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Botnet Detection Based on Anomaly and
Community Detection

Jing Wang and loannis Ch. Paschalidis, Fellow, IEEE

Abstract—We introduce a novel two-stage approach for the
important cybersecurity problem of detecting the presence of a
botnet and identifying the compromised nodes (the bots), ideally
before the botnet becomes active. The first stage detects anomalies
by leveraging large deviations of an empirical distribution. We
propose two approaches to create the empirical distribution: 1) a
flow-based approach estimating the histogram of quantized flows
and 2) a graph-based approach estimating the degree distribu-
tion of node interaction graphs, encompassing both Erdés-Rényi
graphs and scale-free graphs. The second stage detects the bots
using ideas from social network community detection in a graph
that captures correlations of interactions among nodes over time.
Community detection is performed by maximizing a modularity
measure in this graph. The modularity maximization problem is
nonconvex. We propose a convex relaxation, an effective random-
ization algorithm, and establish sharp bounds on the suboptimal-
ity gap. We apply our method to real-world botnet traffic and
compare its performance with other methods.

Index Terms—Anomaly detection, botnets, cybersecurity, opti-
mization, random graphs, social networks.

I. INTRODUCTION

BOTNET is a network of compromised computers con-

trolled by a “botmaster.” Botnets are typically used for
distributed denial-of-service (DDoS) attacks, click fraud, or
spamming. DDoS attacks flood the victim with packets/requests
from many bots, effectively consuming critical resources and
denying service to legitimate users. Botnet attacks are wide-
spread. In a recent survey, 300 out of 1000 surveyed businesses
have suffered from DDoS attacks and 65% of the attacks
cause up to $10000 losses per hour [1]. Both click fraud and
spamming are harmful to the web economy.

Because of these losses, botnet detection has received con-
siderable attention. Common intrusion detection focuses on
individual hosts but is often ineffective in preventing botnet
formation because not all hosts are zealously monitored and
protected.

Manuscript received November 18, 2015; accepted February 12, 2016. Date
of publication February 29, 2016; date of current version June 16, 2017. This
work was supported in part by the National Science Foundation under Grants
CNS-1239021, 11S-1237022, and CCF-1527292; in part by the Army Research
Office (ARO) by under Grants W91 1NF-11-1-0227 and W911NF-12-1-0390;
and in part by the Office of Naval Research (ONR) under Grant NO0014-10-1-
0952. Recommended by Associate Editor M. Egerstedt.

J. Wang is with the Center for Information and Systems Engineering, Boston
University, Brookline, MA 02446 USA (e-mail: wangjing@bu.edu).

I. C. Paschalidis is with the Department of Electrical and Computer Engi-
neering, and Division of Systems Engineering, Boston University, Boston, MA
02215 USA (e-mail: yannisp@bu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCNS.2016.2532804

Flow-based

Stage 1
Anomaly Detector

Anomaly Detection

Graph-based
Anomaly Detector

| Identify Pivotal Nodes |

0_‘—0

Construct
Comelation Graph

Estimate Pivotal
Interaction Measure

\_‘_/

I Community Detection |

Stage 2
Bot Discovery

Fig. 1. Overview of our method.

Early botnets used IRC, a protocol initially designed for
Internet chat, to command and control (C&C) their bots (in-
fected machines). As a result, a lot of botnet detection methods
exploited this feature [2], [3]. Recently though, botnets have
evolved to bypass these detection methods by using more
flexible C&C channels, such as HTTP and P2P protocols. In
addition, more types of C&C channels are emerging, including
Twitter.

Some methods have been proposed to handle these novel
botnets with more flexible C&C mechanisms by analyzing the
communication patterns among hosts. Reference [4] proposes
a method, named BotMagnifier, that deduces bots through their
communication with a set of seed IPs. However, only spam bots
can be handled by BotMagnifier, and the seed IPs need to be
given as input data. An alternative approach called BotHunter
[5] models the infection process using a state transition dia-
gram. A variety of methods is used to detect these transitions
and determine whether a node is infected or not. Despite its
popularity, BotHunter has the drawback that it cannot detect
bots that were infected before the deployment of the system,
and its infection state diagram can only describe a small set of
bot behaviors.

In this paper, we propose a two-stage approach for botnet de-
tection. The first stage detects and collects network anomalies
that are associated with the presence of a botnet while the sec-
ond stage identifies the bots by analyzing these anomalies (see
Fig. 1). Our approach exploits the following two observations:
1) botmasters or attack targets are easier to detect because they
communicate with many other nodes and 2) the activities of
infected machines correlate more with each other than those of
normal machines [3].

For the first stage, we propose two anomaly detection meth-
ods, both of which leverage the theory of large deviations
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[6]. Based on the stochastic model-free method proposed in
[7]1-9], the first anomaly detection method quantizes flow-
level data (e.g., Cisco NetFlows) and monitors the histogram
of quantized flows. The second anomaly detection method
aggregates packet-level data to graphs and monitors their em-
pirical degree distribution. Compared to our preliminary work
in [10] that considered only graph-based anomaly detection for
Erd6s-Rényi graphs, here we also handle scale-free graphs and
draw on hypothesis testing to select the appropriate model.

For the second stage, we first identify a set of highly inter-
active nodes, which are referred to as pivoral nodes. Both bot-
masters and targets are very likely to be pivotal nodes because
they need to interact with bots frequently. These interactions
correspond to C&C traffic for botmasters and attacking traffic
for targets. In either case, the interactions between each bot and
pivotal nodes are correlated. To characterize this correlation,
we construct a social correlation graph (SCG), whose formal
definition is in Section IV-B1. We can detect bots by detect-
ing the community that exhibits high interaction with pivoral
nodes in the SCG. We propose a novel community detection
method based on a refined modularity measure. This problem
is posed as a maximization of the modularity measure, which is
NP-complete. We develop a convex relaxation scheme and
establish bounds on its performance using ideas for the
MAXCUT [11] problem.

Notation: Throughout this paper, all vectors are assumed to
be column vectors. We use lowercase boldface letters to denote
vectors and for economy of space, we write X = (2o, ..., %)
for the column vector x. We define [x]; = >7%_, ;. We use
uppercase boldface letters to denote matrices, script letters for
sets, and denote by |.A| the cardinality of set .A. log denotes the
natural logarithm. Tr(-) denotes the trace of a matrix and = 0
is positive semidefiniteness. Throughout this paper, we use n to
denote the number of nodes in the network.

II. LARGE DEVIATIONS OF NETWORK PROCESSES

The anomaly detection stage (Stage 1) is based on analyzing
network processes, such as network flows and the degree of
graphs representing node interactions. This section presents the
large deviations results on which anomaly detection will be
based. We start with a formal definition of the large deviations
principle (LDP) for a family of probability measures {x(™ } [6].

Definition 1: For every closed set B of probability vectors

1
. L (n) < _;
Jim sup —log P, (u € B) < —inf] (»)
1
lim inf —log P, (u(") S B) > — inf I(u)
n—o00 n peBe

where B° denotes the interior of 5 and P, is the probability law.
More intuitively, Def. 1 states that when n is large enough,
the distribution P,, behaves as

P, (u(") =~ ,u) = e (1), )

The function () characterizes the exponential decay rate
of this probability and is called the rate function.

A. LDP for Discrete Random Variables

Given a discrete random variable X whose alphabet is X =
(01,...,0/5), the probability distribution of X can be written
as a vector p = (p1, . . ., p|y|), where p; is the probability of X
being equal to o;.

Given n samples X = {x1,...,2,} of X, the empirical

distribution is a vector p(™ = (u(ln), . ’Ml(gl))’ where MZ(.”) =

(1/n) >0 Lz = 03). (™) satisfies an LDP with rate
function
I(p) = D(pe | p) 2

where D(p || p) = >, ps log(ui/pi) is the Kullback—Leibler
(KL) divergence of two probability vectors [6].

B. LDP for the Degree Distribution of Random Graphs

Let G,, denote the space of all undirected graphs with n
vertices. For any graph G € G,,, let d = (dy,...,d,) denote
the labeled degree sequence of G, with d; denoting the degree
of node i. Let m = (1/2) >__, d; denote the number of edges
in G. We assume that any two nodes are connected by, at most,
one edge, which implies that the node degree in G is less
than n.

For0<i<n-—1,leth; = Z;’:l 1(d; = i) be the number
of vertices in G of degree 4, where 1(-) is the indicator function.
Henceforth, h = (hg, ..., h,_1), a quantity not dependent on
the ordering of vertices, will be referred to as the degree
frequency vector of graph G. The empirical distribution of the
degree sequence d, defined by p(™, is a probability measure on
No = NU {0} that puts mass h;/n ati, for 0 <i<n—1.In
the following sections, we present an LDP for empirical degree
distributions (™ of two types of random graphs.

C. Erdds-Rényi Model

In the Erd6s-Rényi (ER) model, a graph is constructed by
connecting nodes randomly. Each edge is included in the graph
with probability p, independent from every other edge. We will
use G(n, p) to denote this model. The distribution of the degree
of any particular vertex v is binomial. Namely

ptas == (*7 s

It it well known that when the number of nodes n — co and np
is constant, the binomial distribution converges to the Poisson
distribution. Let A = np denote the constant. Then, in the
limiting case, the probability that the degree of a node is k is
equal to

Aree2

Per(k;\) = par = i

3)
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which is independent of the node label. Let p) = (pxo,- - -,
Daco) be the Poisson distribution viewed as a vector parame-
trized by .

Let P(Ng) be the space of all probability measures defined
on Ny. We view any probability measure p € P(Np) as an
infinite vector o = (po, ..., fieo). Let S = {p € P(Ny)| :=
Yoo ip; < 0o} be the set of all probability measures on Ny
with finite mean.

It is easy to verify that py € S. Let P, denote the degree
distribution of the ER model G(n,A/n) on the space G,.
Reference [12] proves that the ER model satisfies an LDP for
the empirical degree distribution (™) in subsets of S under P,
with the following rate function.

Definition 2: For the ER model G(n, A/n), define the rate
function Igg : & — [—o0, 00| as

1 fi T _
Ien(p:X) = Dip | a) + 5 (i = ) + 5 log A = S log

where D(p || pa) = D, ti log(pi/pai) is the KL divergence
of p with respect to pj.

D. Preferential Attachment Model

Preferential-attachment (PA) processes are graph networks
that evolve in time by linking new nodes progressively to
existing nodes, where the probability of each existing node to
be linked depends on its degree [13]. We view a PA process
as a sequence of random graphs G= {Gi,...,G,}, where G;
is the random graph at time j. We assume that only one new
node is attached each time, that is, |G;4+1] — |G;| = 1 for all
j=1...,n—1

Initially, the graph G; consists of two nodes with a single
(undirected) edge between them. At time j + 1, a new node is
linked to node = € G; with a probability proportional to some
function w(d,(j)), where d,(7) is the degree of node x at time
j. The graph is called “scale free” when w(d) = d + awand « >
—1. Here, “scale free” means that the degree distribution of G,,
converges to a power law (i.e., u,(cn) ~ k7% for some 6 > 0) as
n — oo.

1) Generalized Polya Urn Model: The evolution of the de-
gree distribution in the PA model is equivalent to a generalized
Polya urn model [141 U = {Uo, ...,U,} as follows. Initially,
Uy has two empty urns. Suppose p(t) : [0,1] — [0, 1] and 3(¢) :
[0,1] — [0, 00) are two given functions. At each time j + 1, we
first add a new urn with no ball to the collection and then:

1) with probability p(j/n), we place a new ball in this

new urn;

2) with probability 1 — p(j/n), we place a new ball in one
of the other urns x € U}, selecting = with a probability
proportional to w(b,) = b, + 5(j/n), where b, is the
number of balls in the urn z.

To make the connection between this model and a graph,
associate an urn with k£ balls with a node of the graph with
degree k + 1. Initially, Uy corresponds to a graph with two
connected nodes, each with degree 1. At each time, we add a
new node and connect it to an existing node. Placing a ball in

an urn with no balls, is equivalent to connecting the new node
to an existing node of degree 1, ending up with one node of
degree 2 and one node with degree 1. Placing a ball in an
existing urn = with b, balls is equivalent to connecting a node
of degree 1 (an urn with no balls like the one introduced each
time) with an existing node whose degree increases by 1.

Suppose g = (fig,. .., tn) is the degree distribution we
observe at last (as ¢ = 1). We consider two special cases of
the PA model whose degree distributions satisfy a power law
asymptotically [13].

2) Offset Barabdsi-Albert (BA) Process: If p(t) = 0, 5(t) =
1+ a, then the generalized urn model becomes a so-called
“offset” BA process with selection function w(d) = d + . An
“offset” BA process generates trees with no cycles. In this
model, the probability for a node to have degree k is Pga (k; ).
It has been shown that asymptotically (n — co) [13]

Ppa(k;a) < k- /¢(a + 3)

where ((z) = > 5, k=" is Riemann’s zeta-function.

We can obtain that the empirical degree distribution of
the offset BA process satisfies a sample-path LDP with rate
function

1—[pls
(C+1+a)u/(2+ )

Ina(pia) = Y- (1 [u]i)log

120

+ (1 -3 zu) log(2+a) (4)

>0

where [p]; = Z;:o 1; (see Appendix A).

3) Chung-Handjani-Jungreis (CHJ) Model: If p(t) = p and
B(t) = 1, the generalized urn model corresponds to an attach-
ment scheme that can generate graphs instead of trees. This
model is a special case of the CHJ model [15] with asymptotic
degree distribution

Pony(k;p) =< k- (F0D7) je (14 (1 - p) ).

We can obtain (see Appendix A) that the empirical degree
distribution satisfies a sample-path LDP with rate function

1—1po
I ip) = (1 — po) log ——————7=
cns(psp) = (1 = po) ng+ 1 — p)o/2

o0

+> (1~ [ul;)log

i=1

+<1—Zw,-,> 1og13p. 5)

120

— [
(1 =p)(i + 1)pi/2

III. ANOMALY DETECTION

In this section, we propose two approaches for anomaly
detections, both based on the results presented in the previous
section. The first approach, which takes netflow files as input,
quantizes flows and treats the quantized flows as observations
of a discrete random variable. The second approach, which
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takes pcap files as input, aggregates packets to graphs and lever-
ages the LDP for the graph degree distribution. A generalized
likelihood ratio test (GLRT) is proposed to select the most
appropriate random graph model.

A. Flow-Based Approach

NetFlow offers a concise representation of network traffic
and has become a de-facto industry standard. Each flow de-
scribes a communication session, whose duration varies from
seconds to days.

The overall idea of our approach is to quantize flows and
to treat them as independent observations of a discrete random
variable. We first cluster network addresses (part of the flow
characteristics) into a manageable number of clusters. For
simplicity of notation, we only consider IPv4 addresses. If x* =
(2%, 2%, 2%, 2%) € {0,...,255}* and x7 = (z],2, 2%, 7)) €
{0,...,255}* are two IPv4 addresses, a distance metric be-
tween them is defined as d(x’,x7) = Y1 _, 2564 %) |z —
xi| Letting X be the set of unique IP addresses, we apply
typical K-means clustering on X using the distance metric
mentioned before. A flow will be represented by the following
features: 1) the cluster label of the source IP address; 2) the
cluster label of the destination IP address; 3) the source port
number; 4) the destination port number; 5) the flow duration;
6) the data bytes sent from source to destination; and 7) the
data bytes sent from destination to source.

Suppose the input is a sequence of flows F = {f! ... f"}.
For each flow f, we quantize each feature separately and
denote by o(f) the “type” of quantized flow while ¥ is
the corresponding alphabet. For any p € 3, the empirical
measure is

n

uro) = (1) L1 (06 = ). ©

nj-
=1

We write pr = {ur(p):p e X} for the vector empirical
measure.

Let p.¢ denote the probability vector calculated from some
reference flows Frer and let Inow (1) = D(p || tper). Using
the LDP presented in Section II-A, we propose the following
anomaly detector:

Iﬂow(]:.) =1 (Iﬂow(u']-') > f) N

where ¢ is a detection threshold. It was shown in [7] that (7)
is asymptotically Neyman-Pearson optimal. We group flows
into windows based on their timestamps and apply the anomaly
detector above for each window.

B. Graph-Based Approach

We also propose a graph-based approach that processes
packet-level data. We treat each packet as an interaction record
between the source and the destination. We first group packets
into windows based on their timestamps. For all £, we denote
by Wi, the collection of packets in window k. We define the
interaction graph for window k as follows.

Definition 3 (Interaction Graph): Let & be an edge set such
that (i, j) € & if there exists at least one packet r € Wj,, whose
source is node ¢ and destination is node j or source is node j and
destination is node 4. Then, the interaction graph G = (V, &)
corresponding to W;, is an undirected graph with vertex set V,
the set of all nodes in the network, and edge set &y.

1) Model Selection: Since the LDP rate function in random
graphs depends on the graph model that is used, we first present
a method to select the appropriate graph model. We assume
M-independent observations of node degrees D = {d, ...,
dpr} under normal operation of the network. In practice, we
could pick [ nodes in the network randomly as monitoring
points and observe the degrees of these nodes in K different
interaction graphs. This will lead to M = K samples. Note
that the observations at those [ nodes may not be independent.
Yet, the dependence is negligible if | < n.

For the ER model with degree distribution Pgg(k;\)
(cf. (3)), the log-likelihood of D is

M
Lgr(D; \) = (logA) > _di =AM +C (8)

=1

where C' = — . log(d;!).

For the offset BA model and the CHJ model, the asymptotic
degree distribution is a power law with the form Ppa (k;v) =
k~7/¢(v), where + is a parameter. The log-likelihood of D is

M
Lpa(D;y) = =y > _logd; — Mlog((). ©)

i=1

In practice, we may observe some isolated nodes 7 whose
degree d; = 0. In this case, log d; = —oo and the PA model is
completely ruled out. However, these isolated nodes may be the
result of observation error. Instead of ruling out the PA model
completely, we add a finite penalty 6 for each isolated node.
Namely, we write

Lpa(D;7) = L, (Di7) =0 1(d;=0)  (10)

where L;CA is simply the same as in (9) with the summation
taken only over ¢ with d; > 0. An appropriate value of # can
be determined through experiments, as we will elaborate in
Section V-D.

We use the generalized likelihood ratio test (GLRT) (see [16]
for related discussion) to select the reference model. Let Hj be
the hypothesis that the ER model is the most appropriate and
‘H, be the alternative hypothesis; then, the GLRT is

H
m}E\i,XLER(D; A) — max Lpa (D; ) z 7
B}

Hi

(1)

where 7 is a prescribed threshold.

The maximum likelihood estimate (MLE) for the parameters
of the ER and PA models can be calculated easily by maximiz-
ing (8) and (9), respectively. Setting the derivative of Lggr (D; \)
to zero, the MLE for the parameter of the ER model is \ =
(M d;)/M. Similarly, letting ¢(z) = ¢(x)/¢(z), where the
dot denotes derivative, and ¢ !(z) be the inverse function of



396 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 2, JUNE 2017

¢(x), the MLE for the parameter of the PA model is 4 =
o (=(XCg, >0 log di)/M).

If the ER model is selected, we use Igg(p; ) as the rate
function. Let & now be the MLE of the offset BA process and p
be the MLE of the CHJ model; then, & =4 —3and p =1 —
(1 —4)~!, respectively. We can use the following combined
rate function:

Ipa(p; %) = min (Iga (p; &), Icus (D)) (12)

if the PA model is selected. It can be shown that Ipa (p;%) is
the rate function for a random graph model that is either the
offset BA model or the CHJ model (see Appendix B).

2) Formal Anomaly Detection Test: Next, we consider the
problem of evaluating whether a graph G is normal, that is,
comes from either the ER model or the PA model with desirable
parameters (Ho). Let g be the empirical degree distribution of
the graph G. I(pg) in Definition 1 provides a rigorous indicator
of the normality of pg. The rate function that should be used
depends on the result of the model selection procedure. If the
ER model is selected, we use Iggr(i; ;\) as the rate function;
otherwise, we use Ipa (14;75).

Let

if ER is selected,

Ier(p, M),
I =
(1) { if PA is selected.

IPA(H’? ’3/)1

The graph-based anomaly detector is

Igraph(g) =1 (I(NG >£) (13)

where ¢ is a detection threshold. The test in (13) is a generalized
Hoeffding test. Since I(fsg) satisfies an LDP regardless of the
selected model, the generalized Hoeffding test (13) satisfies the
Generalized Neyman-Pearson (GNP) criterion [6].

IV. BOTNET DISCOVERY

The network anomaly detection technique in the previous
section can only report whether there is an anomaly or not. In
this section, we present a botnet discovery technique that can
identify botnets. We apply a sliding window to network traffic,
monitor windows continuously, and store all anomalies. The
botnet discovery technique can be applied when the number of
detected anomalies is large enough.

The flow-based anomaly detector reports abnormal windows
and the graph-based anomaly detector reports abnormal inter-
action graphs. We first unify the output of the two methods by
defining interaction records.

An interaction record (ts, 1, j) is a tuple of timestamp, source
IP and destination IP, and it represents that node 7 and j interact
at time ¢, (regardless of direction). For the flow-based detector,
an anomalous window can be represented as a set of interac-
tion records because each flow can be easily converted to an
interaction record. For the graph-based detector, an interaction
graph can be also represented as a set of interaction records
because each edge corresponds to an interaction record. As
a result, in both methods, an anomaly can be represented as
a set of interaction records S = {r1,...,7s}. The input of

our botnet discovery method is a sequence of anomalies A =
{81, . ,S‘A‘}.

A. Identification of Pivotal Nodes

Detecting bots directly is nontrivial. Instead, detecting the
leaders (botmasters) or targets is simpler because they are more
interactive than normal nodes. Botmasters need to “command
and control” their bots to maintain the botnet, and bots actively
interact with victims in a typical DDoS attack, even before the
attack while they probe the targets. Both leaders and targets,
henceforth referred to as pivotal nodes, are highly interactive.
Suppose the total number of nodes that appear in A is n. Let
G;f be the number of interactions between node ¢ and node j in
anomaly S,. Then

Al n

-()EEe

k=1 j=1

1,.

n (14)

represents the amount of interaction of node 7 with all other
nodes in A and will be called the total interaction measure of
node 7. We next define pivoral nodes.

Definition 4 (Pivotal Nodes): The set of pivotal nodesis N' =
{i : e; > 7}, where 7 is a threshold.

After identifying pivotal nodes, we turn to detecting the
community associated with pivotal nodes.

B. Botnet Discovery

We now focus on interactions between pivotal nodes and the
remaining nodes. Pivotal nodes are either botmasters or attack
targets; in either case, their interactions with the bots are likely
to be correlated. This section presents a technique that detects a
community of highly correlated and highly interactive nodes.

Compared to similar approaches in community detection
(e.g., the leader-follower algorithm [17]), our method takes
advantage of not only temporal features (amount of interaction)
but also correlation relationships. These relationships are char-
acterized by using a graph, whose definition is presented next.

1) Construction of the Social Correlation Graph: For i =
1,...,n, let X; represent the number of interactions be-
tween node 7 and pivotal nodes. For each anomaly S €
A, we obtain a sample of X; as aFf = Zje/\/ Gy). Let

X, = (1/JA) S, 2 be the sample mean and o(X;) =
\/(1/(\A| -1)) ‘1;4:|1 (zk — )_(i)2 be the sample standard de-

viation of X; for all 7. The sample correlation coefficient is
defined as

i [ = X5) ok — X5)]

p(Xi, X;) = (A = 1) o(X,)o(X;)

with the convention that p(X;, X;)=0 if o(X;)=0 or
o(X;) = 0. By definition, p(X;, X;) € [-1,1].

Definition 5 [Social Correlation Graph (SCG)]: The SCG
C = (V,&.) is an undirected graph with vertex set V and edge
set & = {(¢,7) : |p(X;, X;)| > 7,}, where 7, is a prescribed
threshold.
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Because the behaviors of bots are correlated, they are more
likely to be connected to each other in the SCG. Our problem
is to find an appropriate division of the SCG to separate bots
and normal nodes. Our criterion for “appropriate” is related to
the well-known concept of modularity in community detection
[18], [19].

2) Modularity-Based Community Detection: The problem
of community detection in a graph amounts to dividing its
nodes into nonoverlapping groups such that connections within
groups are relatively dense while those between groups are
sparse [18]. The modularity for a given subgraph is defined
to be the fraction of edges within the subgraph minus the ex-
pected fraction of such edges in a randomized null model. This
measure has inspired a broad range of community detection
methods called modularity-maximization methods.

We consider the simpler case when there is only one botnet
in the network. As a result, we want to divide the nodes into two
groups—one for bots and one for normal nodes. Define s; as

1, node i is a bot
8; =
’ —1, otherwise.

Let d§ be the degree of node ¢ in SCG C = (V,&,) for i =
1,...,nand m® = (1/2) )", df the number of edges in C. For a
partition specified by s = (s1, ..., S, ), its modularity is defined
as in [18]

n

) > (Ayy = Nij)é(si, 55)

ij=1

1
2me

Q(s) = < (15)

where 0(s;,s;) = (1/2)(s;s; + 1). It is easy to observe that
0(s;,8;) is an indicator of whether node ¢ and node j are of
the same type. A;; = 1(|p(X;, X;)| > €,) is an indicator of
the adjacency of nodes 4 and j. IV;; is the expected number
of edges between node ¢ and node j in a null model. The
selection of the null model is empirical; a common choice [19]
is to assume that an arbitrary edge attaches to node i with
probability «df, where x is a normalization constant. Then,
Nij = r2d§d§. Setting Y-, ; Nij = 2m¢, we can solve for &
and obtain NN;; = dfd/(2m®). The optimal division of vertices
should maximize the modularity measure (15).

3) Refined Modularity: We introduce two refinements to the
modularity measure to make it suitable for botnet detection.
First, intuitively, bots should have strong interactions with piv-
otal nodes and normal nodes should have weaker interactions.
We want to maximize the difference. To capture the amount of
interaction between node i and pivotal nodes, define

Al

=) ST e

k=1jeN

(16)

We refer to r; as pivotal interaction measure of node i. Then,
Zi r;s; quantifies the difference between the pivotal inter-
action measure of bots and that of normal nodes. A natural
extension of the modularity measure is to include an additional
term to maximize ) _, 7;s;.

Second, the modularity measure is criticized to suffer from
low resolution, that is, it favors large communities and ignores

small ones [20]. The botnet, however, could possibly be small.
To address this issue, we introduce a regularization term for
the size of botnets. Notice that Y, 1(s; =1) = >_,(s; +1)/2
is the number of detected bots. Thus, our refined modularity

measure is
1 dgds
Qa(s) = 2me Z (Aij - 2mz> 8i5;
s;+1
+w1;m$¢—w2; ‘2 17)

i,jev
where w; and ws are appropriate weights.

The two modifications also influence the results of isolated
nodes with degree 0, which possibly exist in SCGs. By Def. 5,
node i becomes isolated if o(X;) = 0 or its correlations with
other nodes are small enough. The placement of isolated nodes,
however, does not influence the traditional modularity measure,
resulting in arbitrary community detection results [18]. This
limitation is addressed by the two additional terms. If node @
is isolated and r; = 0, then s; = —1 in the solution because of
the regularization term ws »_;(s; +1)/2. On the contrary, if
r; is large enough, s; = 1 in the solution because of the term
w1 Zi TiS;.

4) Relaxation of the Optimization Problem: The modularity-
maximization problem has been shown to be NP-complete [21].
The existing algorithms can be broadly categorized into two
types: 1) heuristic methods that solve this problem directly [22],
and 2) mathematical programming methods that relax it into an
easier problem first [21]. We follow the second route because it
is more rigorous.

We define the modularity matrix M = {M;;}]';_,, where
M;j = Ay/(2me) — dSds/(2me)?. Let s = (s1,...,s,) and

r = (r1,...,7,); then, the modularity-maximization problem
becomes

f*=max s'Ms+ (wlr' - %1') s

s.t. s? =1

(18)

where 1 is the vector of all ones and f* denotes the optimal
value. Equation (18) is not necessarily convex. Letting

w
e ()1

and noticing that s'Ms = Tr(SM), and by relaxing the con-
straint S = ss’ into S — ss’ = 0, we can write the following
convex relaxation [23] of (18):

S =ss/,

f:elax = max TI(SM) + qBS
S S
s.t |:Sl 1:| t 07
Su - la Vi (19)

Let
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then the problem can be compactly written as
f:elax = max TI‘(XW)

X >0,

Xii = 17

S.t.
V. (20)
The problem above is a semidefinite programming (SDP) prob-
lem and produces an upper bound on the optimal value of
the original problem (18). It is well known that SDPs are
polynomially solvable and many solvers are available.

Theorem IV-1: Let x_;, be the smallest negative eigenvalue
of W, where x,;, = 0 when W = 0. Then

2 * 2 — * *
;frelax + (1 - 7_(_) Xmin(n + 1) < f < frelax'

Proof: See Appendix C. (]

In the special case that W > 0, (18) becomes a MAXCUT
problem and the lower bound degenerates to the well-known
bound for MAXCUT [11].

5) Randomization: Solving the SDP relaxation (19), we
obtain an optimal solution (S*, s*) of (19) together with bounds
on f*. However, this solution may not be feasible for (18). To
generate feasible solutions, we use a randomization technique.

Notice that by feasibility in (19), S* — s*(s*)' > 0 and it can
be interpreted as a covariance matrix. If we pick y as a Gaussian
random vector with y ~ N (s*, 8* — s*(s*)), then y will solve
the nonconvex (18) “on average” over this distribution. Thus,
to generate good feasible solutions of (18), we can sample y
from N (s*, S* — s*s*) and project to the feasible set as in y =
sgn(y). Sampling a large number of points (e.g., 10000) and
keeping the one with the largest objective value can produce
near-optimal solutions.

V. EXPERIMENTAL RESULTS

Our experimental results include two parts. In the first part,
we compare our method with the BotHunter method [S] on
the CTU-13 botnet dataset [24]. In the second part, we apply
our method to a dataset generated by mixing a DDoS attack
traffic dataset with real-world background traffic. In this part,
we mainly focus on the performance of our botnet discovery
approach.

A. Description of CTU-13 Dataset

The CTU-13 is a dataset of botnet traffic that was captured
in the Czech Technical University [24]. It contains 13 scenarios
with various botnet types. We consider scenarios 1, 2, 6, 8, and
9 of the dataset.

* Scenario 1 corresponds to an IRC-based botnet that sent
spam for almost 6.5 hours.

¢ Scenario 2 (2.5-hours) is from the same botnet.

* Scenario 6 is from a botnet that scanned SMTP (Simple
Mail Transfer Protocol) servers for 2 hours and connected
to several RDP (Remote Desktop Protocol) services. Dif-
ferent with Scenarios 1 and 2, this botnet neither sent
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spam nor did it attack. It’s C&C server used a proprietary
protocol.

* Scenario 8 is from a botnet that contacted a lot of Chinese
C&C hosts and received large amounts of encrypted data.
The botnet also cracked the passwords of machines during
the 19-hour attack.

* Scenario 9 corresponds to a case where 10 local hosts
were infected by a spamming botnet. More than 600 spams
were sent over 5 hours.

For all the scenarios, the authors of the CTU-13 dataset
convert the captured pcap files to NetFlows and release the
processed flows. The dataset contains ground-truth labels for
flows as follows: flows from or to the infected machines
are labeled as “botnet”; flows from or to noninfected ma-
chines are labeled as “normal”; all other flows are labeled as
“background.”

B. Performance Metrics for Botnet Detection

Typical performance metrics used in the literature are mostly
flow-based (e.g., detection and false alarm probability for an
anomalous flow) and do not usually account for the speed of
detection. For botnets, we are interested in performance metrics
that account for false alarms and miss-detections of bots but
also recognize that early detection is useful.

In this paper, we use the performance metrics proposed by
[24], which are defined based on host IPs classified either as bot
or normal. Bot IPs are the IPs that either send or receive at least
one “botnet” flow. We divide the data into multiple time frames,
indexed by ¢, which are only used to compute performance
metrics and are independent of the detection methods. For some
metrics we will use a discount function (we use o = 0.01)

ct)y=e " +1 1)
to account for the fact that early (small ¢) detections or misses
are more valuable than later ones. Let Ny (¢) be the number of
bot IPs and N,,(t) the number of normal IPs in time frame ¢,
respectively. We define:

s TP(t) = TP(t)c(t)/Ny(t), where TP(t) is the number
of bot IPs correctly identified.

e FN(t) = FN(t)c(t)/Ny(t), where F N (t) is the number
of bot IPs missed.

s FP(t) = FP(t)/N,(t), where FP(t) is the number of
normal IPs reported as bot IPs.

o TN(t) = TN(t)/Ny,(t), where TN (t) is the number of
normal IPs reported as normal,

corresponding to true positives, false negatives, false positives,
and true negatives, respectively.

Let now tTP =Y ,TP(t), tFN =Y ,FN(t), tFP =
>, FP(t),tTN = >, TN(t) and define

« FPR=tFP/({TN +tFP),

Recall = tTP/(tTP + tFN),

* Precision = tTP/(tTP + tFP),

* F1-Measure = 2(Precision=Recall/(Precision+Recall)),
e G-Measure = v/Precision * Recall.
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TABLE 1
SUMMARY OF RESULTS ON THE CTU DATASET
Scenario [ Method | TP tTN tFP tFN FPR Recall (TPR) Precision F1 Measure G Measure
| Our Method 7.52 66.81 1.19 90.50 0.017 0.077 0.86 0.14 0.26
BotHunter 1.59 73.80 0.18 109 0.0024 0.014 0.90 0.028 0.11
5 Our Method 3.77 44.03 0.97 77.64 0.022 0.046 0.80 0.088 0.19
BotHunter 1.65 46.9 0.05 75 0.0011 0.022 0.97 0.042 0.14
6 Our Method 4.05 15.18 1.82 28.66 0.11 0.12 0.69 0.21 0.29
BotHunter 2.53 20.9 0.02 37.3 0.00096 0.064 0.99 0.12 0.25
3 Our Method | 13.42  219.0 9.010  292.00 0.040 0.044 0.60 0.082 0.16
BotHunter 0 229 0.11 309 0.00048 0 0 - 0
9 Our Method 5.21 56.04 1.97 59.66 0.034 0.080 0.73 0.14 0.24
BotHunter 1.76 57.9 0.06 86.9 0.001 0.02 0.97 0.039 0.14

The metrics above have similar semantic meanings with their
classical counterparts [24].

C. Results on the CTU-13 Dataset

The BotHunter method is based on a state-based infection
sequence model and assumes the behavior of a bot machine can
be described by a state diagram. It consists of two stages. The
first stage identifies warnings based on anomaly and signature
detection. In the second stage, the warnings are tracked over
a temporal window, each contributing to an overall infection
sequence score that is maintained for each host.

For the evaluation, we used the GAD software package
we developed for evaluating anomaly detection methods [25],
to which we added botnet evaluation functionalities. For the
CTU-13 dataset we used our flow-based anomaly detection
coupled with our botnet discovery approach as described in
Section IV. The time frame size for evaluation is 5 minutes.
For every scenario, the first 25 minutes of the dataset have
no botnet traffic and are used for training. Each detection
window is 2 seconds. The threshold for constructing our social
correlation graph is 7, = 10. The regularization coefficients
for interactivity and community size (cf. (17)) are w1 = 1 and
wy = 2, respectively. The anomaly detection threshold ¢ is 0.6
for Scenarios 1 and 6 and 0.8 for the other scenarios.

Table I shows the comparison of our method with the
BotHunter method in the five scenarios. In general, our method
has lower precision but higher recall. The recall of BotHunter
is very low, which is likely due to two reasons: (1) the data was
collected in the gateway of an intranet and the bots inside the in-
tranet may have been infected before the dataset was collected,
and (2) information from external bots is not directly observed
and is not sufficient for dialog analysis. In contrast, our method
tends to be more aggressive in reporting alarms since our botnet
discovery is based on modularity-based community detection,
which is likely to detect large communities. This is also the
reason why we add a regularization term for community size in
(17) to alleviate this tendency, and we can increase the weight
wy to achieve higher granularity. In botnet detection, recall
is more important than precision because missing infected
machines may cause serious security issues while false alarms
are more tolerable.

There are several ways of combining precision and recall
to give an overall metric for algorithm performance. Table I
lists two popular metrics: F1-measure and G-measure [24]. The
F1-measure is the harmonic mean of precision and recall and
the G-measure is the geometric mean of precision and recall. In

Scenario 8, BotHunter fails to report any bot IP. For all other
scenarios, our method has better F1-measure and G-measure
than the BotHunter method.

D. Random Graph Model Selection in Mixed Models

This section presents results of our random graph model
selection algorithm on a mixed model. It also presents a way
to determine the penalty coefficient 6 (cf. Eq. (10)) through
experiments. We first define the following random graph model.
To generate a graph Guix = (Vix, Emix) With this model, we
partition Vi into two subsets Vggr and Vpa. Then, graphs
Ger = (VER,Err) and Gpa = (Vpa,Epa) are generated by
the ER model and the PA model, respectively. The edge set of
gmix is gmix = gER U gPA-

We let [Ver| = [Vpa| and generate a sequence of graphs
using the random graph model described above. Taking some
samples of node degrees D = {di,...,dp|} from the graphs,
we can assume that the maximum likelihoods of D for the
ER and the PA models are equal, namely, maxy Lgg(D;\) =
max., Lpa (D; 7). It follows from (10)

GZ 1(d; = 0) = m’?XL;A(D;y) —max Lpr (D3 A). (22)

We can use (22) to estimate # approximately using least-
squares. This approach generalizes to real-world datasets.
We can ask experts to give estimates of max, Lpa(D;7y) —
maxy Lgr(D;\) for each D and ), 1(d; = 0) is available
from the sample D. Again, we can use least-squares to
estimate 6.

E. Description of CAIDA Dataset

Next we create a dataset by mixing real-world botnet traffic
with real-world background traffic. For the botnet traffic, we
use the CAIDA “DDoS Attack 2007 dataset [26]. It includes
traces from a Distributed Denial-of-Service (DDoS) attack on
August 4, 2007. The DDoS attack attempts to block access to
the targeted server by consuming computing resources on the
server and all of the bandwidth connecting the server to the
Internet.

The total size of the dataset is 21 GB covering about one hour
(20:50:08 UTC to 21:56:16 UTC). This dataset only contains
attacking traffic to the victim; all other traffic, including the
C&C traffic, has been removed. The dataset consists of two
parts. The first part is the traffic when the botnet initiates the
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attack (between 20:50 UTC and 21:13 UTC). In this stage,
the bots probe whether they can reach the victim. The amount
of traffic from the botnet during this period is small, thus, it
is very challenging to detect it using only network load. The
second part is the attack traffic which starts around 21:13 UTC
when the network load increases rapidly (within a few minutes)
from about 100 Kb/s to about 80 Mb/s. Although the DDoS
attack itself (after 21:13 UTC) is trivial to detect, we apply
our approach to a 5-minute segment between 20:50 UTC and
21:13 UTC. This is traffic from the pre-attack stage when the
botnet probes the target. Botnet traffic during this period is
low-intensity (about 100 Kb/s). A successful detection during
this stage provides network administrators enough time (about
20 min) to take preventive actions, such as, blocking suspected
bot IPs.

For the background traffic, we use trace 6 in the University
of Twente traffic traces data repository (simpleweb) [27]. This
trace was measured in a 100 Mb/s Ethernet link connecting a
university unit to the Internet. This is a relatively small unit
with around 35 employees and a little over 100 students. There
are 100 workstations at this location which all have a 100 Mb/s
LAN connection. The core network consists of a 1 Gb/s con-
nection. The recordings took place between the external optical
fiber modem and the first firewall. The measured link was only
mildly loaded during this period. The background traffic we
choose lasts for 3,600 seconds. The botnet traffic is mixed with
background traffic between 2,000 and 2,300 seconds.

FE. Results of Network Anomaly Detection

We first divide the background traffic into 10-second win-
dows and create a sequence G,grng of 360 background interac-
tion graphs. We apply the model selection technique described
in Section III-B1 to G,gynd-

We first randomly sample 50 interaction graphs from Gygrnd
and sample the degrees of 20 nodes in each interaction graph
uniformly. As a result, our total sample size is |D| = 1, 000. In
our experiment, we set § = 2.44. The MLE of the PA model
is 4 = 1.82 and its log likelihood Lpa(D;4) = —3,072.58.
The MLE of the ER model is A = 0.025 and its log-likelihood
Lggr(D; \) = —643.78. We use a threshold 77 = 0 in applying
the GLRT and assume no prior knowledge of the model. GLRT
selects the ER model (cf. (11)).

Fig. 2(a) shows the detection results. The blue “+” markers
correspond to Igg (p;; \) for each window i, i = 1,..., 360,
where p; is the empirical degree distribution of interaction
graph i. The (red) dashed line shows the threshold ¢ = 0.18.
There are 36 abnormal interaction graphs, namely, |A| = 36.
There are 30 interaction graphs that have botnet traffic and
29 interaction graphs are correctly identified. The interaction
graph corresponding to the time range [2,000,2,010] is missed.
Being the start of the botnet traffic, this range has very low bot-
net activity, which may explain the miss-detection. In addition,
there are two groups of false alarms—3 false alarms around
3,000 s and 4 false alarms around 3,500 s. Fig. 2(b) shows the
Receiver Operating Characteristic (ROC) curve of the network
anomaly detection stage.
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Fig. 2. (a) the rate function value lgg (1;; }\) for each window i. The
X-axis shows the start time of each window. The background traffic lasts for
3,600 seconds and the botnet traffic is added between 2,000 and 2,300 seconds.
(b) the ROC curve. The x-axis plots the false positive rate and the y-axis plots
the true positive rate.
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Fig. 3. Sorted amount of interaction in A defined by (14). y-axis is in log-scale.
The red dashed line plots the threshold T we used.

G. Results of Botnet Discovery

The botnet discovery stage aims to identify bots based on
the information in .A. The first step is to identify a set of
pivotal nodes N (cf. Def. 4 and Eq. (14)). Let epay be the
maximum total interaction measure of all nodes and S Nor™ =
{€;/€max : © = 1,...,n} the normalized set of rotal interaction
measures. Fig. 3 plots S Y™™ in descending order using log-
scale for the y-axis. Each blue “+” marker represents one node.
The blue curve in Fig. 3, being quite steep, clearly indicates
the existence of influential pivotal nodes. The red dashed line
in Fig. 3 plots the chosen threshold 7 used in Def. 4, which
results in 3 pivotal nodes. Only one pivotal node (the one with
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Fig. 4. Correlation matrix of X, X;j foralli,j € Vp (plotted by the pcolor
command in the pylab python package).

maximum fotal interaction measure) belongs to the botnet. The
other two pivotal nodes are active normal nodes. These two
falsely detected pivotal nodes correspond to the two false-alarm
groups described in Section V-F.

Our dataset has 396 nodes, including 136 bots and 260 nor-
mal nodes. Among the 396 nodes, only 213 nodes have positive
sample standard deviations o(X;). Let V, = {i : o(X;) > 0}
be the set of these nodes. Fig. 4 plots the correlation matrix of
X;, X forall 4,5 € V,. We can easily observe two correlation
groups.

We calculate the SCG C using Def. 5 and threshold 7, = 0.3.
In C, there are 191 isolated nodes with degree zero. The sub-
graph formed by the remaining 205 nodes has two connected
components (Fig. 5(a)). Fig. 5(a) plots normal nodes as blue
circles and bots as red squares. Although the bots and the
normal nodes clearly belong to different communities, the two
communities are not separated in the narrowest part. Instead,
the separating line is closer to the bots.

We apply our botnet discovery method to C. The result
(Fig. 5(b)) is very close to the ground truth (Fig. 5(a)). As
comparison, we also apply other community-detection methods
to the 205-node subgraph.

The first method is the vector programming method proposed
in [21], which is a special case of our method using w; =0
and wo = 0 in (17). This approach, however, misses some bots
(Fig. 5(c)).

The second method is the walktrap method in [28], which
defines a distance metric between nodes based on a random
walk and applies hierarchical clustering. When the desirable
number of communities, a required parameter, equals to two,
the method reports the two connected components—a reason-
able, yet uninformative result for botnet discovery. To make
the results more meaningful, we use walktrap to find three
communities and ignore the smallest one that corresponds to the
smaller connected component (right triangles in Fig. 5(d)). The
community with higher mean of the pivotal interaction measure
is detected as the botnet, and the remaining nodes are called

normal. The walktrap method separates bots and normal nodes
in the narrowest part of the graph, a reasonable result from
the perspective of community detection (Fig. 5(d)). However,
a comparison with the ground-truth reveals that a lot of normal
nodes are falsely reported as bots.

The third method is Newman’s leading eigenvector method
[19], a classical modularity-based community detection
method. This method first calculates the eigenvector corre-
sponding to the second-largest eigenvalue of the modularity
matrix M, namely the leading eigenvector. The solution s =
(s1,...,8n) is then constructed by letting s; be the sign of
the ith element of the leading eigenvector. The method can be
generalized for detecting multi-communities [ 19]. Similar to the
walktrap method, the leading eigenvector method reports two
connected components when the desirable community number
is two. We also use this method to find three communities and
ignore the smallest one. Again, the community with higher
mean of pivotal interaction measure is detected as the botnet.

Different from the previous methods, the eigenvector method
makes a completely wrong prediction of the botnet. The com-
munity whose majority are bots (blue circles in Fig. 5(e)) is
wrongly detected as the normal part and the community formed
by the remaining nodes is wrongly detected as the botnet. De-
spite being part of the real botnet, the community of blue circles
in Fig. 5(e) actually has lower mean of pivoral interaction
measure, i.e., less overall communication with pivotal nodes.

After dividing the SCG C into five communities using the
leading vector approach for multi-communities [19], we ob-
serve that the botnet itself is heterogeneous and divided into
three groups. Both the group with the highest mean of pivoral
interaction measure (Group II in Fig. 5(f)) and the group with
the lowest mean (Group I in Fig. 5(f)) are part of the botnet.

Because of this heterogeneity, some groups of the botnet
may be misclassified. The leading vector method wrongly sep-
arates Group I from the rest as a single community, and merges
Group II & IV with the normal nodes (Group III). Because
Group I has the lowest pivotal interaction measure, it is wrongly
detected as normal, causing Groups II, III, IV to be detected as
the botnet. Similarly, the vector programming method wrongly
detects a lot of nodes in Group II, which should be bots, as
normal nodes.

By taking the pivotal interaction measure into consideration,
the misclassification can be avoided. In our formulation of the
refined modularity (17), the term w; Zi r;S; maximizes the
difference of the pivotal interaction measure of the botnet
and that of the normal part. Owing to this term, our method
makes few mistakes for nodes in Group II since they have high
pivotal interaction measures. Let S, = {r; : s; = —1} and
S ={r;:s; =1} be the set of pivotal interaction measures
for normal nodes and bots. Table I shows the mean of S
(Col. 1) and S ;F (Col. 2) for ground truth (Row 1), our method
(Row 2), the walktrap method (Row 3), and the leading
eigenvector method with 3 communities (3-LEV, Row 4), re-
spectively. The difference between the mean of S;* and S
(Col. 3 of Table II) of 3-LEV, whose result is unreasonable, is
significantly smaller than the rest of the methods. In compari-
son, the difference in our method is much larger and closer to
the ground truth.
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Fig. 5. Comparison of different community detection techniques on the SCG. In A-C, red squares are bots and blue circles are normal nodes. In D-F, red squares
indicate the group with the highest average pivotal interaction measure, while blue circles indicate the group with the lowest one. (a): ground-truth communities
of bots and normal nodes. (b): result of our botnet discovery approach. (c): result of the vector programming method in [21]. (d): result of the walktrap method
[28] with three communities. (e): result of the leading eigenvector method [19] with 3 communities. (f): result of the leading eigenvector method with five clusters.

TABLE II
STATISTICS ON THE PIVOTAL INTERACTION MEASURES
Normal Mean Bot Mean Difference
Ground Truth 0.0021 0.024 0.0219
Our Method 0.0017 0.024 0.0223
Walktrap 0.0019 0.021 0.0191
3-LEV 0.011 0.018 0.0078

VI. CONCLUSION

In this paper, we propose a novel method of botnet detection
that consists of two stages. The first stage applies a sliding win-
dow to network traffic and monitors anomalies in the network.
We propose two anomaly detection methods, both of which are
based on large deviations results, for flow and packet level data,
respectively. For both anomaly detection methods, an anomaly
can be represented as a set of interaction records.

Once instances of anomalies have been identified, we pro-
posed a method for detecting the compromised nodes. This is
based on ideas from community detection in social networks.
However, we devised a refined modularity measure that is suit-
able for botnet detection. The refined modularity also addresses
some limitations of modularity by adding regularization terms
and combining information of pivotal interaction measure
and SCGs.

APPENDIX A
LDP FOR THE DEGREE DISTRIBUTION IN THE PA MODEL

In the generalized Polya urn model, let Al (j) denote the
number of urns with ¢ balls at time j. For 0 < j <n and
d > 0, define h™4(j) = (hg(5),....h%(j), hi,1(j)) to be the
d-truncated degree distribution at time j, where hy, ,(j) =
Yksarr he(d). H™4 = {h™?(0),...,h™%(n)} is a Markov
chain with initial state h™%(0) corresponding to the initial urn

configuration . We interpolate H™%/n into a continuous
process X ™4 = {x™d(¢) : 0 <t < 1} as:

(o) = () e (Lot
+ (t — [nt]/n) (W™ (|nt] + 1) — h™% (|nt])) .

We can extend this definition into an infinite-dimensional
process X ™ = {x™*(¢):0<t <1} by removing the
truncation.

Suppose we can observe an empirical d-truncated degree dis-
tribution ¢ (t) = (¢o(t), - . ., a(t), Pa+1(t)), where pg11(t) =
1= Yi—g or(t). Define @(t) = (¢o(t), ..., @a(t), far1 (1))
as the time derivative of ¢(t). For d > 0, [13] establishes a
sample-path LDP for X ™¢ with rate function (recall the [-];
notation; Section I)

i - [plo)ly
Tlg) = / (1=l ton o=

d 1—[p(®));
+;(1*[<P( ;) log (1—p(0)) LD

1= (1= [e®)],)

S0 ((+8()wi (1)
(1-p(0) (1~ Hoiigne )

(23)
Similarly, X ™ satisfies a sample-path LDP with rate function

Io(p) = lim Li(ep). (24)

d—o0
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In applying this result, we assume that the observed network is
generated by a process that evolves with constant rate, that is,
@(t) = pt. It follows ¢(t) = p. The rate functions in (4) and
(5) are special cases of (24).

APPENDIX B
RATE FUNCTION FOR A MODEL THAT SELECTS
BETWEEN THE OFFSET BA AND THE CHJ

We give an outline of the key argument. Suppose we build
a random graph by selecting with probability mpa the offset
BA process and with probability mcpy = 1 — mga the CHJ
process. Recall our definition of the d-truncated degree dis-
tribution process X ™4 = {x™4(t) : 0 < ¢ < 1} and let X [,
X gﬁ, and X &({1 5 be the corresponding processes for the generic
PA model, the offset BA model, or the CHJ model, respectively.
For any closed set 5 of trajectories

P(xpleB) <P (XEieB)+ P (X, €B)

and since the two terms on the rhs satisfy LDPs with rate
functions Ig (p; ) and Iy (p; p) respectively, we obtain

1
lim sup — log P (X md e B) < inf

I ;
Jm n (8 (1) eB) pa (14, 7)

(25)

where X™4(u) are trajectories that evolve at a constant rate .
To establish a lower bound note that

P(X3{ €B) = P (X} € B)and
P(X3{ €B) = P (X4, €B).

It follows that the LDP lower bound for P(X }ﬁ}f € B) holds
with rate function Ipa (i, ).

APPENDIX C
PROOF OF THEOREM IV.1

Proof: Letting x = (s, 1), problem (18) becomes
f*=max x'Wx

st. 22=1, di=1,....n+1.  (26)
Wisa (n+1)x (n+1) symmetric matrix, not necessarily
= 0, yet, its smallest eigenvalue X ;, is real. Eq. (20) is an SDP
relaxation of (26). Suppose now P = W + ¢l is a regularized

matrix. P > 0 if

0 2 ~Xmin- 27)
Consider the regularized problem
freg = max x'Px
st a? =1, i=1,....,n+1.  (28)

Note that the regularized term px'Ix is a constant for any
feasible solution because x'Ix = Zz bLf =n-+1. As a result,

(26) and (28) should have the same optimal solution x* but
different objective values. Then,

freg = "+ o(n+1). (29)
By setting X = xx/, the SDP relaxation of (28) is
max Tr(XP)
st. X >0
Xi=1, t1=1,...,n+1. (30)
Suppose X* is an optimal solution of (30); then
%Tr(X*P) < freg < Tr(X*P) (31)

if (27) is satisfied. The upper bound is due to the relaxation
and the lower bound follows from Nesterov’s extension to the
MAXCUT bound [11]. Moreover

Tr(X*P) = Tr(X*W) + oTr(X")

= :elax + Q(TL + 1) (32)
Combining (29), (31), and (32), we have
2
= (flamton+ D) < f +on+1) (3

for ¢ > —X,,in- The lower bound in Th. IV-1 can be proved by
letting o take its minimum value —Y,,;, and reorganizing the
terms in (33). The upper bound in Th. IV.1 is a standard property
of SDP relaxation. (]
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