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Enhancing irreversible electroporation by manipulating cellular biophysics with a
molecular adjuvant
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Abstract

Pulsed electric fields (PEFs) applied to cells have been used as an invaluable research tool to
enhance delivery of genes or other intracellular cargo, as well as for tumor treatment via
electrochemotherapy or tissue ablation. These processes involve the buildup of charge across the
cell membrane, with subsequent alteration of transmembrane potential that is a function of cell
biophysics and geometry. For traditional electroporation parameters, larger cells experience a
greater degree of membrane potential alteration. However, we have recently demonstrated that
nuclear-to-cytoplasm ratio (NCR), rather than cell size, is a key predictor of response for cells
treated with high-frequency irreversible electroporation (H-FIRE). In this study we leverage a
targeted molecular therapy, ephrinA 1, known to markedly collapse the cytoplasm of cells
expressing the EphA2 receptor, to investigate how biophysical cellular changes resulting from
NCR manipulation affect response to irreversible electroporation (IRE) at varying frequencies.
We present evidence that the increase in NCR mitigates the cell death response to conventional
electroporation pulsed-electric fields (~100 ps), consistent with the previously noted size
dependence. However this same molecular treatment enhanced cell death response to high
frequency electric fields (~1 ps). This finding demonstrates the importance of considering
cellular biophysics and frequency-dependent effects in developing electroporation protocols,
while our approach provides a novel and direct experimental methodology to quantify the
relationship between cell morphology, pulse frequency and electroporation response. Finally,
this novel combinatorial approach may provide a paradigm to enhance in vivo tumor ablation

through a molecular manipulation of cellular morphology prior to IRE application.
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Introduction

Electroporation describes the phenomenon of using an electric field to permeabilize the
membrane of a cell by inducing a transmembrane potential large enough to induce a disruption in
the lipid bilayer. Once the transmembrane potential reaches a critical value of ~250 mV,
transient nanoscale pores form in the membrane allowing the passage of otherwise excluded
molecules through the membrane barrier (1). This reversible electroporation technique has been
used for gene transfection, gene therapy, and cancer electrochemotherapy (ECT) (2, 3). When the
transmembrane potential reaches another critical value of ~ 1 V, the cell cannot recover from the
pore formation and dies due to loss of homeostasis (4). This method of cell ablation, termed
irreversible electroporation (IRE), has been used for the treatment of a variety of cancers

including prostate, pancreas, and liver cancers (5-8).

IRE as a cancer treatment method has many advantages over other approaches. The non-thermal
nature of the treatment allows for the sparing of extracellular matrix and vital structures such as
blood vessels while producing a more uniform ablation due to the lack of a heat sink effect (9).
IRE ablation methods are able to achieve cell-scale (~50 um) resolution between ablated and
non-ablated zones (9, 10) allowing for ablation regions to be predicted by pre-treatment planning
(11). In addition, real-time monitoring by imaging and impedance measurements can be done to
ensure proper electrode placement and complete ablation (12, 13). While the benefits of this
treatment modality have underpinned its successful use for a variety of cancers, invasive cancers
such as glioblastoma (GBM) still present challenges. IRE methods do not allow for the treatment
of diffuse cells outside the tumor margin without ablation of healthy tissue, a situation especially

problematic in the brain. To address these challenges and improve selectivity outside the tumor
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margin, investigators have begun studying combination therapies such as IRE used with ECT

(14).

In order to increase the selective capabilities of IRE treatment, here we investigate a new
combinatorial treatment concept, combining electroporation with a molecular therapy that we
hypothesized would act in a synergistic manner to the physical treatment. Our previous research
efforts have identified the receptor EphA2 as a promising target for selective molecular treatment
for GBM (15). EphA2, a member of the largest class of receptor tyrosine kinases, is
overexpressed in GBM tissue in a predominantly inactive state (15) as its preferred ligand
ephrinAl (eAl) is present at diminished levels compared to normal brain tissue (16, 17). Our
research efforts have shown that exogenous soluble eAl is a functional ligand for EphA2 (18)
and progress has been made in creating ephrin-based therapeutic agents through conjugation of a
bacterial toxic protein to soluble eAl that selectively targets GBM cells (19). From this work
developing an ephrin-based molecular targeted therapy, we noted a selective morphology change
in GBM cells upon exposure to eAl. This physical response, characterized by a rounding of the
cell and a shrinking of the cell cytoplasm (18, 20, 21), formed the basis of the currently presented

investigation into a combinatorial treatment with IRE therapies.

In considering IRE, the physical attributes of a cell are important, as electroporation is dependent
on both cell size and morphology. The effect of cell size on electroporation has been
demonstrated for a variety of pulse widths ranging from a few microseconds (22) to hundreds of

milliseconds (23). The steady-state scenario (Fig Sla) is valid for the understanding of
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electroporation phenomenon involved in typical IRE protocols used in the treatment of cancer.
These protocols involve the application of around 90 pulses of 50-100 ps duration delivered
through electrodes inserted into the tissue (5, 24). We have shown that by reducing the duration
of the electric field pulses to be shorter than the charging time of the cell membrane, the field can
penetrate the cell interior, and the dependence of electroporation on cell size is reduced (25, 26)
(Fig S1b). This shorter pulse technique, termed high-frequency IRE (H-FIRE), which uses trains
of < 2us duration bipolar pulses, exposes inner organelles to large electric fields. H-FIRE acts on
cells in a way that nuclear size becomes a more important predictor of cell death than cell size,
with a lower electric field needed to kill cells with a higher nuclear to cytoplasm ratio (NCR)

(25).

Despite some efforts to predict the TMP of cells exposed to PEFs on the order of a few
microseconds no mathematical models for cells of a high NCR have been developed (27) (28).In
this study we look further into the impact of cell size and morphology on electroporation
phenomenon at short pulse lengths, where the steady-state electroporation equation breaks down
and frequency is known to play an important role in predicting induced TMP. Equipped with the
finding that NCR is an important predictor of electroporation using H-FIRE pulse lengths, we
investigated the NCR effect on H-FIRE ablation by combining H-FIRE therapy with a molecular

intervention using €Al to increase NCR.

The overabundance of EphA2 receptor and diminished presence of eAl in GBM tissue open up
this receptor ligand interaction as a unique method for selectively tuning cell morphology to isolate

the NCR effect on H-FIRE. These biological cell manipulations allow us to discover
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electroporation behaviors in the pulse space where traditional analytical model predictions do not
apply. Additionally, this work highlights a novel correlation—an increase in electroporation
efficacy due to decreasing cell size—thereby highlighting the complexities ignored by the Schwan

equation in describing cell response to electric fields with short pulses.

Materials and Methods

Cell culture

U-87 MG primary human glioblastoma cells (ATCC) were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (PS).
Normal Human Astrocyte (NHA) cells (Lonza) were cultured in Astrocyte Growth Media (Lonza).
U-251 MG primary human glioblastoma cells (ATCC) cells were grown in DMEM containing
10% FBS, 1% PS, and 0.1 mM non-essential amino acid. DBTRG human glioblastoma cells
(ATCC) were culture in RPMI medium containing 10% FBS, 2 mM L-glutamine, 1% PS and
0.1 mM non-essential amino acids. All cells were grown in culture at 37 °C in 5% CO2 in a
humidified incubator. Cells were seeded in hydrogels at a density of 1 x 10°cells/mL. The
hydrogels were submerged in appropriate growth media for the cell type at 37 °C in 5% CO2 in a
humidified incubator and cell viability was maintained within hydrogels for up to 7 days.
Construction of collagen scaffolds

Stocks of type I collagen were prepared by dissolving rat tail tendon in acetic acid, followed by
freezing and lyophilization as described previously (29). Stock solution concentrations of collagen
were created at a density of 10 mg/mL. Scaffolds with a final concentration of 5 mg/mL were made
from concentrated collagen stocks to create collagen gels of 0.5% (w/w). Neutralized collagen

solutions were created by mixing acid-dissolved collagen with 10X DMEM (10% of total collagen
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solution volume) and sufficient volumes of 1N NaOH until a pH in the range of 7.0-7.4 was
achieved. The neutralized collagen was mixed with cells suspended in DMEM or NHA media to
achieve a cell density of 1x 10°cells/mL in the final collagen mixture. Solutions were mixed
carefully with a sterilized spatula to ensure homogenous distribution throughout the gel without
damaging cells. Collagen solutions were then dispensed into a polydimethylsiloxane (PDMS)
mold with a cut-out of 10 mm diameter and 1 mm depth and molded flat to ensure consistent
scaffold geometry. Our previous mathematical modeling and experiments on oxygen (O2)
consumption rates by tumor cells(29) confirms that at this cell density and scaffold thickness, O
concentration is uniform throughout the scaffold depth. Collagen was allowed to polymerize at
37 °C and 5% COz for 30 minutes.

Treatment with ephrinA1l

Cells seeded in collagen hydrogels were cultured for 24 hours after seeding to allow for cells to
engage the collagen and achieve a physiologically relevant morphology. After 24 hours, hydrogels
in the ephrin Al treated condition were cultured in serum-free cell culture media with 1pug/ml
ephrin A1-FC (R&D Systems) added to the media for 12 hours prior to electroporation treatment
or fixation for immunofluorescence staining. Control cells were cultured in hydrogels submerged
in serum-free culture media without the added ephrin A1-FC for 12 hours prior to use in
experiments. The 12-hour time point was chosen because a full morphological change of the cells
within the hydrogels was seen by 12 hours and no further changes were observed at longer
exposure times (Fig S2). No difference was seen in viability between hydrogels cultured in ephrin
A1-FC conditioned media and control media before exposure to electroporation therapy (Fig S4).

Fluorescent staining
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U-87, U251, DBTRG, and NHA cells were individually seeded in hydrogels described previously.
After culturing the cells for 24 hours for engagement with the matrix and then an addition 12 hours
after treatment, the hydrogels were fixed using 4% formalin and blocked and permeabilized using
40 mg/mL bovine serum albumin (BSA) and 0.05% Triton-X. Cellular F-actin was stained with
Alexa Flour 568 phalloidin (Life Technologies, Carlsbad, CA) while cell nuclei were stained with
diaminophenylindole (DAPI; Sigma-Aldrich, St. Louis, MO). Cells were visualized using a Zeiss
LSM880 (Carl Zeiss Microscopy LLC, Thornwood, NY) laser scanning confocal microscope.
Determination of NCR

. Untreated hydrogels seeded at the same cell density and collagen conditions as treated hydrogels
were fixed and fluorescently stained to determine overall cell area and nuclear area for cells in the
control condition and in the ephAl treated condition. Measurements were made on at least four
cells per hydrogel and at least 5 hydrogels were analyzed for each condition so at least 20 cells
were used to determine average NCR for each cell type in each condition. Image analysis was done
in Image J (NIH, Bethesda, MD. Z-stack images were converted into 2D projection images and
cell measurements were made from these projections. NCR was calculated from the measured cell

area (Ac) and nuclear area (An) as follows:

_ _An
NCR = s (1)

Finite element analysis in hydrogels

Finite element models using COMSOL Multiphysics (Version 4.3, COMSOL Inc., Palo Alto,
CA) were used to solve the Laplace equation to find the electric field distribution within the
hydrogels for each different voltage used. The electric field distribution within the hydrogel was
found by solving the Laplace Equation:

Vi =0 (2)
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where ¢ is the electrical potential. The boundaries of one electrode were set to the applied voltage
(¢ = Vappliea) and the boundaries of the second were set to ground (¢p = 0) while the initial voltage
(Vo) for all subdomains were set to OV. All other external boundaries were set to electrical
insulation (—n - J = 0). The mesh was refined until error between successive refinements was less
than 1%. The final mesh contained 47,438 elements and solutions were found in approximately
3 minutes on a Pentium i3 processor.

Finite element analysis of individual cells based on NCR

The electrodynamic solutions of interest were reached by modeling a spherical cell membrane
and nuclear envelope and solving a finite element model with an impedance boundary condition
scheme as previously described (25, 30). The models used in to investigate the membrane
response to different pulse parameters changed its NCR based on representative cell geometries
determined based on average measurements made in ImageJ image analysis software (NIH,
Bethesda, MD) from confocal microscopy images. In order to better understand the effect of high
frequency components of H-FIRE on individual cells a frequency-dependent module was used to
mimic the increase in frequency for different H-FIRE pulse lengths and IRE-type pulses. The

geometry and physical properties of the cell can be found in Supplemental Table 2.

Simulations were solved in the frequency-domain using an electric currents module, which has
been previously shown to correlate well for spherical cells exposed to rectangular pulses in the
order of 1-2us (28). To account for the impedance posed by the membranes of the cell and
nucleus their boundaries were assigned impedance properties found in literature (Supplemental
Table 2).

Electroporation techniques
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Pulsed electroporation experiments were performed in collagen hydrogels with constant
electrical properties. High- frequency pulses were delivered using a custom-built pulse
generation system (INSPIRE 2.0, VoltMed Inc., Blacksburg, VA). Pulses were delivered
through custom build electrodes composed of two solid stainless steel cylinders with
diameters of 0.87 mm, separated 3.3 mm edge-to-edge, with spacing and geometry maintained
by a 3D printed electrode holder. In the H-FIRE pulsing protocol, treatments were performed
delivering 50 bursts of 1 us bipolar pulses. A burst consisted of 100 x 1 pus pulses of
alternating polarity with a 5 ps inter-oulse delay delivered with a repetition rate of 1 burst per
second. Voltage output was set to 700 V to achieve measurable lesions within the hydrogel
geometry. Conventional IRE pulses were delivered using an ECM 830 pulse generator
(Harvard apparatus, Holliston, MA) through the same custom built electrodes. These
treatments consisted of 50 square pulses of 100 ps pulse width with a repetition rate of 1 pulse
per second. IRE voltage output was set to 350 V to achieve measurable lesions within the
hydrogel geometry.

Determination of lethal threshold in hydrogels

The thresholds for cell death were determined by first performing a live-dead stain on the
hydrogels 24 hours after delivering treatment. Live cells were stained with Calcein AM (Biotium,
Hayward, CA) and fluoresced as green while dead cells were stained with ethidium homodimer
III (Biotium, Hayward, CA) and fluoresced as red. The size of the red-stained dead region was
measured using ImageJ image analysis software. Geometric measurements of the ablation zones
were mapped to a finite element model to calculate the electric field during treatments of the
scaffolds. The electric field magnitude at the edge of the live and dead regions was considered the

electric field threshold for cell death for the given cell type. Each individual hydrogel exposed to
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either H-FIRE therapy or H-FIRE with eA1 therapy measured to determine the lethal electric field
for the cell type was considered an independent sample representing the response of approximately
125000 cells. For each condition, hydrogels were pulsed in at least 3 different independent
experiments on different days.

Power spectral analysis

A power spectral analysis was conducted by running a Fast Fourier Transform (FFT) on the
experimental H-FIRE pulses. The power spectral analysis was used to determine the dominant
frequencies a cell is exposed to upon treatment as demonstrated elsewhere as a tool for
understanding bipolar pulses (31).

Statistical analysis

Statistical significance was determined by a two-tailed #-test performed in Prism Statistical
Software (Version 6, Graphpad, La Jolla, CA). A 95% confidence interval was used with
significance defined as p <0.05. All numerical results are reported as the mean and the standard
deviation of all experimental measurements. No outliers were excluded.

Data Availability

The datasets generated during and analyzed during the current study are available from the

corresponding author on reasonable request.

Results

EphA?2 activation by eAl induces a targeted morphology change in malignant cells

To investigate the dynamics of eAl induced morphology changes, we cultured malignant GBM
and normal brain cells in 3D hydrogels and exposed them to eAl. EphA2 activation by eAl in

malignant cell lines (U-87 MG, U-251 MG, and DBTRG) led to visible cell morphology changes
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characterized by cell rounding and a collapse of the cytoplasm (Fig 1a). Cell rounding was visible
after 6 hours of culture in media containing eAl (1 pg/ml) with the full morphological change
accomplished by 12 hours (Fig S2). In normal human astrocyte (NHA) cells, no morphological
change was observed at any time point out to 48 hours when culturing hydrogels in eAl media.
For the malignant cell lines, the cytoplasm collapse upon EphA2 activation resulted in a significant
change in the NCR of the cells (Fig 1b). NHA cells showed no significant change in NCR under
these treatment conditions. No morphology change was observed in control tumor cells cultured

in media without eA1 present.
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Figure 1. Treatment with soluble ephrin Al causes glioma morphology change, while not altering NCR for
astrocytes. (a) Malignant cells stain with DAPI (blue) and phalloidin (red) cultured in media with 1ug/ml eAl for 12
hours exhibit cell rounding and a collapse of the cytoplasm around the nucleus while healthy cell morphology remains
unchanged upon exposure to eAl. Scale bar 50um (b) eAl induced morphology change results in a quantitative
increase in NCR for malignant cells while NCR remains unchanged for normal astrocytes.(n=20) ****p <0.0001,
*p=0.027
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Extent of electroporation for different cell morphologies is dependent on frequency of
electric field
Finite element modeling was used to predict the induced TMP on a variety of cell morphologies

as a function of the frequency of a steady-state, AC electric field. Characteristic morphologies
determined from experimental culture of glioma cells, normal astrocytes, and glioma cells treated
with eAl were used. At lower frequencies, characteristic of IRE pulse waveforms, larger cells
experience a greater induced transmembrane potential compared with a glioma cell that shrinks
in volume due to treatment with eAl. At a frequency of approximately 10 kHz, the enlarged
nucleus of the glioma cell causes it to experience a greater transmembrane potential than the
astrocyte of the same size but smaller nucleus. This trend continued throughout higher
frequencies of electric field, suggesting that fields of frequency higher than 10 kHz can be used
to accomplish greater electroporation on cells with a larger nucleus than in cells with a smaller
nucleus. At an electric field frequency of approximately 100 kHz the smaller cell experiences a
larger induced transmembrane potential than the larger cells, suggesting a greater extent of

electroporation of smaller cells than larger cells.
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Figure 2. a) Experimental pulse waveform applied to hydrogels. A bipolar waveform of 1 us pulses separated by a
5 us delay was used to accomplish electroporation in hydrogel platform b) Power spectrum analysis of experimental
pulse train. Amplitude frequency distribution found by Fast Fourier Transform of experimental pulse trains shows
that the pulse train of lus bipolar pulses separated by a Sus delay delivers the majority of its power in the frequencies
around 100 kHz. ¢) Single cell steady-state response to electric field of 1000V/cm applied as AC signal. As expected,
larger cells (U87 and Astrocyte) present larger TMP'’s at lower frequencies. However, cells of higher NCR will have
larger TMP'’s at higher frequencies (>100kHz).

As the duration of the applied pulse is decreased, a greater proportion of the power is concentrated
in higher frequency signal content. The experimental pulse train of 1 ps bipolar pulses with a 5 ps
delay between pulses (Fig 2a), delivers the majority of its power between 100 kHz and 1000 kHz
(Fig 2b). Interestingly, these frequencies correspond to the frequencies predicted to allow for a

cross-over in TMP for the eA1l-induced cell morphologies when exposed to an AC signal (Fig 2c).
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Morphology change impacts lethal thresholds for electroporation of malignant cells

To determine if the increase in NCR in malignant cells led to a change in H-FIRE threshold as
predicted by finite element modeling, eA1 treated hydrogels were exposed to a regimen of H-FIRE
treatment and compared with control hydrogels. Malignant hydrogels treated with eAl had
significantly larger lesions than control hydrogels while non-malignant hydrogels had no
significant difference between conditions (Fig 3a). The increase in NCR for malignant cells
corresponded to a smaller lethal threshold for H-FIRE while the lethal threshold did not change
for non-malignant cells (Fig 3b). For U87 cells, under normal conditions the lethal threshold is
603 + 65 V/cm (n=8) while treated with eA1 the lethal threshold is 446 + 55 V/cm (n=8). For U-
251 cells, under normal conditions the lethal threshold is 662 = 57 V/cm (n=8) while treated with
eAl the lethal threshold is 415 + 48 V/cm (n=8). For DBTRG cells, under normal conditions the
lethal threshold is 712 + 68 V/cm (n=6) while treated with eAl the lethal threshold is 532 + 48
V/em (n=6). Lethal thresholds for non-malignant cell types remained unchanged. Control NHA
cells are killed at a threshold of 1028 + 47 V/cm (n=6) and eAl treated NHA cells have a lethal
threshold of 1032 + 82 V/cm (n=6). For the most responsive cell type, U-251 cells, eA1 treatment

resulted in a 37% decrease in lethal threshold for H-FIRE therapy.
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Figure 3. NCR change induced by ephrinAl enhances H-FIRE lesions in malignant cells. (a) H-FIRE lesion size
for malignant glioma cells (U-87, U-251, and DBTRG) is increased from control when hydrogels are cultured with
eAl ligand. H-FIRE lesions in non-malignant astrocytes (NHA) remain unchanged with eA1 exposure. Scale bar 1
mm (b) COMSOL modeling relating lesion size to lethal thresholds shows a significant decrease in H-FIRE lethal
threshold for malignant cells when treated with eAl prior to electroporation exposure. H-FIRE lethal threshold for
non-malignant cells remains unchanged with eA 1 exposure. (¢) Summary of data shows a correlation between average
NCR of a given cell type in the hydrogel and the lethal electric field threshold for that cell type in the hydrogel. Healthy
astrocytes (gray markers) show no change with eAl treatment while malignant cells (black markers) show a
decreased lethal electric field threshold when treated with eAl to induce an NCR increase. ****p < 0.0001

Similarly, eAl treated hydrogels were exposed to traditional IRE pulses of 100 ps pulse width to
determine if these lesions would change as a result of the eAl-induced morphology change in
treated cells. In contrast to the trend seen using H-FIRE pulses, IRE lesions of eA1-treated U-251
cells are significantly smaller than control hydrogels of U-251 cells cultured in normal media (Fig
4). U-251 cells cultured in normal media within the hydrogels had an IRE lethal threshold of 517
+ 45 V/em (n=6). U-251 cells cultured with media containing 1 pg/ml eAl within the hydrogels

had an IRE lethal threshold of 684 + 44 V/cm (n=6).



335

336
337
338
339

340

341

342

343

344

345

Control eA1 (1 ug/ml)

d
b eA1 Effect on IRE Threshold
s * k% k
g 800+ I 1
= = -
=]
< 600-
=
2
;’E 400-
e}
Qo
= 200-
L
E
8
o 0 N
&
'\x
a°

)

Figure 4. NCR change induced by ephrinAl results in smaller IRE lesions. (a) IRE lesion size for U-251 glioma
cells is smaller compared to the control when hydrogels are cultured with eA 1 ligand. Scale bars 1 mm. (b) COMSOL
modeling relating lesion size to lethal thresholds shows a significant increase in IRE lethal threshold for U-251 cells
when treated with eA 1 prior to electroporation exposure.(n=6) ****p <0.0001

eAl treatment enhances malignant cell selectivity of H-FIRE

To demonstrate the enhanced selectivity of malignant cells possible with combination H-FIRE and
eAl treatment, we performed co-culture experiments. Hydrogels of NHAs and U-87 GBM cells
were cultured in media containing eAl and then exposed to a regime of H-FIRE pulses. While

selective killing of U87 cells and not NHA cells is achieved in the control condition, the region of



346 US87 killing is significantly enlarged while the NHA lesion remains the same for cells exposed to
347 eAl (Fig)).

348

Control

349

350  Figure 5. Treatment with eAl enhances selectivity of H-FIRE for malignant cells in co-culture. The area of ablated
351 malignant cells and live healthy cells in extended by treating co-culture hydrogels with eA 1 prior to H-FIRE exposure.
352 Scale bars 1 mm.

353

354
355  Discussion

356  We have demonstrated that the cell size dependence for electroporation-induced cell death depends
357  critically on frequency range. Each component of the cell—membrane, cytoplasm, and nuclear
358 membrane—has a characteristic impedance that affects the TMP response to varying degrees

359  depending on the cell morphology. As the capacitance of each part of the cell is dependent on the
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surface area, the change in morphology induced by eAl treatment will produce changes in cell

capacitance.

We hypothesize that the effect demonstrated here of high frequency PEFs preferentially ablating
cells of smaller volume but higher NCR may be due to changes in impedance of the cytoplasm. If
part of the external field is able to bypass the cell membrane and interact with internal components
of the cell, the impedance of the cytoplasm and nucleus become important factors. This effect will
be magnified as the volume of the cytoplasm is decreased, which can be exploited through
treatment with eA1. Therefore, for high frequency pulses, the NCR of a cell becomes a significant
variable in predicting electroporation response. This finding is significant for the understanding of
electroporation theory because it clearly illustrates that the relationship between cell size and
electroporation is closely dependent on waveform frequency, which would impact electroporation

protocols both for research as well as therapeutic applications.

We have shown for the first time that molecular targeting with ensuing changes in GBM cell
morphology may be used to enhance the selectivity of PEFs to induce tumor cell death. Selectivity,
regulated by NCR, opens up the possibility of enhanced targeted cancer therapy, as malignant cells
are known to often have increased NCR compared to normal cells (32, 33). Because the EphA2
receptor is overexpressed specifically on malignant cells in adulthood, the induced morphology
change can be exploited in developing combinatorial targeted therapies using H-FIRE. The ability
to selectively target cells with increased NCR is significant for the future of GBM treatment
because it may allow for the treatment of diffuse malignant cells that have invaded into normal

brain tissue. By lowering the lethal threshold for malignant cells in the outermost regions of the
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tumor where selectivity is most important, eAl treatment may increase the margin of tumor that
can safely be ablated with H-FIRE therapy regimes. Though many attempts have been made to use
EphA2 as a direct therapeutic target (19, 34), this work is the first to our knowledge that utilizes a
resulting morphological change to enhance targeting by combination with a physical therapy in
the form of PEFs. We furthermore note that short pulses (~1 ps) pulses in particular are necessary
to induce this synergistic tumor cell death response, as we have demonstrated that longer (~100
us) IRE pulses of the sort most commonly used for clinical tumor ablation (5, 7) become less
effective in combination with sub-lethal eA1 treatment in our studies. Though this work represents
the early stages of cell-selective electroporation techniques, the results presented here suggests the
ability to optimize parameters to further increase the selectivity with the possibility of efficacy in
an in vivo context. The performed power spectral analysis of IRE and H-FIRE pulses indicates
that a higher frequency signal content (> 100 kHz) may increase our ability to target cells of a
higher NCR. While this analysis offers some insight to the mechanism for cell targeting of HFIRE,

future work in the development of an accurate time-domain model is warranted.

The EphA2 receptor has been identified as overexpressed in various cancers (35-39) in addition
to GBM, suggesting the broader application of our results for treatments in other tumor sites for
which more traditional surgical or radiotherapy options may be limited, for example tumors that
surround sensitive nerve or vascular structures. Areas of increased EphA2 expression are

important therapy targets as elevated EphA2 expression has been correlated with higher
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pathological grade (40) and poor prognosis (41, 42). EphA2 is an important target for this
synergistic therapy for another important reason, specifically that it may allow for the targeting
of highly tumorigenic glioma stem cells (GSCs), which ECT combinatorial treatments may leave
behind due to their highly chemo-resistant nature (43). EphA2 receptors have been found to be
expressed most highly on tumor initiating cells with the highest levels of expression in the most
aggressive, stem cell-like mesenchymal subtype (44). Though the EphA2/ephrinAl interaction
has been the subject of our study, multi-ligand cocktails can also be explored to capitalize on the

other ephrin interactions in cancer.

The findings presented here highlight the importance of considering the physical phenotypes of
cells both for treatment planning and for exploitation to improve treatment efficacy. The classical
understanding of electroporation simplifies the relationship between TMP and cell shape and size.
However, we have shown that the relationship is more complex, and the vast pulse frequency
parameter space should be further explored to identify novel therapeutic synergies of the sort that
we have demonstrated here. Taking into account the complex relationship between these variables
may open up the possibility for significantly improved cancer therapies by targeting the physical
hallmarks of tumor cells with next generation combinatorial therapies. Though our findings are
presented here in the context of tumor ablation, the importance of considering cellular biophysics
extends to other applications of electroporation as well. Applications such as genetic engineering
may benefit from manipulating cellular biophysics to more effectively deliver intracellular cargo

both in therapy applications but also as a practice in basic research.
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Control day 14

Figure S1. Live dead staining of cells cultured with eAl in hydrogels. Cells were cultured in
collagen hydrogels with 1 pg/ml eA1 media for 12 hrs which was then replaced with basal media
and cells were cultured out to 14 days. Calcien AM staining of the live cells (green) and ethD-
III staining of dead cells (red) shows no visible cell death for eAl treatment. Scale bar 1 mm.



624  Table S1: Physical properties used in finite element models of hydrogel treatments. * measured
625  values, | default material values in COMSOL

Parameter Syrilbo Value Unit Reference

IRE Voltage Vire 450 [V] *
H-FIRE Voltage Varme — 450-700 [V] *
Electrode Density Pe 7850 [kg/m?] 1
}(E:Le;c:z(i)tc}l]e Specific Heat Cpe 475 (kg K)] i
Electrod§ Thermal k. 445 [W/(m-K) +
Conductivity ]
Electrode Conductivity Ge 4.03x10° [S/m] 1
Electrode Permittivity €e 1 i
Hydrogel Density Ph 997.8 [kg/m?] (45)
g:s;gﬁsl Specific Heat Cpr 41818 [kgK)] (45
Hydrogel Thermal o 0.6 [W/(m-K) 45)
Conductivity ]
Hydrogel Conductivity Gh 1.2 [S/m] (33
Hydrogel Permittivity €n 0 “3)
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641  Table S2: Physical properties used in finite element models of single cells. * measured values, [
642  approximation based on water composition

Parameter Symbol  Value  Units Reference
Media Conductivity Om 0.98 [S/m] *
Media Permittivity Em 80€o [F/m] i
Cytoplasm Conductivity Gyt 0.3 [S/m] (46)

Cytoplasm Permittivity Eoyt 154.48, [F/m] (47)
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Nucleoplasm Conductivity
Nucleoplasm Permittivity

Cell Membrane Thickness
Nuclear Membrane Thickness
Cell Membrane Conductivity
Cell Membrane Permittivity
Nuclear Membrane Conductivity
Nuclear Membrane Permittivity
Domain Side Length

Benign Cell Radius

Benign Nuclear Radius
Malignant Cell Radius

Malignant Nuclear Radius

Malignant Cell Radius (post-ephrin)

Malignant Nuclear Radius (post-
ephrin)
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t mem
t Nmem
Gmem

€ mem

ONmem

E Nmem

La
R.
R,
Rune

Rmn

Rmce

Rmne

1.35
52€&
5x107
40x10”°
3x107
8.57€0
6x1073
28€&o
300x10°
20x10¢
6.2x10°
20x10¢
1431?10‘

16.7x10"
6

14.7x10"
6

[S/m]
[F/m]
[m]
[m]
[S/m]
[F/m]

[S/m]
[F/m]

[m]
[m]
[m]
[m]

[m]




650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

Supplemental Methods

Finite element analysis

The electric field distribution within the hydrogel was found by solving the Laplace Equation:
Vip =0 (S-9)

where ¢ is the electrical potential. The boundaries of one electrode were set to the applied voltage

(¢ = Vappliea) and the boundaries of the second were set to ground (¢p = 0) while the initial voltage

(Vo) for all subdomains were set to OV. All other external boundaries were set to electrical

insulation (—n - J = 0). The mesh was refined until error between successive refinements was less

than 1%. The final mesh contained 47,438 elements and solutions were found in approximately

3 minutes on a Pentium i3 processor.

In order to better understand the effect of high frequency components of H-FIRE on individual

cells a frequency-dependent module was used to mimic the increase in frequency for different H-

FIRE pulse lengths and IRE-type pulses. The geometry and physical properties of the cell can be

found in Supplemental Table 2.

Simulations were solved in the frequency-domain using an electric currents module. To account
for the impedance posed by the membranes of the cell and nucleus their boundaries were
assigned impedance properties found in literature (Supplemental Table 2). While some equations
such as the one presented by Huang et al have been useful for calculating the TMP for cells
exposed to an AC signal, further development of the model needs to be done (51). Our group
developed an equivalent circuit model considering the general dimensions, conductivity, and

permittivity of the cell membrane, cytoplasm, nucleic envelope, and nucleus. While the equation
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describing this model can be further refined it provides evidence that changes to the NCR mostly

affect the capacitive component representing the cytoplasm.
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