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Minimum Required Detection Range for

Detect and Avoid of Unmanned Aircraft Systems

Jared K. Wikle! and Timothy W. McLain? and Randal W. Beard?
Brigham Young University, Provo, Utah, 84602

Laith R. Sahawneh*
University of Florida, Shalimar, Florida, 32579

For unmanned aircraft systems to gain full access to the National Airspace System,
they must have the capability to detect and avoid other aircraft. To safely avoid an-
other aircraft, an unmanned aircraft must detect the intruder aircraft with ample time
and distance to allow the ownship to track the intruder, perform risk assessment, plan
an avoidance path, and execute the maneuver. This paper describes two analytical
methods for finding the minimum detection range to ensure that these detection and
avoidance steps can be carried out. The first method, time-based geometric velocity
vectors, includes the bank-angle dynamics of the ownship; whereas the second, geo-
metric velocity vectors, assumes an instantaneous bank-angle maneuver. The solution
using the first method must be found numerically, whereas the second has a closed-
form analytical solution. These methods are compared to two existing methods. The
results show the time-based geometric velocity vectors approach is precise, the geo-
metric velocity vectors approach is a good approximation under many conditions, and
the two existing approaches are good approximations at large ownship speeds relative
to the intruder speed, fast ownship bank-angle transients, and small ownship bank

angles.
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Nomenclature

a, b, c, d = coeflicients to a third-order polynomial in sin f.p,

dcpa = remaining head-on distance between the ownship and intruder at the closest
point of approach (m)

dMDR = minimum detection range (m)

dm = distance between the ownship and intruder when the ownship starts
maneuvering (m)

do, d; = head-on distance traveled by the ownship and intruder (m)

do,c, di ¢ = head-on distance traveled by the ownship and intruder during the

s

computation time (m)

doms dim = head-on distance traveled by the ownship and intruder during the maneuver
time (m)

dMDR = minimum detection range with the slack parameter safety factor (m)

g = gravitational constant (m/s?)

K, 7 = general first-order system parameters

L = length of the ownship path during the maneuver (m)

Ls = length of the ownship path during segment 3 (m)

P = roll rate (rad/s)

P, P; = position vector of the ownship and intruder in the right-handed X-Y-Z

inertial reference frame (m)

Das Dy = X and Y positions of aircraft (m)

Roin = minimum turn radius (m)

R, hs = radius and height of safety volume (m)

T = range rate between the ownship and intruder aircraft (m/s)

S, T, R, D, Q = temporary variables used to find the roots of z

S = independent variable used for Laplace representation
t = time (s)

te = computation time (s)

tDAA = time required for detect-and-avoid operations (s)
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Lcpay Yepa
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Xt
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5X1a 5X2a 5X3a 5X4a 6X5
5X2,4

ecpa

o
¢, Pmax

b1, G2, ¢35 Pa, D5
2,4, P24

time to maneuver to the closest point of approach (s)

turn time (s)

times to change deflection angle of ailerons (s)

velocity of ownship and intruder aircraft(m/s)

velocity vector of the ownship and intruder in the right-handed X-Y-Z
inertial reference frame (m/s)

X and Y velocities of aircraft (m/s)

X and Y components of closest point of approach (m)

X and Y components of the maneuver taken by the ownship (m)

X and Y components of the turning maneuver (m)

X and Y components of the linear segment of the avoidance maneuver
(m)

Y component of the closest point of approach assuming the course is
equal to x; (m)

change of variable for sin f.p,

three roots of z

deflection of ailerons in the time domain (rad)

slack parameter

total time during segment 3 where the bank angle is at a constant

value of ¢max ()

= changes in course during segments 1, 2, 3, 4 and 5 (rad)

change in course during segments 2 and 4 combined (rad)
angle between the forward path of the intruder and the closest point of
approach of the ownship (rad)

independent variable used for integration

= bank angle and maximum bank angle (rad)
= bank angles during segments 1, 2, 3, 4 and 5 (rad)

= bank angle and bank-angle rate during segments 2 and 4 combined

(rad), (rad/s)



Prmax = maximum bank-angle rate (rad/s)

b1, ¢, 3, b4, ¢5 = bank-angle rates during segments 1, 2, 3, 4 and 5 (rad/s)

o' = free response of the bank angle (rad)

) = first and second time derivatives of the bank angle (rad/s), (rad/s?)
X = course of aircraft (rad)

Xcpa = course of ownship at the closest point of approach (rad)

Xt = change in course during the turning maneuver (rad)

X Xmax = course rate and maximum course rate (rad/s)

I. Introduction

The use of unmanned aircraft systems (UASs) in commercial and civil applications has been
expanding rapidly in recent years. Many UAS missions will require simultaneous operation with
existing airspace users. UASs currently have limited access to the National Airspace System (NAS)
because they do not have the ability to detect and avoid other air traffic. Among many regulatory
and technology issues, safety is the foremost concern and the most significant challenge to overcome
before UAS integration into the NAS can be achieved. The Federal Aviation Administration, which
is the national aviation authority in the United States, calls for a target level of safety that is more
stringent than the see-and-avoid requirement for manned aircraft [1].

Robust and reliable detect-and-avoid (DAA) systems will be necessary for UASs to provide the
required target level of safety. Typically, a complete functional detect-and-avoid system comprises
of sensors and associated trackers, collision detection, risk assessment, collision-avoidance, and self-
separation algorithms.

The main role of the sensor and tracker is to detect any of the various types of hazards, such as
traffic or terrain, and track the motion of the detected object to gain sufficient confidence that the
detection is valid. Electro-optical and infrared cameras, light detection and ranging, and radar are
examples of sensors employed to detect non-cooperative traffic [2]. Non-cooperative traffic means

that data about potential conflicts are not communicated or transmitted to the ownship UAS from



the conflicting intruders. The traffic alert and collision-avoidance system (TCAS) and automatic
dependent surveillance-broadcast (ADS-B) are examples of systems for detecting cooperative in-
truders. Both cooperative and non-cooperative sensors can be used with DAA systems, and both
can be used in conjunction with the results of this paper.

Not every aircraft that is observed by the detection system presents a risk of collision or violation
of the well-clear boundary. The self-separation algorithm must therefore identify potential well-
clear violations and plan new paths that remain well clear of intruder aircraft while optimizing an
objective function or performance metric. Self-separation is designed to prevent future collision-
avoidance maneuvers and is achieved using less-aggressive maneuvers. If the well-clear boundary is
penetrated, the collision detection and collision-avoidance system must be used to detect potential
collisions and compute collision-free paths. A collision avoidance maneuver is considered as the last
resort effort to steer the UAS onto a safe course to prevent an imminent collision and may require
an aggressive change in flight path.

The design of a DAA system for UASs should also address regulatory requirements, as well as
performance and reliability standards. Initial efforts to address performance, design, construction,
and reliability requirements of DAA systems for UASs were discussed in the white papers produced
by Radio Telecommunications Corporation of America in RTCA SC-228 [1]. An excellent review of
existing regulations, standards, and recommended practices, along with suggestions and recommen-
dations for DA A requirements to facilitate the UAS integration into the NAS system, were discussed
in Refs. [3-5]. Specific design parameters required by a DAA system, such as the sensor angular
resolution, field of view, and minimum time and detection range, that are needed to prevent a
collision assuming a two-dimensional (2-D) head-on encounter geometry, were addressed in Ref. [6].
Sensor and tracking requirements were derived for a radar-based DAA system considering 2-D flight
worst-case encounter scenarios using exhaustive Monte Carlo simulations in Ref. [7]. The authors in
Ref. [8] proposed a framework that consisted of a target level of safety approach using an event-tree
format to develop specific DAA effectiveness standards linking UAS characteristics and operating
environments to midair collision risk quantified by a fatality rate.

Among these requirements and design specifications, developing sensors that achieve sufficiently



large target detection ranges for effective self-separation and collision avoidance is a crucial aspect of
a viable DA A solution. This paper provides an exact numerical solution and a closed-form analytical
approximation to the minimum detection range. An outline of the paper is as follows. In Section II,
derivation of the minimum detection range (MDR) dypr is given along with the appropriate defi-
nitions and assumptions. An overview of two existing methods is given in Section II A, followed by
the new methods in Section IIB. In Section III, results are presented, providing a comparison of
the four methods: the two presented in this paper, and those presented in Ref.[6] and [9]. Finally,

conclusions are presented in Section IV.

II. Minimum Detection Range Formulation

The minimum required detection range arises from the time required to complete the detection
and avoidance of an intruder. The minimum time for the DAA system to be able to track the
intruder, detect a collision or well-clear violation, plan an avoidance maneuver, wait for human
review /approval, and fly the maneuver determines the distance at which the UAS must detect the
intruder. The detection of a well-clear violation or collision threat must be accomplished at no less
than the minimum detection range to allow the ownship to execute the maneuver with sufficient
time so that the closest point of approach is greater than or equal to the separation requirement. A
time sequence for the DAA system, similar to the proposed sequence in Ref. [6], is shown in Fig. 1.
According to the time sequence, the time required for DAA operations, tpaa, is defined as the sum

of the computation time, ., and the time that is required to maneuver, t,,.

Intruder Initiate maneuver Closest point of approach
detected

1 State | Collision ; Plan | Human , )

'estimation: detection :avoidance' review/ : : Retl}rn lto

1 & 1 & risk 1 path 1 approval 1 Maneuver 1 nOH}lllna

! tracking ‘assessment! ! (optional) ! ! pat time

te lm
Computation time | Maneuver time |

Fig. 1 Proposed timeline for the detect-and-avoid system [6].

Current manned aviation regulations have no explicit values for separation requirements; how-



ever, various attempts have been made to define them. For collision avoidance of manned aviation,
a common requirement is the near midair collision (NMAC) volume, which is a disk-shaped volume
with a horizontal radius of 500 ft and a vertical height of 200 ft [10-12]. No such requirements
exist for UASs; however, the NMAC volume could be used as a conservative requirement. For self-
separation, the well-clear boundary is more ambiguous and depends on the specific aircraft involved
and their associated speeds and altitudes. Recent efforts to define this boundary for UASs have
resulted in values in the range of 0.5 to 1 n mile [13]. For UASs, the potential ownship and intruder
aircraft can vary widely in vehicle size, weight, and airspeed; and the separation requirements could
be scaled accordingly. For this work, we will assume a purely geometric safety volume centered
around the aircraft as shown in Fig. 2. The general choice for this volume is a cylinder of radius R
and height hs centered at the current location of the aircraft. This volume will be used to represent
the well-clear or NMAC volume. From this volume, a well-clear violation or an NMAC is defined as
an incident that occurs when two aircraft pass with a distance less than Ry horizontally and hg/2

vertically.

Fig. 2 General volume used to represent the well-clear or NMAC conditions.

Various types of sensors exist for detecting intruder aircraft, and they can be located at different
locations, such as on the ownship aircraft, a stationary ground-based platform, or a moving ground-
based platform. If the sensor is fixed to the ownship, the minimum detection range calculated in this
paper can be directly used as the minimum sensing range requirement of the sensor. If the sensor
is used with a ground-based system, the minimum detection range determines how close an aircraft
can fly to the edge of maximum surveillance range and still be guaranteed to avoid intruders. The
equations developed in this paper for the minimum detection range are independent of the specific
sensor type chosen; however, because of field-of-view limits, multiple sensors may be required to

achieve the desired field of view.



The analysis in this paper assumes that there is only one intruder aircraft. If there is more than
one intruder, then the avoidance maneuver will likely be more complex and will require a greater
detection range. This paper considers the longest-detection-range encounter that occurs when both
the ownship and intruder are flying at a constant altitude, course, and airspeed in a direct head-on
approach. Various types of avoidance maneuvers can be taken by the ownship to avoid the intruder’s
safety volume. First, the ownship could perform a turning maneuver at a constant altitude to stay
outside the horizontal safety radius Rs. Second, the ownship could perform a climbing/descending
maneuver without turning to achieve a relative altitude equal to or greater than hg/2 while inside the
safety radius. Third, the ownship could both turn and climb/descend simultaneously to avoid either
the safety radius or the safety altitude: whichever comes first. Finally, the ownship could adjust its
speed in addition to one of the previous maneuvers. Because R is generally much larger than hg,
a constant-altitude turning maneuver will require the largest distance to avoid the safety volume
and will be the focus of our avoidance-maneuver analysis. For simplicity, the ownship velocity is
assumed to be constant and above the stall speed of the ownship. The speed of the ownship and
intruder are defined as v, and v;, respectively.

In this analysis, the ownship’s turning dynamics follow the coordinated-turn relationships [14]

%=L tan ¢, (1)
Vo

2

p (2)

Xmax B g ta’n Qbmax’

Vo v

Rmin =

where x is the course rate, ¢ is the bank angle, R, is the minimum turning radius, Xmax is the
maximum course rate, ¢max is the maximum bank angle, and ¢ is the gravitational constant. This
analysis is intended for use with fixed-wing aircraft with turning dynamics that are well modeled
by the coordinated-turn relationships. The analysis is also valid for other types of aircraft, such as
rotorcraft, provided their turn dynamics are approximated by the coordinated turn.

The assumptions that have been made and other real-world issues may limit the validity of the
analysis and, as a result, additional range may be required in practice. Ownship and intruder states
are not known perfectly due to state estimation errors resulting from imperfect inertial measurement

unit, Global Positioning System, and detection sensors. The intruder may maneuver during the



encounter by turning, changing altitude, or changing speed. Finally, the ownship may not follow
the ideal coordinated-turn flight trajectory. Each of these issues will need to be considered before
final sensor requirements can be made; however, the results of this paper provide a solid foundation

to build upon.

A. Prior Approaches

One method, known as the tactical separation assisted flight environment (TSAFE) resolution
algorithm (developed by Erzberger [15]), deserves mention. The TSAFE resolution algorithm does
not solve for the minimum detection range specifically; however, various supplemental equations
are common between our method and the TSAFE resolution algorithm, including the position
and course dynamics of the ownship. In the TSAFE resolution algorithm, two aircraft are given
arbitrary positions, headings, and speeds relative to each other. Using these initial conditions,
resolution maneuvers are calculated based on one or both of the aircraft performing a horizontal
turning maneuver followed by straight-line flight. The turning maneuvers are performed by right-
or left-turn maneuvers, with the bank angle and turn time as the control variables. By varying
each of the variables, equations are developed to calculate the closest point of approach (CPA)
between the two aircraft during the turning maneuver and during the straight-line flight. The
final CPA between the two aircraft is then found by taking the minimum of the CPA during the
turning maneuver and the straight-line portion. The last step of the TSAFE resolution algorithm
is to choose the appropriate bank angle, turn direction, and turn time, which result in the CPA
being greater than the required safe distance. Although the TSAFE resolution algorithm was not
formulated to find the minimum detection range, the CPA equations used by TSAFE resolution
could be used in an iterative manner to solve for the minimum detection range by adjusting the
starting distance between the two aircraft until the CPA equals the required safe distance.

Two approaches developed specifically for calculating minimum detection range are found in
the literature. One approach, developed by Geyer et al. [6], is referred to in this paper as the turn-
time (TT) approach. The second approach, developed by Sahawneh et al. [9], is referred to as the

geometric-tangent (GT) approach. Both approaches assume an instantaneous bank-angle maneuver



and a head-on, constant-altitude, constant-velocity encounter. A brief description of these two

methods is given in the following subsections.

1. Turn Time Approach
Using the TT method proposed in Ref. [6], the minimum detection range is calculated using

the expression

dupr = (Vo + vi)(te + 1), (3)

where t; is the time when the ownship and intruder are closest as the ownship is executing a
turning maneuver. The turn time is found using equations for the north and east positions of both
the ownship and intruder as functions of time, as well as the assumption that the turn time is
approximately equal to the time to collision in the absence of a maneuver. Using this time-based

approach, the minimum detection range is expressed as

2R€ t max
dMDR ~ (Uo + Ui) (tc + M COg¢> . (4)

In Ref. [6], the authors acknowledged that their solution was an approximation to the true
minimum detection range, and they stated that it was meant to be used as a heuristic for choosing
the right sensor and its resolution. They further stated that it was not suitable for small distances

and velocities, but they did not specifically define limiting values.

2.  Geometric Tangent Approach

The GT method proposed in Ref. [9] approximates the minimum detection range as
dMDR = (Vo + vi)te + di,

where d,,, is the distance between the ownship and the intruder when the ownship starts maneuver-
ing. In this method, the ownship executes a turning maneuver with a constant turning radius. The
closest point of approach is then assumed to occur when the ownship is located on the edge of the
safety circle around the intruder and the turning radius of the ownship is tangent to the safety circle

around the intruder. Using this geometric relationship, the minimum detection range is expressed

10



as

d (vo + vi)te + || B2 + 2Ry — Yo 4 Ui - % (5)
~ (v + v; cos .
MDR e e s “gtan max g tan dmay v2 + Rsgtan dmax
In Ref. [9], the authors acknowledged that their solution was an under-approximation and
stated that compensation could be made by selecting a positive slack parameter, 6, to obtain

dMDR = (144, )dupr. Slack parameters must be found using experimental results, such as those

from Monte Carlo simulations, but insights into appropriate slack parameter values were not given.

B. New Approaches

The TT and GT approaches both make the assumption that the ownship executes a turning
maneuver by instantaneously banking to a specified angle. This assumption simplifies the derivation
of the minimum detection range by confining the trajectory of the ownship to a circular arc. In the
turning maneuver of real aircraft, an instantaneous bank-angle maneuver is not physically possible.
Instead, the bank angle has a transient response resulting from the deflection of the ailerons. The
response of the bank angle determines the course rate of a coordinated turn as shown in Eq. (1).
This non-constant course rate results in a trajectory that is not circular and must be determined by
numerical integration of complex time-based functions. Considering the bank-angle dynamics results
in a more accurate prediction of the minimum detection range that is larger than the predictions of
the TT and GT methods. The proposed method that takes into account the bank-angle dynamics
is called the time-based geometric velocity vectors (TGVVs) approach and is described fully in this
paper.

The second method presented in this paper, known as the geometric velocity vectors (GVVs)
approach, is a special case of the TGVV approach that maintains the assumption of an instantaneous
bank-angle maneuver. By using this assumption, the GVV method allows flight trajectories to be
represented geometrically as circular paths instead of functions of time, which allows a closed-form
analytical solution for the minimum detection range to be derived. We will show under what
conditions, the instantaneous bank-angle assumption is valid, allowing the GVV method to be used
with confidence. We will further show that the GVV method produces more accurate approximations

to the TGVYV solution over a wider range of conditions than the solutions offered by the TT and GT

11



approaches. The TGVV and GVV methods also allow the turning angle for the avoidance maneuver
to be defined by the analyst instead of prescribing a 90 deg turn. Although this may result in a
slightly larger dypr, it also allows deviations from the nominal flight path to be reduced at the

discretion of the analyst.

1. Problem Formulation
A diagram for the total minimum detection range, dypr, is shown in Fig. 3, and the resulting

general equation for dypr is represented as

dvpr = do + di + dopa,

where d,, is the total head-on distance traveled by the ownship, and d; is the total head-on distance
traveled by the intruder. The final term dcpa is the remaining head-on distance between the ownship

and intruder when the closest point of approach has been reached.
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Fig. 3 The total minimum detection range, dyipr, needed. A representation of the CPA.

In Fig. 3, we can also see that the variables d, and d; can both be broken down into two

subsegments each. The total head-on distance traveled by the ownship can be defined as d, =

12



do,c +dom, where d, . is the head-on distance traveled by the ownship during computation time, and
do,m is the head-on distance traveled by the ownship while it is executing its maneuver. Similarly,
the total head-on distance traveled by the intruder can be defined as d; = d; .+d; m, where d; . is the
head-on distance traveled by the intruder during computation time, and d; ,, is the head-on distance
traveled by the intruder while the ownship is executing its maneuver. Using these definitions, the

minimum detection range becomes
dMDR = do,c + do,m + di,c + di,m + dCPA'

When analyzing the interaction between two aircraft during an avoidance maneuver, the CPA
is a significant point of interest and a detailed derivation of this location is the basis upon which the
new methods are built. The previous GT approach also uses the CPA as the basis of their derivation
of the minimum detection range; however, the GT approach differs in where the CPA is located.
In the GT method, the CPA is assumed to be located where the circular arc that is transversed
by the ownship during its avoidance maneuver becomes tangent to the safety circle drawn around
the intruder. In the TGVV and GVV methods, the CPA is also located on the edge of the safety
circle around the intruder; however, the tangency assumption is removed. Instead, the ownship is
assigned an arbitrary course angle xcp. when it is located on the edge of the safety circle, as seen
in Fig. 3. This illustration is represented in a right-handed X-Y-Z inertial reference frame, and the
variable X¢pa is defined relative to the X axis. In addition to Xcpa, an additional angle is needed to
define the location of the ownship on the edge of the safety circle when the CPA is reached, which is
shown by the variable f.p, in Fig. 3. The variable 0, is measured relative to the negative X axis
and represents the angle between the forward flight path of the intruder and the line connecting the
CPA of the intruder and ownship. Using the definition of f.p,, a right triangle is formed with its
hypotenuse equal to the safety radius Rs; and the two sides equal to Z¢pa, and Yepa-

The CPA can be identified by taking the derivative of the range with respect to time, known as

the range rate, and setting it to zero. The range rate is calculated as

Po — P;
=" (v, — V), (6)
P, — pill

where p,, P;, Vo, and v; are vectors defined in the inertial reference frame. The vector p, is the

13



position vector of the ownship, p, is the position vector of the intruder, v, is the velocity vector of
the ownship, and v; is the velocity vector of the intruder. Using Fig. 3, the position and velocity
vectors can be defined in terms of the safety radius Rg, the ownship and intruder velocities v,,
and v;; and the unknown variables Zcpa, Ycpa, and Xcpa. Because the aircraft are assumed to be
flying at constant altitude, the Z component of the position and velocity vectors will be neglected.
The origin is defined as the intruder position when the CPA is reached so that p, = (0,0). Using
the intruder’s position as the origin, the ownship’s position is then defined as p, = (—Zcpa, Ycpa)-
The intruder’s velocity vector is defined to be in the -X direction; therefore, the intruder’s velocity
vector is defined as v; = (—v;,0). The ownship’s velocity vector points in the direction of xcpa and
is defined by v, = (V5 €OS Xcpas Vo SIN Xcpa). Substituting these position and velocity vectors into

Eq. (6) and equating it to zero results in

(*xcpaa ycpa) B (07 0)
[[(=Zcpas Yepa) — (0,0)]
1

0= ! ((UO COS Xcpa Vo sin cha) - (*Uh O)),

= Ri [UO sin XcpaYcpa — (Ui + v, CO8 cha)ircpa] s (7)
s

where we now have a single equation with unknown variables Zcpa, Yepa, and Xcpa-

If an instantaneous bank-angle maneuver is assumed, as in the GVV method, the three unknown
variables can be expressed in terms of the single unknown variable 0.,,. The resulting equation can
then be solved for 0., explicitly, from which the specific values for Zcpa, Yepa, and Xcpa are found.

If on the other hand, a non-instantaneous bank-angle maneuver is assumed; as in the TGVV
method, the variable xcp. cannot be expressed in terms of f.p,. For this case, Xcpa is found by
integration of the turning dynamics of the aircraft over time. Because the variable xcp, is now
based on time, the three unknown variables are expressed in terms of the time to maneuver to
the CPA, t,,, instead of the unknown variable 6.p.. After substituting these expressions back into
Eq. (7), the resulting equation cannot be solved for t,,, explicitly and must instead be found through
numerical methods. Once t,, has been determined, the specific values for Tcpa, Yepa, and Xcpa can
be found.

Using Fig. 3 and the definitions of the CPA as described previously, dcpa is equal to 2cpa. From

this figure, we can also see that d, ., is equal to the X component of the maneuvering ownship

14



when it reaches the CPA, z,,,. The head-on distance traveled by the intruder while the ownship is
executing its maneuver is a linear function of the time it takes the ownship to maneuver to the CPA
as dj m,m = vity. Finally, because the ownship and intruder are assumed to be traveling at constant
velocity, d, . and d; . are linear functions of the computation time and are expressed as d, . = Uotc
and d; . = v;t., respectively. With each of these definitions, the general equation for the minimum

detection range finally becomes
dvpr = ('Uo + Ui)tc + Ty, + Vit + Lepa- (8)

The remaining variables z,,, t,,, and z.p, are dependent on the specific maneuver taken by
the ownship and the location on the edge of the safety circle where the CPA occurs. The specific
maneuver taken by the ownship and the resulting location of the CPA differ between the TGVV and
GVYV methods and will be defined in the following two sections along with the resulting minimum

detection range.

2. Time-Based Geometric Velocity Vectors Approach

As stated previously, the TGVV approach assumes that the turning maneuver executed by the
ownship is driven by a non-instantaneous bank angle change and the resulting trajectory must be
characterized by numerical integration of time-based turn dynamics. The first step in characterizing
the trajectory is to define the X and Y positions of the ownship during its maneuver as functions

of time as

pet) = [ 0o = [ vycosxiolao )

to to

py(t) = / tvy(o)dJ: / tvosinx(o)do. (10)

to to

These positions are measured relative to the location where the ownship initiates its avoidance
maneuver and the time is measured relative to the time when the ownship initiates its avoidance
maneuver, tg. The variables v, and v, are the X and Y velocity components of the ownship as
functions of time while it performs its turning maneuver. The variable y is the course of the ownship
as a function of time while it performs its turning maneuver, and o is the independent variable of

integration.
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Assuming the ownship performs a coordinated-turn maneuver, the course of the aircraft can be

found by integrating the course rate from Eq. (1) as

X(t):/t )'((U)daz/t v%tanqb(o)da. (11)

For the GVV, method which will be described later, ¢ is assumed to be a step function with a
magnitude of ¢y ax; however, the TGVV approach assumes that the turning maneuver executed by
the ownship is influenced by the bank-angle dynamics. At this point, any desired banking dynamics
could be used to define the course as a function of time; however, we have chosen to use a first-order
transfer function that describes the roll rate of the aircraft, p, in response to the deflection of the
ailerons d,. The roll rate is integrated to get the bank angle. A block diagram of this system is
shown in Fig. 4, where K and 7 are general first-order system parameters, and s is the Laplace

variable.

o] K 1 p[1] @
"_|J—\_|La7-s+1 B_/_\

Fig. 4 Block diagram of the bank-angle response due to aileron inputs.

Using this dynamic model, we design a set of aileron commands to achieve a desired bank-angle
response as shown in Fig. 5(a). In interval 1, a positive aileron step is used at to to achieve a
constant bank-angle rate, rj)max. In interval 2, a negative aileron step is used at t; to stop the rolling
motion at the maximum bank angle, ¢,.x. In interval 3, the aircraft holds this constant bank angle,
beginning at to, until it is time to return to level flight. The time at which the aircraft needs to begin
returning to level flight is shown by t3 and is chosen so that the total change in course resulting
from the turning maneuver is equal to ;. In interval 4, a negative aileron step is used at t3 to
achieve a constant bank-angle rate, —@max. In interval 5, a positive aileron step is used at ¢4 to stop
the rolling motion with the bank-angle returns at zero. Finally, at t5, the aircraft remains in level
flight at the desired course, x:, for the remainder of the avoidance maneuver. In some cases, the
aircraft may not reach the maximum bank angle before it is time to return to level flight to ensure
the proper x; is achieved. In these cases, the bank angle has the response shown in Fig. 5(b), from

which we notice ¢ and t3 occur at the same time instant and there is no longer an interval 3. We

16



also notice that intervals 2 and 4 are combined in terms of the negative step input to the system

from the ailerons.

e o @ ® @ ® EANONONONO
PO il s ; e P e el
Sa %Wi
0 0 ! ‘ !
5 O I
Lo i1 tyls
t2,t3
11—
12—
(a) Case A: ¢dmax is reached. (b) Case B: ¢max is not reached.

Fig. 5 Bank-angle response to aileron step inputs.

From Fig. 5, the segments of the bank-angle response where ¢ is changing as a result of the
aileron input are intervals 1, 2, 4, and 5. The time response of ¢ to step inputs in the aileron

command can be derived from the ordinary differential equation describing the bank-angle dynamics:
T+ = K, (t).
The bank-angle response due to an aileron step input of magnitude §, occurring at time tg is given
by
B(t) = Kby [re™ T — (¢ to)| + 7d(to) (1= e/ 1 g(ty),

whereas the bank-rate response is given by

3(8) = K8, (1= 0107 4 Gtg)e 107,

The magnitude of the aileron step input is chosen so that the steady-state bank-angle rate is the

prescribed maximum ¢p,,x, which gives

(Z.smax
= — 1 2
da = =2 (12)

Substituting this value of d, back into the equations for ¢(t) and ¢(t) results in equations in terms

of 7 and @max as

9(t) = Thmax (7077 = 1) + dman(t — o) + 7d(t0) (1= ™7 4 6(te),  (13)

9(t) = b (1= 7T 4 G(tg)e =7, (14)
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These equations are the general equations used to define the response of the bank angle to a positive
or negative step input from the ailerons for cases A and B. The specific bank-angle responses for
each interval are derived for both cases in the Appendix.

Tables 1 and 2 provide a summary of the specific bank-angle response for each interval, shown
by ¢;, for case A and case B, respectively. Additionally, the transition times for each segment are
shown by ¢;, and the change in course during each segment is shown by dy;. To determine if case
A or case B is required for the bank-angle dynamics of the ownship, we use the value calculated for

Ox3. If 6x3 > 0, then case A is used; and if dx3 < 0, then case B is used.

Interval ¢ (t)

1 $1(t) = TPmax (eft/T — 1) + Pmaxt

2 $2(t) = Thmax (1 — 2e7 /T 4 e7T) — o (t — 2t1)

3 ¢3(t) = Pmax

4 Ga(t) = Thmax (1 — e 77) — o (t — t3) + Pmax

5 $5(t) = Tmax (27T =1 — 77T 4 (£ — 2t + 13) + Pmax
Interval t; X

! *“n[wfimiifiii‘if;w] 1 = [y 2 tanlen ()

2 ty = 2t oxz = [)* & tan(a(t))dt

3 =ty + M dxs = xt — (Ox1 + 0x2 + Oxalts=0,ta=t, + OX5|ts=0,ta=t1,t5=ts)
4 ta=ts+t oxa = [ & tan(a(t))dt

5 ts = ts +ta oxs = [T & tan(es(t))dt

Table 1 Bank angle, time intervals, and change in course for each segment of case A.
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Interval  ¢;(t)

L 0000 = e (7 — 1) + et
2,4 $2,4(t) = Thmax (1 — 2677 477 — e (t — 2t1)

5 ¢5(t) = Thmax (e7/7(2¢"/7 = 1)2 =1 — 2In [2"/7 —1]) + dmaxt
Interval ¢; OXi

1 numerical method in Appendix A2 Jdx1 = ftzl L tan(¢1(t))dt
2,4 to =71ln [26“/7 — 1]7 ta =12 +t1 dx2,4 = f:f % tan(¢2,4(t))dt
5 ts = 215 oxs = [,7 & tan(s(t))dt

Table 2 Bank angle, time intervals, and change in course for each segment of case B.

Using the information from Table 1, we create an expression for the course of the ownship after

it initiates the avoidance maneuver for Case A as

0 if t < to,
Ji L tan(¢1(0))do iftg <t <t
oy + [} L tan(¢a(0))do ifty <t <ty
x(t) = dx1 + Oxe + j:; % tan(¢sz(o))do if ty <t <ts, (15)
Ox1 +0xa + 0xs + [, L tan(¢a(0))do ifty <t <ty
Ox1+ X2 +0x3 + Oxa + [} L tan(¢s(0))do if ty <t <15,
Xt if t5 < t,

Similarly, using the information from Table 2, we create an expression for the course of the

ownship after it initiates the avoidance maneuver for Case B as
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0, if t <t
S tan(¢1 (o)) do, iftg <t <t
x(t) = ox1 + fttl Z tan(¢2,4(0))do, ift, <t<ty (16)

Ox1 + xaa + [{ L tan(ps(0))do, ifty <t <t

Xt» ifts <t

Using Egs. (15) and (16) for the course of the ownship and Eqs. (9) and (10) for the position
of the ownship, the trajectory of the ownship is fully defined. Using this trajectory, we return to
the analysis of the CPA location. The time to maneuver is the time it takes the ownship to initiate
a turning maneuver until it reaches the CPA location on the edge of the safety circle around the
intruder. This segment of the flight path of the ownship is shown in Fig. 3 and is composed of X
and Y components: x,, and y,,, respectively. These X and Y components can be defined in terms

of the equations for p,(t) and py(t), Egs. (9) and (10), and the time to maneuver as

Lm = pw(tm)7 (17)

Ym = py(tm>7 (18)

From Eq. (7), we have three unknown variables Zcpa, Yepa, and Xcpa. Using Fig. 3, we see that

the unknown variable ycpa, which defines the Y component of the CPA, has the same value as the ¥’

component of the maneuvering ownship y,, at the CPA. Accordingly, cpa and yepa can be expressed

as

Yepa = Ym = py(tm)a (19)

Tepn = /B2 = 42 = /B2 = py(tm)?, (20)

Similarly, x¢pa can be expressed as

Xcpa = X(tm) (2].)

After substituting these expressions for Zepa, Yepa, and xcpa into Eq. (7) and simplifying, we get

0 = py(tm)vosinx(tm) — 1/ R2 — py(tm)2(vi + v cos X(tm))- (22)

20



This equation is now a function of a single variable ¢,,, which can be solved for using the Newton—
Raphson method. Once the value of ¢,, has been found, the three variables Z¢pa, Yepa, and Xcpa can
then be calculated, along with the variables x,, and y,.

Now that the CPA location has been defined, we return to the calculation of the minimum
detection range shown in Eq. (8). With the values for @, ty,, and Zcpa just derived, the minimum

detection range can be defined as

dMDR = (UO + Ui)tc +p$(tm) + Uitm + \/ R? - py(tm>2a (23)

where t,, is found from Eq. (22) using the Newton-Raphson method; p,(t,,) and p,(t,,) are found
from Eqgs. (9) and (10); and x(,,) is generally defined in Eq. (11), but is specifically defined for

both case A and case B in Eqs. (15) and (16), respectively.

8. Geometric Velocity Vectors Approach

The TGVV method described previously incorporates the bank-angle dynamics of the ownship
into the avoidance path. If the bank-angle dynamics of the ownship are fast relative to the maneuver
time, then the assumption of an instantaneous bank angle becomes more realistic. For the GVV
method, we make this assumption; in the results section (Sec. IIT), we show under what conditions
this assumption is valid by comparing it to the TGVV method.

Instead of solving the bank-angle dynamics, we begin by defining the geometry that can be used
to calculate the minimum detection range as shown in Fig. 6. From this figure, we see that there
are two different geometrical cases that can occur while the ownship is maneuvering. For the first
case, shown in Fig. 6(a), the ownship turns with a small turning radius as compared to the safety
radius and is able to complete its turning maneuver before reaching the CPA location. This means
that, after the ownship completes its turning maneuver, it will fly straight until the CPA location
is reached. The X and Y components of the turning segment of the maneuver are represented by
the variables x; and y;, and the X and Y components of the linear segment of the maneuver are
represented by x; and y;. In the second case, shown in Fig. 6(b), the ownship turns gradually and
reaches the CPA location before completing its turning maneuver. This means that the ownship

will still be in a banked turn as it passes the CPA location. The X and Y components of the turning
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segment of the maneuver for this case are similarly represented by x; and ;.

1 1
€L intruder | I intruder |
T | - (\\/\ |
X = CPA | X TocPA |
2N > ! | Xt
Y \ \ Y N Xcpa b/
Xt h : B
Yepa \ ”cha ! Xt Yo’ ’ Xownship
Lokxe o o Yepa 07
_maneuver D) T . R CPA
. .- g Kownsmp .
trajectory —- J CPA R
. - v
' Tt Rmin ,/
maneuver
l d maneuver ’
initiated 0 Yt traiector S~ /! T Rmin
Xt J y K
II
1
1
1
1
1 Xcpa
‘mfnhleuvez/\ ’JI‘ O
initiated Ym Ruin — Ym

(a) Case 1: y; < yXia; ownship completes turning ma- (b) Case 2: y; > yta; ownship reaches CPA location

neuver before reaching the CPA location. before completing turning maneuver.

Fig. 6 Geometric diagram for the CPA location resulting from circular turning trajectories.

These cases can be distinguished mathematically in the following manner. First, we assume the
ownship executes a turning maneuver until its course is equal to the prescribed value for x;. The

Y component of this turning maneuver for both cases is calculated from y; as
Yt = Rmin(]- — COs Xt) (24)

Second, we calculate ycp, Wwith the course set equal to the desired turn angle x; and define this as
yXto- The exact derivation of this parameter will be shown in the subsection for case 1 (Sec. II B 3-
case 1). This Y coordinate denotes the transition between case 1 and case 2 where the turn maneuver
is completed at the exact moment the CPA is reached. The final step is to compare the calculated
yr and yXt,, which allows us to determine which geometry should be used to calculate the minimum
detection range. For case 1, y; < yXt,, whereas for case 2, y; > yXt,.

As stated previously, for the GVV method, Eq. (7) can be expressed in terms of the variable

Ocpa- Two of the variables xcp, and ycpa can be immediately expressed in terms of 0.p, as

Zepa = Fs €08 Ocpa, (25)

Yepa = R sin 9Cpa~ (26)
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Substituting these into Eq. (7) and simplifying results in
0 = v, 8IN Xepa SIN Oepa — (Vi + Vo COS Xepa) €OS Ocpa- (27)

The variable X¢p, is different for cases 1 and 2 and will be derived in the following two subsections
(Secs. IIB 3-case 1 and IIB 3-case 2), along with the resulting minimum detection range:

Case 1: y; < yXt

cpa

In case 1, the ownship completes its turning maneuver before reaching the CPA; therefore, the
course of the ownship when it reaches the CPA, Xcpa, will be equal to the prescribed value x:.
Substituting this into Eq. (27) results in

0 = v, sin X4 Sin Ogpa — (Vi + Vo €OS X¢) COS Ocpa. (28)
This equation is then used to solve for 8.y, as
Vo Sin X

A ( + v, x)
cpa — - .

where 0.p, is now used in the expressions for xcps, and yepa to produce

Vo SN Xt
Tepa =1 5 20 - , (29)
\/vo + v + 2v,v; cos x¢
Yepn =R Vi + Vo COS Xt (30)

° V02 4+ vZ + 2v,; cos Xt
Because the ownship reaches a course of x; before reaching the CPA in case 1, then the variable
YXt, is equivalent to yepa defined by Eq. (30):

Vi + Uy COS Xt
s 2 2 )
\/110 + v + 2v,v; oS Xy

Xt —
ycpa -
This value of yXt, is used to determine whether a specific encounter scenario is of case 1 or case 2

geometry.

Next, we define the variables x, y;, ;, and y; from the geometry of Fig. 6(a) as

Ty = Ruyin sin xy, (31)

Yt = Rmin(1 — COs Xt)7 (32)

Vi + Uy COS Xt
s 2 2
\/vo + v + 2v,v; oS Xy

Yl = Yecpa — Yt = R - -Rmin(1 — COs Xt)7 (33)
V; + Uy COS Xt

Ty =ycotxy = |R
) V02 + 02 + 20,; cos Xy

— Rpin(1 — cos x¢) | cot x¢, (34)
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Using these definitions, we can define the remaining variables needed for the minimum detection

range x,, and t,, as

Tm = Ty + 2y,

V; + Uy COS Xt
Ry 2 2
\/vo + v + 2v,v; oS Xy

= Rumin sin x; +

— Rpmin(1 — cos Xt)} cot x¢, (35)

_ L o Rminxt+ V x[2+y12

Vo Vo

Boinxe + [R vitvo CO8 x4 — Ruin(1 — cos Xt)] V14 cot? y¢

s
\/71(2) +v?+2vovi Cos Xt

; (36)

Vo

where L is the length of the avoidance path of the ownship during the turning and straight segments
of the maneuver.
Substituting Egs. (29), (36), and (35) into Eq. (8), and using the relationship defined in Eq. (2)

for Rpyin, produces the final minimum detection range equation for case 1 as

R V; + Vo COS X¢
° V02 + 02 + 20,; cos Xy

dMDR = (vo + vi)t(z + Rmin sin Xt +

— Ruin(1 — cos Xt)‘| cot x¢

\/ 1+ cot? Xt]

Vi + Vo COS Xt
S
2 2 ]
\/vo + v + 2v,v; Cos Xt

LU

o

RminXt + R

— Rumin(1 — cos x¢)

Vo SIn Xt

+ R .
° V02 + 02 + 20,0; cos Xy

Case 2: yr > ylt,

For this case, we begin with Eq. (27); however, we must define expressions for cos Xcpa and

Sin Xcpa @s functions of f.p.. We first define expressions for y,, and z,, as

Ym = Yepa = Bs SinOcpa, (38)

T =\ R — (R — ym)? = \/ Ry 5in Oepa (2Rumin — R Sin Oep). (39)

These values for y,, and x,, can now be used to define cos Xc¢pa and sin xcpa as

Roin — Ym - Ryin — R sin ecpa

COS(XCpa) = R - R ; (40)
. T R sin Ocpa(2Rmin — Rs sinbepa)
sin(Xepa) 5= v P . pes. (41)
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Similarly, an expression for xcp, can be defined as

Tm ) _ tan! <\/RS Sin Ocpa (2 Rmin — R sin (‘)Cpa)> . (42)

-1
Xcpa = tan ( -
e Ruin — Ym Runin — Rgsinfepa

Substituting these expressions from Egs. (40) and (41) into Eq. (27) and manipulating produces

an equation in terms of a single parameter 6.y, in the following form:
0 = asin® Ocpa + bsin? Ocpa + CsinOcps + d, (43)
where a, b, ¢, and d are defined as

a ZQUiUoRminRsa
b :szg - (’Ui + ’UO)Zernina
c=— 2’00(’01' + Uo)RminRsa

d =(vi + vo)*R?

min-

Equation (43) has been formulated to be cubic in sinf.p.. Applying Cardano’s formulas [16] and

expressing sin fcp, as z produces three roots for sin f.p, as

b
-2 T
21 3a+(s+ ),

L Y NI
2TT3,7 ) 2" ’
b1 1
2 T) — = T
23 3 2(S—i—) 22\/§(S ),

where S and T are defined as S = VVR++vD and T = /R — /D, respectively; D is defined as

D = Q>+ R?% and Q and R are defined as

and

p_be d b\?
~ 6a2  2a 3a) ’
respectively. Because we are trying to find a root for the expression sin f.p,, the root must first lie

within the bounds [—1, 1]. Second, the solution for 0., must lie within the bounds of [0, 90] deg due
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to the head-on approach of the ownship and intruder and the right turning maneuver of the ownship
as seen in Fig. 6, which means the root must further be restricted to [0,1]. Finally, there may still
exist multiple roots within the bounds [0, 1]; therefore, a third constraint must be satisfied. The
chosen root must produce a value of .y, that, when used to calculate Xcpa in Eq. (42), produces a
value within the bounds of [0, 90] deg. Once these constraints are satisfied, the true root is identified

and used to find Ocpa as
Ocpa = sin~ ! 2. (44)

This value of Ocp, is now used to define values for zcp, and yYepa, shown in Egs. (25) and (26),

and y,, and x,,, shown in Egs. (38) and (39). The time to maneuver is found as

L Ry 1
ty, = — = min Xcpa _ 7Rmin tan_l
Vo Vo Vo

( /R 510 Ocpa (2 Rnin — R 50 Ocp) ) (45)

Ryin — R sin ecpa

Substituting Eqgs. (25), (39), and (45) into Eq. (8) produces the final equation for the case 2 minimum

detection range as

dypr = (Vo + vi)te + \/RS Sin Ocpa (2Rmin — Rs sin fepa)

\/Rs sin Ocpa (2Rmin — R sin bcpa)
Roin — Rssin Hcpa

(% _
+ — Rpin tan™!
o

) + R, cos Ocpa, (46)

where O.p, is defined in Eq. (44), and Ruin is defined in Eq. (2).

III. Results: Method Comparison and Validation

With the equations for the minimum detection range derived, we now present results showing
calculated values for the minimum detection range as a function of each of the parameters used in
the equations. We present these results for the two methods developed in this paper: the TGVV
and GVV methods. We also present results for the two prior methods, TT and GT, and provide a
detailed comparison of all four methods. The parameters that are used by all four methods include
Vo, Vi, Rs, Gmax, and t.. For the TGVV and GVV methods, we have the additional parameter y;;
for the TGVV method, we have two parameters used to describe the bank-angle dynamics ¢max
and 7. In creating the results, a nominal set of values is chosen for each of these parameters, except

the ownship speed, and are listed in Table 3.
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Parameter V5 R Dmax te Xt émax T

Value 150 kt 500 ft 30 deg 5.0s 90 deg 30 deg/s 0.5s

Table 3 Nominal parameter values used in the calculation of dypr.

The minimum detection range is calculated for all four methods using the parameter values
from Table 3 and is shown in Fig. 7. In this figure, dypr is plotted versus the ownship speed, with
level curves used to vary one or two additional parameters.

In Fig. 7(a), we first compare various values for gz'SmaX and 7, which only affect the calculation
of the TGVV method. The GVV method is also plotted to demonstrate what values of ¢max and 7
result in the two methods producing similar values.

For Figs. 7(b)-7(f), a single pair of values is used for ¢may and 7, which results in a single set
of level curves for the TGVV method. Upon careful inspection, it can be seen that each subplot
contains one level that corresponds to the core set of parameters in Table 3, which results in one
common level among each of the subplots. This allows us to see how the minimum detection range
deviates from a common level as each parameter is changed. Figure 7(b) is used to vary v;, Fig. 7(c)
varies R, Fig. 7(d) varies ¢max, Fig. 7(e) varies t., and Fig. 7(f) varies x;.

In Fig. 7, the right-pointing orange triangles are used to identify transition points from case
B to case A for the TGVV method when viewed from left to right. Similarly, left-pointing black
triangles are used to identify transition points from case 1 to case 2 for the GVV method when
viewed from left to right.

From Fig. 7(a), a general trend between the TGVV and GVV methods can be seen. We see
that, as (ﬁmax increases and 7 decreases, the TGVV method dypr values approach the same values
as those from the GVV method, shown by the solid black line. It can be seen that the TGVV
method always predicts a minimum detection range slightly larger than the GVV method, which
results from including the bank-angle dynamics in the turning maneuver.

It is evident from Figs. 7(b)-7(f) that the TT and GT methods approach the GVV method for
ownship speeds in the case 2 region of the GVV method. This is because case 2 of the GVV method

uses an avoidance maneuver that is performed solely by turning, which is an assumption made in
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both the TT and GT methods. For ownship speeds in the case 1 region of the GVV method, the

TT and GT methods predict values for the minimum detection range significantly smaller than the

GVV and TGVV methods.
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Fig. 7 Comparison of dvpr as a function of v,, vi, Rsy, @maxs tes Xty Pmax and 7.
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Finally, from each subplot of Fig. 7, it can be seen that, as the ownship speed increases, each
of the methods models dyipr as a linear function of the ownship speed. For large values of v,, the
nonlinear geometric methods (GVV and GT) converge to the linear model predicted by the TT
method. Using the equation for the minimum detection range from the TT method, the slope of
these lines can be inferred from of Eq. 4 to be a function of Ry, ¢max, and t.. As R, and t. increase,
the slopes of the resulting lines increase, as can be seen in Figs. 7(c) and 7(e); however, as @max
increases, the slope of the resulting lines decrease, as can be seen in Fig. 7(d). As the remaining
variables, v; and xy, are increased, the slopes resulting from the geometric methods stay constant
as shown in Figs. 7(b) and 7(f).

Having calculated the minimum detection range, we must now determine the accuracy of the
results. If the true minimum detection range is used to initialize the distance between two aircraft,
the resulting CPA between the two aircraft will be exactly equal to the safety radius, Rs. This means
we can check the accuracy of the minimum detection range calculated from each of the four methods
by comparing the resulting CPA to the safety radius. To find the resulting CPA for each method,
a simulation is performed. The ownship and intruder are initialized in a head-on configuration
at a distance equal to dypr. Both aircraft fly toward each other without maneuvering during the
computation time; after which, the ownship begins turning using the bank-angle dynamics described
by the TGVV method with the parameters (;.Smax, T, ®max, and x¢. Once the ownship has turned
to the predefined y, it flies straight until it is far from the intruder. During the simulation, the
relative range and CPA between the ownship and the intruder are calculated.

An example of the relative range is shown in Fig. 8. The parameters that are used come from
Table 3, and the value of the ownship speed is v, = 25 kt. The TGVV method is shown by the
solid orange line; at time zero, the relative range between the two aircraft is approximately 5209 ft.
As the two aircraft continue their flight paths, the closest point of approach is exactly equal to
500 ft at approximately 18.9 s. Because the TGVV method uses the same dynamic model as the
ownship in the CPA simulation, the predicted relative range from the TGVV method is identical to
the simulation truth model. The GVV method is shown by the dotted black line, and the relative

range predicted at time zero is approximately 4942 ft. In this case, the two aircraft reach a CPA
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of 456 ft at approximately 17.9 s, which is a violation of the safety volume. Similarly, the ownship

flight paths from the TT and GT methods result in a penetration of the safety volume with CPAs

of 243 and 116 ft at approximately 12.9 and 9.9 s, respectively.
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I e TT

S 3000 RN N = GT s

g 2000 . SR S e
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Fig. 8 Relative range vs. time and the resulting CPA.

The CPA is used to compare the accuracy of each of the four methods. In Fig. 9, the CPA
is plotted versus the speed of the ownship. In Fig. 9(a), four different sets of parameters are used
for the bank-angle dynamics of the ownship; whereas in the other subplots, only the nominal set
of parameters is used for the bank-angle dynamics of the ownship and other critical parameters are
varied. The first observation to make from each of the subplots is that the TGVV method always
produces a CPA exactly equal to the value chosen for R, which means that the safety volume
has not been penetrated and the true minimum detection range has been found. Additionally, the
GVV, TT, and GT methods all produce a CPA less than the chosen value for R, which means
the safety volume has been penetrated and the calculated minimum detection range is an under-
approximation. Fig. 9(a), however, shows that the CPA of the GVV method approaches the safety
radius of 500 ft as gz'SmaX increases; and 7 decreases, implying that the GVV method becomes a good
approximation of the TGVV method as the speed of the bank-angle response increases.

The next critical observation to make is seen in Fig. 9(b), which shows that the CPA of the
TT and GT methods converge to the CPA of the GVV method as v, increases. Additionally, it
can be seen that the GT method approaches the GVV method as v; decreases. This is because
the underlying assumption of tangent turning circles is more reasonable when the intruder speed is

small relative to the ownship speed.
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Fig. 9 Comparison of the CPA as a function of v,, vi; Rs, ®maxs tes Xty d)max and 7.

Figure 9(d) shows that the CPA of the GVV, TT, and GT methods approaches the desired value
chosen for R, as ¢max decreases. This is because smaller values of ¢p,ax result in shorter bank-angle

transients and produce more circular turns that more closely match the circular-turn assumptions
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of the GVV, TT, and GT methods.

Finally, from Fig. 9(f), the TT and GT methods depart from the GVV method as x; decreases
at low ownship speeds. This is because the TT and GT methods do not provide any compensation
for limiting the turn angle, ;. Instead, these methods assume the ownship is always in a banked
turning maneuver as it passes the intruder. This assumption matches the avoidance trajectory of
the ownship for case 2 of the GVV method and is a valid assumption for large ownship speeds.
This assumption causes issues at low ownship speeds because the ownship completes its turning
maneuver before reaching the CPA, which corresponds to case 1 of the GVV method.

In this simulation the TGVV method results in a CPA matching the safety radius, which means
the true minimum detection range has been found. The geometric methods (GVV, TT, and GT),
however, are computationally simpler, and it is of interest to know how well they approximate
the solution produced by the TGVV method. Figure 10 provides this information by showing the
percent relative error in the minimum detection range between the other methods and the TGVV
method.

From each subplot in Fig. 10, we see that the GVV method produces the smallest relative error.
We also see that the TT method generally produces a relative error less than the GT method except
when v; approaches zero, as seen in Fig. 10(b). In Fig. 10(a), the relative error in dypr is plotted
versus 1/ qi)max and 7, with the remaining parameters fixed at their nominal values and with the
ownship speed equal to 150 kt. The value of 7 is varied between 0 and 1 s, whereas ¢max is varied
from 30 deg/s to infinity. Plotting against the inverse of (bmax improves the presentation of the data
and facilitates interpretation of the result. By continuously varying ¢max and 7, the effects of each
variable on the accuracy of the GVV method can be more easily seen. From the subplot, it can be
seen that the relative error does decrease as T decreases; however, it does not decrease to zero. As
the inverse of ¢max decreases, however, the relative error does go to zero for all values of 7. This
shows that, as the bank-angle maneuver of the ownship becomes more instantaneous, the results of
the geometric GVV method converge to those of the TGVV method.

The results presented thus far show that the TT and GT methods converge to the GVV method

for large ownship speeds relative to the intruder speed, and the GVV method converges to the TGVV
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Fig. 10 Percent relative error of dypr as a function of v,y viy, Rsy Pmaxs ey Xts quax and T.

method for fast bank-angle transients and small bank angles. We can thus conclude that the TT
and GT methods provide good approximations for the minimum detection range at large ownship

speeds relative to the intruder speed, fast bank-angle transients, and small bank angles.
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Although the main focus of this paper is on methods for the calculation of minimum detection

range, the time to maneuver is a quantity of significant importance and accompanying results for

this parameter are presented in Fig. 11.
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As stated previously, the minimum detection range of the geometric methods (GVV, TT, and
GT) approach linear functions for large ownship speeds. From Fig. 11, a similar observation can be
made for the time to maneuver. The T'T method predicts a maneuver time that is constant with
ownship speed. Comparing Eqgs. 3 and 4, and noting that the maneuver time t,, is the same as the

turn time ¢; for the TT method, shows that the predicted TT maneuver time is

2R cot Prmax
g b

which is independent of the ownship speed. For large ownship speeds, the GT and GVV methods
converge to the maneuver time value predicted by the TT method. In Fig. 11(c), we see that, as
R increases, the predicted maneuver times also increase. From Fig. 11(d), we see that, as ¢max
increases, the maneuver times decrease.

From Figs. 11(b) and 11(f), we see that the TGVV and GVV methods account for variations
v; and X, as seen by three sets of lines; whereas the TT and GT methods do not account for them.
This agrees with the expressions for the predicted time to maneuver in the TT and GT methods

where the predicted ¢, for the GT method can be derived from Eq. (5) as

Vo 1 v2
gtan ¢max cos (v% + Rygtan ¢max ) '

The results presented thus far have used parameter values consistent with a collision-avoidance
encounter. Results are now presented for parameter values more consistent with a self-separation
scenario. These results use the following parameters: Rs = 0.75 n mile, which is the lateral UAS
well-clear requirement; ¢n.x = 5 deg; x+ = 15 deg; t. = 20 s, which includes tracking and typical
pilot response delay with air traffic control interaction; (i)max =10deg/s; 7 = 0.5 s; v, = 0-1250 kt;
and v; = 250, 500, 750, 1000, and 1250 kt. The results for these parameters are shown in Fig. 12.

From Fig. 12(a), it can be seen that the the minimum detection range is now on the order of 10
to 50 n miles instead of 2000 to 10,000 ft. Figure 12(b) shows that the CPA of the TGVV method
is equal to the value chosen for Rg of 0.75 n mile. We also see that the GVV method produces
a CPA close to the desired value for R;. In Fig. 12(c), we see that the relative error of the GVV
method stays well under 1 %. Finally, in Fig. 12(d), we see that, for large ownship speeds, the time

to maneuver has increased to about 57 s, as would be expected for the self-separation simulation
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Fig. 12 Self-separation results.

parameters. Each of the subplots in Fig. 12 demonstrates that the GVV method can be used as
an accurate approximation to the TGVV method when parameter values are aligned with those
commonly found in self-separation encounters. Similarly, the TT and GT methods provide good
approximations to the TGVV method, but only for large ownship speeds.

Finally, to complete our comparison of the four methods considered in this paper, we present
results that characterize the computational cost of each of the methods. These results are shown in
Table 4 and include the average runtime of each method and the number of lines of code needed to
implement each method. The average runtime for each method was based on 30,000 samples and
was executed in Matlab on a 64 bit, 2.70 GHz, four-core, Intel I-7 laptop with 16 GB of RAM. For
the TGVV method, numerical methods were used with a time step of 0.001 s. The number of lines

of code required by each method were determined for a MATLAB implementation. The number
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of lines of code for the TGVV and GVV methods are only approximations because multiple lines
of code could be combined; however, this does provide some insight into how much effort would
be required to program each method. Although the runtime of each method is of interest, none of
the implementations are expensive in terms of required computation time when compared to the

timescales of the corresponding DAA maneuvers.

TGVV GVV TT GT
Average runtime (s) 1.77e-2 2.01e-5 1.19e-6 2.27e-6
Lines of code ~200 ~50 1 1

Table 4 Computational cost of each method from average runtime and lines of code.

IV. Conclusion

The viability of integrating UASs into the National Airspace System is highly dependent on their
ability to detect and avoid other air traffic, particularly when flying beyond the line of sight of the
operator. For a direct head-on encounter requiring a large detection range, analytical expressions
are derived to calculate the minimum detection range required to avoid a predefined safety volume
using both dynamic and geometric models of the encounter. The main contribution of this paper is
the presentation of two methods used to calculate the minimum detection range: the TGVV and
GVV methods. Using the GVV approach, a closed-form analytical expression for the minimum
detection range is found by making the assumption that the ownship performs an instantaneous
bank-angle maneuver. If this simplifying assumption is removed, the TGVV method can be used
to numerically solve for the minimum detection range by using a model of the turning dynamics of
the ownship. The minimum detection range calculation takes into account the computation time
involved in target tracking, risk assessment, path planning, and pilot response time delay, in addition
to the time required to execute the avoidance maneuver.

The TGVV and GVV approaches were compared to the existing TT and GT methods and
were shown to create more accurate estimates of the minimum detection range over a wide range
of encounter scenarios. For every variation of the encounter parameters, the TGVV method deter-

mined a CPA estimate equal to the desired safety radius value, indicating that the true minimum
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detection range had been found. It was also shown that, as the bank-angle dynamics of the ownship
became more aggressive, the geometry-based GVV method produced results that approached those
of the dynamic-model-based TGVV method. The conditions under which the TT and GT methods
produced results that approached the TGVV method were also found to occur at large ownship
speeds relative to the intruder speed, fast bank-angle transients, and small bank angles.

Although the direct head-on encounter is important because it requires a large minimum de-
tection range, it would be valuable to extend the minimum detection range methods to a variety
of encounter scenarios in addition to the head-on case. Additionally, validation of the minimum
detection range results with flight tests to confirm the validity of the underlying assumptions and

models would represent a valuable next step in defining integration requirements for UASs.

APPENDIX A: TGVV BANK-ANGLE RESPONSE

1. Case A: ¢max is reached
Using Fig. 5(a), we see that interval 1 has a positive step in the aileron command; and ¢y = 0,

#(to) = 0, and ¢(to) = 0. This results in the following equations for ¢ (t) and ¢ (t):

¢1 (t) = 7-(Z.Smax (e_t/T - 1) + émaxt (Al)

D1(t) = dunax (1= ¢7/7)

Interval 2 has a negative step input with to = t1, ¢(tg) = ¢1(t1), and ¢(to) = ¢1(t1). This

results in the following equations for ¢2(t) and ¢ (t):

$2(t) = —Thmax (e_(t—tl)/T _ 1) — max(t —t1) + 71 (t1) (1 _ e—(t—tl)/T) éi(t)
= 7 max (1 —2e” 70T e‘t/f) — Prmax(t — 2t1) (A2)
(Z.Sz(t) = _émax (1 - 6_(t_t1)/T> + ¢51 (tl)e_(t—tl)/'r

Drma (26—(t—t1)/-r et/ _ 1)

For interval 3, the aileron command is zero. This means the bank angle only experiences the

free response due to the initial conditions, and it does not experience any forced response from the

38



aileron input. This free response is taken from the terms on the right side of Egs. (13) and (14) as
o (t) = (o) (1= e~ =/7) 4 o(to), (A3)
&7 () = (to)e™ H/T. (A4)
Using these equations for interval 3 and to = to, ¢(tg) = ¢o(t2), and ¢(tg) = da(ts) gives the
following response for interval 3:
0a(t) = 7ds(t2) (1= e 7/7) 4 6u(ta),
G3(t) = da(ta)e” 1712/,
From Fig. 5(a), values for ¢; and ts are chosen that result in ¢o(t2) = Pmax and d)g(tz) = (0. With
these requirements, the response for interval 3 becomes
$3(t) = Pmax; (A5)
3(t) = 0.
Interval 4 has a negative step input with tg = t3, ¢(tg) = ¢5(ts), and qB(to) = (ﬁg(tg). This
results in the following equations for ¢4(t) and ¢4(t):
61() = ~max (€777 = 1) = Gunan(t — t3) + 7alta) (1= " 7/7) + 6 ()
= Tmax (1= €777 = et t3) + binas (46)
Pa(t) = —hmax (1 - 6_(t_t3)/7) + a(tg)e” /T
— dmax (e—(t—ts)/T _ 1)
Interval 5 has a positive step input with to = ty, ¢(to) = ¢4(ts), and ¢(tg) = ¢d4(t4). This results
in the following equation for ¢5(t):
$5(t) = Thmax (e_(t—t4)/7 - 1) + Grmax (t — ta) + Ta(ts) (1 - 6_(t_t4)/7) + ¢a(ta)
= Thmax (2e—<t—t4>/T ~-1- e—(t—ts)”) + Gmax(t — 2ts +t3) + Prmax (A7)
As stated previously, we must choose values for ¢; and o that result in ¢o(t2) = @max and

bo (t2) = 0. To find the values of ¢; and t2, we start with the expression for bo (t) and the requirement

that ¢o(tz) = 0 to get
0 = Gax (26707 0/7 —e7ta/7 1) (AS)
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Next, we use the expression for ¢o(t) and the requirement that ¢s(t2) = dmax to get
max = mgmax (1 _9e—(t2—t)/7 e—tz/T) _ émax(tz —oty),

where we notice that the first term on the right side of the equation is the negative of Eq. (A8)

multiplied by 7. This cancels the first term, resulting in

¢max = _d.)max(tQ - Qtl)

Rearranging, we get the final expression for ¢, as

Pmax

ty = 2 — = (A9)

max

To find 1, we substitute this value of ¢5 back into Eq. A8 and, after algebraic manipulation, we get
2 .
0= (eftl/'r) o 267“/7 + 67(¢max/¢max)/,,.’

which is a quadratic function in e~**/7. Using the quadratic formula, we can find the roots to this

equation as

e/ =14+ /1 — e~ (Gmax/bmax) /T

Rearranging this equation, we can solve for t; as

t1=—7ln {1 + V1 — e Gma/dma) /7|

For this expression to give a positive value for ¢, we must use the negative sign inside the natural

logarithm as

tl =—7ln |:1 — \/1 — 6_(¢maX/‘75max)/TJ .

Although this equation is mathematically correct, if the quantity (Pmax/ émax)T gets too large,
numerical roundoff errors can occur while computing the value of ¢;. To help reduce the chance of
numerical roundoff error, we multiply the term inside the natural logarithm by its conjugate on the
numerator and denominator, which produces the final expression for t; as

6_(¢max/q'5max)/7—
]_ + \/]_ — e*(‘bmax/‘i’max)/"’ '

ty =—7ln (A10)
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Now, we finish defining the rest of the time variables t3, t4, and t5. The time variable t3 is

defined as
ts =ty + 073, (All)

where 073 is the total time during interval 3 where the bank angle is at a constant value of ¢pax

and can be calculated as
5T3 = LS/”O) (A12)

where L3 is the length of the path traveled by the ownship during interval 3 and can be calculated

as
L3 = Rmin5X37 (A13)

where dy3 is the change in course experienced by the ownship during interval 3, which can be

calculated as

ts
dx3 = / Ui tan(ps(t))dt = x¢ — (Ox1 + Ox2 + OXalts=0,ta=t, + OX5lts=0,ta=t1.,t5=t,);  (Al4)

to
where dx1, dx2, 0Xx4, and dxs5 are the changes in course experienced by the ownship during intervals
1, 2, 4, and 5; and x; is the desired change in course during the complete turning maneuver. These

variables can be found using Eq. (11) from a coordinated turn as

ox1 = /Otl U%tan(@(t))dt, (A15)
ta

X2 = / I tan(po(t))dt, (A16)
t1 o

ei= [ L antor(o)a, (a17)
ts

5X5:/t Uitan(%(t))dt. (A18)

The final expression for t3 is now found to be

Rmin6
lg =t2 + 7X3, (A19)

o

where dx1, dx2, dx4, and Ixs are defined in Eqgs. (A15), (A16), (A17), and (A18). Now that we
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have found t¢3, we can define t4 and t5 as

ty =ts+ty, (A20)

ts = t3 + ta. (A21)

2. Case B: ¢max is not reached
Similar to case A, we use Egs. (13) and (14) to define the response of the bank angle to step
inputs from the ailerons. Using Fig. 5(b), we see that interval 1 has a positive step, and therefore

has the same response to case A as

$1(t) = Tmax (e—t/T - 1) + Pmaxt, (A22)
él (t) = émax (1 - e_t/T> .
The bank-angle response for intervals 2 and 4 can be combined into a single expression because

the aileron input is —d, for both intervals. The response for these intervals has the same response

as interval 2 in case A:

62.4() = Thmax (1= 26707/ 4 e77) = (1 = 201), (A23)

(1) = o (26— 07 1)

Interval 5 differs from case A because the previous interval 4 has been combined with interval
2. For interval 5 of this case, we also have a positive step and ¢y = t4; however, ¢(tg) = ¢2.4(ts),

and ¢(to) = bg.4(ts). This results in the following equation for ¢s(t):

¢5() = Thmax (6_(t_t4)/T - 1) + bmax(t — ta) + T2 4(ts) (1 - 6_“_“)/7) + P24 (ta),

= T rmax (26‘“‘“)” — 2e=(t/T o=t/ 1) + Guma (t + 21 — 2t4). (A24)

In deriving ¢; for case A, we used the constraint ¢o(t2) = @dmax; however, this constraint is not
true for case B. Finding t; for this case requires a more in-depth analysis. From the total turning

maneuver of the ownship for case B, we know that

Xt = 0X1 +0x2,4 + 0X5,
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where dx1 and dx5 were defined in Eqs. (A15) and (A18) in case A, and dx2,4 is the change in course

experienced by the ownship during the combined intervals 2 and 4 as

ta
(5}(274 = /t Ui tan(¢274(t))dt. (A25)

o

Moving x: to the right side of the equation results in
0=0x1 + dx2,4 +0X5 — X¢- (A26)

To find t1, we express each of the components of Eq. (A26) in terms of the variable ¢; and use the
Newton—Raphson method to find the value of ¢; that makes the equation equal zero. The variables
that need to be expressed in terms of ¢; are tg, t4, and t5.

A constraint from case A that we can use for case B is ¢ (t2) = 0. This constraint resulted in

Eq. (A8), which can be solved for ts in terms of ¢; as
to =7lIn [Qetl/T — 1} . (A27)
Using Fig. 5(b) and Eq. (A27), we create expressions for ¢4 and ¢5 in terms of ¢; as

ti=ty+ti =t +7In [26“/7—1}, (A28)

ts = 2ty = 271n [2&1” - 1} . (A29)
Using the expression for ¢4, we modify Eq. (A24) to be expressed in terms of ¢; as

d5(t) = Thman (e*t/f(2etl/f 1?2 -1-2mn [Zetl/T - 1]) + unanct (A30)
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