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Abstract

Verification is often regarded as a one-time procedure un-

dertaken after a protocol is specified but before it is im-

plemented. However, in practice, protocols continually

evolve with the addition of new capabilities and perfor-

mance optimizations. Existing verification tools are ill-

suited to “tracking” protocol evolution and programmers

are too busy (or too lazy?) to simultaneously co-evolve

specifications manually. This means that the correctness

guarantees determined at verification time can erode as

protocols evolve. Existing software quality techniques

such as regression testing and root cause analysis, which

naturally support system evolution, are poorly suited to

reasoning about fault tolerance properties of a distributed

system because these properties require a search of the

execution schedule rather than merely replaying inputs.

This paper advocates that our community should explore

the intersection of testing and verification to better ensure

quality for distributed software and presents our experi-

ence evolving a data replication protocol at Elastic using

a novel bug-finding technology called Lineage Driven

Fault Injection (LDFI) as evidence.

1 Introduction

Common distributed systems wisdom warns us never to

reinvent. If we have a problem requiring consensus,

we use Paxos [38] (or Raft [47]); if we need strong

consistency data replication for availability, we use Pri-

mary/Backup [40] or Chain Replication [56]. To dissem-

inate updates, we use reliable broadcast [42]. Best prac-

tices dictate that we invariably choose a well-understood

(and, ideally, formally verified) protocol as the basis of

our implementation.

Because the protocols used to solve these problems are

mature, it might appear that protocol design is mostly a

thing of the past: modern systems designers can merely

take mechanisms “off the shelf” and enjoy the guaran-

tees of hardened subsystems while constructing other-

wise novel applications.

Any practitioner, however, will quickly identify this

as a fallacy. Even initial protocol implementations tend

to differ significantly from their specification. Further-

more, over the lifetime of a system, protocol details un-

dergo a series of optimizations in response to particular

use cases. Since such optimizations can range from the

fussy (e.g., tweaking timeout parameters) to the funda-

mental (e.g., bypassing protocol steps based on assump-

tions about the common case), it can be challenging to

know which implementation changes are tantamount to

changes in the specification (which would in principle

then need to be reverified). Such a circumstance places

implementors in the bad position of deriving false con-

fidence from assertions that their implementation is “es-

sentially Primary/Backup”.

Software engineering best practices provide us with a

variety of tools for ensuring program correctness over the

course of a development lifecycle. For example, regres-

sion testing techniques ensure future optimizations do

not re-introduce bugs previously encountered in earlier

stages of system development. When dormant bugs man-

ifest in later system versions, root cause analysis tech-

niques allow us to replay “bad inputs” over the commit

history until we identify the version in which the bug was

introduced.

Unfortunately, all of these techniques associate aber-

rant behaviors (i.e. bugs) with the inputs that trigger

them. A regression test ensures a bug triggered by a

given input is never re-introduced by making the replay

of the input part of the regression suite. Root cause anal-

ysis identifies the first version in which a bug appears,

by replaying the particular input that triggered it at all

previous commits.

Fault tolerance properties of distributed systems, by

contrast, assert the system computes a correct outcome

even in the face of a predefined class of faults, such as

machine crashes and network partitions. Consequently,



the classic software quality techniques described above

are useless. Subtle changes to protocols can fundamen-

tally affect fault tolerance characteristics; seemingly in-

nocuous modifications may trigger incorrect behaviors.

Notably, an input known to trigger a bug in a particular

version of the protocol is not guaranteed to trigger the

same bug in a different version. As a result, regression

testing, as we currently employ it, is fundamentally too

weak to prevent fault tolerance regression bugs. Root

cause analysis is similarly inadequate, because a set of

faults triggering bugs in later versions may fail to do so

in an earlier version.

In this paper, we argue that tool support for imple-

menting and evolving fault-tolerant distributed systems

needs to be rethought. We advocate exploration of the

(sparse) middle ground between existing testing tech-

niques practically inadequate for addressing fault toler-

ance concerns and traditional verification techniques ill-

suited to the continual evolution of real-world implemen-

tations. We describe our experience using a novel bug-

finding methodology called Lineage-Driven Fault Injec-

tion [11] to test a new replication protocol developed at

Elasticsearch [49]. We show how the lightweight verifi-

cation approach makes it possible to apply software engi-

neering best practices such as regression testing and root

cause analysis in the context of fault tolerance properties

and identify desiderata for future tools.

2 Motivation

Distributed systems prove an unwieldy challenge to

the mature quality methodologies we typically apply to

evolving software. In particular, issues arise because

fault tolerance properties are sensitive to a space of faults

as opposed to specific inputs. In traditional methods of

testing, bugs are characterized by inputs, whereas in dis-

tributed systems they are tied to the execution schedule.

It is this disparity that necessitates use of a different tool

for testing and verification for fault tolerance.

Consider, for instance, a distributed system that relies

on a leader election module. Version 1 of this module

implements bully leader election [26], choosing the node

with the minimum ID as leader, and Version 2 chooses

the node with the maximum ID. It’s not difficult to con-

vince ourselves that these are essentially the same proto-

col, and as a result, it might not occur to us to re-verify.

Imagine now that there is a bug in the downstream logic:

if the leader crashes, it fails to uphold its invariants.

If we first encounter this bug in Version 1, following

best practices, we might write a regression test that in-

jects a fault into node x in all future tests. However, that

input is not sufficient to trigger the aberrant behavior in

Version 2. Though we have the same bug in Version 2,

crashing x may not trigger it. Instead, crashing node y

will. For us to discover y as a trigger, we would need to

back-port the protocol changes to the specification and

re-verify.

Conversely, if we first encounter the bug in Version 2,

we might perform root cause analysis and work back-

wards through the commit history, replaying the failure

of y in earlier versions. Yet we would still fail to detect

the bug because, in Version 1, a failure in x, not y, trig-

gers the behavior. Again, we find that we must re-verify

for every commit if we hope to discover the bug.

We are left wanting something that works like verifi-

cation, but feels like testing. We need to perform a prin-

cipled search of the space of execution schedules while

retaining the efficiency, tool support, and integration pro-

vided by existing testing practices. This search has to

be run on every commit, but an exhaustive search of the

space of possible combinations of faults is intractable.

There is a need to prune the space of potential faults we

must explore for testing and verification, but a dearth of

tools available to do so.

3 Background

This paper is based on insights from a summer intern-

ship at Elastic, a distributed data store vendor whose

products focus on real-time search and analytics of

documents [27]. At the time, their engineering team

had deployed a data replication protocol based on Pri-

mary/Backup. Any Primary/Backup protocol needs a

way to sync a stale copy of the data with the current pri-

mary. The Elasticsearch protocol uses a method based

on file syncing to do so. Since file copying is inherently

slow, Elastic was looking for a faster protocol that can

work by synchronizing individual operations and avoid-

ing the overhead of copying large files. The new protocol

would work without pauses in writes and allow index-

ing to multiple documents concurrently. Since this was a

new algorithm, Elastic was looking for ways to formally

verify it. However, most verification tools require speci-

fications and it is not reasonable to think that every time a

programmer comes up with an optimization, they imple-

ment it in code and add it to the specification. Therefore,

they favored an efficient, lightweight tool designed for

easy use and incorporating strong failure scenario explo-

ration guarantees.

Elastic engaged our research team because they

wanted a technique that strikes a balance between formal

verification and testing—in particular, the strong correct-

ness guarantees of the former and the agility of the latter.

Lineage Driven Fault Injection (LDFI) is an analysis and

fault selection framework that harnesses concepts from

logic programming and database theory to construct a

representation of the underlying system model and de-

rive explanations for behaviors under different fault sce-



narios [11]. The approach builds a model based on a

good system execution and explores only fault scenarios

capable of forcing the system into a bad state. This opti-

mization greatly reduces the space of examined fault sce-

narios, making it tractable to perform a search of the fault

space each time the underlying implementation changes

(even trivially).

We implemented a sequence of versions of the repli-

cation protocol and used LDFI to incrementally verify

them as a part of continuous integration. The following

section describes our experiences using LDFI to examine

the impact of the modifications on overall correctness.

4 Modeling the replication protocol

The core Elasticsearch data replication protocol is a vari-

ation of primary backup. All client requests are routed to

the primary and are only acknowledged after they have

been replicated by the primary on all replicas. While

building the system, we defined incomplete versions of

the protocol starting with the core functionality, the last

version being as close to the real system as possible.

Each version, as a result of being incomplete, had histor-

ical bugs. Discovering these issues that were not caught

by conventional software engineering techniques gave us

confidence that the approach is effective.

Since the Elasticsearch API guarantees focus around

a single document, we modeled a single document with

concurrent accesses, rather than multiple independent

documents. For simplicity, we focused on an cluster with

one primary and two replicas. To simplify the evalua-

tion process, the specification also allows the existence

of a master oracle omniscient with respect to the state of

all other processes in the system. The master oracle ab-

stracts away the running of some correct consensus pro-

tocol internally on a group of servers.

4.1 Catching Bugs Early

There are many instances in the software development

cycle for a bug to be introduced, the first of which is

when a protocol specification is converted to an imple-

mentation. During our case study, we found a bug which

manifested precisely from such a translation scenario.

As illustrated in Figure 1, after sending two concurrent

writes to two different nodes in the system, LDFI tested

a scenario in which one of the writes is replicated suc-

cessfully while the second write is replicated on only one

of the replicas. Then, before the second write replicates

on the other node, the primary fails over. Subsequently,

the node on which the latest write request has not been

replicated becomes the new primary. The two replicas

are now (and will forever remain) inconsistent.

Discovering the bug requires primary failure after

Figure 1: Concurrent-writes bug. Process M represents

the mast oracle; Process C represents the client; and all

Process nN processes represent active replicas.

launching successful writes to only a subset of backup

replicas. Furthermore, a replica from the unlucky sub-

set must become the new primary. The main difficulty in

catching this bug using techniques such as test-driven de-

velopment or regression testing is the manual derivation

of relevant test cases. LDFI offers a better alternative by

generating such scenarios automatically. The technique

analyses the flow of data throughout the system for a sim-

ulated correct execution and iteratively examines the pro-

tocol’s responses to different message drop/process crash

combinations.

4.2 Dormant Bugs

When we discover a bug, we would like to go back in

history to determine the version at which the bug was

introduced. This is because a bug can lie dormant for

a long time before it is discovered. As an example, after

discovering the bug with concurrent writes, we were able

to reproduce the bug in the case in which there was only

a single write. Figure 2 represents this exact scenario. As

can be seen, the two bugs are similar, but do not manifest

from the same fault scenarios. This reinforces the claim

from our motivating example that techniques such as root

cause analysis as they are generally deployed would not

be effective in reasoning about the fault tolerance prop-

erties of distributed systems.

In this particular case, in a system supporting concur-

rent writes, we would have witnessed the same interac-

tions as the single write scenario with appropriate in-



Figure 2: Concurrent-writes bug occurs in the single-

write scenario as well

put data. This brings into sharp focus the fact that the

input data we start with matters in finding interesting

bugs.We discuss the problem of simultaneously search-

ing the space of faults and inputs in Section 5.

4.3 Optimizations

Once a protocol implementation exists, practitioners nat-

urally optimize for performance or carry out function-

ality extensions. However, some optimizations may

change the specification and without further verification,

we cannot (or at least shouldn’t) offer statements regard-

ing correctness.

4.3.1 Sequence Number Optimization

A seemingly minor optimization can result in a serious

fault tolerance bug. In Elasticsearch, the primary locally

chooses monotonically increasing sequence numbers to

enforce ordering on concurrent requests. Sequence num-

bers were introduced to prevent newer data from being

overwritten. To avoid extra processing, the following

rule was applied: If the sequence number associated with

a write request has been seen before, drop the payload

but acknowledge the request.

Now consider a scenario in which the primary fails

over after sending write requests from a client to a sub-

set of the backup replicas. Suppose further that a replica

ignorant of the write takes over as the primary and re-

ceives a new write request. Since sequence numbers are

locally determined by the primary, it may pick the same

sequence number as the incomplete write. It will then

send the write to all the active replicas. However, some

replicas may drop the write in adherence to the above op-

timization. Figure 3 demonstrates one instance of such

an execution. Fortunately, LDFI quickly and automati-

cally discovers such a scenario by using the initial suc-

cessful execution to test fault scenarios that may cause

Figure 3: Optimizing for sequence numbers

failures.

The above represents just one scenario in which ver-

ification can catch bugs in optimizations. Optimization

carries the risk of introducing entirely new bugs capa-

ble of breaking the end-to-end properties of the system,

which is best handled by verification-based tools.

4.3.2 Checkpoint Optimization

When a new node is promoted as primary, a re-sync is

necessary to ensure that all the active replicas in the sys-

tem are consistent with the new primary. In the initial

model, all writes were replayed to the replicas. How-

ever, this is extremely expensive and inefficient as only

operations that weren’t acknowledged to the client need

to be replayed. Therefore, we model a checkpoint opti-

mization using local and global checkpoints to ensure the

entire history of acknowledged messages is not resent to

replicas upon the election of a new primary. Each replica

maintains a local checkpoint while a global checkpoint is

the minimum of all local checkpoints. A newly elected

primary only sends update messages to replicas possess-

ing a sequence number greater than the global check-

point. This variation of the protocol introduces a fair

amount of complexity, but produces no counterexamples

when run against LDFI.

Simplicity of an optimization is not a consideration

in determining if the correctness guarantees of a system

have been violated. In this section, we demonstrated how

a seemingly simple optimization breaks system guaran-

tees while another more intricate one doesn’t.



5 Past and Future Work

Our experience at Elastic suggests approaches like LDFI

are a step towards improving the state of the art in dis-

tributed software quality. In this section, we place our

work in context between the past developments upon

which it builds and the work that we hope will follow.

The protocol described in Section 4 is a variant of Pri-

mary/Backup [5, 40, 55], a well-understood data replica-

tion technique that (when correctly implemented!) en-

sures single-copy consistency. As we argue in Section 1,

protocols such as Primary/Backup are continually rein-

terpreted and extended in practice and developers (ever-

optimistic by nature) derive false confidence from the ab-

stract connections to “correct” protocols.

Concurrency bugs: On one side of the spectrum, ma-

ture verification techniques such as model checking [24,

33,45,58,59]—particularly the software model checkers

capable of verifying real implementations [14,37,44] —

are ideally suited for reasoning about concurrency bugs

triggered by nondeterministic scheduling orders. Un-

fortunately, verifying fault tolerance properties of dis-

tributed systems with state space exploration techniques

like model checking is challenging due to the combina-

torial explosion of possible faults [29, 30, 39].

Recent work on semantic-aware software model

checkers (e.g. SAMC [39]) is particularly encourag-

ing. These tools require encoding domain knowledge

about any independence and symmetry characteristic to

the problem to dramatically reduce the state space un-

der consideration. Such a process supports the efficient

exploration of the system execution behaviors dependent

upon complex patterns of faults and orderings.

An ideal tool solution would combine the best fea-

tures of LDFI (which automatically builds models of

domain knowledge, but ignores concurrency and asyn-

chrony) with state-of-the-art combined approaches such

as SAMC, since we know from Fischer et al. [23] that

some of the most fundamental difficulties of distributed

systems exist at the intersection of partial failure and

asynchrony! LDFI’s roots in data-centric programming

languages suggest a unique approach to tackling concur-

rency bugs. The CALM Theorem [7, 12, 32], which as-

serts monotonic programs invariably produce determin-

istic outcomes for all message delivery orders, provides

an insight into how event orderings either necessitate or

avoid race conditions at runtime. We are developing a

prototype system that combines the Lineage-Driven ap-

proach (utilizing explanations of what went right to rea-

son about what could go wrong) and CALM analysis

(using static analysis to prove commutativity of message

processing logic) to simultaneously prune the space of

faults and re-orderings.

System Models: On the other side of the spectrum,

fault injection frameworks [1,2,22,25,29,30,52] are ma-

turing. Approaches such as LDFI are complementary to

fault injection techniques and can be used to automati-

cally drive such classes of debugging efforts as substan-

tiated by Alvaro et al. [6]. LDFI is just one example

of a more general technique: build models of system

redundancy from observability infrastructure (e.g. trac-

ing systems) and use those models to prune the space

of faults to inject. Given how probabilistic models are

arguably more appropriate to the domain of distributed

systems, we anticipate future work on LDFI embracing

rather than masking the inherent uncertainties in timing

endemic to distributed executions.

Input Generation: In this paper, we assume the in-

puts to the system are given a priori and focus computa-

tional resources on fault selection. However, in practice,

it can be tricky to discover the inputs required to trig-

ger a bug. A variety of approaches to input generation

and test generation [16, 19, 41, 50] are available. While

it is tempting to argue that these techniques are comple-

mentary to our approach, the reality is more nuanced. In

practice, some fault tolerance bugs in distributed systems

are triggered only by specific interleavings of inputs and

fault events; Zave’s counterexamples [61] to the correct-

ness invariants for Chord [54] provide a compelling wit-

ness. We are pursuing work that co-optimizes the search

through faults and inputs.

Debugging tools: When a testing or verification tool

identifies a possible bug, the process of debugging has

only just begun. Much like the quality assurance tech-

niques discussed in Section 2, classic software debug-

ging approaches, as referenced throughout the paper, are

ill-fitted to distributed systems. Currently, distributed de-

bugging tool support is in its infancy, so a great many

directions are possible. Our experience using LDFI at

Elastic suggests the provision of high-level explanations

of how a system achieves (or fails to achieve) good out-

comes are a good starting point for taming the complex-

ity of distributed debugging. Provenance [15, 21, 28,

36, 43, 62] is a well-established model in the database

and systems literature for providing explanations of out-

comes. Using provenance to reason about distributed

executions, however, is a young research area capable

of radical growth in tandem with future improvements in

observability infrastructure support [3, 4, 13, 18, 48, 51].

6 Conclusion

Existing bug detection and root cause analysis tools are

inadequate for assessing the correctness of distributed

protocols. The paper describes our experience seeking a

middle ground between formal verification and software

testing techniques while developing a novel distributed

protocol intended for a real-world, production environ-



ment. Given our success, we are optimistic that LDFI is

a step in the right direction. However, to be clear, we

do not believe in a one-size-fits-all solution. Our experi-

ence confirms our intuitions that the future of fault toler-

ant software development is unlikely to come in the form

of a single verification methodology. Rather, we see a

future in which tool support for distributed software im-

plementation, evolution, and debugging is improved in a

variety of directions. The state of the art is so desperately

poor that is should be easy for the research community

to make an impact!
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7 Discussion

Open Issues: Translating protocol designs into Dedalus

was, ultimately and unfortunately, a bottleneck. De-

veloping minimally weakened variations of LDFI that

shift away from the specification requirement and toward

more flexible input formats, such as system execution

traces or call-graphs, is an active area of future work that

increase general appeal of the technique.

When Does the Whole Idea Fall Apart? A number of

failure classes exist beyond the scope of the presented

LDFI approach. For example, LDFI cannot yet han-

dle complex event interleaving patterns reminiscent of

Zave’s Chord counterexamples [61], as highlighted in the

future work section. Additionally, Byzantine failures are

still far beyond the capabilities of the current technique.

Feedback Solicitation: In this paper, we identify the

need for new methods to optimally harness current soft-

ware quality best practices for debugging the fault tol-

erance properties of distributed systems. We are partic-

ularly interested in rebuttals against any of our core be-

liefs, especially:

• Classical software quality techniques such as re-

gression testing and root cause analysis do not ex-

tend to distributed systems in their current form.

• LDFI serves as a bridge between verification and

testing, as demonstrated by its successful real-world

application.

Additionally, the paper demonstrates that classical de-

bugging techniques can be effectively applied to dis-

tributed systems with the right intermediary formula-

tions. What other tools should we be building? What

potential impact could the LDFI approach have on such

tools?

Type of Discussion and Controversial Points: Apart

from the discussions generated from our assertions

above, comparison between techniques such as LDFI and

products from the ever-evolving field of model checking

would be anticipated discussion topics. As highlighted in

the related work, some existing research seeks to expand

the power of model checkers for distributed systems ap-

plicability. Are techniques in the intersection of testing

and verification valuable if such efforts succeed? Fur-

thermore, will the future landscape of distributed soft-

ware debuggers essentially manifest as a variation of a

one-size-fits-all solution or, as we believe, a rich toolset

addressing particular classes of debugging needs? We

look forward to debating these visions of the future.
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