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Abstract: This paper presents a novel method for UAV-based 3D modeling of large infrastructure
objects, such as pipelines, canals and levees, that combines anomaly detection with automatic
on-board 3D view planning. The study begins by assuming that anomaly detections are possible
and focuses on quantifying the potential benefits of the combined method and the view planning
algorithm. A simulated canal environment is constructed, and several simulated anomalies are
created and marked. The algorithm is used to plan inspection flights for the anomaly locations, and
simulated images from the flights are rendered and processed to construct 3D models of the locations
of interest. The new flights are compared to traditional flights in terms of flight time, data collected
and 3D model accuracy. When compared to a low speed, low elevation traditional flight, the proposed
method is shown in simulation to decrease total flight time by up to 55%, while reducing the amount
of image data to be processed by 89% and maintaining 3D model accuracy at areas of interest.

Keywords: UAV; infrastructure monitoring; structure-from-motion; view planning;
intrusion detection

1. Introduction

The advent of small Unmanned Aerial Systems (sUAS) has given rise to a host of new applications
for aerial imaging technology in many fields [1–5]. Together with the increasing ease of obtaining
imagery, advances in computer vision and computer processing power have led to a widespread
increase in aerial mapping and 3D-reconstruction [6–8]. In the field of infrastructure monitoring,
the clear advantages of on-demand, high precision 3D modeling are driving companies and researchers
to explore the possibilities of this technology (for an excellent overview, see [9]). However, current
UAV and 3D reconstruction technology still has limitations. While excellent results can be obtained
for single site projects as demonstrated by [10], UAV flight time, computational power, data storage
and model processing time all constrain the scalability of this technology to large-scale infrastructure
systems, such as pipelines, canals, levees, railroads, utility lines and other long linear features [11].
Because of these constraints, creating a single detailed 3D model of a large infrastructure object is in
many cases impractical.

In this paper, the authors attempt to address some of these limitations by introducing a concept
in which a single UAV platform serves as a multi-scale monitoring system. The UAV first inspects
the structure at a relatively high level, collecting imagery and searching for potential anomalies.
A detection triggers a 3D flight planning algorithm that updates the UAV path to collect additional
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images of the detection area. This allows the area of interest to be reconstructed at a higher level of
detail than would be possible in the baseline survey. This multi-scale monitoring concept focuses flight
time and computational resources on areas of the infrastructure with high information content.

Although there is a large body of work relating to UAVs tracking moving objects and real-time
detection of specific objects, real-time detection of unknown anomalies is a challenging problem,
and this paper does not attempt to address it directly. See [12–17]. Many possible approaches to
detection are possible, including cascade classifiers, neural networks or change detection between
monitoring flights and a known baseline dataset [18]. The approach could also be expanded to other
sensors such as multispectral or hyperspectral sensors, real-time stereo, LiDAR, chemical sniffers or
any other sensor capable of detecting the desired anomalies. The body of the work proceeds on the
assumption that accurate detections can be made, and the focus is placed on the potential benefits
of a multi-scale approach in terms of model accuracy, flight time and data quantity, with the goal of
motivating further work in real-time detection technology and algorithms.

1.1. Related Work in Linear Feature Monitoring

Although the use of UAV technology in civil applications is a relatively new field, a number of
authors have explored various aspects of monitoring long linear infrastructure with UAVs. The work
in [19] analyzes a wide variety of UAV platforms and sensors applicable to infrastructure inspection.
They comment on what is currently available “off the shelf” to gather optical data of infrastructure
using relatively low cost UAV systems. They also conduct a test case using a small quadrotor UAV
to inspect a section of railroad tracks. The work in [20] considers two possible UAV systems for the
inspection of natural gas pipelines. The first system, a low altitude, small UAV with visual sensors,
is most similar to the UAV platform considered in the current work. Portions of the system are
demonstrated, including automatic detection and marking of areas of concern. The authors conclude
that although a lack of operation standards impedes immediate adoption of the technology, the system
is technologically feasible in this application.

In another application, Zhang et al. [21] study the high speed inspection of power lines using
UAVs. Their focus is primarily on automatic detection and tracking of the lines in video. The work
in [22] details the implementation of an algorithm that utilizes optical imagery to guide a small UAV
along long linear infrastructure, such as canals, roads and pipelines, without the use of GPS waypoints.
Several experiments were conducted that demonstrated the effectiveness of the algorithm in navigating
a small UAV over canals and roads to collect optical imagery. They conclude that small UAVs can
gather a large amount of optical data of long linear sites in a relatively short period of time.

The work in [23] proposes a navigational framework to detect and track road networks. They were
able to demonstrate via simulation that their framework could be used to navigate a UAV over long
stretches of road for the purpose of visual inspection. The current work extends upon these studies by
considering the case of a UAV platform that not only passively monitors infrastructure, but actively
re-plans its flight path using optimized view planning when anomalies are detected.

1.2. Optimized View Planning

The work in [24] defines view planning as the strategic placement of sensor(s) to gather desired
information about an object or scene. The origins of view planning are discussed by [25]. View planning
has its earliest roots in the “art gallery” problem, where one desires to place security guards in
optimal locations to monitor an art gallery. The work in [26] examines how view planning has also
been used in quality control, where ideal locations for sensors are desired to ensure product quality
in manufacturing.

Modern examples of view planning often utilize remote optical sensors, and the placement
is typically automated by robotic arms, gimbals and unmanned aerial vehicles. The work in [27]
describes a step-by-step process for automating the surveillance of a construction site with a UAV,
with an emphasis on the UAV’s ability to easily survey areas that pose significant danger to human
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operators. A simple grid pattern or ‘lawnmower’ pathway is used at a set altitude, with the UAV
constructing an orthophoto from images taken exclusively in the nadir position. The lawnmower
pathway is commonly used in UAV applications due to its simplicity and even coverage.

The view planning problem is described by [28] as NP-complete, which is the most difficult subset
of problems. The NP-complete class of problems is characterized by having an easy method to check if
solutions are correct, but having no known algorithm for efficiently generating solutions.

Work by [29] shows the difficulty of the viewing problem. Saadat and Samadzadegan use a genetic
algorithm to create a Pareto front where multiple optimized viewing networks are generated. However,
an experienced operator is then needed to select which one is anticipated to result in a superior network.

The work in [30] emphasizes the need to generate view planning solutions for UAVs that give
the best results given constraints, such as the flight time or battery life of the UAV. They address
the situation of a UAV tasked with surveying more infrastructure objects than can be visited within
a single battery charge. A weighted objective function is used that assigns rewards for exploring
unknown areas, as well as inspecting certain points that are deemed more important. The authors use
a simple heuristic approach to connect the waypoints, solving the traveling salesman problem with
an approximation. Their overall method yielded good results in real time, even though sub-optimal
heuristic approaches were used.

The work of [31] presents an algorithm for efficiently generating potential view points, then
heuristically selecting the view points that best contribute to network strength. The flight planning
method presented in the current work builds upon the algorithm developed by Hoppe et al.
Their method is extended from known 3D structures to unknown objects located on potentially
flat surfaces. The new algorithm presented is also configured to be called in real-time by the UAV
during the flight to re-plan the mission based on updated information.

1.3. Simulation

Experiments for this paper are performed in both a terrain simulation environment and
a software-in-the-loop flight simulator. This approach is relatively novel in this field, but it has been
demonstrated in some capacity before [32]. In one example of a similar approach, Piatti and Lerma [33]
develop a simple 3D environment for use in photogrammetric simulations. They demonstrate a process
for reconstructing perspective imagery from their scenes with user-specified camera parameters.
While some mission planning capabilities are also shown, the scene geometry is limited to simple
shapes, and the software package is developed primarily as a learning tool for students. The work
in [34] also uses a simple 3D simulation, though in this case, the objective is to evaluate the effects of
various UAV image configurations on the systematic error in the resulting DEM.

Although uncommon to this point in civilian applications, the simulation of UAV surveillance
flights using synthetic imagery generated by military simulation packages has also been explored.
In particular, the simulation environment Virtual Battle Space 3 has been used by [35] to perform
experiments in the context of a UAV road monitoring and change detection problem. The authors
concluded that although some artifacts were introduced by the rendering process, the resulting images
were of sufficient fidelity to evaluate their computer vision algorithms.

Terragen 3, the environmental simulator used in the current work, has been used successfully
by the authors in a previous paper, in which it was used to evaluate the performance of a genetic
algorithm-based planner for UAV infrastructure modeling [36]. This approach differs from related
work in the field through an increased level of fidelity in the simulation environment, including highly
detailed vegetation models, realistic atmospheric effects, cloud cover, haze and fine control of camera,
lens and lighting conditions. This allows for simulations more closely approximating actual field
conditions and increases the amount and quality of testing that can be performed prior to physical
flight tests.
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1.4. Novel Contributions and Paper Overview

This paper advances the state of the art in the following areas.

• It is shown that when a reliable anomaly detection system becomes available, the proposed
method will be capable of generating detailed 3D models of the areas of interest while avoiding
the often unwieldy amounts of data produced by repeatedly creating 3D models of the entire
structure in routine inspections.

• The monitoring system incorporates on demand optimized view planning, taking advantage of
the onboard processing capabilities of unmanned aircraft to maximize information gain through
in-flight re-planning.

• The potential benefits of this method are demonstrated and quantified in simulation, motivating
further work on the supporting automatic detection technologies.

The paper begins with an overview of the simulation environment used to perform the
experiments described in the paper. This is followed by an explanation of both the standard linear and
the optimized flight paths used for generating synthetic UAV images in the simulation environment.
The process of 3D model creation and accuracy testing is described, as is the configuration of the
real-time simulated flight testing system. The results of the testing for 3D model accuracy, flight time
and data quantity are then presented, and the implications of the results are summarized and discussed.

2. Methods

2.1. Simulated Test Scene

Synthetic images for this study are generated using the terrain simulation environment Terragen 3.
The simulated scene is based on 0.5-m elevation data taken from a one-mile section of canal near Payson
Utah. Satellite imagery at 12.5-cm resolution is overlaid on the elevation data, and high quality 3D
vegetation and trees are added to approximate the actual environment at the site. Lighting conditions
and the position of the Sun are chosen to match those for Payson, Utah, on 28 March 2016 at 12:00 p.m.
Figure 1 shows a portion of the completed simulation site.

Figure 1. Simulation of the Highline Canal near Payson, Utah.

In order to simulate a wide variety of potential infrastructure anomalies, additional 3D objects
are introduced into the scene and placed at intervals along the canal. These included a set of power
lines with structural damage, a colored disc placed on a road, a section of industrial piping with
horizontal displacement and a short segment of railroad with a tie out of place. A slump in the side of
the canal is also simulated by displacing a portion of the canal bank and filling the vacant area with
water. Each anomaly in this study is a displacement on the order of 50 cm from a baseline case. A full
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description of the exact nature of the anomalies is not given here, as the purpose of the anomalies
in this paper is only to illustrate potential locations where they could be found. A follow-up study
will investigate the specific types of anomalies that can be detected and quantify the limitations of
the method with regards to anomaly size. Closeups of four of the anomaly locations can be seen in
Figure 2.

Figure 2. Closeup views of anomaly locations. (a) Canal slump; (b) industrial piping; (c) power line;
(d) railway.

Terragen 3 permits full control over camera positioning, orientation and parameters.
Camera parameters for this study are chosen to simulate a Nikon D7100 DSLR camera and are
detailed in Table 1.

While the simulation engine used is capable of generating photo-realistic images, it is not a perfect
representation of reality. In particular the effects of wind on the scene and the rolling shutter effect
due to camera movement are not accounted for. These effects are important in UAV photogrammetry,
and including them in a simulation environment would be an interesting area of future work.

Table 1. Camera settings for image generation.

Setting Value

Sensor Width (mm) 23.5
Focal Length (mm) 35

Image Width (pixels) 6000
Image Height (pixels) 4000

2.2. Standard Path Planning

To facilitate comparison with standard flights, a planner is created to generate flight paths along
the canal. Given a vehicle speed, desired image overlap and camera frame rate, the planner generates
a sequence of image locations at the required spacing and elevation. The planner is capable of
generating single track paths, in which the UAV flies only one direction, as well as double track,
in which the UAV flies down and back. This is illustrated in Figure 3. In the case of the double track
path, the side overlap between the two tracks can also be specified.
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Figure 3. Illustration of single track (above) and double track (below) UAV flight paths.

Image locations are generated for a range of flight speeds between 20 and 60 mph and image
overlaps between 75% and 90%. Double track flight paths are also generated, with a 50% overlap
between the tracks. These ranges are based on commonly-used corridor mapping guidelines [37].
All paths are created using a fixed camera frame rate of 0.5 frames per second.

The required elevation and number of images for each path generated by the standard path
planner are shown in Tables 2 and 3.

Table 2. Standard path planner: single path results.

Case # Speed (mph) Overlap (%) # of Images Elevation (m) GSD (cm)

1 20 75 193 84 0.94
2 60 75 65 252 2.8
3 20 90 193 210 2.3
4 60 90 65 630 7.1

Table 3. Standard path planner: double path results.

Case # Speed (mph) Overlap (%) # of Images Elevation (m) GSD (cm)

5 20 75 392 84 0.94
6 60 75 137 252 2.8
7 20 90 403 210 2.3
8 60 90 158 630 7.1

Because the camera frame rate has been fixed at 0.5 frames per second in this study, some
combinations of speed and image overlap produce a very high elevation requirement. These elevations
are outside the typical operating range of a small UAV, but are included for completeness.

2.3. Optimized 3D Flight Path Planning

Calculations that result in the global optimum for view planning are difficult to formulate
and lead to very expensive computational loads. The view planning algorithm developed in this
paper therefore focuses on identifying a sub-optimal solution capable of producing desirable results
with a computational load that permits near real-time calculations. The algorithm includes a high
degree of adaptability to different UAV platforms and desired image resolutions by accepting several
user-specified parameters that define the capabilities of the camera and the desired resolution. Given
these parameters, the algorithm estimates the minimal set of camera locations required for 3D
reconstruction, as well as the optimal order in which to visit them. For a typical site of interest
(about 900 m2), the algorithm finds acceptable image positions and a near optimal route through those
points in about 0.65 s on an Intel I7 CPU with 16 GB of RAM.

As it is desirable for the algorithm to eventually run on-board a UAV, the algorithm is also tested
on a Raspberry Pi 3. The Pi 3 is a small, single board computer with a 1.2-GHz 64-bit quad-core ARMv8
CPU and 1 GB of RAM. The board measures 85.60 mm × 56.5 mm and weighs 45 g, which makes it
feasible for use on-board a UAV. Running on the Raspberry Pi 3, the algorithm took an average of
7.02 s to compute both the image positions and route for the five test areas in the study, placing it
within range of in flight re-planning.

The view planning algorithm can be summarized as follows:
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1. Receive detected anomaly location
2. Obtain a point-cloud
3. Add dome projection at the point of interest
4. Convert the point-cloud terrain into a triangle mesh
5. Place an aerial camera location on the normal line of every triangle
6. Remove underground and blocked images
7. Select the best images from the group based on a set of value heuristics
8. Find the shortest path through all of these points

The following is a description of each of the above steps. Elevation data for the area to be
surveyed is downloaded prior to the flight from public data sources, such as the USGS National
Elevation Dataset. During an actual UAV flight, points of interest are flagged by anomaly detection;
however, for the purposes of this paper, the points of interest are manually tagged before the simulated
flight begins. When a point is detected, a geometric area of interest is constructed around the point to
define the area to be inspected.

After identifying the area of interest, the full elevation dataset is trimmed down to an area only
slightly larger than the area of interest. The slight excess of data is retained to ensure the UAV remains
safe from potential obstacles or obstructions. Using only a subset of the original data also greatly helps
to minimize computational costs when determining which points are within the view of each camera.

In many cases, the geometry of the detected anomaly is unknown and is not included in the
available elevation data. This can lead to insufficient oblique imagery of the anomaly, especially if the
shape of the anomaly differs significantly from the underlying terrain. To improve coverage, when an
anomaly is detected, the algorithm automatically inserts a dome projection at the point of interest, as
demonstrated in Figures 4 and 5. The authors have found that the addition of the dome into the dataset
aids the algorithm in selecting sufficient oblique imagery to capture the sides of an unknown object,
regardless of whether the object is on relatively flat ground or on a steep grade. The dome is created
by translating the elevation of each data point upward using a spherical cap, which results in a dome
shape that still maintains the underlying geometry of the surface. Without the dome, a flat surface
would result in the camera set all pointing directly downwards, and the resulting 3D reconstruction
could yield undesirable results. The authors have found that a dome height of 5–10 m and an incident
angle with the horizontal of 15◦–30◦ provide an optimal increase in coverage. If the approximate
size of the anomaly is known, it is best that the dome is tall and wide enough to completely enclose
the anomaly. In the case that additional information is available about the nature of the anomaly,
that information should be used in the planning rather than the generic dome projection. To clarify,
the dome is not inserted into the Terragen simulation, it is only used in the view planning algorithm to
aid in selecting imaging locations.

These resulting elevation data are then converted to a triangle mesh, and the triangle size is
normalized by recursive subdivision. This ensures even coverage of vertical features, such as cliffs,
hills and canyons, even though the original telemetry data are spaced evenly for latitude and longitude.

After creating the triangle mesh and adjusting the terrain, tentative camera locations are generated
at a fixed distance from each triangle midpoint along the normal from each surface. This typically
results in several thousand tentative camera locations. Potential camera locations that are generated
underground or are otherwise blocked from viewing their original triangle midpoints are removed.

The image selection criteria is based on minimizing the total number of images while maximizing
the terrain coverage. A visibility matrix similar to the 3Mmatrix used by [38] is constructed, containing
information on the visibility of each point in the terrain from each camera location and the angles
(relative to each surface’s normal) at which each point is viewed. The angles are divided into three
ranges (see Figure 6), and the resulting range is recorded in the histogram. An iterative process then
selects camera locations, which maximize the number of triangle midpoints viewed from previously
unused angles. That is, once a point is viewed from an angle range, it is considered viewed, and it no
longer contributes to the value of other camera locations, which view it from within the same angle
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range. This results in a sub-optimal heuristic algorithm, which, while not guaranteed to be optimal, can
be completed very quickly with satisfactory results. As noted in [39], this type of heuristic algorithm
provides a (1 + lnn) approximation, where n is the number of images in the optimal solution.
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Figure 4. Dome projection inserted to account for unknown anomaly shape. (a) Terrain without dome
projection; (b) terrain with dome projection.

(a) (b)

Figure 5. An added dome projection helps guide the algorithm to capture additional oblique imagery
of an anomaly with unknown geometry. (a) Selected camera positions with no added dome; (b) selected
camera positions with added dome.
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Figure 6. Angle ranges for histogram, where α is the camera angle of view.

Once the optimal images are chosen, a short route must be planned for the UAV to visit all of the
points; this is an example of a 3D traveling salesman problem. To find a solution, the Christophides
algorithm is employed. This algorithm is an approximation, but is guaranteed to find a solution
within 1.5-times the length of the optimal solution [40]. For this application, it was observed that the
Christophides algorithm typically generates solutions that are within 10% of the optimal length as
computed by integer linear programming, as shown in Equations (1)–(3).

minimize
k

∑
i=1

k

∑
j=1

Di,j ∗ xi,j (1)

Here, each of the k waypoints is numbered from 1–k, and i and j represent the waypoints at either
end of a selected pathway. D contains the distance measurements between each of the waypoints.
The end solution x contains integers bounded between 0 and 1. The equality constraints are shown in
Equation (2), and the inequality constraints are shown in Equation (3).

k

∑
i=1

k

∑
j=1

xi,j = k

for j in range {1...k} :
k

∑
i=1

xi,j = 2

(2)

If a solution is achieved with subtours, Equation (3) is added as an inequality constraint, and the
problem is solved again. The variable s represents a subtour that occurred in a previous solution.

k

∑
i=1

k

∑
j=1

si,j ∗ xi,j <=
k

∑
i=1

k

∑
j=1

si,j − 1 (3)

A sample comparison between the Christophides solution and the optimal solution from linear
programming can be found in Table 4. A completed solution for a generic anomaly, including selected
camera locations and the shortest flight path, can be found in Figure 7. For comparison, Figure 7 also
shows the optimal solution when the dome projection is not used.



Remote Sens. 2017, 9, 434 10 of 20

Table 4. Christophides algorithm performance.

Christophides (m) Optimal (m) Difference (%)

1270.2 1202.9 5.59%
998.6 918.8 8.69%
851.4 800.8 6.31%
678.8 634.6 6.96%
205.1 189.4 8.31%
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Figure 7. Example of an optimized camera view plan and flight path for a generic anomaly with
and without the added dome projection. Yellow circles represent image locations; green triangles are
corresponding image targets. (a) Optimized flight plan with dome projection; (b) optimized flight plan
without dome projection; (c) top down view of (a); (d) top down view of (b).

For comparison with Tables 2 and 3, the number of images taken by the optimized path planner
at each anomaly location, as well as the average elevations of the images are shown in Table 5.

Table 5. Optimized path planner results.

Anomaly # of Images Average Image Elevation (m)

Power Line 14 90.2
Road Disc 14 91.0

Piping 58 86.0
Railway 19 85.4

Canal Slump 23 84.8

The number of images required to model the section of industrial piping is significantly larger
than the other anomaly areas. This can be explained by the fact that this anomaly location has the
largest area of the five due to the fact that it contains the largest structure.
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2.4. 3D Modeling

The synthetic imagery from the terrain simulation environment is processed to created 3D point
cloud models in the software package Agisoft Photoscan [41]. No ground control points are used in
processing the models, and the software is allowed to self-calibrate all camera parameters. An example
of one of the 3D models generated is shown in Figure 8. The program settings used to generate the
models are detailed in Table 6.

(a) (b)

Figure 8. Examples of a ground truth model and a reconstructed model for the piping anomaly location.
(a) Ground truth model geometry exported from Terragen; (b) model reconstructed from images in
Agisoft Photoscan.

Table 6. Program settings for model reconstruction.

Setting Value

Photo alignment High
Pair preselection Generic
Key point limit 100,000,000
Tie point limit 10,000

Dense cloud quality High
Depth filtering Mild

2.5. 3D Accuracy Testing

For each flight case in Tables 2 and 3, the accuracy of the 3D model is measured at each of the five
anomaly locations. Similar measurements are performed for the optimized case. The accuracy of the
3D models is evaluated by comparing against a ground truth point cloud created by exporting the
original geometry of the scene from Terragen. This includes terrain, vegetation and 3D objects and
preserves the scale of the scene. The geometry is exported as a 3D mesh and is then sampled at a high
density to create a point cloud.

Each model is evaluated for accuracy against the ground truth model using the techniques
described in [36]. The models are aligned to the ground truth dataset using the open source software
package CloudCompare [42]. This alignment is done in 2 parts. The first is to roughly align the
models using 4 pairs of corresponding points on each model where the chosen points correspond
to distinct features like hard edges of canals or other structures. These points are used to scale and
rotate the compared model relative to the ground truth data. Once the models are roughly aligned, the
alignment is refined by using an iterative closest point (ICP) algorithm. The ICP algorithm minimizes
the distance between two point clouds by using a mean squared error cost function to estimate the
rotation, translation and scaling that most closely aligns the two point clouds. With the models aligned,
a local quadratic fitting technique is used to determine the distance between each point of the compared
model and the interpolated surface of the ground truth model. This technique is shown in Figure 9.
The cloud to cloud differences are finally fit to a Gaussian distribution, and the mean error between
the surfaces is computed (see Table 7). The standard deviation of the error is also computed.
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Figure 9. Illustration of the quadratic fitting technique used to find the distance between the reference
cloud (black) and the compared cloud (blue).

2.6. Simulated System Implementation

Following the collection of simulated images, the physics of each flight is simulated using the
ArduCopter Software-in-the-Loop (SITL) package. The main objective of these simulations is to
compare the flight time required for each path. The optimized flight planner is implemented in Python
and connected to the flight simulation using the 3DR DroneKit library. For these simulations, the
desired waypoint navigation speed is set to 60 mph. It is assumed that the UAV platform used has
the flight characteristics of a multi-rotor, though for longer endurance, it would be preferable to use
a larger single-rotor craft or a UAV capable of transitioning between hovering and forward flight.

The base flight elevation is set to 90 m, which corresponds to a 10-cm Ground Sampling Distance
(GSD) for an HD video camera. This is done to simulate a two-camera multi-scale setup in which most
of the long linear feature is captured using lower resolution video, while points of interest are imaged
using a higher resolution camera.

The UAV is set to fly a path along the one mile canal segment simulated in earlier sections. For this
study, optimized flight planning is executed in-flight; however, anomaly detection is not performed
in real time, and anomaly locations are marked in advance. When the vehicle reaches each of the
pre-defined anomaly locations, the location of the anomaly is passed to the optimized flight planner,
and an inspection path is generated in real time. The UAV then executes this path before continuing
with its original flight route. The flight path taken by the UAV can be seen in Figures 10 and 11.
The average planning time for each anomaly inspection is approximately 2.3 s.

Figure 10. Flight path simulated along the Highline Canal section.
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Figure 11. Top view of flight path simulated along the Highline Canal section.

To create a baseline for comparison, two additional flights are performed with no anomalies
present. The first flight is performed at 20 mph and provides an upper bound on flight time. The second,
at 60 mph, provides a lower bound on flight time for the conditions tested.

3. Results

3.1. 3D Accuracy Testing Results

The results of the 3D accuracy testing described in Section 2.5 are shown in Tables 7 and 8.
Note that because the flight in Case 1 is relatively close to the ground, the piping is outside the camera
field of view and thus does not appear in the 3D model.

Table 7. Mean accuracy (m).

Site Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Opt

Power 0.15 0.14 0.12 0.22 0.51 0.19 0.48 0.19 0.16
Disc 0.16 0.33 0.12 0.51 0.41 0.15 0.46 0.52 0.08
Pipe N/A 0.19 0.19 0.57 0.26 0.21 0.4 0.61 0.09
Rail 0.09 0.26 0.15 0.28 0.11 0.21 0.29 0.42 0.10

Slump 0.06 0.31 0.34 0.68 0.13 0.31 0.39 0.69 0.12

Average 0.12 0.25 0.18 0.45 0.28 0.21 0.40 0.49 0.11

Table 8. Standard deviation (m).

Site Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Opt

Power 0.18 0.15 0.12 0.27 0.37 0.2 0.35 0.23 0.15
Disc 0.18 0.44 0.22 0.79 0.29 0.19 0.39 0.72 0.11
Pipe N/A 0.03 0.35 0.90 0.27 0.34 0.33 0.81 0.18
Rail 0.02 0.29 0.26 0.28 0.11 0.25 0.27 0.50 0.20

Slump 0.09 0.41 0.48 0.48 0.16 0.39 0.49 0.53 0.19

Average 0.12 0.26 0.29 0.54 0.24 0.27 0.37 0.56 0.17

As summarized in Figure 12, the average accuracy of the 3D models produced by the multi-scale
approach is 11.0 cm. This is much better than the majority of the traditional flights, which average
29.8 cm, and is matched only by the low, slow flight of Case 1 with 11.5 cm.
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Figure 12. Average accuracy of 3D models from test cases.

An unexpected result from this study is the decrease in accuracy between the single path and the
double path, as the double path is expected to be more accurate. The authors believe that this result
stems from the setup of the test scene, in which the canal lies directly between the two paths in the
double path scenario. Terragen uses a realistic lighting model, which includes specular highlighting
and glare on water. The authors believe that the moving highlights and glare on the canal during
the flight make it difficult to match points between the forward and backward path during the 3D
reconstruction and lead to decreased accuracy. Because the single path cases are flown directly
above the canal, glare is reduced, and this problem is avoided. This is illustrated qualitatively in
Figures 13 and 14. Figure 13 compares the original geometry of a model segment to the single path
and double path reconstructions. Figure 14 shows a cross-section of the canal from one of the double
path models. In both double path cases, it can be seen that the model is inaccurate and disjointed at
the canal, supporting the author’s conclusions.

Figure 13. Qualitative comparison of canal models: (a) original geometry; (b) reconstruction from
single path; (c) reconstruction from double path. Note the disjoint at the canal surface in the double
path case.



Remote Sens. 2017, 9, 434 15 of 20

Figure 14. Cross-section view of canal from a double path model. Again, the model is seen to be
disconnected at the canal surface.

3.2. Flight Time Results

The proposed monitoring system shows improvements over traditional methods in terms of flight
time. Based on the simulated results, the average inspection time per anomaly including planning
and flight time is 1.89 min. The flight time savings of this approach scale according to the number
of anomalies detected during the flight. Figure 15 shows the case of a 100-mile flight, comparing
traditional 20-mph and 60-mph monitoring flights to the multi-scale approach. Multi-scale flight times
are calculated by multiplying the average anomaly inspection time by the number of anomalies found
per mile and adding that time to the time required for a baseline 60-mph flight.

Figure 15. Flight time comparison for a 100-mile flight.

As Figure 15 shows, flight time savings increase with decreasing anomalies, approaching the
lower limit of the 60-mph flight. One anomaly every five miles produces a 55% savings in flight time
versus the 20-mph case. The break even point or the point at which a 60-mph flight with inspection
stops takes the same amount of time as a 20-mph flight without stops is 0.67 miles per anomaly.
Combined with the above accuracy testing results, this means that for cases with anomalies spaced
farther than 0.67 miles apart, the multi-scale approach produces 3D models at the same accuracy as
a low slow flight with less flight time.
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3.3. Data Quantity Results

The proposed methods also show improvement over traditional methods with regards to the
amount of data collected. A major problem with current 3D reconstruction techniques is the large
amount of data generated, which makes viewing, analysis and storage difficult on a standard
workstation, requiring investments in more powerful computing resources. Reconstruction in
particular scales poorly, with complexity estimates ranging from O(n2) to O(n4), where n is the
number of images [43,44].

The new method alleviates this problem by focusing data collection and processing power on
infrastructure areas with high information content. High resolution images for 3D reconstruction are
captured only in problem areas, leaving the remainder of the infrastructure to be captured in lower
resolution video for further review if needed. The benefits of this approach in terms of data savings
are expressed in Figure 16.

Figure 16. Data quantity comparison for a 100-mile flight.

The values in Figure 16 were generated using Equation (4).

Data = Miles ·
FPM(FO) · M1 + IPA·M2

MPA
1000

(4)

This equation describes the gigapixels of imagery collected over a flight using the two camera
setup described above. Here, FPM (Frames Per Mile) is the number of HD (1920 × 1080) video frames
needed per mile to achieve the desired percentage of FO (Frame Overlap) at the chosen flight speed.
M1 is the number of megapixels per image captured by the HD video camera. MPA is the average
number of Miles Per Anomaly detected. IPA (Images Per Anomaly) is the average number of high
resolution images needed per anomaly. M2 is the number of megapixels per image captured by the
full-resolution camera. For comparison, Figure 16 also includes the amount of data generated by
capturing full resolution imagery of the entire length of infrastructure during 20-mph and 60-mph
flights with 90% overlap. The parameters used to generate Figure 16 are given in Table 9.

Together, the results for 3D model accuracy, flight time and data quantity provide a number of
interesting insights. If accurate anomaly detections are possible, the proposed multi-scale infrastructure
monitoring approach has the potential to reduce flight times by up to 55% and the quantity of data
generated by up to 89% while maintaining accuracy at areas of interest when compared to a low
altitude, low speed flight.
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Table 9. Parameter values used in Equation (4).

Parameter Value

Miles 100
HD Frames Per Mile (FPM) 193

Desired Frame Overlap (FO) 90%
Camera One Megapixels (M1) 2.1

Average Images Per Anomaly (IPA) 25
Camera Two Megapixels (M2) 24

4. Discussion

Much of the research done using UAVs for inspecting long linear infrastructure has focused
on using vision to track and follow infrastructure features such as roads and pipelines [22,45,46].
These tracking methods could potentially be combined with the results of this project to create an even
more capable system. This project is more similar to the ideas presented in [47], where a network of
sensors on an oil pipeline triggers a UAV to investigate an area of possible tampering. In contrast,
the method in the current paper presents the idea of using sensors on-board the UAV itself to trigger
flight planning for an area of interest. The view planning algorithm presented is similar to others in
the literature [31,48], but as demonstrated provides value when combined with the ideas of anomaly
detection and on-board flight planning. This is in contrast to most UAV re-planning literature, where
in-flight re-planning is mainly used in exploring unknown environments [49,50].

The simulation environment used can be considered both a strength and a limitation of the study.
It is a strength because it allows a variety of flight plans and imaging sequences to be constructed
and evaluated, which can be difficult in physical tests. It also allows experiments to be conducted in
custom environments that can be tailored to test a large combination of specific conditions. However,
as no simulation is perfect, this adds the requirement that the results must eventually be validated in
physical tests. The authors plan to confirm and extend the results of the study in future real-world
flight tests.

5. Conclusions

This paper proposes a novel method for inspection and monitoring of long linear infrastructure
features using UAVs equipped with real-time anomaly detection and in flight re-planning. A simulated
test environment is constructed and used to collect synthetic photographs as if taken from UAV flights.
A 3D flight planning algorithm suggests sub-optimal, but sufficiently accurate waypoints within
acceptable CPU time constraints. The procedure and settings used for 3D model reconstruction are
also detailed. Standard single and double linear flight paths are compared against the new method in
terms of 3D model accuracy, flight time and the quantity of data collected. A basic demonstration of
anomaly detection using a Haar classifier is shown and additional alternatives discussed.

It is shown that compared to a linear flight, the proposed method is able to maintain 3D accuracy
at the areas of interest while reducing flight time by up to 55% and the amount of data generated by up
to 89%. This reduces the time required in the field, the image storage required on-board the UAV and
the computer power and storage required for data post processing. These savings reduce the time and
cost associated with the monitoring of long linear infrastructure, such as pipelines, roads and levees.

This paper touches only briefly on the detection of unknown anomalies, instead focusing on
quantifying the potential benefits given the assumption such detections are possible. The authors
recommend that further work be performed in the area of real-time detection of unknown anomaly
detection during UAV flights. Reliable, automatic detection of known objects of interest is valuable.
Future work also includes improving the efficiency and effectiveness of the optimized view planning
algorithm and extending it from multi-rotor and single-rotor aircraft to fixed wing platforms. While the
simulated environment is useful for identifying general trends, field tests are also needed in the future
to validate the simulated results and further explore the details of field implementation. As the
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simulations in this paper represent a physical location of interest, future field work planned by the
authors at that site will be directly comparable to the presented results.
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