables us to obtain a tighter estimator
(compared to the existing estimator based on Sanov’s theorem)
for the threshold needed by the test. We have demonstrated
good performance of our estimator by applying the Hoeffding
test in extensive numerical experiments for the purpose of
statistical anomaly detection. The application scenarios involve
not only simulated communication networks, but also real
transportation networks. Our work contributes to enhancing
cyber security and helping build smarter cities.

As for future work, it is of interest to establish theoretical
comparison results concerning the tightness of the threshold
estimators. The challenge in this direction arises from associat-
ing the finite sample-size setting with the asymptotic properties
of the Central Limit Theorem and the large deviations results
(Sanov’s theorem). It is also of interest to conduct rigorous
analysis relating the computation time of the proposed estima-
tion approach to its accuracy. Also, it is possible to consider
additional applications.

APPENDIX A
PROOF OF LEMMA 1
Expanding the first N entries of #P = m, we obtain
q1i Zivzl T = T4, ¢ = 1,..., N. Summing up both sides
of these equations, it follows
N

(Zizl q“) (ZL ”“) = ZL Tit.

Noticing Zf\le q1; = 1, (A.1) implies Zivzl M = Zf’zl M1t
which, together with ¢11 Zi\[: 1 T = m1, yields

(A1)

11 11

Ziv:l 1t Zi\; 1

Similarly, we can show (9) holds for all the other (i, j)’s.

=d11-

APPENDIX B
PROOF OF LEMMA 2

This can be established by applying [15, Corollary 1].
Noting fi(-) is an indicator function, thus Borel measurable
and bounded, and the chain Z is uniformly ergodic, we see
that, 3B € (0,00) s.t. |fx(Z)] < B, VZ, implying that
]E[|fk(Z)|3] < B? < oo, and [15, (3)] holds with M(-)
bounded, leading to E[M] < oo, and 'ySn) = t" for some
t € (0,1), indicating that (v(n)'? = St =
S, (t1/3)" < oc. Thus, all the conditions needed by [15,
Corollary 1] are satisfied.

APPENDIX C
PROOF OF LEMMA 3

We can directly extend Lemma 2 to the multidimensional
case (see [29, Chap. 8]). In particular, under Assumption 1,
(12) holds with A given by

A=A +3 A, (C.1)

where A© and A are specified, respectively, by

A =[Cov(fi(Z1), (251,
A" =[Cov(fi(Z1), fi(Z14m))
+ Cov(f;(Z1), filZramDINjy m=1,2,....

Let the subscript ¢j denote the (i,j) elements of the
matrices A, A A, By the Markovian properties, after
some direct algebra, for 4, 7 = 1,..., N? we obtain A;‘;) =
7i(Lij — 7;) and

A = 7y(PT — 75) + 75 (P — /),

i m=12,....
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