
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 6, JUNE 2017 2689

An Actor-Critic Algorithm With Second-Order
Actor and Critic

Jing Wang and Ioannis Ch. Paschalidis, Fellow, IEEE

Abstract—Actor-critic algorithms solve dynamic decision
making problems by optimizing a performance metric of
interest over a user-specified parametric class of policies.
They employ a combination of an actor, making policy
improvement steps, and a critic, computing policy improve-
ment directions. Many existing algorithms use a steepest
ascent method to improve the policy, which is known to suf-
fer from slow convergence for ill-conditioned problems. In
this paper, we first develop an estimate of the (Hessian) ma-
trix containing the second derivatives of the performance
metric with respect to policy parameters. Using this esti-
mate, we introduce a new second-order policy improvement
method and couple it with a critic using a second-order
learning method. We establish almost sure convergence of
the new method to a neighborhood of a policy parameter
stationary point. We compare the new algorithm with some
existing algorithms in two applications and demonstrate
that it leads to significantly faster convergence.

Index Terms—Actor-critic algorithms, Markov decision
processes, Newton’s method, robotics.

I. INTRODUCTION

MARKOV Decision Processes (MDPs) provide a general
framework for sequential decision making problems. Al-

though MDPs can be solved usingdynamic programming,the
well-known “curse of dimensionality” becomes an impediment
for larger instances [1]. In addition,dynamic programmingin
a standard implementation requires explicit transition probabil-
ities among states under each control, which are not available
for many applications. To address these limitations, a number
ofapproximate dynamic programmingtechniques have been
developed, includingreinforcement learningmethods [2], a va-
riety of techniques involving value function and policy approx-
imations (neuro-dynamic programming[3]) andactor-critic
algorithms[4].
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This paper focuses on the latteractor-critic algorithms.They
optimize a parametric user-designedRandomized Stationary
Policy(RSP) using policy gradient estimation. RSPs are poli-
cies parameterized by a parsimonious set of parameters. To
optimize the RSPs with respect to these parameters,actor-critic
algorithmsestimate policy gradients using learning methods
that are much more efficient than computing a cost-to-go func-
tion over the entire state-action space. Many different vari-
ants ofactor-critic algorithmshave been proposed and shown
to be effective for many applications such as robotics [5],
biology [6], navigation [7], and optimal bidding for electricity
generation [8].
In an attractive type of anactor-critic algorithmintroduced in
[4], a critic is used to estimate the policy gradient from observa-
tions on a single sample path and an actor is using this gradient to
update the policy at a slower time-scale [4]. The estimate of
the critic tracks the slowly-varying policy asymptotically, using
first-order variants of theTemporal Difference (TD)learning
algorithms (TD(1) and TD(λ)). However, it has been shown that
second-order learning methods—Least Squares TD (LSTD)—
are superior in terms ofrate of convergence(see [9]–[14]).
LSTD was first proposed for discounted cost problems in [11]
and was shown to have the optimalrate of convergencein [12].
In [14], LSTD is used in the critic of an actor-critic algorithm,
resulting in the LSTD Actor-Critic algorithm (LSTD-AC).
Later, this algorithm was applied to applications of robot
motion control with temporal specifications [15]–[17]. Despite
faster convergence than TD-based methods, LSTD-AC exhibits
slow convergence for ill-conditioned problems in which the
performance metric is more sensitive to some parameters in the
RSPs than others. The reason is that it uses a first order actor
with an “unscaled” gradient, commonly known as steepest
ascent, to update the policy. This often leads to a “zig-zagging”
behavior in order to converge to a stationary point.
Several algorithms have been introduced which use a second-
order method in the actor. The “natural” gradient method was
originally proposed for stochastic learning [18], [19]. [20] pro-
posed a different estimate of the natural gradient but its accuracy
can be influenced by the choice of basis functions; an episodic
algorithm was then proposed to guarantee the unbiasedness of
the estimate. These methods use the inverse of the Fisher infor-
mation matrix to scale the gradient. [21] suggested several incre-
mental methods using the natural policy gradient. [22] presented
an online natural actor-critic algorithm using a natural gradient
and applied it to a road traffic optimization problem. Based on
[20], [23] proposes three fully incremental natural actor-critic
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algorithms. It also describes a method that is based on a
“vanilla” gradient and provides extensive empirical comparison
of all algorithms in test problems (so calledGeneric Average
Reward  Non-stationary  Environment  Testbed—GARNET
problems [23]).
Although natural gradients are very effective in stochastic

learning, there are alternative ways to scale gradients. The
Hessian matrix of the performance metric with respect to the pa-
rameters is commonly used to improve therate of convergence.
[24] proposes an estimate of the Hessian matrix for a discounted
reward problem using a sample path of an MDP. Although the
relationship between the Fisher information matrix and the Hes-
sian matrix has been briefly discussed in [19] and [25], it is still
not fully clear how they are related in the actor-critic framework
and why natural actor-critic algorithms work well in practice.
In this work, we develop a more general estimate of the

Hessian matrix for actor-critic algorithms. In Section V-C, we
demonstrate that our Hessian estimate degenerates to the Fisher
information matrix used in natural actor-critic algorithms if we
assume no knowledge of the state-action value function and ig-
nore second derivatives with respect to the parameter vector. In
this light, natural actor-critic algorithms can be seen as equiv-
alent to quasi-Newton methods that assume no knowledge of
the state-action value function when approximating the Hessian
matrix. In fact, [12] proposes a quasi-Newton actor-critic
algorithm that is very similar to the methods in [20].
This paper proposes a method that uses LSTD-based crit-

ics to provide estimates of both the gradient and the Hessian
and utilizes the Hessian estimate in theactorto update policy
parameters.
We establish almost sureconvergence in the neighborhood

of a stationary point (with respect to policy parameters) of the
performance metric. We remark that a subset of the results ap-
peared in a preliminary conference paper in [1]. The present
paper contains all proofs concerning the Hessian estimate, the
convergence analysis which was absent from [1], and a much
more extensive numerical evaluation of our method both in
GARNET problems and in an application from robotics.
The remainder of the paper is organized as follows: Section II

provides background on MDPs and establishes some of our no-
tation. Section III presents the estimation of the policy gradient.
Section IV develops the estimate of the policy Hessian, which
is the foundation of the new algorithm. Section V describes
our method and Section VI proves its convergence. Section VII
presents two case studies.
Notation:Bold letters are used to denote vectors and matrices;

typically vectors are lower case and matrices upper case. Vectors
are column vectors, unless explicitly stated otherwise. Prime de-
notes transpose. For the column vectorx∈Rnwe writex=
(x1,...,xn)for economy of space, while x denotes the
Euclidean norm. The expressions 0and 0denote positive-
definiteness and positive-semi-definiteness, respectively. Vec-
tors or matrices with all zeroes are written as0and the identity
matrix asI. For any setS,|S|denotes its cardinality.θdenotes
the parameters in parameterized policies. If not explicitly speci-
fied,∇and∇2denote the gradient and Hessian w.r.t.θ.Tosim-
plify the notation, a lot of equations in this paper are represented

using functional notation and the domain of these functions is
assumedtobeX×U, whereX andU are the state and the
action space, respectively, of the MDP. Vector-valued functions
are denoted using bold letters while scalar-valued functions are
denoted using normal letters.0and1are functions that assign
the value 0 and 1 to all state-action pairs, respectively.

II. MARKOVDECISIONPROCESSES

Consider a discrete-timeMarkov Decision Process (MDP)
with a finite state spaceXand an action spaceU.Letxk∈X
anduk∈U be the state of the system and the action taken
at timek, respectively. Letg(xk,uk)be the one-step reward
of applying actionukwhen the system is at statexk. We will
usex0to denote the initial state andp(xk+1|xk,uk)for the
state transition probabilities, which are typically not explicitly
known. We assume that{xk}and{xk,uk}are ergodic Markov
chains [12].
This paper considers policies that belong to a parameterized
family of RSPs{μθ:θ∈R

n}. That is, given a statex∈X
and ann-dimensional parameter vectorθ, the policy applies
actionu∈U with probabilityμθ(u|x). Given a fixed policy
μθ(u|x), the history ofg(xk,uk)can be represented by a ran-
dom process. LetEθ{·}be the expectation with respect to this
random process; the long-term average reward for a policyμθ
is̄α(θ)=Eθ{limT→∞

1
T

T−1
k=0[g(xk,uk)]}.

In average reward MDP optimization problems, the perfor-
mance metric is the long-term average reward ̄α(θ)and the
objective is to optimizeᾱ(θ). Similar problems can be defined
by using discounted reward or total reward as performance met-
rics [12]. Note that the discounted reward and the total reward
can be treated as the average reward of an artificial MDP (See
Chapter 2 of [12]). Without loss of generality, this paper focuses
on the average reward case. Corresponding results for the other
cases can be obtained with modifications similar to Sec. 2.4 and
2.5 of [12].

III. ESTIMATION OFPOLICYGRADIENT

Thestate-action value functionQθ:X×U → R (some-
times referred to as theQ-value function) of a policyμθis
defined as the expected future reward given the current state
xand the actionu.Qθis the unique solution of the Poisson
equation with parameterθ[26], [12] (written as a functional
relationship)

Qθ=g−ᾱ(θ)1+PθQθ, (1)

wherePθis the operator of taking expectation after one transi-
tion. More precisely, for any real-valued or vector-valued func-
tionfdefined onX×U,

(Pθf)(x,u)=
y,ν

p(y|x,u)μθ(ν|y)f(y,ν) (2)

for all(x,u)∈X×U.
Let now

ψθ(x,u)=∇lnμθ(u|x), (3)
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whereψθ(x,u)=0whenx,uare such thatμθ(u|x)≡0for all
θ’s.Itisassumedthatψθ(x,u)is bounded and continuously dif-
ferentiable. Sinceμθ(u|x)is the probability of actionuat statex
forθ,ψθ(x,u)is the gradient of thelog-likelihoodlnμθ(u|x).
We write ψθ=(ψ

1
θ,...,ψ

n
θ)where nis the dimensionality

ofθ.
For eachθ∈Rn,letηθ(x,u)be the stationary probability
of state-action pair(x,u)in the Markov chain{xk,uk}.For
anyθ∈Rn, we define the inner product operator·,·θof two
real-valued or vector-valued functionsQ1,Q2onX×U by

Q1,Q2θ=
x,u

ηθ(x,u)Q1(x,u)Q2(x,u). (4)

A key fact underlying actor-critic algorithms is that the policy
gradient of̄α(θ)can be expressed as [27], [12]

∂̄α(θ)

∂θi
= Qθ,ψ

i
θ θ
,i=1,...,n. (5)

IV. ESTIMATION OF THEPOLICYHESSIAN

Earlier work in actor-critic methods has used critics based
on TD(1), TD(λ), and LSTD methods to estimate the policy
gradient∇ᾱ(θ)[4], [28]. Since we are interested in a Newton-
like gradient ascent update in the actor, in this section we develop
an estimate for the policy Hessian matrix∇2ᾱ(θ).
Applying the operator∇on the real-valued functiongθ(x,u)
parameterized byθ, we obtain a vector-valued function, abbre-
viated as∇gθ, which maps(x,u)to∇gθ(x,u). For a vector-
valued functionfθ:X×U → R

m parameterized byθ, which
can be denoted asfθ=(f

1
θ,...,f

m
θ), we define∇fθto be an

n×m matrix-valued function whoseith column is∇fiθ.
Lemma IV.1:For any vector-valued functionfθ:X×U →

Rm,wehave

∇(Pθfθ)=Pθ ∇fθ+ψθfθ .

Proof:For all state-action pairs(x,u)∈X×U,wehave

∇(Pθfθ)(x,u)=∇
y,ν

p(y|x,u)μθ(ν|y)fθ(y,ν)

=
y,ν

p(y|x,u)∇(μθ(ν|y)fθ(y,ν)).(6)

In the above,μθ(ν|y)fθ(y,ν)is a function defined onX×U,
which is abbreviated as μθfθ. Using the chain rule and the
definition ofψθ, we obtain

∇(μθfθ) =μθ∇fθ+∇μθfθ

=μθ ∇fθ+ψθfθ . (7)

The lemma can be proved by substituting (7) to (6).
Lemma IV.1 provides a way to interchange thePθand∇

operators. Similar to the definition ofψθ, we define

ϕθ(x,u)=∇
2lnμθ(u|x), (8)

whereϕθ(x,u)=0whenx,uare such thatμθ(u|x)≡0for
allθ.ϕθis the Hessian matrix of thelog-likelihoodlnμθ(u|x).

The following theorem establishes a similar result to (5) for the
Hessian matrix∇2ᾱ(θ).
Theorem IV.2 (Hessian Matrix of Average Reward):Let

ϕijθ :X×U → Rbe the scalar-valued(i, j)-th component of
ϕθ(x,u). The second-order partial derivative of̄α(θ)with
respect toθcan be represented as:

∂2ᾱ(θ)

∂θi∂θj
= Qθ,ψ

i
θψ
j
θ
θ
+ Qθ,ϕ

ij
θ
θ

+
∂Qθ
∂θi
,ψjθ

θ

+
∂Qθ
∂θj
,ψiθ

θ

(9)

for alli, j=1,...,n, where·,·θis the inner product operator
defined in (4).
Proof:Applying the ∇ operator on both sides of (1) and

using Lemma IV.1 withfθbeing the scalar functionQθ, we
obtain

∇ᾱ(θ)1+∇Qθ=Pθ(ψθQθ+∇Qθ). (10)

Defining the vector-valued function fθ=ψθQθ+∇Qθand
applying again the∇operator on both sides of (10), we have

∇(∇ᾱ(θ)1+∇Qθ)=∇(Pθfθ),

which due to Lemma IV.1 implies

∇2ᾱ(θ)1+∇2Qθ=Pθ ∇fθ+ψθfθ . (11)

Take now the inner product with1on both sides of (11) and
notice that becauseηθ(x,u)is the stationary probability under
θ, it holds1,hθ= 1,Pθhθfor any functionhdefined on
X×U. Wehave

∇2ᾱ(θ)+1,∇2Qθ θ= 1,∇fθ+ψθfθ θ
.

Using the definition of fθand the fact∇fθ=∇(ψθQθ)+
∇2Qθ, we obtain

∇2ᾱ(θ)+1,∇2Qθ θ= 1,∇(ψθQθ)+∇
2Qθ θ

+ 1,Qθψθψθ+ψθ∇Qθ
θ

(12)

Applying the chain rule, noticing that∇ψθ=ϕθ, and reorga-
nizing the terms in (12) it follows

∇2ᾱ(θ)= Qθ,ψθψθ
θ
+ Qθ,ϕθθ

+ ∇Qθ,ψθ
θ
+ ψθ,∇Qθ

θ
. (13)

Corresponding results for the discounted reward and the total
reward cases can be derived based on the relationship between
these three problems we discussed earlier. Intuitively, the dis-
counted and total rewards can be considered as average rewards
in some artificial MDPs. More detailed information about con-
structing the artificial MDPs is available at Sec. 2.4 and Sec. 2.5
of [12].
Theorem IV.2 states that the Hessian matrix∇2ᾱ(θ)can be
decomposed into four terms, all of which take the form of inner
products. The first two terms are the inner products of the state-
action value functionQθwithψ

i
θψ
j
θandϕ

ij
θ. Because of the
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similarity between the first two terms and (5), we can use similar
techniques as in the LSTD-AC to estimate them.
For the last two terms in (13) we need an estimate of∇Qθ.
Note that (10) is the counterpart of the Poisson equation (1) for
∇Qθ, wherePθ(ψθQθ)plays the role of the one-step reward.
However, this equation can not be directly used to estimate∇Qθ
because it is quite hard to obtainPθ(ψθQθ). To address this
problem, we present the following theorem.
Theorem IV.3:Let the functionQ̃θ:X×U → R

nbe the
solution of the equation

∇ᾱ(θ)1+Q̃θ=ψθQθ+PθQ̃θ, (14)

and∇Qθ:X×U → R
nbe the solution of (10). Then,

∇Qθ,ψθ
θ
− Q̃θ,ψθ

θ
=− Qθ,ψθψθ

θ
. (15)

Proof:Applying thePθoperator on both sides of (14) and
using the fact thatPθ1=1, we obtain

∇ᾱ(θ)1+PθQ̃θ=Pθ(ψθQθ+PθQ̃θ). (16)

Comparing (10) and (16), it followsPθQ̃θ=∇Qθ. As a result,

∇Qθ,ψθ
θ
− Q̃θ,ψθ

θ
= ∇Qθ−Q̃θ,ψθ

θ

= PθQ̃θ−Q̃θ,ψθ
θ

= −ψθQθ+∇ᾱ(θ)1,ψθ
θ

=− Qθ,ψθψθ
θ
+∇ᾱ(θ) 1,ψθ

θ
, (17)

where the third equality above used (14).
Let nowπθ(·)be the stationary probability of the Markov
chain{xk}under RSPθ. Then,ηθ(x,u)=πθ(x)μθ(u|x), and

1,ψθ
θ
=
x,u

ηθ(x,u)ψθ(x,u)

=
x,u

ηθ(x,u)∇μθ(u|x)/(μθ(u|x))

=
x

πθ(x)
u

∇μθ(u|x)

=0, (18)

where in the second equality we used (3) and the last equality
follows from the fact that uμθ(u|x)=1for allθ. Eq. (15)
follows by combining (17) and (18).

By symmetry to Eq. (15), it also holds that

ψθ,∇Qθ
θ
− ψθ,̃Qθ

θ
=− Qθ,ψθψθ

θ
. (19)

Substituting (15) and (19) into (13), we obtain a new es-
timate of the Hessian matrix∇2ᾱ(θ)given in the following
Corollary.

Corollary IV.4: With Q̃θbeing a solution of (14), the Hes-
sian matrix∇2ᾱ(θ)can be expressed as:

∇2ᾱ(θ)= Qθ,ϕθ−ψθψθ
θ
+ Q̃θ,ψθ

θ

+ ψθ,̃Qθ
θ
. (20)

A. Function Approximation

We can calculate QθandQ̃θby solving (1) and (14). How-
ever, whenX×Uis very large, the computational cost becomes
prohibitive. This problem can be addressed usingfunction ap-
proximationtechniques. One popular type of function approx-
imation is to expressQθand each component ofQ̃θwith a
linear combination of feature functions. We choose a set of fea-
ture functionsφθ=(ψ

i
θ,ϕ

ij
θ,ψ

i
θψ
j
θ;i, j=1,...,n), where

φθ(x,u)is anN-dimensional vector for∀x,u∈X×U with
N =(2n2+n)andnbeing the dimensionality ofθ. Similar to
other actor-critic algorithms, the basis functionsφθneed to be
uniformly linearly independent [4], [12], which can be enforced
by choosing a suitable structure of policies. Some additional
features can be added depending on the particular application.
This added flexibility could be useful in a number of ways as it
has been discussed in [4].
Similar to [12], we consider the following linear approxima-
tion forQθ

Qrθ(x,u)=φθ(x,u)r, r∈RN. (21)

Let us now view the inner product operator in (4) for real-
valued functions inX×U as an inner product between vectors
inR|X||U|and denote by ·θthe induced norm. Also denote by
Φθthe low-dimensional subspace spanned byφθ. If we define

r∗= arg min
r∈RN

||Qrθ−Qθ||θ, (22)

thenQr
∗

θ is the projection ofQθonΦθ. Similar to (2.2) of [4],

Qr
∗

θ,ψ
i
θ θ
= Qθ,ψ

i
θ θ
,

Qr
∗

θ,ϕ
ij
θ−ψ

i
θψ
j
θ
θ
= Qθ,ϕ

ij
θ−ψ

i
θψ
j
θ
θ
, (23)

for alli, j=1,...,n.
Define the linear approximation ofQ̃iθ,theith component of

Q̃θ,as

Q̃t
i

θ(x,u)=φθ(x,u)t
i, ti∈RN. (24)

Again, for alli, j=1,...,nand

ti∗= arg min
t∈RN

||̃Qt
i

θ−Q̃
i
θ||θ, (25)

Q̃t
i∗

θ is the projection of̃Q
i
θonΦθ. Similar to (2.2) of [4], we

have

Q̃t
i∗

θ ,ψ
j
θ
θ
= Q̃iθ,ψ

j
θ
θ
. (26)

Equations (23) and (26) state that the projections ofQθand
Q̃θon the low-dimensional spaceΦθare sufficient for estimat-
ing (20). This reduces the computational cost for obtainingQθ
andQ̃θsince we only have to compute the relative parsimo-
nious vectorsr∗andti∗,i=1,...,n, while it does not alter the
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inner products needed to compute the gradient∇ᾱ(θ)(cf. (5))
and the Hessian∇2ᾱ(θ)(cf. (20)).

V. A SECOND-ORDERACTOR-CRITICALGORITHM

A. Critic Step

We use the Least Squares Temporal Difference (LSTD) (see,
e.g., [14]) with parameterλto estimater∗andti∗,i=1...,n,
defined in (22) and (25), respectively. Recall thatxk and
ukdenote the state and the action of the system at timek,
respectively. Letαk denote an estimate of the average re-
ward at time k.zk∈R

N denotes Sutton’s eligibility trace
andAk∈R

N×N a sample estimate of the matrix formed by
zk(φθk(xk,uk)−φθk(xk+1,uk+1)), which can be viewed as
a sample observation of the scaled difference of the features
between timekand timek+1.bk∈R

N refers to a statisti-
cal estimate of the single period relative reward with eligibility
tracezk. Let also use the initial values:A0is an identity matrix,
α0is zero, andb0andz0are column vectors with all zeros. To
estimater∗, we use the followingQ-criticupdate

αk+1= αk+γk(g(xk,uk)−αk), (27)

zk+1= λzk+φθk(xk,uk),

Ak+1= Ak+γk(zkwk−Ak),

bk+1= bk+γk[(g(xk,uk)−αk)zk−bk],

wherewk=φθk(xk,uk)−φθk(xk+1,uk+1)andγkis a step-
size. Letrkbe the estimate ofr

∗at timek;weset

rk+1=
A−1k+1bk+1, ifdet(Ak+1)≥ ,

rk, otherwise,
(28)

where is a small positive constant used to judge whetherAk+1
is “ill-conditioned” or not.Akshould be invertible whenkis
large enough [29], [30]. OurQ-critic(27) is the same with
the critic update of the LSTD-AC algorithm in [14] and (28)
estimates the samer∗. In addition, we add another critic, named
asQ̃-critic, to estimateti∗,∀i.
Let nowvi0,i=1,...,n, be a column vector with all zeros.

Let alsoηi0,i=1,...,n, be a scalar set to zero. Notice the
relationship between Eq. (1) for theQ-function and Eq. (14) for
thẽQ-function. To estimateti∗,i=1,...,n, defined in (25),
we use the following LSTDQ̃-criticupdate

ηik+1= η
i
k+ζk(q

i
k−η

i
k), i=1,...,n, (29)

vik+1= v
i
k+ζk[(q

i
k−η

i
k)zk−v

i
k], i=1,...,n,

whereqik=Γ(rk)rkφθk(xk,uk)ψ
i
θk
(xk,uk)is an estimate of

theith component ofψθQθwhich plays the role of the one-step
reward in (14).ζkis the stepsize of thẽQ-criticandΓ(rk)is a
function that restricts the influence of the error in the estimate
rk.Lett

i
kbe the estimate oft

i∗at timek. Similar to theQ-critic,
we set

tik+1=
A−1k+1v

i
k+1, ifdet(Ak+1)≥ ,

tik, otherwise,
(30)

fori=1,...,n. Note that the Sherman-Morrison update of a
matrix inverse [22] and the matrix determinant lemma [31] can
be applied to reduce the computational cost of calculatingA−1k+1
anddet(Ak+1)in (28) and (30).

B. Actor Step

LetQrθ(x,u)=Γ(r)rφθ(x,u)andQ̃
ti

θ =Γ(t
i)tiφθ(x,u)

be our estimates forQθandQ̃
i
θgivenrandt

i,i=1,...,n.
As mentioned above, the functionΓ(·)restricts the influence
of the error inrandti, respectively (cf. (21) and (24)). For
convenience of notation, letT=(t1,...,tn)and denote by
Q̃Tθ=(Q̃

t1

θ,...,̃Q
tn

θ)a vector-valued function mappingX×

U ontoRnwithith element equal tõQt
i

θ. Motivated by (20)
and using just a single sample to estimate the expectation (in
a standard stochastic approximation fashion), we also define
Ûθ,r,Tto be ann×nmatrix-valued function defined onX×U
and parameterized by(θ,r,T)as follows

Ûθ,r,T =Q
r
θ(ϕθ−ψθψθ)+̃Q

T
θψθ+ψθ(̃Q

T
θ). (31)

LetHkbe the estimate of−∇
2ᾱ(θ)at timekwith initial

conditionH0=I. The update rule forHkis:

Hk+1=
Hk+Uk, ifUk 0,

Hk, otherwise,
(32)

whereUk=−Ûθk,rk,Tk(xk,uk). Note thatHk 0because
it is updated only whenUk 0.Letχkbe the number of times
the top branch in (32) is executed by iterationkand define

Ĥk=
I, ifχk<χmin,

Hk, otherwise,
(33)

which will be used to avoid a noisy estimate in the initial updates.
The actor update takes the form:

θk+1=θk+βkΓ(rk)rkφθk(xk,uk)̂H
−1
k ψθk(xk,uk),(34)

whereβkis a stepsize.
In the update (32), we make sure that our scaling matrix is
always positive definite. Notice thatHkis the estimate of the
negative Hessian matrix because we are dealing with a maxi-
mization problem. In particular, the Hessian matrix will gener-
ally be negative definite in the vicinity of a local maximum and
we expect that the upper branch of the update (32) will be used
as we approach such a point. The iteration (34) takes a scaled
gradient ascent step, with the scaling matrix being positive
definite.
The sequences{γk}and{ζk}correspond to the stepsizes

used by the critics, whileβkandΓ(rk)control the stepsize for
the actor. The functionΓ(rk)is selected such that for some
positive constantsC1<C2:

rΓ(r)∈[C1,C2], ∀r∈RN, (35)

Γ(r)−Γ(̂r) ≤
C2r−r̂

1+ r + r̂
, ∀r,̂r∈RN.

An example that satisfies these requirements is Γ(r)=
min(1,D/r)for some positive constantD.
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Fig. 1. Relationships between the critics and the actor.

We say a stepsize sequence {fk}isSquare Summable but Not
Summable (SSNS)iffk>0,

∞
k=0f

2
k<∞ and

∞
k=0fk=

∞. For the algorithm to converge,{ζk},{γk}, and{βk}should
be SSNS and satisfy

k

(βk/γk)
d1 <∞,

k

(γk/ζk)
d2<∞, (36)

for somed1,d2>0.
The relationships between the two critics and the actor are

shown inFig. 1.TheQ-criticand thẽQ-criticgenerate estimates
rkandTk=(t

1
k,...,t

n
k)which yield linear approximations of

QθandQ̃θ, respectively. Both critics need to converge faster
than the actor in order to track the changes inθ. Moreover,
because the observed derivativeqikused in theQ̃-criticdepends

onrk,thẽQ-criticis updated faster than theQ-criticso that it
can track changes inrk. We next present a result establishing a
relationship between the stepsize sequences.
Proposition V.1:Suppose{ζk}and{βk}are two SSNS step-

size sequences that satisfy

k

(βk/ζk)
d<∞, for somed>0. (37)

Letγk=(ζkβk)
1/2. Then,{γk}is also SSNS and{γk},{βk},

{ζk}satisfy (36).
Proof:Due to the assumption in (37),limk→∞(βk/ζk)=0,

which implies that there exists a positive constantK such that
for∀k> K,βk≤ζk. Since{βk}is SSNS, it follows

k

γk=
k

(ζkβk)
1/2≥C1+

∞

k=K+1

βk=∞,

whereC1=
K
k=0γk. Furthermore, since{ζk}is SSNS

k

γ2k=
k

ζkβk≤C2+
∞

k=K+1

ζ2k<∞,

whereC2=
K
k=0γ

2
k. Finally, lettingd1=d2=2dand due to

(37) we have

k

(βk/γk)
d1‘=

k

(γk/ζk)
d2=

k

(βk/ζk)
d<∞.

Proposition V.1 simplifies the selection of stepsizes. We just
need to selectβkandζkfirst and letγk=(ζkβk)

1/2. An exam-
ple of{ζk},{γk}, and{βk}that are SSNS and satisfy (36)

is:ζk=1/k, βk=c/(klnk), wherek>1andc>0, and
γk=(ζkβk)

1/2=(1/k) c/lnk.

C. Relationship With Natural Actor-Critic Algorithms

In our approach, we use the Hessian matrix to scale the gra-
dient in order to improve the convergence rate. A similar idea
is to use the Fisher information matrix to scale the gradient. It
was first proposed by [19] and several related algorithms fol-
lowed [20], [23], [21]. This section discusses the relationship
of the Fisher information matrix with the Hessian matrix for
actor-critic algorithms.
Supposeηθ(x,u)is the stationary state-action distribution
when the RSP parameter equalsθ. [20] states that the Fisher
information matrix is equal to

Fθ=
x,u

ηθ(x,u)∇lnμθ(u|x)∇lnμθ(u|x), (38)

which can also be written as 1,ψθψθ
θ
, whereψθ=

∇lnμθ(u|x)(cf. (3)).
Let us now compare this expression with the true Hessian
matrix (cf. (9)). If we setQθ≡1, hence,∇Qθ≡0, and ignore
second derivatives with respect toθ, then the Hessian matrix
degenerates to the Fisher information matrix in (38). In this
sense, natural actor-critic algorithms are quasi-Newton methods
that approximate the Hessian without utilizing the state-action
value functionQθ. In contrast, our method takes advantage of
the state-action value function.

VI. CONVERGENCE

A. Linear Stochastic Approximation Driven by a Slowly
Varying Markov Chain

Our Q-critic in (27) has the same form as in [14] so its
convergence can be proved in a similar way. In theQ̃-critic
(29), the incrementqikdepends on the parameter vectorrk.

To facilitate the convergence proof of theQ̃-critic, this sec-
tion generalizes the theory of linear stochastic approximation
driven by a slowly varying Markov chain developed in [12]
to the case where the objective is affected by some additional
parametersr.
Let{yk}be a finite Markov chain whose transition probabili-
ties depend on a parameterθ∈Rn.Let{hθ,r(·):θ∈R

n,r∈
RN}be a family ofm-vector-valued functions parameterized by
θ∈Rnandr∈RN.LetΞkbe somem×m matrix. Consider
the following iteration to update a vectors∈Rm:

sk+1=sk+ζk(hθk,rk(yk)−Gθk(yk)sk)+ζkΞksk.(39)

In the above iteration,sk∈R
m is the approximation vector.

hθ,r(·)andGθ(·)arem-vector-valued andm×m-matrix-
valued functions parameterized byθ,randθ, respectively. Let
E[·]denote expectation. In order to establish the convergence
results, we make the following assumptions.
Assumption A:
1) The sequence{ζk}is deterministic, non-increasing and
SSNS.
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2) The random sequence{θk}satisfies θk+1−θk ≤
βkFkfor some process{Fk}with bounded moments,
where{βk}is a positive deterministic sequence such
that k(βk/ζk)

d<∞ for somed>0.
3)Ξkis anm×m-matrix valued martingale difference
with bounded moments.

4) The (random) sequence{rk}satisfies rk+1−rk ≤
γkF

r
kfor some nonnegative process{F

r
k}with bounded

moments, where{γk}is a positive sequence such that

k(γk/ζk)
d<∞ for somed>0.

5)rk converges to r̄(θk) when k→ ∞, namely,
limk→∞ rk−r̄(θk) =0, w.p.1.

6)(Existence of solution to the Poisson Equation.)For each
θandr, there exists̄h(θ,r)∈Rm,Ḡ(θ)∈Rm×m,
and correspondingm-vector andm×m-matrix func-
tion̂hθ,r(·),Ĝθ(·)that satisfy the Poisson equation.
That is, for eachy,

ĥθ,r(y)=hθ,r(y)−h̄(θ,r)+(Pθ̂hθ,r)(y),

Ĝθ(y)=Gθ(y)−Ḡ(θ)+(PθĜθ)(y).

7)(Boundedness.) For  all θ and r, we have
max( h̄(θ,r),Ḡ(θ))≤Cfor some constantC.

8)(Boundedness in expectation.)For anyd>0, there ex-
istsCd>0such thatsupkE[fθk(yk)

d]≤Cdand
supkE[gθk,rk(yk)

d]≤Cd,where fθ(·)represents

Gθ(·)andĜθ(·), andgθ,r(·)representshθ,r(·)and

ĥθ,r(·).
9)(Lipschitz continuity.)For some constantC >0, and
for allθ,̄θ∈Rn,Ḡ(θ)−Ḡ(̄θ) ≤C θ−θ̄.For
allθ,̄θ∈Rn andr,̄r∈RN, h̄(θ,r)−h̄(̄θ,̄r) ≤
C(θ−θ̄ + r−r̄).

10)(Lipschitz continuity in expectation.)There exists a
positive measurable functionC(·)such that for ev-
eryd>0,supkE C(yk)

d <∞. In addition, for all
θ,̄θ∈Rn, fθ(y)−f̄θ(y) ≤C(y)θ−θ̄, where

fθ(·)representsGθ(·)andĜθ(·). For allθ,̄θ∈
Rnandr,̄r∈RN,gθ,r(y)−ḡθ,̄r(y) ≤C(y)(θ−

θ̄ + r−r̄), wheregθ,r(·)representshθ,r(·)and

ĥθ,r(·).
11) There existsa>0such that for alls∈Rmandθ∈Rn,
sḠ(θ)s≥as2.

Lemma VI.1:If Assumptions A.(1–11) are satisfied, then
limk→∞ Ḡ(θk)sk−h̄(θk,rk) =0w.p.1.
Proof:See Appendix A.
Theorem VI.2:If Assumptions A.(1–11) are satisfied, then

limk→∞ Ḡ(θk)sk−h̄(θk,̄r(θk)) =0w.p.1.
Proof:We have

Ḡ(θk)sk−h̄(θk,̄r(θk))

≤ Ḡ(θk)sk−h̄(θk,rk) + h̄(θk,rk)−h̄(θk,̄r(θk)).

Due to Assumption A.(9), we have

lim
k→∞

h̄(θk,rk)−h̄(θk,̄r(θk)) ≤C lim
k→∞

rk−r̄(θk),

whereCis a constant. Combining the above, we have

0≤ lim
k→∞

Ḡ(θk)sk−h̄(θk,̄r(θk))

≤ 0 + lim
k→∞

h̄(θk,rk)−h̄(θk,̄r(θk))

≤ 0+C lim
k→∞

rk−r̄(θk)

=0, w.p.1,

where the second inequality follows from Lemma VI.1 and
the equality is due to Assumption A.(5). We conclude that
limk→∞ Ḡ(θk)sk−h̄(θk,̄r(θk)) =0, w.p.1.

B. Critic Convergence

In this section, we will use the results in Section VI-A to prove
the convergence of theQ-criticand theQ̃-criticpresented in
Section V-A. Before presenting the convergence results, we first
state the following assumptions and definitions.
Assumption B:There exists a functionL̃:X→ [1,∞)and

constants0≤ρ<1,b>0such that for eachθ∈Rn,

Eθ,x[̃L(x1)]≤ρ̃L(x)+bIx∗(x), ∀x∈X, (40)

whereEθ,x[·]denotes expectation underθwith initial statex,
Ix∗(·)is the indicator function for the initial statex

∗being equal
to the argument of the function, andx1is the (random) state of
the MDP after one transition from the initial state.
The assumption above is identical to [12, Assumption 2.5].
We call a function satisfying the inequality (40) a stochastic
Lyapunov function. LetL:X×U → [1,∞)be a function that
satisfies the following assumption.
Assumption C:For eachd>0there isKd>0such that

Eθ,x[L(x,U0)
d]≤Kd̃L(x), ∀x∈X,θ∈Rn,

whereU0is the random variable of the action at statex.
Note that if any function is upper bounded by a functionL
as described in Assumption C, then all its steady-state moments
are finite.
Lemma VI.3:If two functionsLf:X×U → [1,∞)and

Lg:X×U → [1,∞)satisfy Assumption C, then so does
LfLg.
Proof:For any two random variablesA andB, E[AB]≤

(1/2)(E[A2]+E[B2]). As a result, we have

Eθ,x Lf(x,U0)
dLg(x,U0)

d

≤
1

2
Eθ,x Lf(x,U0)

2d +
1

2
Eθ,x Lg(x,U0)

2d

≤
1

2
(Kf2d+K

g
2d)̃L(x),

where Kf2dandK
g
2dare the bounding constants offandg

appearing in Assumption C.
Definition 1: We define D(2)to be the family of all functions

fθ(x,u)that satisfy: for allx∈X andu∈U, there exists a
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constantK > 0such that

fθ(x,u) ≤KL(x,u),∀θ∈R
n, (41)

fθ(x,u)−f̄θ(x,u) ≤K θ−θ̄L(x,u),∀θ,̄θ∈R
n,
(42)

where the bounding functionLsatisfies Assumption C.
Lemma VI.4:Iffθ,gθ∈D

(2), thenfθ+gθ∈D
(2) and

fθgθ∈D
(2).

Proof:The proof forfθ+gθis immediate; we focus on
fθgθ. Inequality (41) can be proved using Lemma 4.3(f) of [4].
To prove inequality (42),

fθgθ−f̄θḡθ = fθgθ+fθḡθ−fθḡθ−f̄θḡθ

≤ fθ gθ−ḡθ + ḡθ fθ−f̄θ

≤2KfKgLfLgθ−θ̄,

whereKfandLfare the bounding constant and the bounding
function forfin (41) and (42), whileKgandLgare the cor-
responding quantities forg. According to Lemma VI.3,LfLg
also satisfies Assumption C, which completes the proof.
We assume φθ∈D

(2), which is the same with Assump-
tion 4.1 of [12]. This assumption ensures that the feature vector
φθ= φ

1
θ,...,φ

N
θ , as a function of the policy parameterθ,

is “well behaved.” Given our feature vector definition, notice
that this assumption requires that the RSP function familyμθ
is twice continuously differentiable for allθwith bounded first
and second derivatives that belong toD(2). We also assume that
the one-step reward functiong∈D(2).
The critic consists of two parts: aQ-critic that estimatesQθ

(cf. (27), (28)) and ãQ-critic that estimates̃Qθ(cf. (29), (30)).
TheQ-critic is exactly the same with the LSTD-AC algorithm
[14], whose convergence has already been proved in [14] under
the assumptions imposed. For thẽQ-critic, denote byV(A)a
column vector stacking all columns in a matrixA.ThẽQ-critic
can be written as in (39) if we let

sk= Mη
1
k···Mη

n
k(v

1
k)···(v

n
k) , (43)

hθ,r(y)=
MΓ(r)rφθ(x,u)ψθ(x,u)

Γ(r)rφθ(x,u)V(zψθ(x,u))
,

Gθ(y)=
I 0

diag(z,...,z)/M I

Ξk=0,

where diag(z,...,z)denotes annN×nblock diagonal matrix
with every diagonal element being equal toz,y=(x,u,z), M
is an arbitrary (large) positive constant whose role is to facilitate
the convergence proof, and at any iterationkof (39)rkiterates
as in (28). The stochastic process{zk}is the eligibility trace
iterating as in (27).
To prove the convergence of theQ̃-critic, we just need

to verify Assumptions A.(1–11). It is easy to verify that
zk=

k−1
l=0λ

k−l−1φθl(xl,ul). First, we establish the following
lemma.

Lemma VI.5:For  every d>0, we have
supkE[L(xk,uk)

dzk
d]<∞, whereL:X×U → [1,∞)

is a bounded function that satisfies Assumption C.
Proof:According to the triangle inequality, we have

zk
d=

k−1

l=0

λk−l−1φθl(xl,ul)
d

≤

k−1

l=0

λd(k−l−1)φθl(xl,ul)
d

≤K1

k−1

l=0

λd(k−l−1)L1(xl,ul)
d,

for some bounded functionL1that satisfies Assumption C and
some positive constantK1, where the last inequality is due to
φθk ∈D

(2). In addition, we can multiply withL(xk,uk)
dand

take expectation on both sides of the above, which yields

E[L(xk,uk)
dzk

d]

≤K1

k−1

l=0

λd(k−l−1)E[L(xk,uk)
dL1(xl,ul)

d]. (44)

Similar to the proof of Lemma VI.3,

E[L(xk,uk)
dL1(xl,ul)

d] (45)

≤
1

2
E[L(xk,uk)

2d]+
1

2
E[L1(xl,ul)

2d]<∞.

Combining (44) and (45), we establish thatE[L(xk,uk)
dzk

d]
is bounded.
Theorem VI.6:Under iterations (27) and (28),

rk+1−rk ≤γkF
r
k, w.p.1, (46)

for some random sequence{Frk}that has bounded moments,
where{γk}is the stepsize in (27).
Proof:SeeAppendix B.
Using SSNS stepsizes according to (36), Assumptions A.(1)
and (4) will be satisfied because of Theorem VI.6. Now, rΓ(r)
is bounded because of (35). According to (31),Ukhas bounded
moments becauseψθ(x,u),φθ(x,u),Qθ, and̃Q

i
θ,∀i,have

bounded moments.HkandĤkshould also have bounded mo-
ments because the update in (32) is applied only whenUkis pos-
itive definite. As a result,Γ(rk)rkφθk(xk,uk)̂Hkψθk(xk,uk)
should have bounded moments, thus, Assumption A.(2) holds.
Assumption A.(3) is trivially satisfied. In addition, because the
Q-criticconverges, we have

lim
k→∞

rk−r̄(θk) =0, w.p.1,

which is Assumption A.(5).
Fori=1,...,n, define the functionξiθ=φθψ

i
θ. Because

φθ∈D
(2)andψθ∈D

(2), we obtainξiθ∈D
(2)according to

Lemma VI.4. Notice that for any fixedrandθ,thẽQ-critic (43)
is equivalent to theQ-critic of an artificial Markov decision
process with reward functiongiθ,r(x,u)=Γ(r)rξ

i
θ(x,u),i=

1,...,n. As a result, the Poisson equations of Assumption A.(6)
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should be satisfied with appropriately defined average steady-
state quantities̄h(θ,r)andḠ(θ). More specifically, similar to
[4, Sec. 5.2], we have

κ̄i(θ,r)= 1,giθ,rθ,

z̄(θ)=(1−λ)−1 1,φθθ,

hi1(θ,r)=

∞

k=0

λk Pkθg
i
θ,r−κ̄

i(θ,r)1,φθ θ,

h̄(θ,r)=(M ̄κ1(θ,r),..., M̄κn(θ,r),

(h11(θ,r)+̄κ
1(θ,r)̄z(θ),...,

(hn1(θ,r)+̄κ
n(θ,r)̄z(θ)),

Ḡ(θ)=
I 0

diag(̄z(θ),...,̄z(θ))/M I
,

wherePkθdenotes the application of the operatorPθktimes.
We can interpret ̄κi(θ,r)as the steady-state expectation of the
“observed reward” functiongiθ,r.

Let nowh̃iθ,r(y)=Γ(r)rξ
i
θ(x,u)z,i=1,...,n. It can be

seen that if̃hiθ,rare bounded and Lipschitz continuous in ex-
pectation for alli=1,...,n, thenhθ,rshould also be bounded
and Lipschitz continuous in expectation. Recall thatξiθ∈D

(2).
Fori=1,...,nand eachd>0,

sup
k
E h̃iθ,r(yk)

d

≤(Γ(r)r)dsup
k
E ξiθ(xk,uk)

dzk
d

≤(Γ(r)r)dKdsup
k
E L(xk,uk)

dzk
d ,

for some functionLthat satisfies Assumption C and some posi-
tive constantK. According to (35),Γ(r)r is bounded. Using
Assumption C and Lemma VI.5, it follows thath̃iθ,rsatisfies
Assumption A.(8). Using Lemma VI.5 it also follows thatGθ
satisfies the same assumption.
It is easy to verify that the functionf(r)=Γ(r)ris Lipschitz

continuous and suppose its Lipschitz constant isCΓ. We will
next prove that̃hiθ,r(y)is Lipschitz continuous in expectation.

For allθ,̄θ∈Rn,r,̄r∈RN, andi=1,...,n,wehave

h̃iθ,r(y)−h̃
i
θ̄,̄r(y)

≤ Γ(r)rξiθ(x,u)z−Γ(̄r)̄rξ
i
θ̄(x,u)z

≤ zΓ(r)r ξiθ(x,u)−ξ
i
θ̄(x,u)

+ z (Γ(r)r−Γ(̄r)̄r)ξiθ̄(x,u)

≤ zΓ(r)r ξiθ(x,u)−ξ
i
θ̄(x,u)

+ z ξiθ̄(x,u)CΓ r−r̄. (47)

Recall thatξiθ∈D
(2).LetK andLbe the bounding constant

and the bounding function forξiθ; then

h̃iθ,r(y)−h̃
i
θ̄,̄r(y) ≤C(y) θ−θ̄ + r−r̄ ,

where C(y)=(Γ(r)r +CΓ)KL(x,u)z and y=(x,
u,z). Using the fact thatΓ(r)r is bounded and Lemma VI.5,
it follows thatE[C(y)d]<∞ for eachd>0. As a result,hθ,r
satisfies Assumption A.(10). Moreover, replicating an argument
from [4, Sec. 5.2] it can also be shown thatGθsatisfies the same
assumption. Furthermore, defining

ĥθ,r(y)=

∞

k=0

Eθ,x[hθ,r(yk)−h̄(θ,r)|y0=y],

Ĝθ(y)=

∞

k=0

Eθ,x[Gθ(yk)−Ḡ(θ)|y0=y],

we can use similar arguments as above to establish that these
functions satisfy Assumption A.(8) and (10).
Lemma VI.7:Letθ̂=(θ,r). Let alsôD(2)be the counter-

part ofD(2)for functions parameterized bŷθ. ThenPkθg
i
θ,r

belongs toD̂(2)for all nonnegative integersk.
Proof:A simple observation is that D(2)⊆D̂(2)and that

Lemma VI.4 still holds forD̂(2). Namely, a product function
f̂θĝθ∈D̂

(2)iff̂θ∈D̂
(2)andĝθ∈D̂

(2).

Pkθg
i
θ,rcan be written asP

k
θg
i
θ,r=Γ(r)rP

k
θξ
i
θ. Wefirst

observe thatPkθξ
i
θ∈D

(2)according to [32, Corollary 2.4]. To
verify (41), we have (in functional relationships)

Pkθg
i
θ,r ≤Γ(r)r P

k
θξ
i
θ ≤Γ(r)rKL.

To verify (42), forθ,̄θ∈Rnandr,̄r∈RN,wehave

Pkθg
i
θ,r−P

k
θ̄g
i
θ̄,̄r

≤ Γ(r)r Pkθξ
i
θ−P

k
θ̄ξ
i
θ̄ + P

k
θ̄ξ
i
θ̄ CΓ r−r̄

≤ Γ(r)rKL θ−θ̄ +KLCΓ r−r̄

≤ (Γ(r)r +CΓ)KL θ−θ̄ + r−r̄ ,

whereKandLare the bounding constant and function ofPkθξ
i
θ,

respectively.
Using the fact that giθ,r,φθ∈D

(2),̄κi(θ,r)andz̄(θ)are

bounded and Lipschitz continuous with respect toθ̂due to
[32, Corollary 5.3]. It can be easily verified that(Pkθg

i
θ,r−

κ̄i(θ,r)1)φθ∈D̂
(2)using Lemma VI.7 and Lemma VI.4.

Again, using [32, Corollary 5.3], we can obtain thath̄(θ,r)

is bounded and Lipschitz continuous with respect tôθ.Asa
result,̄h(θ,r)satisfies Assumption A.(7) and (9). Similarly, it
can also be shown thatḠ(θ)satisfies the same assumptions.

Finally, it can also be verified thatĥθ,r(y)andĜθ(y)satisfy
the same assumptions using similar arguments.
The final step in verifying all parts of Assumption A is part
(11). That follows from [4, Lemma 5.3]. Having established all
parts of Assumption A, the convergence of theQ̃-critic follows.

C. Actor Convergence

The actor update defined in (34) is similar to the actor update
using the unscaled gradient. The difference is that the gradient
estimate is multiplied by a positive definite matrix. This sec-
tion will present the convergence results for this type of actors.
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Define

Sθ(x,u)=Hθψθ(x,u)φθ(x,u),

whereHθis a positive definite matrix for allθ.Let̄S(θ)=
1,Sθθand let̄r(θ)be the limit of the critic parameterrif the
policy parameter is held fixed toθ. Similar to [12], theactor
update can be written as

θk+1= θk+βkSθ(xk,uk)rkΓ(rk)

= θk+βk̄S(θk)̄r(θk)Γ(̄r(θk))

+βk Sθk(xk,uk)−S̄(θk)rkΓ(rk)

+βk̄S(θk)(rkΓ(rk)−r̄(θk)Γ(̄r(θk))).

Define

f(θk)=̄S(θk)̄r(θk),

e
(1)
k = Sθk(xk,uk)−S̄(θk)rkΓ(rk),

e
(2)
k =S̄(θk)(rkΓ(rk)−r̄(θk)Γ(̄r(θk))).

Then, the actor update becomes:

θk+1=θk+βk Γ(̄r(θk))f(θk)+e
(1)
k +e

(2)
k .

f(θk)is the expected actor update, whilee
(1)
k ande

(2)
k are two

error terms due to the fact that the update is performed on a
sample path of the MDP. Using Taylor’s series expansion,

ᾱ(θk+1)≥ ᾱ(θk)+βkΓ(̄r(θk))∇ᾱ(θk)f(θk)

+βk∇ᾱ(θk)e
(1)
k +βk∇ᾱ(θk)e

(2)
k .

Lemma VI.8:(Convergence of the noise terms). It holds:
∞
k=0βk∇ᾱ(θk)e

(1)
k converges w.p.1.

limke
(2)
k =0w.p.1.

Proof:Let ê
(1)
k = ξθk(xk,uk)−ξ̄(θk)rkΓ(rk) and

ê
(2)
k =ξ̄(θk)(rkΓ(rk)−r̄(θk)Γ(̄r(θk))),where ξθ(x,u)=

ψθ(x,u)φθ(x,u)andξ̄(θ)=1,ξθθ= ψθ,φθθ. Then,

ê
(1)
k andê

(2)
k are the two error terms for the actor up-

date using the unscaled gradient [4]. It easily follows

that e
(1)
k =Hθkê

(1)
k and e

(2)
k =Hθkê

(2)
k .  Furthermore,

Sθk(xk,uk)=H
−1
θk
ξθk(xk,uk). The lemma can be proved by

combining these facts with [4, Lemma 6.2].

Lemma VI.8 shows thate
(1)
k can be averaged out ande

(2)
k

goes to zero. As a result, the two error terms are negligible and
the update is determined by the expected directionf(θ)in the
long run.
Lemma VI.9:We have f(θ)=g(θ)+ε(λ,θ), whereg(θ)

is a function such that∇ᾱ(θ)g(θ)≥0, andsupθ|ε(λ,θ)|<
C(1−λ)for some constantC >0independent ofλ.
Proof:According  to  (5), ∇ᾱ(θ)=ψθ,Qθθ=

ψθ,φθ̄r(θ)θ=ξ̄(θ)̄r(θ).Forλ=1,wehave

∇ᾱ(θ)f(θ)=∇ᾱ(θ)̄S(θ)̄r(θ)

= r̄(θ)̄ξ(θ)̄S(θ)̄r(θ).

Notice thatξ̄(θ)S̄(θ) 0. Specifically,

ξ̄(θ)̄S(θ)= ψθ,φθθ Hθ,ψθφθ
θ

= Hθ̄ξ(θ)̄ξ(θ),

whereHθ 0and̄ξ(θ)̄ξ(θ) 0by construction. As a result,
ξ̄(θ)̄S(θ) 0, which implies that∇ᾱ(θ)f(θ)≥0.
The proof forλ<1follows the proof in [4]. Let us write
r̄λ(θ)for the steady-state expectation ofrk. Following the
proof of [4], we have r̄λ(θ)−r(θ) ≤C0(1−λ)for some
positive constantC0. Letg(θ)=̄S(θ)̄r(θ), wherēr(θ)is
the steady-state expectation ofrkwhen λ=1. Then we can
still obtain∇ᾱ(θ)g(θ)≥0. In addition, f(θ)−g(θ) =
S̄(θ)(̄rλ(θ)−r̄(θ)) ≤C(1−λ)for someC.
Lemma VI.9 shows that the expected directionf(θ)is always
a gradient ascent direction forλsufficiently close to 1. We arrive
at the following convergence result whose proof is similar to [4,
Thm. 6.3].
Theorem VI.10 Actor Convergence:For any >0, there ex-

ists someλ sufficiently close to 1 such that the second-
order Actor-Critic algorithm satisfieslimk→∞infk|∇̄α(θk)|<
w.p.1. That is,θkvisits an arbitrary neighborhood of a sta-
tionary point infinitely often.

VII. CASESTUDY

A. Garnet Problem

This section reports empirical results from our method applied
to GARNET problems introduced in [23]. GARNET problems
do not correspond to any particular application; they are meant
to be generic, yet, representative of MDPs one encounters in
practical applications [23]. As we mentioned earlier, GARNET
stands for “Generic Average Reward Non-stationary Environ-
ment Testbed.”
A GARNET problem is characterized by 5 parameters and
can be written as GARNET(n, m, b, σ, τ). The parametersnand
m are the number of states and actions, respectively. For each
state-action pair, there arebpossible next states, and each next
state is chosen randomly without replacement. The transition
probabilities to thesebstates are generated as follows: we divide
a unit-length interval intobsegments by choosingb−1breaking
points according to a uniform random distribution. The lengths
of these segments represent the transition probabilities and they
are randomly assigned to thebstates we have already selected.
The expected reward for each transition is a normally dis-
tributed random variable with zero mean and unit variance. The
actual reward is a normally distributed random variable whose
mean is the expected reward and whose variance is 1.
The parameterτ,0≤τ≤1/n, determines the degree of non-

stationarity in the problem. Ifτ=0, the GARNET problem is
stationary. Otherwise, ifτ >0, one of the states will be se-
lected with probabilitynτat each time step and randomly re-
constructed as described above.
To apply the actor-critic algorithm, the key step is to de-
sign an RSPμθ(u|x). In this case study, we define the
RSP to be a Boltzmann distribution that is based on some
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state-action features. Good state-action features should be inter-
pretable and could help reduce the number of parameters in the
RSP.
We first define the state feature fS(x)to be a binary vec-
tor of lengthd, i.e.,fS(x)∈{0,1}

d, for each statex. There
is a parameterlspecifying the number of components in the
state feature that are equal to 1. State features are randomly
generated and we make sure no two states have the same state
feature.
In [23], the state-action feature is constructed by padding ze-

ros to state features so that the features for different actions are
orthogonal. As a result, the dimensionality of the state-action
feature constructed in this manner is equal tod|U|. This ap-
proach significantly increases the feature dimensionality, espe-
cially when the action space is very large. In this paper, we use
the state-action feature described below. For each statex0and
actionu, the state-action feature is:

fSA(x0,u)=E[fS(x1)|u]−fS(x0), (48)

where E[fS(x1)|u]= x1
p(x1|x0,u)fS(x1)is the expected

feature at the next state after applying actionu.
With the state-action feature as in (48), the probability of

taking actionuin statexis set to

μθ(u|x)=
efSA(x,u)θ/T

u∈Ue
fSA(x,u)θ/T

, (49)

which is a typical Boltzmann distribution with T being the
temperature of the distribution. With the state-action feature
described above, we can interpret−fSA(x,u)θas the “en-
ergy” and the distribution prefers actions that lead to lower
energy.
A common consideration in RSP design is the so-called

exploitation-exploration tradeoff [2]. An RSP exhibits higher
exploitation if it is more greedy, i.e., it is more likely to only
pick the most desirable action. However, sometimes the explo-
ration of undesirable actions is necessary because they may be
desirable in the long run. High exploitation and low exploration
may result in a sub-optimal solution. On the contrary, low ex-
ploitation and high exploration may reduce the convergence rate
of the actor-critic algorithm. Our RSP defined in (49) is flexible
because tuningTin (49) can effectively adjust the degree of ex-
ploration. High temperatureTimplies more exploration while
low temperatureTimplies more exploitation.
In this empirical study, we compare our algorithm with the

LSTD-AC algorithm in [14], and the four algorithms in [23],
which are henceforth referred to as BSGL1 to BSGL4, in a
GARNET problem GARNET(50,4,5,0.1,0). BSGL1 is based
on a “vanilla” gradient ascent and BSGL2-BSGL4 are based on
natural gradients. Henceforth, for state features we letd=8and
l=3. The state-features are randomly assigned and we make
sure no two states have the same state-feature. For all algorithms,
the critic step-size isαk=

α0·αc
αc+k2/3

and the actor stepsizeβc=
β0·βc
βc+k

, whereαc=βc= 1000. For the LSTD actor-critic and our
methodα0=0.1andβ0=0.1. For BSGL1 and BSGL2,α0=
0.1andβ0=0.01. For BSGL3 and BSGL4, we chooseα0=

Fig. 2. Comparison of our algorithm with LSTD and natural actor-critic
algorithms.

0.01andβ0=0.001. For all algorithms, the initial parameters
θ0are zero and the temperature in (49) is set toT=1. For our
algorithm, we chooseχmin = 100(cf. (33)).
We run each algorithm 50 times independently and Fig. 2
displays the mean of the average reward for the first 1,000,000
iterations.Table Isummarizes the convergence time and con-
verged average reward for each algorithm. For each problem,
the first two columns ofTable Ishow the mean and standard de-
viation of the reward achieved. The third and fourth columns list
the time (mean and standard deviation) it takes to convergence.
The last column shows the average CPU time per iteration (TPI).
Note that BSGL2 becomes numerically unstable after 500,000
iterations, so the reward of BSGL2 inTable Iis the maximal
reward before numerical instability occurs and the time is the
time it takes to reach the maximal reward.
Compared to the LSTD-AC method, our method adds a
second-order critic update and takes advantage of the Hessian
estimate in the actor update. For this problem, the average CPU
time of one LSTD-AC iteration is 1288μs. In comparison, the
average CPU time for one iteration of our algorithm is 1818μs,
which means that computing the second-order critic and the in-
verse of the Hessian adds about 41% to the computational cost.
Despite the larger CPU time per iteration, our algorithm still
converges faster than LSTD-AC because fewer iterations are
needed. The CPU time per iteration of both our algorithm and
LSTD-AC is larger than BSGL1-4. This is likely because both
our algorithm and LSTD-AC use a state-action feature vector,
whose dimensionality is larger than the one used in BSGL1-4
for value function approximations.
Among the four algorithms in [23], BSGL3 converges faster,
which is consistent with the empirical study in [23]. Compared to
BSGL3, although our algorithm uses longer time to converge, it
converges to higher value (0.33) than BSGL3 (0.24). On average
our algorithm takes only 43 seconds to reach an average reward
of 0.24 vs. 122 seconds needed by BSGL3 to reach the same
value.
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TABLE I
COMPARISON OFALLALGORITHMS IN AGARNETAND AROBOTCONTROLPROBLEM.

GARNET Robot Control

Alg. Name  Reward  Conv. Time (s)  TPI(μs)  Reward  Conv. Time (s)  TPI(μs)

Mean  Std  Mean  Std Mean  Std  Mean  Std

Our Alg.  0.33  0.070  727  10.9  1818  0.0916  0.00109  118  3.0  3281

LSTD-AC  0.29  0.091  773  9.9  1288  0.0851  0.0235  187  23  2837

BSGL-1  0.11  0.083  540  7.5  601  0.0819  0.000731  217  2.9  2173

BSGL-2  0.16  0.078  342  4.4  684  0.0909  0.00136  231  9.8  2313

BSGL-3  0.24  0.093  122  1.6  678  0.0927  0.000936  142  6.4  2372

BSGL-4  0.28  0.082  686  11.6  686  0.0916  0.000860  209  5.0  2319

For BSGL2, the Table Displays the Maximal Average Reward Before Numerical Instability Occurs and the Time to Reach

that Maximal Reward.

Fig. 3. View of the mission environment, where the initial region is
marked by‘‘x’’, the goal regions are marked by green colors, and the
unsafe regions are displayed in black stripes.

B. Robot Control Problem

In this section we compare the performance of our algorithm
with other algorithms in a robotics application.Fig. 3shows the
mission environment, which is a 50×50grid. We model the
motion of the robot in the environment as the following MDP
M:

State space. Each statex∈X corresponds to a region
in the mission environment and can be represented by a
coordinate(i, j), whereiis the row number andjis the
column number.
Action space. The action spaceU ={u1,u2,u3,u4}cor-
responds to four control primitives (actions): “North,”
“East,” “South,” and “West,” which represent the direc-
tions in which the robot intends to move. Depending on
the location of a region, some of these actions may not
be enabled, for example, in the lower-left corner, only

actions “North” and “East” are enabled. For each statex,
letUe(x)denote the enabled actions in this state.
Transitional model. A control action does not necessarily
lead the robot to the intended direction because the out-
come is subject to noise in actuation and possible surface
roughness in the environment. In this problem, a robot
can only move to the adjacent state in one step. For each
enabled control, the robot moves to the intended direction
with probability 0.7 and moves to other allowed directions
with equal probabilities.
Initial state. The robot starts from statex0, which is
labeled as ‘x’ inFig. 3.
Reward function. There are someunsaferegionsXU,
which should be avoided, in the mission environment.
There are also somegoalstatesXGthat should be visited
as often as possible. Theunsafeandgoalstates are dis-
played as black stripes and green solid colors inFig. 3,
respectively. The objective is to find an optimal policy that
maximizes theexpected average rewardwith an one-step
reward function defined by

g(x,u)=

⎧
⎪⎨

⎪⎩

1, ifx∈XG,

−1, ifx∈XU,

0, otherwise.

This problem is the foundation of many complex robot motion
control problems in which MDPs are defined in more complex
ways, i.e., using temporal logic [15]–[17].
In this problem, we consider two state features that represent
thesafetyandaffinityof the state, respectively. For each pair
of statesxi,xj∈X, we defined(xi,xj)to be the minimum
number of transitions fromxitoxj. Wesayxj∈N (xi)—a
neighborhood ofxi—if and only if d(xi,xj)≤rn,forsome
fixed integerrngivenapriori. For each statex∈X, the safety
score is defined as the ratio of the safe neighboring states over
all neighboring states ofx. Namely,

safety(x)=
y∈N (x)Is(y)

|N (x)|
, (50)

whereIs(y)is an indicator function such thatIs(y)=1if and
only ify∈X\XU andIs(y)=0otherwise. A higher safety
score for the current state of the robot means it is less likely for
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Fig. 4. Comparison of our algorithm with LSTD and natural actor-critic
algorithms.

the robot to reach an unsafe region in the future. We define the
affinity score of a statex∈Xas

affinity(x)=− min
y∈XG

d(x,y)

which is the negative of the minimum number of transitions
fromxto any goal state. The state feature is defined to be

fS(x)=[safety(x),affinity(x)],

and the state-action featurefSA(x,u)is calculated using (48). In
this application, we use the following Boltzmann distribution.

μθ(u|x)=
efSA(x,u)θ/T

u∈Ue(x)
efSA(x,u)θ/T

, (51)

whereTis the temperature. Note that the only difference of (51)
with (49) is that (51) restricts to enabled actions.
Again, we compare our algorithm with the LSTD-AC

algorithm in [14] and the four algorithms in [23]. We run each
algorithm 100 times independently andFig. 4shows the compar-
ison of the average reward for the first 100,000 iterations. For all
algorithms, the initialθis(0,5)and the temperatureT=5.The
step-sizes satisfyαc=

α0·αc
αc+k2/3

andβc=
β0·βc
βc+k

. For LSTD-AC
and our algorithm, we setα0=0.1,αc= 1000,β0=0.01and
βc= 1000. For BSGL1-BSGL4, we setα0=0.1,αc= 1000,
β0=0.001andβc= 10000. Weuseχmin =30in (32).
Table Isummarizes the convergence time and the converged

reward for all algorithms. The results are based on 50 indepen-
dent runs for the GARNET problem and 100 independent runs
for the robot control problem. Among the three natural gradient-
based algorithms, BSGL3 performs the best, but on average it is
still slower than our method in this problem. The convergence
rate of BSGL1 is much worse than the rest of the algorithms.
For this problem, we did not observe numerical instability for
BSGL2.
For the robot control problem, the average CPU time per

iteration is 3281μsfor our algorithm vs. 2837μsfor LSTD-
AC, that is, about 15.7% higher. The computational overhead
of the second-order critic in this problem is much lower than in

the GARNET problem, which is due to the fact that the robot
control problem has less parameters.
The CPU time per iteration of both LSTD-AC and our algo-
rithm is larger than that of BSGL1-BSGL4, but the difference
is much smaller compared with the GARNET problem. Since
significant less iterations are needed for our algorithm, it con-
verges faster than all other algorithms. Specifically, the second-
best algorithm, BSGL3, takes on average20.3%more time to
converge.

VIII. CONCLUSIONS ANDFUTUREWORK

In this paper we propose a general estimate for the Hessian
matrix of the long-run reward in actor-critic algorithms. Based
on this estimate, we present a novel second-order actor-critic
algorithm which uses second-order critic and actor. The actor,
in particular, uses a direct estimate of the Hessian matrix to
improve the rate of convergence for ill-conditioned problems.
Building on the LSTD-AC algorithm in [16], [14], our algorithm
extends thecriticto approximate the Hessian and revises the
actorto update the policy parameters using Newton’s method.
We compare our algorithm with the LSTD-AC algorithm and
the four algorithms in [23], three of which are based on natural
gradients, in two applications. The results show that our method
can achieve a better rate of convergence for many problems.
As a variant of Newton’s method, our method has similar
limitations. First, the cost of maintaining a Hessian estimate is
quadratic to the number of parameters. As a result, our algo-
rithm is only suitable for problems with relatively small num-
ber of parameters. Second, our algorithm requires the second
derivative of the policy function, which implies that the method
can not be applied if the policy function is not twice differ-
entiable or its second-order derivatives are hard to obtain. Our
algorithm is suitable for the cases where the reward is more
sensitive to some parameters vs. others, leading to potentially
ill-conditioned problems that are best handled by Newton’s
method.
One direction for future work is to use part of (9) rather than
all four terms, so as to achieve a better tradeoff between con-
vergence rate and computational cost per iteration. In addition,
the algorithm described in this paper is suitable for the average
reward problem. Since Theorem IV.2 holds for all three types
of rewards, similar algorithms can be derived for the discounted
and the total reward cases.
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APPENDIXA
PROOF OFLEMMAVI.1

Lemma A.1:Suppose{γk},{ζk},{βk}are three determin-
istic positive sequences that satisfy (36) for somed1,d2>0.
Then,

k

(max(γk,βk)/ζk)
d<∞ for some d>0.
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Proof:Note that limk(γk/ζk)=0andlimk(βk/ζk)=0.
Letting d>max(d1,d2),itfollows k(γk/ζk)

d<∞ and

k(βk/ζk)
d<∞. Further,

k

(max(γk,βk)/ζk)
d=

k

(max(γk/ζk,βk/ζk))
d

=
k

max((γk/ζk)
d,(βk/ζk)

d)

≤
k

(γk/ζk)
d+

k

(βk/ζk)
d

< ∞.

The second equality is due to the functionf(x)=xdbeing
monotonically increasing in the range [0,∞)when d>0.
The first inequality follows because both {(γk/ζk)

d}and
{(βk/ζk)

d}are positive sequences.

A. Proof of Lemma VI.1:

Proof:Defineθ̂k=(θk,rk)to be the collection of all pa-
rameters in (39). We can write (39) as

sk+1=sk+ζk(ĥθk(yk)−Gθ̂k(yk)sk)+ζkΞksk. (52)

We have

θ̂k+1−θ̂k ≤  θk+1−θk + rk+1−rk

≤ βkFk+γkF
r
k

≤ max(βk,γk)(Fk+F
r
k).

The last inequality is implied sinceβk>0,γk>0,Fkand
Frkare nonnegative processes. Combined with Lemma A.1, we
can see Assumptions 3.1.(1–3) in [12] are satisfied. In addition,
Assumptions 3.1.(4–10) in [12] are satisfied due to Assump-
tions A.(3–11). As a result, Thm. 3.2 in [12] holds and implies

lim
k
Ḡ(̂θk)sk−h̄(̂θk) =0, w.p.1.  (53)

The left hand side of (53) is equivalent to the left hand side of
the lemma.

APPENDIXB
PROOF OFTHEOREMVI.6

We first present the following lemmas. We define the norm
· of a matrix to be the norm of the column vector containing
all of its elements.
Lemma B.1:Under iteration (27), we have

Ak+1−Ak ≤ γkF
A
k,

bk+1−bk ≤ γkF
b
k,

for some processes{FAk}and{F
b
k}with bounded moments,

whereγkis the stepsize in (27).
Proof:According to (27), we have

Ak+1−Ak

=γk zk(φθk(xk,uk)−φθk+1(xk+1,uk+1))−Ak .

Similar to Lemma VI.5 and becausezkhas bounded moments
andφθ∈D

(2), it can be verified thatAkhas bounded mo-
ments. This establishes the first statement of the Lemma. We
can prove the second statement of the Lemma for{bk}in the
same way given that the one-step reward functiong∈D(2),first
by establishing thatαkhas bounded moments.
Lemma B.2:Supposef(·)is alocally Lipschitz continuous

function on a domainD.Let{υk}be a sequence of ran-
dom variables with bounded moments defined onD such that
υk+1−υk ≤γkFkfor some{Fk}with bounded moments

w.p.1. Then f(υk+1)−f(υk) ≤γkF
f
kfor some{F

f
k}with

bounded moments w.p.1.
Proof:Since υk+1−υk ≤γkFk, it follows υk+1−

υk|<∞ w.p.1. Since{υk}has bounded moments,υkmust
be in a compact set w.p.1 for∀k. Then, by Lipschitz continu-
ity,f(υk+1)−f(υk) ≤C υk+1−υk ≤γkCFkfor some

constantC. The lemma can be proved by lettingFfk=CFk.
Lemma B.3:Letυ={A,b}be a vector consisting of all

elements in anm×m matrix A and a vectorb∈Rm.The
functionf(υ)=A−1bislocally Lipschitz continuouswith re-
spect toA andbon the domainD={υ: det(A)≥ }, where
is a positive constant.
Proof:LetAadenote the adjoint matrix ofA. The function

fa(υ)=Aabis locally Lipschitz continuous as it is a polyno-
mial function, so fa(υ1)−f

a(υ2) ≤C υ1−υ2 for some
constantCandυ1andυ2that belong to a compact set. Since
A−1=Aa/det(A)and forυ1={A1,b1},υ2={A2,b2},
we have

f(υ1)−f(υ2) = A
−1
1 b1−A

−1
2 b2

= Aa1b1/det(A1)−A
a
2b2/det(A2)

≤
1
Aa1b1−A

a
2b2

=
1
fa(υ1)−f

a(υ2)

≤
C
υ1−υ2.

Sof(υ)=A−1bmust be locally Lipschitz continuous on the
domainD={υ: det(A)> }.

A. Proof of Theorem VI.6

Proof:Recall thatV(A)is the column vector stacking all
columns in a matrixA.Letυk=(V(Ak),bk)whereAkand
bkare the iterates in (27). It follows

υk+1−υk = Ak+1−Ak + bk+1−bk

≤ γk(F
A
k +F

b
k).

The last equality is due to Lemma B.1 and FAk +F
b
k has

bounded moments. Define the functionf(υk)=A
−1
k bk, which

impliesrk=f(xk)=A
−1
k bkwhendet(Ak)≥ by (28). The

lemma can be easily proved by combining Lemma B.3 and
Lemma B.2.



WANG AND PASCHALIDIS: ACTOR-CRITIC ALGORITHM WITH SECOND-ORDER ACTOR AND CRITIC 2703

REFERENCES

[1] J. Wang and I. C. Paschalidis, “A Hessian actor-critic algorithm,” in
Proc. 53rd IEEE Conf. Decision Control, Los Angeles, CA, Dec. 2014,
pp. 1131–1136.

[2] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction.
MIT Press, 1998.

[3] D. P. Bertsekas and J. Tsitsiklis,Neuro-Dynamic Programming. Nashua,
NH: Athena Scientific, 1996.

[4] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,”SIAM J.
Control Optim., vol. 42, no. 4, pp. 1143–1166, 2003.

[5] J. Peters and S. Schaal, “Policy gradient methods for robotics,” inProc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2006.

[6] M. Khamassi, L. Lach̀eze, B. Girard, A. Berthoz, and A. Guillot, “Actor-
critic models of reinforcement learning in the basal ganglia: From natural
to artificial rats,”Adaptive Behavior, vol. 13, no. 2, pp. 131–148, 2005.

[7] K. Samejima and T. Omori, “Adaptive internal state space construction
method for reinforcement learning of a real-world agent,” Neural Net-
works, vol. 12, pp. 1143–1155, 1999.

[8] G. Gajjar, S. Khaparde, P. Nagaraju, and S. Soman, “Application of actor-
critic learning algorithm for optimal bidding problem of a GenCo,”IEEE
Trans. Power Eng. Rev., vol. 18, no. 1, pp. 11–18, 2003.

[9] D. Bertsekas, V. Borkar, and A. Nedic, “Improved temporal difference
methods with linear function approximation,”LIDS REPORT, Tech. Rep.
2573, 2003.

[10] J. Boyan, “Least-squares temporal difference learning,” inProc. 16th Int.
Conf. Machine Learning, 1999.

[11] S. Bradtke and A. Barto, “Linear least-squares algorithms for temporal
difference learning,”Machine Learning, vol. 22, no. 2, pp. 33–57, 1996.

[12] V. Konda,Actor-Critic Algorihms, Ph.D. dissertation, MIT, Cambridge,
MA, 2002.

[13] A. Nedic and D. Bertsekas, “Least squares policy evaluation algorithms
with linear function approximation,”Discrete Event Dynamic Syst.: The-
ory Appl., vol. 13, pp. 79–110, 2003.

[14] R. Moazzez-Estanjini, K. Li, and I. C. Paschalidis, “A least squares tempo-
ral difference actor-critic algorithm with applications to warehouse man-
agement,”Naval Research Logistics, vol. 59, no. 3, pp. 197–211, 2012.

[15] X.-C. Ding, J. Wang, M. Lahijanian, I. C. Paschalidis, and C. Belta,
“Temporal logic motion control using actor-critic methods,” inProc.
IEEE Int. Conf. Robot. Autom. (ICRA), St. Paul, MN, May 14–18 2012,
pp. 4687–4692.

[16] R. Moazzez-Estanjini, X.-C. Ding, M. Lahijanian, J. Wang, C. A. Belta,
and I. C. Paschalidis, “Least squares temporal difference actor-critic meth-
ods with applications to robot motion control,” inProc. 50th IEEE Conf.
Decision Control, Orlando, FL, Dec. 12–15, 2011.

[17] J. Wang, X. Ding, M. Lahijanian, I. C. Paschalidis, and C. Belta, “Temporal
logic motion control using actor-critic methods,”Int. J. Robot. Research,
vol. 34, no. 10, pp. 1329–1344, 2015.

[18] S.-I. Amari, “Natural gradient works efficiently in learning,”Neural Com-
putation, vol. 10, no. 2, pp. 251–276, 1998.

[19] S. Kakade, “A natural policy gradient,”Advances Neural Inform. Process-
ing Syst., vol. 14, pp. 1531–1538, 2001.

[20] J. Peters and S. Schaal, “Natural actor-critic,”Neurocomputing, vol. 71,
pp. 1180–1190, 2008.

[21] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee, “Incremental
natural actor-critic algorithms,”Neural Information Processing Systems
(NIPS), 2007 .

[22] S. Richter, D. Aberdeen, and J. Yu, “Natural actor-critic for road traffic
optimisation,” inAdvances in Neural Information Processing Systems,
2007, p. 1169.

[23] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor-
critic algorithms,”Automatica, vol. 45, no. 11, pp. 2471–2482, 2009.

[24] S. Kakade, “Optimizing average reward using discounted rewards,” in
Computational Learning Theory. Springer, 2001, pp. 605–615.

[25] N. Le Roux and A. Fitzgibbon, “A fast natural Newton method,” inProc.
27th Int. Conf. Machine Learning. Citeseer, 2010.

[26] S. P. Meyn, R. L. Tweedie, and P. W. Glynn,Markov Chains and Stochastic
Stability. Cambridge University Press Cambridge, MA, 2009, vol. 2.

[27] P. Marbach and J. Tsitsiklis, “Simulation-based optimization of Markov
reward processes,”IEEE Trans. Autom. Control, vol. 46, pp. 191–209,
2001.

[28] I. C. Paschalidis, K. Li, and R. M. Estanjini, “An actor-critic method
using least squares temporal difference learning,” inProc. Conf. Decision
Control, Shanghai, China, Dec. 2009, pp. 2564–2569.

[29] H. Yu, “Approximate Solution Methods for Partially Observable Markov
and Semi-Markov Decision Processes,” Ph.D. dissertation, 2006.

[30] H. Yu and D. P. Bertsekas, “Convergence results for some temporal dif-
ference methods based on least squares,”IEEE Trans. Autom. Control,
vol. 54, no. 7, pp. 1515–1531, Jul. 2009.

[31] D. A. Harville,Matrix Algebra From a Statistician’s Perspective. Springer,
2008.

[32] V. R. Konda and J. N. Tsitsiklis, “Appendix to “on actor-critic algo-
rithms”.” [Online]. Available: http://web.mit.edu/jnt/www/Papers/J094-
03-kon-actors-app.pdf.

Jing (Conan) Wangreceived the B.E. degree
in electrical and information engineering from
Huazhong University of Science and Technol-
ogy, Huazhong, China, in 2010 and the Ph.D.
degree in systems engineering from Boston Uni-
versity, Boston, MA, USA, in 2015.
He is now a Software Engineer at Google, Inc.

His research interests include interest-based ad-
vertising, cyber security, and approximate dy-
namic programming.

Ioannis Ch. Paschalidis(M’96–SM’06–F’14)
received the M.S. and Ph.D. degrees both in
electrical engineering and computer science
from the Massachusetts Institute of Technology
(MIT), Cambridge, MA, USA, in 1993 and 1996,
respectively.
In September 1996 he joined Boston Uni-

versity where he has been ever since. He is
a Professor and Distinguished Faculty Fellow
at Boston University with appointments in the
Department of Electrical and Computer Engi-

neering, the Division of Systems Engineering, and the Department of
Biomedical Engineering. He is the Director of the Center for Information
and Systems Engineering (CISE). He has held visiting appointments
with MIT and Columbia University, New York, NY, USA. His current
research interests lie in the fields of systems and control, network-
ing, applied probability, optimization, operations research, computational
biology, and medical informatics.
Dr. Paschalidis received the NSF CAREER award (2000), several best

paper and best algorithmic performance awards, and a 2014 IBM/IEEE
Smarter Planet Challenge Award. He was an invited participant at the
2002 Frontiers of Engineering Symposium, organized by the U.S. Na-
tional Academy of Engineering and the 2014 U.S. National Academies
Keck Futures Initiative (NAFKI) Conference. He is the inaugural Editor-
in-Chief of the IEEE Transactions on Control of Network Systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


