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Minimum Required Detection Range for

Detect and Avoid of Unmanned Aircraft Systems

Jared K. Wikle1 and Timothy W. McLain2 and Randal W. Beard3

Brigham Young University, Provo, Utah, 84602

Laith R. Sahawneh4

University of Florida, Shalimar, Florida, 32579

For unmanned aircraft systems to gain full access to the National Airspace System,

they must have the capability to detect and avoid other aircraft. To safely avoid an-

other aircraft, an unmanned aircraft must detect the intruder aircraft with ample time

and distance to allow the ownship to track the intruder, perform risk assessment, plan

an avoidance path, and execute the maneuver. This paper describes two analytical

methods for finding the minimum detection range to ensure that these detection and

avoidance steps can be carried out. The first method, time-based geometric velocity

vectors, includes the bank-angle dynamics of the ownship; whereas the second, geo-

metric velocity vectors, assumes an instantaneous bank-angle maneuver. The solution

using the first method must be found numerically, whereas the second has a closed-

form analytical solution. These methods are compared to two existing methods. The

results show the time-based geometric velocity vectors approach is precise, the geo-

metric velocity vectors approach is a good approximation under many conditions, and

the two existing approaches are good approximations at large ownship speeds relative

to the intruder speed, fast ownship bank-angle transients, and small ownship bank

angles.
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2 Professor, Department of Mechanical Engineering. Associate Fellow AIAA.
3 Professor, Department of Electrical and Computer Engineering. Associate Fellow AIAA.
4 Postdoctoral Associate, AFRL/University of Florida Research and Engineering Education Facility. Student Mem-
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Nomenclature

a, b, c, d = coefficients to a third-order polynomial in sin θcpa

dCPA = remaining head-on distance between the ownship and intruder at the closest

point of approach (m)

dMDR = minimum detection range (m)

dm = distance between the ownship and intruder when the ownship starts

maneuvering (m)

do, di = head-on distance traveled by the ownship and intruder (m)

do,c, di,c = head-on distance traveled by the ownship and intruder during the

computation time (m)

do,m, di,m = head-on distance traveled by the ownship and intruder during the maneuver

time (m)

d̄MDR = minimum detection range with the slack parameter safety factor (m)

g = gravitational constant (m/s2)

K, τ = general first-order system parameters

L = length of the ownship path during the maneuver (m)

L3 = length of the ownship path during segment 3 (m)

p = roll rate (rad/s)

po, pi = position vector of the ownship and intruder in the right-handed X-Y -Z

inertial reference frame (m)

px, py = X and Y positions of aircraft (m)

Rmin = minimum turn radius (m)

Rs, hs = radius and height of safety volume (m)

ṙ = range rate between the ownship and intruder aircraft (m/s)

S, T , R, D, Q = temporary variables used to find the roots of z

s = independent variable used for Laplace representation

t = time (s)

tc = computation time (s)

tDAA = time required for detect-and-avoid operations (s)
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tm = time to maneuver to the closest point of approach (s)

tt = turn time (s)

t0, t1, t2, t3, t4, t5 = times to change deflection angle of ailerons (s)

vo, vi = velocity of ownship and intruder aircraft(m/s)

vo, vi = velocity vector of the ownship and intruder in the right-handed X-Y -Z

inertial reference frame (m/s)

vx, vy = X and Y velocities of aircraft (m/s)

xcpa, ycpa = X and Y components of closest point of approach (m)

xm, ym = X and Y components of the maneuver taken by the ownship (m)

xt, yt = X and Y components of the turning maneuver (m)

xl, yl = X and Y components of the linear segment of the avoidance maneuver

(m)

yχtcpa = Y component of the closest point of approach assuming the course is

equal to χt (m)

z = change of variable for sin θcpa

z1, z2, z3 = three roots of z

δa = deflection of ailerons in the time domain (rad)

δr = slack parameter

δT3 = total time during segment 3 where the bank angle is at a constant

value of φmax (s)

δχ1, δχ2, δχ3, δχ4, δχ5 = changes in course during segments 1, 2, 3, 4 and 5 (rad)

δχ2,4 = change in course during segments 2 and 4 combined (rad)

θcpa = angle between the forward path of the intruder and the closest point of

approach of the ownship (rad)

σ = independent variable used for integration

φ, φmax = bank angle and maximum bank angle (rad)

φ1, φ2, φ3, φ4, φ5 = bank angles during segments 1, 2, 3, 4 and 5 (rad)

φ2,4, φ̇2,4 = bank angle and bank-angle rate during segments 2 and 4 combined

(rad), (rad/s)
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φ̇max = maximum bank-angle rate (rad/s)

φ̇1, φ̇2, φ̇3, φ̇4, φ̇5 = bank-angle rates during segments 1, 2, 3, 4 and 5 (rad/s)

φf = free response of the bank angle (rad)

φ̇, φ̈ = first and second time derivatives of the bank angle (rad/s), (rad/s2)

χ = course of aircraft (rad)

χcpa = course of ownship at the closest point of approach (rad)

χt = change in course during the turning maneuver (rad)

χ̇, χ̇max = course rate and maximum course rate (rad/s)

I. Introduction

The use of unmanned aircraft systems (UASs) in commercial and civil applications has been

expanding rapidly in recent years. Many UAS missions will require simultaneous operation with

existing airspace users. UASs currently have limited access to the National Airspace System (NAS)

because they do not have the ability to detect and avoid other air traffic. Among many regulatory

and technology issues, safety is the foremost concern and the most significant challenge to overcome

before UAS integration into the NAS can be achieved. The Federal Aviation Administration, which

is the national aviation authority in the United States, calls for a target level of safety that is more

stringent than the see-and-avoid requirement for manned aircraft [1].

Robust and reliable detect-and-avoid (DAA) systems will be necessary for UASs to provide the

required target level of safety. Typically, a complete functional detect-and-avoid system comprises

of sensors and associated trackers, collision detection, risk assessment, collision-avoidance, and self-

separation algorithms.

The main role of the sensor and tracker is to detect any of the various types of hazards, such as

traffic or terrain, and track the motion of the detected object to gain sufficient confidence that the

detection is valid. Electro-optical and infrared cameras, light detection and ranging, and radar are

examples of sensors employed to detect non-cooperative traffic [2]. Non-cooperative traffic means

that data about potential conflicts are not communicated or transmitted to the ownship UAS from
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the conflicting intruders. The traffic alert and collision-avoidance system (TCAS) and automatic

dependent surveillance-broadcast (ADS-B) are examples of systems for detecting cooperative in-

truders. Both cooperative and non-cooperative sensors can be used with DAA systems, and both

can be used in conjunction with the results of this paper.

Not every aircraft that is observed by the detection system presents a risk of collision or violation

of the well-clear boundary. The self-separation algorithm must therefore identify potential well-

clear violations and plan new paths that remain well clear of intruder aircraft while optimizing an

objective function or performance metric. Self-separation is designed to prevent future collision-

avoidance maneuvers and is achieved using less-aggressive maneuvers. If the well-clear boundary is

penetrated, the collision detection and collision-avoidance system must be used to detect potential

collisions and compute collision-free paths. A collision avoidance maneuver is considered as the last

resort effort to steer the UAS onto a safe course to prevent an imminent collision and may require

an aggressive change in flight path.

The design of a DAA system for UASs should also address regulatory requirements, as well as

performance and reliability standards. Initial efforts to address performance, design, construction,

and reliability requirements of DAA systems for UASs were discussed in the white papers produced

by Radio Telecommunications Corporation of America in RTCA SC-228 [1]. An excellent review of

existing regulations, standards, and recommended practices, along with suggestions and recommen-

dations for DAA requirements to facilitate the UAS integration into the NAS system, were discussed

in Refs. [3–5]. Specific design parameters required by a DAA system, such as the sensor angular

resolution, field of view, and minimum time and detection range, that are needed to prevent a

collision assuming a two-dimensional (2-D) head-on encounter geometry, were addressed in Ref. [6].

Sensor and tracking requirements were derived for a radar-based DAA system considering 2-D flight

worst-case encounter scenarios using exhaustive Monte Carlo simulations in Ref. [7]. The authors in

Ref. [8] proposed a framework that consisted of a target level of safety approach using an event-tree

format to develop specific DAA effectiveness standards linking UAS characteristics and operating

environments to midair collision risk quantified by a fatality rate.

Among these requirements and design specifications, developing sensors that achieve sufficiently
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large target detection ranges for effective self-separation and collision avoidance is a crucial aspect of

a viable DAA solution. This paper provides an exact numerical solution and a closed-form analytical

approximation to the minimum detection range. An outline of the paper is as follows. In Section II,

derivation of the minimum detection range (MDR) dMDR is given along with the appropriate defi-

nitions and assumptions. An overview of two existing methods is given in Section IIA, followed by

the new methods in Section II B. In Section III, results are presented, providing a comparison of

the four methods: the two presented in this paper, and those presented in Ref.[6] and [9]. Finally,

conclusions are presented in Section IV.

II. Minimum Detection Range Formulation

The minimum required detection range arises from the time required to complete the detection

and avoidance of an intruder. The minimum time for the DAA system to be able to track the

intruder, detect a collision or well-clear violation, plan an avoidance maneuver, wait for human

review/approval, and fly the maneuver determines the distance at which the UAS must detect the

intruder. The detection of a well-clear violation or collision threat must be accomplished at no less

than the minimum detection range to allow the ownship to execute the maneuver with sufficient

time so that the closest point of approach is greater than or equal to the separation requirement. A

time sequence for the DAA system, similar to the proposed sequence in Ref. [6], is shown in Fig. 1.

According to the time sequence, the time required for DAA operations, tDAA, is defined as the sum

of the computation time, tc, and the time that is required to maneuver, tm.

State
estimation

&
tracking

Collision
detection
& risk

assessment

Plan
avoidance

path

Human
review/
approval
(optional)

Initiate maneuver

Maneuver

Return to
nominal
path

Maneuver timeComputation time
tc tm

Closest point of approach

time

Intruder
detected

Fig. 1 Proposed timeline for the detect-and-avoid system [6].

Current manned aviation regulations have no explicit values for separation requirements; how-
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ever, various attempts have been made to define them. For collision avoidance of manned aviation,

a common requirement is the near midair collision (NMAC) volume, which is a disk-shaped volume

with a horizontal radius of 500 ft and a vertical height of 200 ft [10–12]. No such requirements

exist for UASs; however, the NMAC volume could be used as a conservative requirement. For self-

separation, the well-clear boundary is more ambiguous and depends on the specific aircraft involved

and their associated speeds and altitudes. Recent efforts to define this boundary for UASs have

resulted in values in the range of 0.5 to 1 n mile [13]. For UASs, the potential ownship and intruder

aircraft can vary widely in vehicle size, weight, and airspeed; and the separation requirements could

be scaled accordingly. For this work, we will assume a purely geometric safety volume centered

around the aircraft as shown in Fig. 2. The general choice for this volume is a cylinder of radius Rs

and height hs centered at the current location of the aircraft. This volume will be used to represent

the well-clear or NMAC volume. From this volume, a well-clear violation or an NMAC is defined as

an incident that occurs when two aircraft pass with a distance less than Rs horizontally and hs/2

vertically.

Rs

hs

Fig. 2 General volume used to represent the well-clear or NMAC conditions.

Various types of sensors exist for detecting intruder aircraft, and they can be located at different

locations, such as on the ownship aircraft, a stationary ground-based platform, or a moving ground-

based platform. If the sensor is fixed to the ownship, the minimum detection range calculated in this

paper can be directly used as the minimum sensing range requirement of the sensor. If the sensor

is used with a ground-based system, the minimum detection range determines how close an aircraft

can fly to the edge of maximum surveillance range and still be guaranteed to avoid intruders. The

equations developed in this paper for the minimum detection range are independent of the specific

sensor type chosen; however, because of field-of-view limits, multiple sensors may be required to

achieve the desired field of view.
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The analysis in this paper assumes that there is only one intruder aircraft. If there is more than

one intruder, then the avoidance maneuver will likely be more complex and will require a greater

detection range. This paper considers the longest-detection-range encounter that occurs when both

the ownship and intruder are flying at a constant altitude, course, and airspeed in a direct head-on

approach. Various types of avoidance maneuvers can be taken by the ownship to avoid the intruder’s

safety volume. First, the ownship could perform a turning maneuver at a constant altitude to stay

outside the horizontal safety radius Rs. Second, the ownship could perform a climbing/descending

maneuver without turning to achieve a relative altitude equal to or greater than hs/2 while inside the

safety radius. Third, the ownship could both turn and climb/descend simultaneously to avoid either

the safety radius or the safety altitude: whichever comes first. Finally, the ownship could adjust its

speed in addition to one of the previous maneuvers. Because Rs is generally much larger than hs,

a constant-altitude turning maneuver will require the largest distance to avoid the safety volume

and will be the focus of our avoidance-maneuver analysis. For simplicity, the ownship velocity is

assumed to be constant and above the stall speed of the ownship. The speed of the ownship and

intruder are defined as vo and vi, respectively.

In this analysis, the ownship’s turning dynamics follow the coordinated-turn relationships [14]

χ̇ = g

vo
tanφ, (1)

Rmin = vo
χ̇max

= v2
o

g tanφmax
, (2)

where χ̇ is the course rate, φ is the bank angle, Rmin is the minimum turning radius, χ̇max is the

maximum course rate, φmax is the maximum bank angle, and g is the gravitational constant. This

analysis is intended for use with fixed-wing aircraft with turning dynamics that are well modeled

by the coordinated-turn relationships. The analysis is also valid for other types of aircraft, such as

rotorcraft, provided their turn dynamics are approximated by the coordinated turn.

The assumptions that have been made and other real-world issues may limit the validity of the

analysis and, as a result, additional range may be required in practice. Ownship and intruder states

are not known perfectly due to state estimation errors resulting from imperfect inertial measurement

unit, Global Positioning System, and detection sensors. The intruder may maneuver during the
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encounter by turning, changing altitude, or changing speed. Finally, the ownship may not follow

the ideal coordinated-turn flight trajectory. Each of these issues will need to be considered before

final sensor requirements can be made; however, the results of this paper provide a solid foundation

to build upon.

A. Prior Approaches

One method, known as the tactical separation assisted flight environment (TSAFE) resolution

algorithm (developed by Erzberger [15]), deserves mention. The TSAFE resolution algorithm does

not solve for the minimum detection range specifically; however, various supplemental equations

are common between our method and the TSAFE resolution algorithm, including the position

and course dynamics of the ownship. In the TSAFE resolution algorithm, two aircraft are given

arbitrary positions, headings, and speeds relative to each other. Using these initial conditions,

resolution maneuvers are calculated based on one or both of the aircraft performing a horizontal

turning maneuver followed by straight-line flight. The turning maneuvers are performed by right-

or left-turn maneuvers, with the bank angle and turn time as the control variables. By varying

each of the variables, equations are developed to calculate the closest point of approach (CPA)

between the two aircraft during the turning maneuver and during the straight-line flight. The

final CPA between the two aircraft is then found by taking the minimum of the CPA during the

turning maneuver and the straight-line portion. The last step of the TSAFE resolution algorithm

is to choose the appropriate bank angle, turn direction, and turn time, which result in the CPA

being greater than the required safe distance. Although the TSAFE resolution algorithm was not

formulated to find the minimum detection range, the CPA equations used by TSAFE resolution

could be used in an iterative manner to solve for the minimum detection range by adjusting the

starting distance between the two aircraft until the CPA equals the required safe distance.

Two approaches developed specifically for calculating minimum detection range are found in

the literature. One approach, developed by Geyer et al. [6], is referred to in this paper as the turn-

time (TT) approach. The second approach, developed by Sahawneh et al. [9], is referred to as the

geometric-tangent (GT) approach. Both approaches assume an instantaneous bank-angle maneuver
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and a head-on, constant-altitude, constant-velocity encounter. A brief description of these two

methods is given in the following subsections.

1. Turn Time Approach

Using the TT method proposed in Ref. [6], the minimum detection range is calculated using

the expression

dMDR = (vo + vi)(tc + tt), (3)

where tt is the time when the ownship and intruder are closest as the ownship is executing a

turning maneuver. The turn time is found using equations for the north and east positions of both

the ownship and intruder as functions of time, as well as the assumption that the turn time is

approximately equal to the time to collision in the absence of a maneuver. Using this time-based

approach, the minimum detection range is expressed as

dMDR ≈ (vo + vi)
(
tc +

√
2Rs cotφmax

g

)
. (4)

In Ref. [6], the authors acknowledged that their solution was an approximation to the true

minimum detection range, and they stated that it was meant to be used as a heuristic for choosing

the right sensor and its resolution. They further stated that it was not suitable for small distances

and velocities, but they did not specifically define limiting values.

2. Geometric Tangent Approach

The GT method proposed in Ref. [9] approximates the minimum detection range as

dMDR = (vo + vi)tc + dm,

where dm is the distance between the ownship and the intruder when the ownship starts maneuver-

ing. In this method, the ownship executes a turning maneuver with a constant turning radius. The

closest point of approach is then assumed to occur when the ownship is located on the edge of the

safety circle around the intruder and the turning radius of the ownship is tangent to the safety circle

around the intruder. Using this geometric relationship, the minimum detection range is expressed
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as

dMDR ≈ (vo + vi)tc +

√
R2
s + 2Rs

v2
o

g tanφmax
+ vivo
g tanφmax

cos−1
(

v2
o

v2
o +Rsg tanφmax

)
. (5)

In Ref. [9], the authors acknowledged that their solution was an under-approximation and

stated that compensation could be made by selecting a positive slack parameter, δr, to obtain

d̄MDR = (1 + δr)dMDR. Slack parameters must be found using experimental results, such as those

from Monte Carlo simulations, but insights into appropriate slack parameter values were not given.

B. New Approaches

The TT and GT approaches both make the assumption that the ownship executes a turning

maneuver by instantaneously banking to a specified angle. This assumption simplifies the derivation

of the minimum detection range by confining the trajectory of the ownship to a circular arc. In the

turning maneuver of real aircraft, an instantaneous bank-angle maneuver is not physically possible.

Instead, the bank angle has a transient response resulting from the deflection of the ailerons. The

response of the bank angle determines the course rate of a coordinated turn as shown in Eq. (1).

This non-constant course rate results in a trajectory that is not circular and must be determined by

numerical integration of complex time-based functions. Considering the bank-angle dynamics results

in a more accurate prediction of the minimum detection range that is larger than the predictions of

the TT and GT methods. The proposed method that takes into account the bank-angle dynamics

is called the time-based geometric velocity vectors (TGVVs) approach and is described fully in this

paper.

The second method presented in this paper, known as the geometric velocity vectors (GVVs)

approach, is a special case of the TGVV approach that maintains the assumption of an instantaneous

bank-angle maneuver. By using this assumption, the GVV method allows flight trajectories to be

represented geometrically as circular paths instead of functions of time, which allows a closed-form

analytical solution for the minimum detection range to be derived. We will show under what

conditions, the instantaneous bank-angle assumption is valid, allowing the GVV method to be used

with confidence. We will further show that the GVVmethod produces more accurate approximations

to the TGVV solution over a wider range of conditions than the solutions offered by the TT and GT
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approaches. The TGVV and GVV methods also allow the turning angle for the avoidance maneuver

to be defined by the analyst instead of prescribing a 90 deg turn. Although this may result in a

slightly larger dMDR, it also allows deviations from the nominal flight path to be reduced at the

discretion of the analyst.

1. Problem Formulation

A diagram for the total minimum detection range, dMDR, is shown in Fig. 3, and the resulting

general equation for dMDR is represented as

dMDR = do + di + dCPA,

where do is the total head-on distance traveled by the ownship, and di is the total head-on distance

traveled by the intruder. The final term dCPA is the remaining head-on distance between the ownship

and intruder when the closest point of approach has been reached.

d
i,
c

d
i,
m

d
C
P
A

d
o,
m

d
o,
c

d
o

d
i

d
M
D
R

χcpa

xm

ym

θcpaxcpa
Rs

ycpa

maneuver
initiated

ownship
CPA

Y

X

intruder
CPA

intruder detected

flight path

maneuver
trajectory

safety volume

Fig. 3 The total minimum detection range, dMDR, needed. A representation of the CPA.

In Fig. 3, we can also see that the variables do and di can both be broken down into two

subsegments each. The total head-on distance traveled by the ownship can be defined as do =
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do,c+do,m, where do,c is the head-on distance traveled by the ownship during computation time, and

do,m is the head-on distance traveled by the ownship while it is executing its maneuver. Similarly,

the total head-on distance traveled by the intruder can be defined as di = di,c+di,m, where di,c is the

head-on distance traveled by the intruder during computation time, and di,m is the head-on distance

traveled by the intruder while the ownship is executing its maneuver. Using these definitions, the

minimum detection range becomes

dMDR = do,c + do,m + di,c + di,m + dCPA.

When analyzing the interaction between two aircraft during an avoidance maneuver, the CPA

is a significant point of interest and a detailed derivation of this location is the basis upon which the

new methods are built. The previous GT approach also uses the CPA as the basis of their derivation

of the minimum detection range; however, the GT approach differs in where the CPA is located.

In the GT method, the CPA is assumed to be located where the circular arc that is transversed

by the ownship during its avoidance maneuver becomes tangent to the safety circle drawn around

the intruder. In the TGVV and GVV methods, the CPA is also located on the edge of the safety

circle around the intruder; however, the tangency assumption is removed. Instead, the ownship is

assigned an arbitrary course angle χcpa when it is located on the edge of the safety circle, as seen

in Fig. 3. This illustration is represented in a right-handed X-Y -Z inertial reference frame, and the

variable χcpa is defined relative to the X axis. In addition to χcpa, an additional angle is needed to

define the location of the ownship on the edge of the safety circle when the CPA is reached, which is

shown by the variable θcpa in Fig. 3. The variable θcpa is measured relative to the negative X axis

and represents the angle between the forward flight path of the intruder and the line connecting the

CPA of the intruder and ownship. Using the definition of θcpa, a right triangle is formed with its

hypotenuse equal to the safety radius Rs and the two sides equal to xcpa, and ycpa.

The CPA can be identified by taking the derivative of the range with respect to time, known as

the range rate, and setting it to zero. The range rate is calculated as

ṙ = po − pi
‖po − pi‖

· (vo − vi), (6)

where po, pi, vo, and vi are vectors defined in the inertial reference frame. The vector po is the
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position vector of the ownship, pi is the position vector of the intruder, vo is the velocity vector of

the ownship, and vi is the velocity vector of the intruder. Using Fig. 3, the position and velocity

vectors can be defined in terms of the safety radius Rs, the ownship and intruder velocities vo,

and vi; and the unknown variables xcpa, ycpa, and χcpa. Because the aircraft are assumed to be

flying at constant altitude, the Z component of the position and velocity vectors will be neglected.

The origin is defined as the intruder position when the CPA is reached so that pi = (0,0). Using

the intruder’s position as the origin, the ownship’s position is then defined as po = (−xcpa, ycpa).

The intruder’s velocity vector is defined to be in the -X direction; therefore, the intruder’s velocity

vector is defined as vi = (−vi,0). The ownship’s velocity vector points in the direction of χcpa and

is defined by vo = (vo cosχcpa, vo sinχcpa). Substituting these position and velocity vectors into

Eq. (6) and equating it to zero results in

0 = (−xcpa, ycpa)− (0, 0)
‖(−xcpa, ycpa)− (0, 0)‖ · ((vo cosχcpa, vo sinχcpa)− (−vi, 0)),

= 1
Rs

[vo sinχcpaycpa − (vi + vo cosχcpa)xcpa] , (7)

where we now have a single equation with unknown variables xcpa, ycpa, and χcpa.

If an instantaneous bank-angle maneuver is assumed, as in the GVV method, the three unknown

variables can be expressed in terms of the single unknown variable θcpa. The resulting equation can

then be solved for θcpa explicitly, from which the specific values for xcpa, ycpa, and χcpa are found.

If on the other hand, a non-instantaneous bank-angle maneuver is assumed; as in the TGVV

method, the variable χcpa cannot be expressed in terms of θcpa. For this case, χcpa is found by

integration of the turning dynamics of the aircraft over time. Because the variable χcpa is now

based on time, the three unknown variables are expressed in terms of the time to maneuver to

the CPA, tm, instead of the unknown variable θcpa. After substituting these expressions back into

Eq. (7), the resulting equation cannot be solved for tm explicitly and must instead be found through

numerical methods. Once tm has been determined, the specific values for xcpa, ycpa, and χcpa can

be found.

Using Fig. 3 and the definitions of the CPA as described previously, dCPA is equal to xcpa. From

this figure, we can also see that do,m is equal to the X component of the maneuvering ownship
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when it reaches the CPA, xm. The head-on distance traveled by the intruder while the ownship is

executing its maneuver is a linear function of the time it takes the ownship to maneuver to the CPA

as di,m = vitm. Finally, because the ownship and intruder are assumed to be traveling at constant

velocity, do,c and di,c are linear functions of the computation time and are expressed as do,c = votc

and di,c = vitc, respectively. With each of these definitions, the general equation for the minimum

detection range finally becomes

dMDR = (vo + vi)tc + xm + vitm + xcpa. (8)

The remaining variables xm, tm, and xcpa are dependent on the specific maneuver taken by

the ownship and the location on the edge of the safety circle where the CPA occurs. The specific

maneuver taken by the ownship and the resulting location of the CPA differ between the TGVV and

GVV methods and will be defined in the following two sections along with the resulting minimum

detection range.

2. Time-Based Geometric Velocity Vectors Approach

As stated previously, the TGVV approach assumes that the turning maneuver executed by the

ownship is driven by a non-instantaneous bank angle change and the resulting trajectory must be

characterized by numerical integration of time-based turn dynamics. The first step in characterizing

the trajectory is to define the X and Y positions of the ownship during its maneuver as functions

of time as

px(t) =
∫ t

t0

vx(σ)dσ =
∫ t

t0

vo cosχ(σ)dσ, (9)

py(t) =
∫ t

t0

vy(σ)dσ =
∫ t

t0

vo sinχ(σ)dσ. (10)

These positions are measured relative to the location where the ownship initiates its avoidance

maneuver and the time is measured relative to the time when the ownship initiates its avoidance

maneuver, t0. The variables vx and vy are the X and Y velocity components of the ownship as

functions of time while it performs its turning maneuver. The variable χ is the course of the ownship

as a function of time while it performs its turning maneuver, and σ is the independent variable of

integration.
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Assuming the ownship performs a coordinated-turn maneuver, the course of the aircraft can be

found by integrating the course rate from Eq. (1) as

χ(t) =
∫ t

t0

χ̇(σ)dσ =
∫ t

t0

g

vo
tanφ(σ)dσ. (11)

For the GVV, method which will be described later, φ is assumed to be a step function with a

magnitude of φmax; however, the TGVV approach assumes that the turning maneuver executed by

the ownship is influenced by the bank-angle dynamics. At this point, any desired banking dynamics

could be used to define the course as a function of time; however, we have chosen to use a first-order

transfer function that describes the roll rate of the aircraft, p, in response to the deflection of the

ailerons δa. The roll rate is integrated to get the bank angle. A block diagram of this system is

shown in Fig. 4, where K and τ are general first-order system parameters, and s is the Laplace

variable.

φpδa 1
s

K
τs+1

Fig. 4 Block diagram of the bank-angle response due to aileron inputs.

Using this dynamic model, we design a set of aileron commands to achieve a desired bank-angle

response as shown in Fig. 5(a). In interval 1, a positive aileron step is used at t0 to achieve a

constant bank-angle rate, φ̇max. In interval 2, a negative aileron step is used at t1 to stop the rolling

motion at the maximum bank angle, φmax. In interval 3, the aircraft holds this constant bank angle,

beginning at t2, until it is time to return to level flight. The time at which the aircraft needs to begin

returning to level flight is shown by t3 and is chosen so that the total change in course resulting

from the turning maneuver is equal to χt. In interval 4, a negative aileron step is used at t3 to

achieve a constant bank-angle rate, −φ̇max. In interval 5, a positive aileron step is used at t4 to stop

the rolling motion with the bank-angle returns at zero. Finally, at t5, the aircraft remains in level

flight at the desired course, χt, for the remainder of the avoidance maneuver. In some cases, the

aircraft may not reach the maximum bank angle before it is time to return to level flight to ensure

the proper χt is achieved. In these cases, the bank angle has the response shown in Fig. 5(b), from

which we notice t2 and t3 occur at the same time instant and there is no longer an interval 3. We

16



also notice that intervals 2 and 4 are combined in terms of the negative step input to the system

from the ailerons.

φ̇max

φmax

0

δa

t

t0 t1 t2 t3 t4 t5
-δa

angle
1 2 3 4 5

t2
t1

(a) Case A: φmax is reached.

0

δa

t

t0 t1
t2,t3

t4 t5
-δa

φ̇max

1 2 4 5

t1
t2

φ

δa

angle

φmax

(b) Case B: φmax is not reached.

Fig. 5 Bank-angle response to aileron step inputs.

From Fig. 5, the segments of the bank-angle response where φ is changing as a result of the

aileron input are intervals 1, 2, 4, and 5. The time response of φ to step inputs in the aileron

command can be derived from the ordinary differential equation describing the bank-angle dynamics:

τ φ̈+ φ̇ = Kδa(t).

The bank-angle response due to an aileron step input of magnitude δa occurring at time t0 is given

by

φ(t) = Kδa

[
τe−(t−t0)/τ − τ + (t− t0)

]
+ τ φ̇(t0)

(
1− e−(t−t0)/τ

)
+ φ(t0),

whereas the bank-rate response is given by

φ̇(t) = Kδa

(
1− e−(t−t0)/τ

)
+ φ̇(t0)e−(t−t0)/τ .

The magnitude of the aileron step input is chosen so that the steady-state bank-angle rate is the

prescribed maximum φ̇max, which gives

δa = φ̇max

K
. (12)

Substituting this value of δa back into the equations for φ(t) and φ̇(t) results in equations in terms

of τ and φ̇max as

φ(t) = τ φ̇max

(
e−(t−t0)/τ − 1

)
+ φ̇max(t− t0) + τ φ̇(t0)

(
1− e−(t−t0)/τ

)
+ φ(t0), (13)

φ̇(t) = φ̇max

(
1− e−(t−t0)/τ

)
+ φ̇(t0)e−(t−t0)/τ . (14)
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These equations are the general equations used to define the response of the bank angle to a positive

or negative step input from the ailerons for cases A and B. The specific bank-angle responses for

each interval are derived for both cases in the Appendix.

Tables 1 and 2 provide a summary of the specific bank-angle response for each interval, shown

by φi, for case A and case B, respectively. Additionally, the transition times for each segment are

shown by ti, and the change in course during each segment is shown by δχi. To determine if case

A or case B is required for the bank-angle dynamics of the ownship, we use the value calculated for

δχ3. If δχ3 ≥ 0, then case A is used; and if δχ3 < 0, then case B is used.

Interval φi(t)

1 φ1(t) = τ φ̇max
(
e−t/τ − 1

)
+ φ̇maxt

2 φ2(t) = τ φ̇max
(
1− 2e−(t−t1)/τ + e−t/τ)− φ̇max(t− 2t1)

3 φ3(t) = φmax

4 φ4(t) = τ φ̇max
(
1− e−(t−t3)/τ)− φ̇max(t− t3) + φmax

5 φ5(t) = τ φ̇max
(
2e−(t−t4)/τ − 1− e−(t−t3)/τ)+ φ̇max(t− 2t4 + t3) + φmax

Interval ti δχi

1 t1 = −τ ln
[

e−(φmax/φ̇max)/τ

1+
√

1−e−(φmax/φ̇max)/τ

]
δχ1 =

∫ t1
t0

g
vo

tan(φ1(t))dt

2 t2 = 2t1 − φmax
φ̇max

δχ2 =
∫ t2
t1

g
vo

tan(φ2(t))dt

3 t3 = t2 + Rminδχ3
vo

δχ3 = χt − (δχ1 + δχ2 + δχ4|t3=0,t4=t1 + δχ5|t3=0,t4=t1,t5=t2 )

4 t4 = t3 + t1 δχ4 =
∫ t4
t3

g
vo

tan(φ4(t))dt

5 t5 = t3 + t2 δχ5 =
∫ t5
t4

g
vo

tan(φ5(t))dt

Table 1 Bank angle, time intervals, and change in course for each segment of case A.
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Interval φi(t)

1 φ1(t) = τ φ̇max
(
e−t/τ − 1

)
+ φ̇maxt

2,4 φ2,4(t) = τ φ̇max
(
1− 2e−(t−t1)/τ + e−t/τ)− φ̇max(t− 2t1)

5 φ5(t) = τ φ̇max
(
e−t/τ (2et1/τ − 1)2 − 1− 2 ln

[
2et1/τ − 1

])
+ φ̇maxt

Interval ti δχi

1 numerical method in Appendix A 2 δχ1 =
∫ t1
t0

g
vo

tan(φ1(t))dt

2,4 t2 = τ ln
[
2et1/τ − 1

]
, t4 = t2 + t1 δχ2,4 =

∫ t4
t1

g
vo

tan(φ2,4(t))dt

5 t5 = 2t2 δχ5 =
∫ t5
t4

g
vo

tan(φ5(t))dt

Table 2 Bank angle, time intervals, and change in course for each segment of case B.

Using the information from Table 1, we create an expression for the course of the ownship after

it initiates the avoidance maneuver for Case A as

χ(t) =



0 if t ≤ t0,

∫ t
t0

g
vo

tan(φ1(σ))dσ if t0 < t ≤ t1,

δχ1 +
∫ t
t1

g
vo

tan(φ2(σ))dσ if t1 < t ≤ t2,

δχ1 + δχ2 +
∫ t
t2

g
vo

tan(φ3(σ))dσ if t2 < t ≤ t3,

δχ1 + δχ2 + δχ3 +
∫ t
t3

g
vo

tan(φ4(σ))dσ if t3 < t ≤ t4,

δχ1 + δχ2 + δχ3 + δχ4 +
∫ t
t4

g
vo

tan(φ5(σ))dσ if t4 < t ≤ t5,

χt if t5 < t,

(15)

Similarly, using the information from Table 2, we create an expression for the course of the

ownship after it initiates the avoidance maneuver for Case B as
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χ(t) =



0, if t ≤ t0

∫ t
t0

g
vo

tan(φ1(σ))dσ, if t0 < t ≤ t1

δχ1 +
∫ t
t1

g
vo

tan(φ2,4(σ))dσ, if t1 < t ≤ t4

δχ1 + δχ2,4 +
∫ t
t4

g
vo

tan(φ5(σ))dσ, if t4 < t ≤ t5

χt, if t5 < t

(16)

Using Eqs. (15) and (16) for the course of the ownship and Eqs. (9) and (10) for the position

of the ownship, the trajectory of the ownship is fully defined. Using this trajectory, we return to

the analysis of the CPA location. The time to maneuver is the time it takes the ownship to initiate

a turning maneuver until it reaches the CPA location on the edge of the safety circle around the

intruder. This segment of the flight path of the ownship is shown in Fig. 3 and is composed of X

and Y components: xm and ym, respectively. These X and Y components can be defined in terms

of the equations for px(t) and py(t), Eqs. (9) and (10), and the time to maneuver as

xm = px(tm), (17)

ym = py(tm), (18)

From Eq. (7), we have three unknown variables xcpa, ycpa, and χcpa. Using Fig. 3, we see that

the unknown variable ycpa, which defines the Y component of the CPA, has the same value as the Y

component of the maneuvering ownship ym at the CPA. Accordingly, xcpa and ycpa can be expressed

as

ycpa = ym = py(tm), (19)

xcpa =
√
R2
s − y2

cpa =
√
R2
s − py(tm)2, (20)

Similarly, χcpa can be expressed as

χcpa = χ(tm). (21)

After substituting these expressions for xcpa, ycpa, and χcpa into Eq. (7) and simplifying, we get

0 = py(tm)vo sinχ(tm)−
√
R2
s − py(tm)2(vi + vo cosχ(tm)). (22)
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This equation is now a function of a single variable tm, which can be solved for using the Newton–

Raphson method. Once the value of tm has been found, the three variables xcpa, ycpa, and χcpa can

then be calculated, along with the variables xm and ym.

Now that the CPA location has been defined, we return to the calculation of the minimum

detection range shown in Eq. (8). With the values for xm, tm, and xcpa just derived, the minimum

detection range can be defined as

dMDR = (vo + vi)tc + px(tm) + vitm +
√
R2
s − py(tm)2, (23)

where tm is found from Eq. (22) using the Newton–Raphson method; px(tm) and py(tm) are found

from Eqs. (9) and (10); and χ(tm) is generally defined in Eq. (11), but is specifically defined for

both case A and case B in Eqs. (15) and (16), respectively.

3. Geometric Velocity Vectors Approach

The TGVV method described previously incorporates the bank-angle dynamics of the ownship

into the avoidance path. If the bank-angle dynamics of the ownship are fast relative to the maneuver

time, then the assumption of an instantaneous bank angle becomes more realistic. For the GVV

method, we make this assumption; in the results section (Sec. III), we show under what conditions

this assumption is valid by comparing it to the TGVV method.

Instead of solving the bank-angle dynamics, we begin by defining the geometry that can be used

to calculate the minimum detection range as shown in Fig. 6. From this figure, we see that there

are two different geometrical cases that can occur while the ownship is maneuvering. For the first

case, shown in Fig. 6(a), the ownship turns with a small turning radius as compared to the safety

radius and is able to complete its turning maneuver before reaching the CPA location. This means

that, after the ownship completes its turning maneuver, it will fly straight until the CPA location

is reached. The X and Y components of the turning segment of the maneuver are represented by

the variables xt and yt, and the X and Y components of the linear segment of the maneuver are

represented by xl and yl. In the second case, shown in Fig. 6(b), the ownship turns gradually and

reaches the CPA location before completing its turning maneuver. This means that the ownship

will still be in a banked turn as it passes the CPA location. The X and Y components of the turning
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segment of the maneuver for this case are similarly represented by xt and yt.

yl
xl

yt

xt

χcpa

maneuver
initiated

ownship
CPA

χt

Rmin

yχt
cpa

Y

X

χt

intruder
CPA

maneuver
trajectory

(a) Case 1: yt ≤ yχtcpa; ownship completes turning ma-

neuver before reaching the CPA location.

χcpa

χt

xm

ym

ownship
CPA

χcpa

Rmin

Rmin − ym

maneuver
initiated

yt

yχt
cpa

intruder
CPA

maneuver
trajectory

Y

X

(b) Case 2: yt > yχtcpa; ownship reaches CPA location

before completing turning maneuver.

Fig. 6 Geometric diagram for the CPA location resulting from circular turning trajectories.

These cases can be distinguished mathematically in the following manner. First, we assume the

ownship executes a turning maneuver until its course is equal to the prescribed value for χt. The

Y component of this turning maneuver for both cases is calculated from yt as

yt = Rmin(1− cosχt). (24)

Second, we calculate ycpa with the course set equal to the desired turn angle χt and define this as

yχtcpa. The exact derivation of this parameter will be shown in the subsection for case 1 (Sec. II B 3-

case 1). This Y coordinate denotes the transition between case 1 and case 2 where the turn maneuver

is completed at the exact moment the CPA is reached. The final step is to compare the calculated

yt and yχtcpa, which allows us to determine which geometry should be used to calculate the minimum

detection range. For case 1, yt ≤ yχtcpa, whereas for case 2, yt > yχtcpa.

As stated previously, for the GVV method, Eq. (7) can be expressed in terms of the variable

θcpa. Two of the variables xcpa and ycpa can be immediately expressed in terms of θcpa as

xcpa = Rs cos θcpa, (25)

ycpa = Rs sin θcpa. (26)
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Substituting these into Eq. (7) and simplifying results in

0 = vo sinχcpa sin θcpa − (vi + vo cosχcpa) cos θcpa. (27)

The variable χcpa is different for cases 1 and 2 and will be derived in the following two subsections

(Secs. II B 3-case 1 and II B 3-case 2), along with the resulting minimum detection range:

Case 1: yt ≤ yχtcpa

In case 1, the ownship completes its turning maneuver before reaching the CPA; therefore, the

course of the ownship when it reaches the CPA, χcpa, will be equal to the prescribed value χt.

Substituting this into Eq. (27) results in

0 = vo sinχt sin θcpa − (vi + vo cosχt) cos θcpa. (28)

This equation is then used to solve for θcpa as

θcpa = tan−1
(
vi + vo cosχt
vo sinχt

)
,

where θcpa is now used in the expressions for xcpa, and ycpa to produce

xcpa =Rs
vo sinχt√

v2
o + v2

i + 2vovi cosχt
, (29)

ycpa =Rs
vi + vo cosχt√

v2
o + v2

i + 2vovi cosχt
. (30)

Because the ownship reaches a course of χt before reaching the CPA in case 1, then the variable

yχtcpa is equivalent to ycpa defined by Eq. (30):

yχtcpa = Rs
vi + vo cosχt√

v2
o + v2

i + 2vovi cosχt
.

This value of yχtcpa is used to determine whether a specific encounter scenario is of case 1 or case 2

geometry.

Next, we define the variables xt, yt, xl, and yl from the geometry of Fig. 6(a) as

xt = Rmin sinχt, (31)

yt = Rmin(1− cosχt), (32)

yl = ycpa − yt = Rs
vi + vo cosχt√

v2
o + v2

i + 2vovi cosχt
−Rmin(1− cosχt), (33)

xl = yl cotχt =
[
Rs

vi + vo cosχt√
v2
o + v2

i + 2vovi cosχt
−Rmin(1− cosχt)

]
cotχt, (34)
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Using these definitions, we can define the remaining variables needed for the minimum detection

range xm and tm as

xm = xt + xl,

= Rmin sinχt +
[
Rs

vi + vo cosχt√
v2
o + v2

i + 2vovi cosχt
−Rmin(1− cosχt)

]
cotχt, (35)

tm = L

vo
=
Rminχt +

√
x2
l + y2

l

vo

=
Rminχt +

[
Rs

vi+vo cosχt√
v2
o+v2

i
+2vovi cosχt

−Rmin(1− cosχt)
]√

1 + cot2 χt

vo
, (36)

where L is the length of the avoidance path of the ownship during the turning and straight segments

of the maneuver.

Substituting Eqs. (29), (36), and (35) into Eq. (8), and using the relationship defined in Eq. (2)

for Rmin, produces the final minimum detection range equation for case 1 as

dMDR = (vo + vi)tc +Rmin sinχt +
[
Rs

vi + vo cosχt√
v2
o + v2

i + 2vovi cosχt
−Rmin(1− cosχt)

]
cotχt

+ vi
vo

[
Rminχt +

[
Rs

vi + vo cosχt√
v2
o + v2

i + 2vovi cosχt
−Rmin(1− cosχt)

]√
1 + cot2 χt

]

+Rs
vo sinχt√

v2
o + v2

i + 2vovi cosχt
. (37)

Case 2: yt > yχtcpa

For this case, we begin with Eq. (27); however, we must define expressions for cosχcpa and

sinχcpa as functions of θcpa. We first define expressions for ym and xm as

ym = ycpa = Rs sin θcpa, (38)

xm =
√
R2

min − (Rmin − ym)2 =
√
Rs sin θcpa(2Rmin −Rs sin θcpa). (39)

These values for ym and xm can now be used to define cosχcpa and sinχcpa as

cos(χcpa) =Rmin − ym
Rmin

= Rmin −Rs sin θcpa

Rmin
, (40)

sin(χcpa) = xm
Rmin

=
√
Rs sin θcpa(2Rmin −Rs sin θcpa)

Rmin
. (41)
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Similarly, an expression for χcpa can be defined as

χcpa = tan−1
(

xm
Rmin − ym

)
= tan−1

(√
Rs sin θcpa(2Rmin −Rs sin θcpa)

Rmin −Rs sin θcpa

)
. (42)

Substituting these expressions from Eqs. (40) and (41) into Eq. (27) and manipulating produces

an equation in terms of a single parameter θcpa in the following form:

0 = a sin3 θcpa + b sin2 θcpa + c sin θcpa + d, (43)

where a, b, c, and d are defined as

a =2vivoRminRs,

b =v2
oR

2
s − (vi + vo)2R2

min,

c =− 2vo(vi + vo)RminRs,

d =(vi + vo)2R2
min.

Equation (43) has been formulated to be cubic in sin θcpa. Applying Cardano’s formulas [16] and

expressing sin θcpa as z produces three roots for sin θcpa as

z1 =− b

3a + (S + T ) ,

z2 =− b

3a −
1
2 (S + T ) + 1

2 i
√

3 (S − T ) ,

z3 =− b

3a −
1
2 (S + T )− 1

2 i
√

3 (S − T ) ,

where S and T are defined as S = 3
√
R+
√
D and T = 3

√
R−
√
D, respectively; D is defined as

D = Q3 +R2; and Q and R are defined as

Q = c

3a −
(
b

3a

)2

and

R = bc

6a2 −
d

2a −
(
b

3a

)3
,

respectively. Because we are trying to find a root for the expression sin θcpa, the root must first lie

within the bounds [−1, 1]. Second, the solution for θcpa must lie within the bounds of [0, 90] deg due
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to the head-on approach of the ownship and intruder and the right turning maneuver of the ownship

as seen in Fig. 6, which means the root must further be restricted to [0, 1]. Finally, there may still

exist multiple roots within the bounds [0, 1]; therefore, a third constraint must be satisfied. The

chosen root must produce a value of θcpa that, when used to calculate χcpa in Eq. (42), produces a

value within the bounds of [0, 90] deg. Once these constraints are satisfied, the true root is identified

and used to find θcpa as

θcpa = sin−1 z. (44)

This value of θcpa is now used to define values for xcpa and ycpa, shown in Eqs. (25) and (26),

and ym and xm, shown in Eqs. (38) and (39). The time to maneuver is found as

tm = L

vo
= Rminχcpa

vo
= 1
vo
Rmin tan−1

(√
Rs sin θcpa(2Rmin −Rs sin θcpa)

Rmin −Rs sin θcpa

)
. (45)

Substituting Eqs. (25), (39), and (45) into Eq. (8) produces the final equation for the case 2 minimum

detection range as

dMDR = (vo + vi)tc +
√
Rs sin θcpa(2Rmin −Rs sin θcpa)

+ vi
vo
Rmin tan−1

(√
Rs sin θcpa(2Rmin −Rs sin θcpa)

Rmin −Rs sin θcpa

)
+Rs cos θcpa, (46)

where θcpa is defined in Eq. (44), and Rmin is defined in Eq. (2).

III. Results: Method Comparison and Validation

With the equations for the minimum detection range derived, we now present results showing

calculated values for the minimum detection range as a function of each of the parameters used in

the equations. We present these results for the two methods developed in this paper: the TGVV

and GVV methods. We also present results for the two prior methods, TT and GT, and provide a

detailed comparison of all four methods. The parameters that are used by all four methods include

vo, vi, Rs, φmax, and tc. For the TGVV and GVV methods, we have the additional parameter χt;

for the TGVV method, we have two parameters used to describe the bank-angle dynamics φ̇max

and τ . In creating the results, a nominal set of values is chosen for each of these parameters, except

the ownship speed, and are listed in Table 3.
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Parameter vi Rs φmax tc χt φ̇max τ

Value 150 kt 500 ft 30 deg 5.0 s 90 deg 30 deg/s 0.5 s

Table 3 Nominal parameter values used in the calculation of dMDR.

The minimum detection range is calculated for all four methods using the parameter values

from Table 3 and is shown in Fig. 7. In this figure, dMDR is plotted versus the ownship speed, with

level curves used to vary one or two additional parameters.

In Fig. 7(a), we first compare various values for φ̇max and τ , which only affect the calculation

of the TGVV method. The GVV method is also plotted to demonstrate what values of φ̇max and τ

result in the two methods producing similar values.

For Figs. 7(b)–7(f), a single pair of values is used for φ̇max and τ , which results in a single set

of level curves for the TGVV method. Upon careful inspection, it can be seen that each subplot

contains one level that corresponds to the core set of parameters in Table 3, which results in one

common level among each of the subplots. This allows us to see how the minimum detection range

deviates from a common level as each parameter is changed. Figure 7(b) is used to vary vi, Fig. 7(c)

varies Rs, Fig. 7(d) varies φmax, Fig. 7(e) varies tc, and Fig. 7(f) varies χt.

In Fig. 7, the right-pointing orange triangles are used to identify transition points from case

B to case A for the TGVV method when viewed from left to right. Similarly, left-pointing black

triangles are used to identify transition points from case 1 to case 2 for the GVV method when

viewed from left to right.

From Fig. 7(a), a general trend between the TGVV and GVV methods can be seen. We see

that, as φ̇max increases and τ decreases, the TGVV method dMDR values approach the same values

as those from the GVV method, shown by the solid black line. It can be seen that the TGVV

method always predicts a minimum detection range slightly larger than the GVV method, which

results from including the bank-angle dynamics in the turning maneuver.

It is evident from Figs. 7(b)–7(f) that the TT and GT methods approach the GVV method for

ownship speeds in the case 2 region of the GVV method. This is because case 2 of the GVV method

uses an avoidance maneuver that is performed solely by turning, which is an assumption made in
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both the TT and GT methods. For ownship speeds in the case 1 region of the GVV method, the

TT and GT methods predict values for the minimum detection range significantly smaller than the

GVV and TGVV methods.
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Fig. 7 Comparison of dMDR as a function of vo, vi, Rs, φmax, tc, χt, φ̇max and τ .
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Finally, from each subplot of Fig. 7, it can be seen that, as the ownship speed increases, each

of the methods models dMDR as a linear function of the ownship speed. For large values of vo, the

nonlinear geometric methods (GVV and GT) converge to the linear model predicted by the TT

method. Using the equation for the minimum detection range from the TT method, the slope of

these lines can be inferred from of Eq. 4 to be a function of Rs, φmax, and tc. As Rs and tc increase,

the slopes of the resulting lines increase, as can be seen in Figs. 7(c) and 7(e); however, as φmax

increases, the slope of the resulting lines decrease, as can be seen in Fig. 7(d). As the remaining

variables, vi and χt, are increased, the slopes resulting from the geometric methods stay constant

as shown in Figs. 7(b) and 7(f).

Having calculated the minimum detection range, we must now determine the accuracy of the

results. If the true minimum detection range is used to initialize the distance between two aircraft,

the resulting CPA between the two aircraft will be exactly equal to the safety radius, Rs. This means

we can check the accuracy of the minimum detection range calculated from each of the four methods

by comparing the resulting CPA to the safety radius. To find the resulting CPA for each method,

a simulation is performed. The ownship and intruder are initialized in a head-on configuration

at a distance equal to dMDR. Both aircraft fly toward each other without maneuvering during the

computation time; after which, the ownship begins turning using the bank-angle dynamics described

by the TGVV method with the parameters φ̇max, τ , φmax, and χt. Once the ownship has turned

to the predefined χt, it flies straight until it is far from the intruder. During the simulation, the

relative range and CPA between the ownship and the intruder are calculated.

An example of the relative range is shown in Fig. 8. The parameters that are used come from

Table 3, and the value of the ownship speed is vo = 25 kt. The TGVV method is shown by the

solid orange line; at time zero, the relative range between the two aircraft is approximately 5209 ft.

As the two aircraft continue their flight paths, the closest point of approach is exactly equal to

500 ft at approximately 18.9 s. Because the TGVV method uses the same dynamic model as the

ownship in the CPA simulation, the predicted relative range from the TGVV method is identical to

the simulation truth model. The GVV method is shown by the dotted black line, and the relative

range predicted at time zero is approximately 4942 ft. In this case, the two aircraft reach a CPA
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of 456 ft at approximately 17.9 s, which is a violation of the safety volume. Similarly, the ownship

flight paths from the TT and GT methods result in a penetration of the safety volume with CPAs

of 243 and 116 ft at approximately 12.9 and 9.9 s, respectively.
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Fig. 8 Relative range vs. time and the resulting CPA.

The CPA is used to compare the accuracy of each of the four methods. In Fig. 9, the CPA

is plotted versus the speed of the ownship. In Fig. 9(a), four different sets of parameters are used

for the bank-angle dynamics of the ownship; whereas in the other subplots, only the nominal set

of parameters is used for the bank-angle dynamics of the ownship and other critical parameters are

varied. The first observation to make from each of the subplots is that the TGVV method always

produces a CPA exactly equal to the value chosen for Rs, which means that the safety volume

has not been penetrated and the true minimum detection range has been found. Additionally, the

GVV, TT, and GT methods all produce a CPA less than the chosen value for Rs, which means

the safety volume has been penetrated and the calculated minimum detection range is an under-

approximation. Fig. 9(a), however, shows that the CPA of the GVV method approaches the safety

radius of 500 ft as φ̇max increases; and τ decreases, implying that the GVV method becomes a good

approximation of the TGVV method as the speed of the bank-angle response increases.

The next critical observation to make is seen in Fig. 9(b), which shows that the CPA of the

TT and GT methods converge to the CPA of the GVV method as vo increases. Additionally, it

can be seen that the GT method approaches the GVV method as vi decreases. This is because

the underlying assumption of tangent turning circles is more reasonable when the intruder speed is

small relative to the ownship speed.
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Fig. 9 Comparison of the CPA as a function of vo, vi, Rs, φmax, tc, χt, φ̇max and τ .

Figure 9(d) shows that the CPA of the GVV, TT, and GT methods approaches the desired value

chosen for Rs as φmax decreases. This is because smaller values of φmax result in shorter bank-angle

transients and produce more circular turns that more closely match the circular-turn assumptions
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of the GVV, TT, and GT methods.

Finally, from Fig. 9(f), the TT and GT methods depart from the GVV method as χt decreases

at low ownship speeds. This is because the TT and GT methods do not provide any compensation

for limiting the turn angle, χt. Instead, these methods assume the ownship is always in a banked

turning maneuver as it passes the intruder. This assumption matches the avoidance trajectory of

the ownship for case 2 of the GVV method and is a valid assumption for large ownship speeds.

This assumption causes issues at low ownship speeds because the ownship completes its turning

maneuver before reaching the CPA, which corresponds to case 1 of the GVV method.

In this simulation the TGVV method results in a CPA matching the safety radius, which means

the true minimum detection range has been found. The geometric methods (GVV, TT, and GT),

however, are computationally simpler, and it is of interest to know how well they approximate

the solution produced by the TGVV method. Figure 10 provides this information by showing the

percent relative error in the minimum detection range between the other methods and the TGVV

method.

From each subplot in Fig. 10, we see that the GVV method produces the smallest relative error.

We also see that the TT method generally produces a relative error less than the GT method except

when vi approaches zero, as seen in Fig. 10(b). In Fig. 10(a), the relative error in dMDR is plotted

versus 1/φ̇max and τ , with the remaining parameters fixed at their nominal values and with the

ownship speed equal to 150 kt. The value of τ is varied between 0 and 1 s, whereas φ̇max is varied

from 30 deg/s to infinity. Plotting against the inverse of φ̇max improves the presentation of the data

and facilitates interpretation of the result. By continuously varying φ̇max and τ , the effects of each

variable on the accuracy of the GVV method can be more easily seen. From the subplot, it can be

seen that the relative error does decrease as τ decreases; however, it does not decrease to zero. As

the inverse of φ̇max decreases, however, the relative error does go to zero for all values of τ . This

shows that, as the bank-angle maneuver of the ownship becomes more instantaneous, the results of

the geometric GVV method converge to those of the TGVV method.

The results presented thus far show that the TT and GT methods converge to the GVV method

for large ownship speeds relative to the intruder speed, and the GVV method converges to the TGVV
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Fig. 10 Percent relative error of dMDR as a function of vo, vi, Rs, φmax, tc, χt, φ̇max and τ .

method for fast bank-angle transients and small bank angles. We can thus conclude that the TT

and GT methods provide good approximations for the minimum detection range at large ownship

speeds relative to the intruder speed, fast bank-angle transients, and small bank angles.

33



Although the main focus of this paper is on methods for the calculation of minimum detection

range, the time to maneuver is a quantity of significant importance and accompanying results for

this parameter are presented in Fig. 11.
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Fig. 11 Comparison of tm as a function of vo, vi, Rs, φmax, tc, χt, φ̇max and τ .
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As stated previously, the minimum detection range of the geometric methods (GVV, TT, and

GT) approach linear functions for large ownship speeds. From Fig. 11, a similar observation can be

made for the time to maneuver. The TT method predicts a maneuver time that is constant with

ownship speed. Comparing Eqs. 3 and 4, and noting that the maneuver time tm is the same as the

turn time tt for the TT method, shows that the predicted TT maneuver time is√
2Rs cotφmax

g
,

which is independent of the ownship speed. For large ownship speeds, the GT and GVV methods

converge to the maneuver time value predicted by the TT method. In Fig. 11(c), we see that, as

Rs increases, the predicted maneuver times also increase. From Fig. 11(d), we see that, as φmax

increases, the maneuver times decrease.

From Figs. 11(b) and 11(f), we see that the TGVV and GVV methods account for variations

vi and χt, as seen by three sets of lines; whereas the TT and GT methods do not account for them.

This agrees with the expressions for the predicted time to maneuver in the TT and GT methods

where the predicted tm for the GT method can be derived from Eq. (5) as

vo
g tanφmax

cos−1
(

v2
o

v2
o +Rsg tanφmax

)
.

The results presented thus far have used parameter values consistent with a collision-avoidance

encounter. Results are now presented for parameter values more consistent with a self-separation

scenario. These results use the following parameters: Rs = 0.75 n mile, which is the lateral UAS

well-clear requirement; φmax = 5 deg; χt = 15 deg; tc = 20 s, which includes tracking and typical

pilot response delay with air traffic control interaction; φ̇max = 10 deg/s; τ = 0.5 s; vo = 0–1250 kt;

and vi = 250, 500, 750, 1000, and 1250 kt. The results for these parameters are shown in Fig. 12.

From Fig. 12(a), it can be seen that the the minimum detection range is now on the order of 10

to 50 n miles instead of 2000 to 10,000 ft. Figure 12(b) shows that the CPA of the TGVV method

is equal to the value chosen for Rs of 0.75 n mile. We also see that the GVV method produces

a CPA close to the desired value for Rs. In Fig. 12(c), we see that the relative error of the GVV

method stays well under 1 %. Finally, in Fig. 12(d), we see that, for large ownship speeds, the time

to maneuver has increased to about 57 s, as would be expected for the self-separation simulation
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Fig. 12 Self-separation results.

parameters. Each of the subplots in Fig. 12 demonstrates that the GVV method can be used as

an accurate approximation to the TGVV method when parameter values are aligned with those

commonly found in self-separation encounters. Similarly, the TT and GT methods provide good

approximations to the TGVV method, but only for large ownship speeds.

Finally, to complete our comparison of the four methods considered in this paper, we present

results that characterize the computational cost of each of the methods. These results are shown in

Table 4 and include the average runtime of each method and the number of lines of code needed to

implement each method. The average runtime for each method was based on 30,000 samples and

was executed in Matlab on a 64 bit, 2.70 GHz, four-core, Intel I-7 laptop with 16 GB of RAM. For

the TGVV method, numerical methods were used with a time step of 0.001 s. The number of lines

of code required by each method were determined for a MATLAB implementation. The number
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of lines of code for the TGVV and GVV methods are only approximations because multiple lines

of code could be combined; however, this does provide some insight into how much effort would

be required to program each method. Although the runtime of each method is of interest, none of

the implementations are expensive in terms of required computation time when compared to the

timescales of the corresponding DAA maneuvers.

TGVV GVV TT GT

Average runtime (s) 1.77e-2 2.01e-5 1.19e-6 2.27e-6

Lines of code ≈200 ≈50 1 1

Table 4 Computational cost of each method from average runtime and lines of code.

IV. Conclusion

The viability of integrating UASs into the National Airspace System is highly dependent on their

ability to detect and avoid other air traffic, particularly when flying beyond the line of sight of the

operator. For a direct head-on encounter requiring a large detection range, analytical expressions

are derived to calculate the minimum detection range required to avoid a predefined safety volume

using both dynamic and geometric models of the encounter. The main contribution of this paper is

the presentation of two methods used to calculate the minimum detection range: the TGVV and

GVV methods. Using the GVV approach, a closed-form analytical expression for the minimum

detection range is found by making the assumption that the ownship performs an instantaneous

bank-angle maneuver. If this simplifying assumption is removed, the TGVV method can be used

to numerically solve for the minimum detection range by using a model of the turning dynamics of

the ownship. The minimum detection range calculation takes into account the computation time

involved in target tracking, risk assessment, path planning, and pilot response time delay, in addition

to the time required to execute the avoidance maneuver.

The TGVV and GVV approaches were compared to the existing TT and GT methods and

were shown to create more accurate estimates of the minimum detection range over a wide range

of encounter scenarios. For every variation of the encounter parameters, the TGVV method deter-

mined a CPA estimate equal to the desired safety radius value, indicating that the true minimum
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detection range had been found. It was also shown that, as the bank-angle dynamics of the ownship

became more aggressive, the geometry-based GVV method produced results that approached those

of the dynamic-model-based TGVV method. The conditions under which the TT and GT methods

produced results that approached the TGVV method were also found to occur at large ownship

speeds relative to the intruder speed, fast bank-angle transients, and small bank angles.

Although the direct head-on encounter is important because it requires a large minimum de-

tection range, it would be valuable to extend the minimum detection range methods to a variety

of encounter scenarios in addition to the head-on case. Additionally, validation of the minimum

detection range results with flight tests to confirm the validity of the underlying assumptions and

models would represent a valuable next step in defining integration requirements for UASs.

APPENDIX A: TGVV BANK-ANGLE RESPONSE

1. Case A: φmax is reached

Using Fig. 5(a), we see that interval 1 has a positive step in the aileron command; and t0 = 0,

φ(t0) = 0, and φ̇(t0) = 0. This results in the following equations for φ1(t) and φ̇1(t):

φ1(t) = τ φ̇max

(
e−t/τ − 1

)
+ φ̇maxt (A1)

φ̇1(t) = φ̇max

(
1− e−t/τ

)
Interval 2 has a negative step input with t0 = t1, φ(t0) = φ1(t1), and φ̇(t0) = φ̇1(t1). This

results in the following equations for φ2(t) and φ̇2(t):

φ2(t) = −τ φ̇max

(
e−(t−t1)/τ − 1

)
− φ̇max(t− t1) + τ φ̇1(t1)

(
1− e−(t−t1)/τ

)
+ φ1(t1)

= τ φ̇max

(
1− 2e−(t−t1)/τ + e−t/τ

)
− φ̇max(t− 2t1) (A2)

φ̇2(t) = −φ̇max

(
1− e−(t−t1)/τ

)
+ φ̇1(t1)e−(t−t1)/τ

= φ̇max

(
2e−(t−t1)/τ − e−t/τ − 1

)
For interval 3, the aileron command is zero. This means the bank angle only experiences the

free response due to the initial conditions, and it does not experience any forced response from the
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aileron input. This free response is taken from the terms on the right side of Eqs. (13) and (14) as

φf (t) = τ φ̇(t0)
(

1− e−(t−t0)/τ
)

+ φ(t0), (A3)

φ̇f (t) = φ̇(t0)e−(t−t0)/τ . (A4)

Using these equations for interval 3 and t0 = t2, φ(t0) = φ2(t2), and φ̇(t0) = φ̇2(t2) gives the

following response for interval 3:

φ3(t) = τ φ̇2(t2)
(

1− e−(t−t2)/τ
)

+ φ2(t2),

φ̇3(t) = φ̇2(t2)e−(t−t2)/τ .

From Fig. 5(a), values for t1 and t2 are chosen that result in φ2(t2) = φmax and φ̇2(t2) = 0. With

these requirements, the response for interval 3 becomes

φ3(t) = φmax, (A5)

φ̇3(t) = 0.

Interval 4 has a negative step input with t0 = t3, φ(t0) = φ3(t3), and φ̇(t0) = φ̇3(t3). This

results in the following equations for φ4(t) and φ̇4(t):

φ4(t) = −τ φ̇max

(
e−(t−t3)/τ − 1

)
− φ̇max(t− t3) + τ φ̇3(t3)

(
1− e−(t−t3)/τ

)
+ φ3(t3)

= τ φ̇max

(
1− e−(t−t3)/τ

)
− φ̇max(t− t3) + φmax (A6)

φ̇4(t) = −φ̇max

(
1− e−(t−t3)/τ

)
+ φ̇3(t3)e−(t−t3)/τ

= φ̇max

(
e−(t−t3)/τ − 1

)
Interval 5 has a positive step input with t0 = t4, φ(t0) = φ4(t4), and φ̇(t0) = φ̇4(t4). This results

in the following equation for φ5(t):

φ5(t) = τ φ̇max

(
e−(t−t4)/τ − 1

)
+ φ̇max(t− t4) + τ φ̇4(t4)

(
1− e−(t−t4)/τ

)
+ φ4(t4)

= τ φ̇max

(
2e−(t−t4)/τ − 1− e−(t−t3)/τ

)
+ φ̇max(t− 2t4 + t3) + φmax (A7)

As stated previously, we must choose values for t1 and t2 that result in φ2(t2) = φmax and

φ̇2(t2) = 0. To find the values of t1 and t2, we start with the expression for φ̇2(t) and the requirement

that φ̇2(t2) = 0 to get

0 = φ̇max

(
2e−(t2−t1)/τ − e−t2/τ − 1

)
. (A8)
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Next, we use the expression for φ2(t) and the requirement that φ2(t2) = φmax to get

φmax = τ φ̇max

(
1− 2e−(t2−t1)/τ + e−t2/τ

)
− φ̇max(t2 − 2t1),

where we notice that the first term on the right side of the equation is the negative of Eq. (A8)

multiplied by τ . This cancels the first term, resulting in

φmax = −φ̇max(t2 − 2t1).

Rearranging, we get the final expression for t2 as

t2 = 2t1 −
φmax

φ̇max
. (A9)

To find t1, we substitute this value of t2 back into Eq. A8 and, after algebraic manipulation, we get

0 =
(
e−t1/τ

)2
− 2e−t1/τ + e−(φmax/φ̇max)/τ ,

which is a quadratic function in e−t1/τ . Using the quadratic formula, we can find the roots to this

equation as

e−t1/τ = 1±
√

1− e−(φmax/φ̇max)/τ .

Rearranging this equation, we can solve for t1 as

t1 = −τ ln
[
1±

√
1− e−(φmax/φ̇max)/τ

]
.

For this expression to give a positive value for t1, we must use the negative sign inside the natural

logarithm as

t1 = −τ ln
[
1−

√
1− e−(φmax/φ̇max)/τ

]
.

Although this equation is mathematically correct, if the quantity (φmax/φ̇max)τ gets too large,

numerical roundoff errors can occur while computing the value of t1. To help reduce the chance of

numerical roundoff error, we multiply the term inside the natural logarithm by its conjugate on the

numerator and denominator, which produces the final expression for t1 as

t1 = −τ ln
[

e−(φmax/φ̇max)/τ

1 +
√

1− e−(φmax/φ̇max)/τ

]
. (A10)
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Now, we finish defining the rest of the time variables t3, t4, and t5. The time variable t3 is

defined as

t3 = t2 + δT3, (A11)

where δT3 is the total time during interval 3 where the bank angle is at a constant value of φmax

and can be calculated as

δT3 = L3/vo, (A12)

where L3 is the length of the path traveled by the ownship during interval 3 and can be calculated

as

L3 = Rminδχ3, (A13)

where δχ3 is the change in course experienced by the ownship during interval 3, which can be

calculated as

δχ3 =
∫ t3

t2

g

vo
tan(φ3(t))dt = χt − (δχ1 + δχ2 + δχ4|t3=0,t4=t1 + δχ5|t3=0,t4=t1,t5=t2), (A14)

where δχ1, δχ2, δχ4, and δχ5 are the changes in course experienced by the ownship during intervals

1, 2, 4, and 5; and χt is the desired change in course during the complete turning maneuver. These

variables can be found using Eq. (11) from a coordinated turn as

δχ1 =
∫ t1

0

g

vo
tan(φ1(t))dt, (A15)

δχ2 =
∫ t2

t1

g

vo
tan(φ2(t))dt, (A16)

δχ4 =
∫ t4

t3

g

vo
tan(φ4(t))dt, (A17)

δχ5 =
∫ t5

t4

g

vo
tan(φ5(t))dt. (A18)

The final expression for t3 is now found to be

t3 = t2 + Rminδχ3

vo
, (A19)

where δχ1, δχ2, δχ4, and δχ5 are defined in Eqs. (A15), (A16), (A17), and (A18). Now that we
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have found t3, we can define t4 and t5 as

t4 = t3 + t1, (A20)

t5 = t3 + t2. (A21)

2. Case B: φmax is not reached

Similar to case A, we use Eqs. (13) and (14) to define the response of the bank angle to step

inputs from the ailerons. Using Fig. 5(b), we see that interval 1 has a positive step, and therefore

has the same response to case A as

φ1(t) = τ φ̇max

(
e−t/τ − 1

)
+ φ̇maxt, (A22)

φ̇1(t) = φ̇max

(
1− e−t/τ

)
.

The bank-angle response for intervals 2 and 4 can be combined into a single expression because

the aileron input is −δa for both intervals. The response for these intervals has the same response

as interval 2 in case A:

φ2,4(t) = τ φ̇max

(
1− 2e−(t−t1)/τ + e−t/τ

)
− φ̇max(t− 2t1), (A23)

φ̇2,4(t) = φ̇max

(
2e−(t−t1)/τ − e−t/τ − 1

)
.

Interval 5 differs from case A because the previous interval 4 has been combined with interval

2. For interval 5 of this case, we also have a positive step and t0 = t4; however, φ(t0) = φ2,4(t4),

and φ̇(t0) = φ̇2,4(t4). This results in the following equation for φ5(t):

φ5(t) = τ φ̇max

(
e−(t−t4)/τ − 1

)
+ φ̇max(t− t4) + τ φ̇2,4(t4)

(
1− e−(t−t4)/τ

)
+ φ2,4(t4),

= τ φ̇max

(
2e−(t−t4)/τ − 2e−(t−t1)/τ + e−t/τ − 1

)
+ φ̇max(t+ 2t1 − 2t4). (A24)

In deriving t1 for case A, we used the constraint φ2(t2) = φmax; however, this constraint is not

true for case B. Finding t1 for this case requires a more in-depth analysis. From the total turning

maneuver of the ownship for case B, we know that

χt = δχ1 + δχ2,4 + δχ5,
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where δχ1 and δχ5 were defined in Eqs. (A15) and (A18) in case A, and δχ2,4 is the change in course

experienced by the ownship during the combined intervals 2 and 4 as

δχ2,4 =
∫ t4

t1

g

vo
tan(φ2,4(t))dt. (A25)

Moving χt to the right side of the equation results in

0 = δχ1 + δχ2,4 + δχ5 − χt. (A26)

To find t1, we express each of the components of Eq. (A26) in terms of the variable t1 and use the

Newton–Raphson method to find the value of t1 that makes the equation equal zero. The variables

that need to be expressed in terms of t1 are t2, t4, and t5.

A constraint from case A that we can use for case B is φ̇2(t2) = 0. This constraint resulted in

Eq. (A8), which can be solved for t2 in terms of t1 as

t2 = τ ln
[
2et1/τ − 1

]
. (A27)

Using Fig. 5(b) and Eq. (A27), we create expressions for t4 and t5 in terms of t1 as

t4 = t2 + t1 = t1 + τ ln
[
2et1/τ − 1

]
, (A28)

t5 = 2t2 = 2τ ln
[
2et1/τ − 1

]
. (A29)

Using the expression for t4, we modify Eq. (A24) to be expressed in terms of t1 as

φ5(t) = τ φ̇max

(
e−t/τ (2et1/τ − 1)2 − 1− 2 ln

[
2et1/τ − 1

])
+ φ̇maxt (A30)
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