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Abstract—High false alarm rate in intensive care units
(ICUs) has been identified as one of the most critical
medical challenges in recent years. This often results
in overwhelming the clinical staff by numerous false or
unurgent alarms and decreasing the quality of care through
enhancing the probability of missing true alarms as well as
causing delirium, stress, sleep deprivation and depressed
immune systems for patients. One major cause of false
alarms in clinical practice is that the collected signals from
different devices are processed individually to trigger an
alarm, while there exists a considerable chance that the
signal collected from one device is corrupted by noise
or motion artifacts. In this paper, we propose a low-
computational complexity yet accurate game-theoretic fea-
ture selection method which is based on a genetic algorithm
that identifies the most informative biomarkers across the
signals collected from various monitoring devices and can
considerably reduce the rate of false alarms 1.

I. INTRODUCTION

False alarms are widely considered the number one

hazard imposed by the use of medical technologies. The

Emergency Care Research Institute (ECRI) named alarm

hazards as number 1 of the ”Top 10 Health Technology

Hazards” for several years [1]. These false alarms can

be due to several factors such as low threshold setting

of the monitoring devices, motion artifacts, and sensor

detachment or malfunction causing alarm fatigue among

caregivers. This in turn results in desensitization to

alarms, noise disturbances and the possibility of missing

a true life-threatening event lost among multiple alarms,

a condition known as the cry-wolf effect [2], [3]. The

false alarms can also result in care disruption, sleep

deprivation, patient anxiety, inferior sleep structure, and

depressed immune systems [4]. While the majority of

current studies in this area focus on determining the

optimal level of sensitivity for sensors, designing more

accurate monitoring devices or more sophisticated data

1This material is based upon work supported by the National Science
Foundation under Grant Number 1657260.

mining, and signal processing techniques to enhance

the accuracy of false alarm detection using extracted

information from individual monitoring devices, they

often neglect the fact that most of the alarms triggered

by individual sensors are considered false. This could

be due to several factors including sensor detachment or

motion artifacts. Therefore, extracting the correlation of

information across different collected signals can play a

significant role in identifying the false alarms [5], [6].

One potential challenge of such correlation extrac-

tion among multiple collected signals is enhancing the

computational complexity and the processing time of

false alarm detection process as well as increasing the

chance of over-fitting the trained model. Feature selection

techniques can contribute to improving the prediction

accuracy and reliability of such methods by removing

irrelevant or redundant attributes across the big datasets.

However, these methods usually evaluate individual con-

tribution of the features and overlook their group impact

when clustered together. Therefore, conventional feature

selection techniques often discard the features that are

highly correlated to the currently selected attributes,

while these removed features can play a critical role in

enhancing the accuracy of a model when grouped with

other features.

The concept of coalition game theory has been re-

cently applied to the feature selection problem as a

means to capture the effect of grouping the features

[7], [8]. In these techniques, the impact of each feature

is measured by calculating its Shapley value which is

the average marginal contribution of each feature in

enhancing the classification accuracy when it joins a

coalition of selected features. However, the intensive

computations involved in Shapley measurements make

these methods impractical in predictive modeling appli-

cations with a large number of features. The estimation

methods currently proposed to reduce this computational

complexity, instead of calculating the Shapley value



2

using all possible coalitions, only select a subset of these

coalitions in a random manner. This approximation often

compromises the performance of these techniques in ap-

plications where a high level of accuracy and reliability is

expected. In this paper, we propose a genetic-algorithm-

based method to estimate the Shapley value with a

lower computational complexity in comparison to other

Shapley estimation methods such as Monte-Carlo-based

algorithms. In the proposed method, the most impactful

coalitions of features are identified in a revolutionary

process and are used to estimate the average impact of

all coalitions. Such effective coalition sampling reduces

the computational complexity of Shapley estimation by

not calculating the impact of a large number of possi-

ble coalitions. Furthermore, in the previously reported

game-theoretic based feature selection techniques, the

contribution of each feature is measured based on its

impact on enhancing the accuracy [7], [8]. However, in

false alarm detection and many other medical diagnosis

applications, capturing the true positives is imperative.

Therefore, enhancing the sensitivity is a more crucial

factor to measure the performance of a predictive model.

In this paper, we proposed a new metric to define the

Shapley value of features that captures both sensitivity

and specificity of a predictive model.

II. DATASET DESCRIPTION

In this study, we use the publicly available alarm

dataset for ICUs by ”PhysioNet computing in cardiology

challenge 2015” that focuses on five life threatening

arrhythmias including asystole, extreme bradycardia, ex-

treme tachycardia, ventricular tachycardia, and ventricu-

lar fibrillation [9], [10]. One objective of the proposed

model is to reduce the rate of false alarms by considering

the correlation among signals collected from different

monitoring devices, therefore we considered 220 patients

out of the entire training dataset with total of 750

patients for which three main signals of electrocardio-

gram II(ECG II), arterial blood pressure (ABP), and

photoplethysmogram (PPG or PLETH) were available.

The signals were re-sampled to 12 bit and 250 Hz and

filtered by a Finite Impulse Response (FIR) bandpass

[0.05 to 40 Hz] and mains notch filters for denoising.

The alarms were labeled with a team of expert to either

’true’ or ’false’. Among 220 reported alarms, 50 of those

were true and the rest were false.

Motivated by the noticeable performance of discrete

wavelet transform (DWT) in extracting informative time-

frequency components of the physiological signals [11],

[12], we applied this method to the three input signals

of ECG II, ABP and PLETH. Six level decomposition

using db8 for ECGII and db4 for ABP and PLET signals

is utilized. Therefore, the three 1-D signals of each

patient is converted into 18 vectors of wavelet coeffi-

cients. Since such transform generates a large number

of wavelet coefficients that in turn can result in over-

fitting of the trained model, we extract 20 statistical and

information theoretical-based features of each wavelet

vector coefficients. Some example features include mean,

mode, median, range, variance, kurtosis, skewness, har-

monic mean, interquartile range, Shannon entropy and

log entropy. Moreover, in order to employ the Heart Rate

Variation (HRV) information of the ECG II signals, a

multi-resolution Wavelet technique is used to detect R-

peaks of the signal [13], [14]. Afterward, the inverse R-R

intervals which is so-called HRV signal is calculated and

20 statistical and information theoretical-based features

of this HRV signal are extracted.

These 20 features are listed in Table I.

TABLE I
STATISTICAL AND INFORMATION-THEORETIC FEATURES OF

WAVELET VECTORS.

No Feature No Feature No Feature

1 mean 8 std (σ) 15 Interquartile
2 mode 9 µ3 Range
3 median 10 µ4 16 Shannon Ent.
4 max 11 coef. of var 17 Log Ent.
5 min 12 kurtosis 18 nT (max{Xi}/2)
6 range 13 skewness 19 nT (max{Xi}/3)
7 variance 14 H mean 20 nT (max{Xi}/4)

After extracting 380 statistical and information

theoretical-based features of the wavelet coefficients and

HRV signal, the feature sets of all the subjects are

normalized. Considering the limited number of subjects

compared to the number of features, we used a repeated

k-fold method to evaluate the performance of the pro-

posed feature selection model. In this experiment, we

set k = 5 and repeated k-fold for 2 times by a random

sampling manner, where created 10 copy of the database,

each contains 175 observations in the training set and 45

observations in the test set.

III. INTRODUCTION TO COALITION GAMES

Cooperative (coalition) games refer to a class of

game-theoretical models, where a cooperative behavior

is enforced to the players in a way that the players

prefer to form coalitions to obtain a higher payoff [15],

[16]. Let us consider a finite non-empty set of players

I = {1, 2, . . . , nf}, in which nf is the number of players

and each player can participate in different sub-coalitions

of I . The empty coalition is denoted by ∅ while the grand

coalition, i. e. I, is the coalition of all players. Also,

the power set P (I) is the family of all sub-coalitions of

the grand coalition.

A cooperative game for the player set I is defined by

a characteristic function ν : P (I) → R+ ∪ {0} with
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ν(∅) = 0, where ν(T ∈ P (I)) represents the value of

coalition T . We use the notation G(I, ν) to represent

all cooperative games on players in I with characteristic

function ν. A cooperative game ν is convex if for all

T ,S ∈ P (I) we have ν(S ∪ T ) + ν(S ∩ T ) ≥ ν(S) +
ν(T ). The convex game ν is called super-additive if for

all disjoint S, T ∈ P (I) we have ν(S ∪ I) ≥ ν(S) +
ν(T ) [15]. The marginal contribution of player i when

it joins coalition T ⊆ I\{i} is defined as:

∇i(T ) = ν(T ∪ {i})− ν(T ). (1)

Shapley value is a well-known solution concept for

ν ∈ G(I, ν) which measures the marginal contribution

of each player i over all coalitions T ⊆ I\{i}. Shapley

function φ : G(I, ν) → (R+ ∪ {0})P (I), also called

Shapley value on G(I, ν), needs to satisfy four axioms

of coalition efficiency, dummy players, symmetry, and

game additivity [7]. It has been proven that the following

function φ : G(I, ν) → (R+ ∪ {0})P (I) satisfies these

aforementioned axioms:

φi(ν) =
∑

T ⊆I\{i}

|T |(nf − |T | − 1)!

nf !
(ν(T ∪{i})−ν(T ))

(2)

Coalition games have been recently applied to feature

selection applications, where the features are considered

as the players of the game [17]–[19]. In these works, a

coalition represents a group of features used for classi-

fication, where Shapley value of each feature measures

the contribution of this feature in classification accuracy.

Therefore, we can use Shapley value of each feature as

its membership grade in the best coalition to identify

the most salient features in the dataset. However, the

considerable drawback of these methods is the associ-

ated computational complexity, because computing the

Shapley value for each feature requires calculating the

marginal contributions of that feature over all possible

coalitions of any size. Therefore, these Shapley value-

based methods either involve an intractable computa-

tional complexity for a large number of features or result

in a degraded performance where a sub-group of all

coalitions are randomly selected for Shapley calculation.

In the next section, we propose a genetic-algorithm based

method to distinguish an optimal set of coalitions to be

utilized in estimating the features’ Shapley values with

low computational complexity and high accuracy.

IV. PROPOSED GA-BASED MONTE-CARLO METHOD

FOR SHAPLEY VALUES CALCULATION

Noting the definition of Shapley value, the mathe-

matical formulation of Shapely value of the i’th player

presented in (2) can be rewritten as:

φi(ν) =
1

nf

nf−1
∑

t=0

1
(
nf−1

t

)

∑

|T |=t,i ̸∈T

[ν(T
∪

{i})− ν(T )]

︸ ︷︷ ︸

E(Xt
i
)

(3)

where E(Xt
i ) is the average marginal contribution of

player i over all coalitions with size t not including

i itself. This factor measures the effect of feature i in

classification accuracy when grouped with other features

in different coalitions. The term average leads us to

reducing computational complexity by operating Monte

Carlo simulations over the
(
nf−1

t

)
possible coalitions of

size t. Since there is no considerable correlation among

the features in large-size coalitions; therefore we limit

the calculation of marginal contribution of feature i to

the coalitions with size less than a specific threshold,

i. e. nmax
f − 1. This in turn reduces the computational

complexity of Shapley value calculation. Hence, the

approximated shapely value of i’th feature can be written

as:

φ̂i(ν) =
1

nmax
f

nmax
f −1
∑

t=0

E(Xt
i ). (4)

In the following, we describe our proposed method

to identify a subset of coalitions that provide higher

marginal information in calculating Shapley value of user

i.

A. Proposed Genetic-algorithm based Shapley value cal-

culation

In order to estimate the Shapley value of each fea-

ture, we propose a genetic-algorithm (GA) method to

generate the most effective subset of coalition sample

sets. Such GA-based method involves defining proper

chromosomes, fitness of each chromosome, and a revolu-

tionary process of generating new generations. Moreover,

parent selection, crossover and mutation are essential

operations for a revolutionary process. The steps of the

proposed GA are described in details as follows:

a) Chromosomes: The Shapley value estimation

formula required an average on the marginal coalition

values of the i’th feature over the coalitions of size t.

Hence, we define each chromosome as a binary vector

of length nf − 1 which has exactly t ones. By this, each

chromosomes is mapped to a coalition with cardinality

t.

b) Fitness Function: While the majority of the

current game-theoretic based feature selection methods

only focus on enhancing the accuracy of classification

in different supervised learning applications, one key

contribution of our proposed feature selection method is
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to target elevating the Receiver-Operating Characteristic

(ROC) curve as a measurement criterion for marginal

contribution based on the rate history of the alarms. That

enables us to not only increase the sensitivity of the

classification but also enhance its specificity that is a

particular interest to the false alarm reduction applica-

tion.

To achieve this goal, the value of a coalition, i.e. ν(T ),
is proposed as a linear combination of specificity and

sensitivity rates as defined in follow:

ν(T ) =
(1− FNRT ) + µ(1− FPRT )

1 + µ
, (5)

where FNRT and FPRT are the false negative and

false positive rates obtained from the classifier, respec-

tively and µ is a constant design parameter based on

the history of the alarms. This model is appropriate for

the imbalance data such as the available data for alarm

dataset for ICUs.

Now, we define the fitness function of the proposed

genetic algorithm, for a given feature i, the chromosome

corresponds to the coalition T which does not include i,

and a given coalition value as

fi(ν)(chr(T )) = ν(T ∪ {i})− ν(T ). (6)

In other word, the fitness of each chromosome for a given

feature, is defined as the marginal value of the feature

over the corresponding coalition.

c) Parent Selection: For each feature, we randomly

generate np chromosomes, so called population, of the

length nf − 1 which each contains exactly t ones. After

calculating the population finesses, two chromosomes are

being selected based on a random selection mechanism

so called roulette mechanism. In the roulette mechanism,

after normalizing the fitness set of population, a chromo-

some is selected with the probability proportional to the

normalized fitness of the chromosomes in the population.

d) Crossover: In the crossover operation, two par-

ents chromosomes are combined to generate two off-

springs chromosomes such that those inherent path from

both parents. In our proposed chromosome type, the

crossover operation is done by finding non-unique same

size chops of the parents chromosomes that locate in the

same location, have the same number of ones, and have a

length greater than one; then we randomly select one of

those chops and exchange the chops between two parents

chromosomes. However, it is possible that such chops do

not exist in the parents chromosomes. In that case, each

parents chromosomes is updated via a hermaphrodite

cross over operation in which a randomly selected chop

of chromosome is chosen and after reversion, fit back to

its location in the chromosome.

e) Mutation: In most revolutionary techniques,

some randomness is required to obtain the diversity in

the field search. We consider mutation of one bit 0

and one bit 1 in each offsprings’ chromosomes. After

mutation we add the generated offsprings’ chromosomes

to the population, calculate their corresponding fitness,

and update population by removing two chromosomes

with lowest fitness from it. However, we keep those

chromosomes as a valid sample set for estimating the

Shapley value of the i’th feature.

In follow, we discuss the relation between statistical

properties of the samples obtained from GA and statisti-

cal properties of all possible feature coalitions with size

t.

B. Mean Adjustment of Samples

The proposed GA algorithm for generating coalition

samples tends to select the chromosomes with highest

marginal contribution for i’th feature. The marginal con-

tribution of the selected coalitions for feature i can be

modeled as random variable Y t
i which is the maximum

among M marginal contribution samples of all size-

t coalitions, i. e. {Xt
i,m}Mm=1. This relation can be

written as Y t
i = max{Xt

i,m}Mm=1. The samples Xt
i,m are

independent, so the Cumulative Density Function (CDF)

of random variable Y t
i , when M >> 1, can be written as

FY t
i
(y) = exp(− exp(−y−u

α
)), −∞ < y < ∞, α > 0

[20], and the distribution of Y t
i is called Extreme Type 1

(EX1) distribution. The parameters α and u of the EX1

distribution are the root square variance and mean of

the distribution Xt
i . The expected value and variance of

EX1 can be estimated as E{Y t
i } = u + 0.5722α and

V ar{Y t
i } = 1.645α2.

Assuming nG is the number of generated samples from

GA such that nG <<
(
nf−1

t

)
, then M = ⌊

(nf−1

t )
nG

⌋
is large enough and we can use the above mentioned

approximation., which obtained from GA, by EX1 dis-

tribution. Therefore, by extracting the statistical informa-

tion of the samples Y t
i , the mean (and variance) of all

marginal information of size t coalitions for feature i will

be estimated. Finally, the nf features with highest Shap-

ley values are selected for the classification purposes.

In the next section, we analyze the complexity of the

proposed feature selection algorithm.

V. COMPLEXITY ANALYSIS

The Shapley value based feature selection methods

involve an exponential computational complexity that

make them being classified as NP-hard problem. Hence,

feature selection methods based on calculating Shapley

values of the features are computationally intractable

when the number of features is very large. However,
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one may reduce the complexity order of this process

by limiting the size of feature coalitions which are

considered for Shapley value calculation [18]. In that

scenario, the complexity of the algorithm is reduced to

O(n
nmax
f

f ), however the performance is also degraded.

One considerable advantage of our proposed method

compared to previously reported game-theoretic based

feature selection techniques is a lower computational

complexity in estimating Shapley value by employing a

GA-based Monte-Carlo method. This method reduces the

complexity order of the estimation to O(nf×nmax
f ×nG).

VI. NUMERICAL RESULTS

In this section, we present the numerical results to

evaluate the performance of the proposed GA-based

method in identifying the salient features. We used the

publicly available alarm dataset for ICUs from PhysioNet

challenge 2015 and extracted 380 features for each pa-

tient as described in Section II. In the proposed method,

we measured the impact of each feature over coalitions

with size of less than 20 by getting the average of

marginal contributions over 100 coalitions of each size

that are selected by the proposed genetic algorithm. The

Shapley value of each feature is then estimated by finding

the average of the obtained marginal contributions for all

coalition sizes. This process is repeated for three different

values of µ = 0.5, 1.0 and 3.5 in (5). The 20 features

with highest Shapley values for each µ are selected for

classification purposes. In Table II, the performance of

the proposed feature selection method is compared with

several popular feature selection methods including χ2,

Tree-based method in which forest of trees are used for

calculating feature values [21], Mutual Gain Information,

Relief, and three types of Wrapper feature selection

approaches. The output of each feature selection method

is then evaluated using different classifiers including

decision trees, discriminant analysis, logistic regression,

Support Vector Machine (SVM), Nearest Neighbors, and

ensemble classifiers. However among different classifica-

tion methods, the RUSBoosted Trees Ensemble method

is reported since higher sensitivity values for feature

selection methods are achieved.

This result also shows a balance between the sensi-

tivity and specificity of the proposed model that can

be obtained by tuning the µ value. As it can be seen

from this table, the obtained sensitivity from the pro-

posed method has highest value among all other feature

selection methods.

Figure 1 compares the ROC curves of the proposed

feature selection with other feature selection approaches.

As it is shown in this figure, the ROC of the Shapley

method with µ = 3.5 has highest values after false alarm

Fig. 1. The ROC of different feature selection methods with their best
classification in terms of AUC.

0.6, and the curve is above most of the other ROC’s for

false alarms less than 0.6.

Another aspect of our work is employing different

biomedical signals and different signal processing types

(Wavelet and HRV for ECG II signals) for the purpose

of increasing the classification performance. Table III

shows the frequency analysis of the number of features

which are selected during different feature selection

approaches from different biomedical signals or signal

processing type. One of the interesting results from this

is that the proposed algorithm which selects features

with high marginal contributions, selects more features

from Wavelet features than the HRV features. This table

also shows that employing different source of biomedical

signal is useful. It can be also seen that most of the

selected features in the proposed algorithm are from ECG

II Wavelet features and the PLETH Wavelet features. It

can be justified with the sense that if the number of signal

sources increased, the chance of adding more correlated

features is also increased.

VII. CONCLUSION

In this paper, a low-complexity feature selection

method for false alarm reduction in ICUs is proposed,

where the Shapley values of the features extracted from

physiological signals are estimated through a GA-based

algorithm. These Shapley values evaluate the impact of

grouping of multiple features in enhancing sensitivity

and specificity of the trained model. The numerical

results show that the specificity of this propose method

is comparable to other existing feature selection methods

while it offers a higher sensitivity as desired in alarm

detection application to assure capturing the true alarms.
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TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE FOR DIFFERENT FEATURE SELECTION METHODS WITH BEST CLASSIFIERS IN TERMS OF

ACCURACY AND/OR AUC

Feature Selection Accuracy AUC Sensitivity Specificity

Shapley µ = 3.5 0.77 0.81 0.73 0.75

Shapley µ = 1.0 0.75 0.80 0.72 0.75

Shapley µ = 0.5 0.76 0.80 0.70 0.77

χ2 0.71 0.77 0.71 0.72

Tree Based 0.75 0.79 0.66 0.78

Mutual Gain Information 0.76 0.84 0.73 0.75

Relief 0.81 0.77 0.60 0.87

Wrapper: LASSO 0.76 0.82 0.66 0.79

Wrapper: Ridge Regression 0.73 0.77 0.62 0.76

Wrapper: Logit Regression 0.75 0.76 0.62 0.78

TABLE III
FREQUENCY ANALYSIS OF SELECTED FEATURES BASED ON SIGNAL

TYPES AND SIGNAL PROCESSING TYPES FOR DIFFERENT FEATURE

SELECTION TECHNIQUES.

Feature Selection Total
ECG II

Wavelet

PLETH

Wavelet

ABP

Wavelet

ECG II

HRV

Shapley µ = 0.5 20 0 20 0 0

Shapley µ = 1.0 20 5 15 0 0

Shapley µ = 3.5 20 6 14 0 0

χ2 20 0 14 6 0

Tree Based 139 47 53 33 6

Mutual Gain Information 20 17 0 0 0

Relief 20 2 16 2 0

Wrapper: LASSO 25 9 11 4 1

Wrapper: Ridge Regression 136 44 57 26 9

Wrapper: Logit Regression 148 50 55 32 11
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