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Cameron K. Peterson

Abstract— Teams of unmanned vehicles are capable of ac-
complishing a wide variety of mission objectives, such as
searching for and tracking targets. In this paper, a receding
horizon control is utilized with information based reward
measures to accomplish these two competing mission objectives.
This approach for cooperatively searching and tracking has
proven to be effective in past work. However, it is not generally
scalable for large numbers of vehicles due to the computa-
tional expense required when generating joint path decisions.
This paper proposes a method to dynamically group vehicles
with neighbors that have intersecting decision spaces, thus
reducing computational cost while still maintaining reasonable
performance. Each vehicle also decides its ideal event horizon
based upon inferred knowledge of the operational environment,
further reducing cost.

I. INTRODUCTION

Teams of unmanned vehicles are capable of accomplishing
a wide variety of mission objectives such as, boundary
detection [1], border and convoy protection [2], and target
search and tracking [3]. In this paper flight planning al-
gorithms are developed for a group of vehicles tasked to
accomplish multiple mission level objectives. Two specific
missions, target tracking and area search, are implemented.
However, the framework presented is valid for a larger range
of applications.

Cooperative path planning problems have been solved
using a variety of methods, including by using genetic
algorithms [4], potential fields [5], and sequential convex
programming [6]. This work follows the paradigm presented
in [3], [7], [8] and [9] that uses information rewards to
plan vehicle paths. The information-based approach provides
adaptive algorithms capable of handling dynamic environ-
ments and incorporating a wide variety of mission objectives.
In [7] the work provides an algorithm for cooperatively
tracking ground targets. This approach was expanded in
[3] to include searching for and classifying targets. We
follow the work of [3] and [9], both of which present an
information based reward in combination with a receding
horizon controller (RHC). Although this approach provides
good results, it can be computationally expensive since all
cooperating vehicles must jointly plan their paths.

To jointly optimize with a standard RHC each potential
vehicle path must be evaluated in combination with all
the other possible vehicle paths. This approach becomes
intractable with large event horizons and when using a large
number of vehicles. However, joint optimization is critical in
determining the best control commands for the vehicles as a
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group. By cooperating the total reward will be greater than
the sum of rewards gained through individual optimization.

Several approaches have been proposed to reduce the
time needed to complete the RHC joint optimization. In [3]
a Rollout Policy was used to limit the number of routes
that need evaluation. This approach scales linearly with an
increase in time horizon. A grouping algorithm was also pro-
posed to limit the number of cooperating vehicles. However,
the approach, based on the nearest neighbor algorithm with
a maximum group capacity, could uncouple vehicles with
dependencies.

Another approach presented in [10] and [11] is to individ-
ually optimize a single vehicle while holding the decision
variables of all peer vehicles constant. This process is re-
peated for each cooperating vehicle and iterated upon until
convergence of all decisions is reached. A particle swarm
optimization was used with suffix tries in [12]. The suffix
tries identify the most common starting sequence thereby
restricting the number of branches that need to be searched.
These approaches primarily focus on reducing the internal
complexity of the RHC joint optimization algorithm. The
goal of this work is to eliminate external cost through a
more judicious application of the algorithm.

This paper most closely follows the work of [9] and
uses the same reward functions for a RHC that jointly
drives a group of UAVs to search for and track targets.
We expand the previous work by introducing a method
for reducing the computational complexity of the controller.
This is accomplished in two steps, first by determining an
ideal event horizon for the RHC (potentially limiting the
number of look-ahead steps). Secondly by grouping vehicles
together that would benefit from jointly optimizing their
paths. Groups are adaptive in deciding when their path
decisions will be decoupled from other vehicles. This results
in a balance between computational efficiency and the RHC
defined optimal routes.

The paper proceeds as follows. Section II describes the
aircraft model and sensor used in this work. In Section III the
target tracking and area search mission objectives and reward
functions are presented. The main contributions of the paper
are presented in Section IV, where the path planning control
and joint optimization techniques are described. Results from
numerical simulations are given in Section V. And finally,
Section VI provides a summary and conclusions.

II. VEHICLE MODEL

All vehicles are modeled as fixed wing aircraft capable of
commanding a bank angle. It is assumed that the vehicles
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move in a plane of constant altitude with a constant (energy
efficient) speed, V,. The aircraft maneuvers following a
coordinated turn given by ¢ = (gtan¢)/V,, where g is
the gravitational constant, w is the turn-rate, and ¢ is the
roll angle. Each vehicle is limited in the amount it may roll,
abs(p) < dmaz-

Note that this formulation is similar to modeling each
vehicle as a self-propelled particle that travels at constant
speed and turns with gyroscope motion. This modeling
approach for UAV path planning is abundant in the literature,
see for example [13] and [14] which use it for target tracking
and distributed monitoring respectively.

Each vehicle is equipped with a sensor that measures
the ground range and azimuth of objects within its sensing
radius. Vehicle movement is driven to maximize what it
learns about the environment (i.e. the vehicle will move to
put objects of interest in its field of regard).

The sensor’s azimuth is the angle from north (y-axis)
moving positively in the clockwise direction towards east
(x-axis). The measurement noise covariance, given the range
and azimuth standard deviations o, and oy, is R =
diag|o?,03]. The measurement matrix relating measurement
space to state space is given by the Jacobian

T (k) =2 ()

ym(k)—(ykw)(k) 00
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where (z,(k),y,(k)) represent the wvth vehicle’s planar
position at time step k, (2, (k),ym(k)) is the mth tar-
get’s position, also at time step k, and 7,,,(k) =
V (@m (k) — 2, (k)2 + (ym (k) — yu(k))? is the distance be-
tween them.

Sensors share detections (azimuth and range measure-
ments) and their own state belief with peer vehicles who
are within their communication range.

III. MISSION OBJECTIVES

This section describes the process of target tracking and
the information-based reward functions used to balance
tracking and searching.

A. Target Tracking

In this section the procedure for target tracking and its
reward function are described. The state for target m is
given by @, (k) = [2m(k), Ym(k), Zm(k), Um(k)]. When
describing an estimatqd state the same variable are used, but
are accented with a (-).

Target motion is tracked assuming a discrete, constant
velocity motion model x,, (k) = Fa,,(k — 1)+ w(k) where
w(k) is zero-mean, white process-noise with covariance
matrix
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and spectral density q. At is the discretized time. The state
transition matrix F' is chosen to be a constant velocity motion
model for the targets. A Kalman filter,

Tm(klk—1) = Fz,(k—1k-1)
Pn(klk—1) = FP,(k—1]k—-1)FT +Q,
is used to estimate the predicted state for each target.

The predicted information matrix can be determined by
taking its inverse of the error covariance, I, (klk —1) =

P (k|k —1)7L.
Each vehicle is equipped with a range and
azimuth sensor. The predicted range ¢,(k) =

V(G (klk = 1) =y, (k)% + (@ (k] = 1) — 2y (k))?

and predicted azimuth t,(k) = tan '((gm(k) —
Yo (k))/(Zm (k) — x,(k))) are measures from the vehicles
position to the target’s a priori state estimate. Note that the
sensor’s measured position is assumed to be known, but
noisy.

Vehicles are controlled by commanding their roll angle.
The desired roll angle is choosen by picking a vehicle
position that will maximize the information gain of each
target. Target information is measured with the information
matrix

I (K|k) =1 (k|k — 1)+

i
> Hym(klk = 1)" R H, (k| — 1) .
v=1 “
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The measurement matrix }AIU,,,L of Equation (1) is now a
function of the the mth target’s predicted estimate-position,
(T (klk—1), §m(k|k—1)). This is equivalent to the inverse
of the Kalman filter error covariance, I, (k|k) = P 1 (k|k).

For each potential heading direction the reward is the
difference between the expected measurement updated in-
formation matrix and the expected information matrix after
predicting forward the track state estimate. Target rewards are
summed for all known target tracks. Thus the optimization
function decides which heading to use by maximizing the
information gain of the reward [9]

M

Jiarger = > (log|fm(k|k)| — log| L (K|l — 1)|). 3)
m=1
The determinant, | - |, of the information matrices are used

to represent a volume metric.

B. Area Search

The search mission is implemented by rewarding vehicles
that enter unexplored regions of interest. To create the reward
function the operational area is divided with equally spaced
grid points. The position of grid point g in the east-north
frame is (x4, y,). When the grid center is within the aircraft’s
field of view it acquires the information contained in the
region. The reward for viewing a region grows exponentially
beginning from the time it was last searched. For a single
grid point, g, at time k the reward is [9]

Jg(k) = Jg,maz — (Jg,m(w — Jg(k —-1)) e~ At/ 4)

1856



where A is a growth rate, %k is the time step, Jgmaz 1S
an upper probability limit that the grid cell cannot exceed.
The reward for searching a region is the summation of the
individual rewards of each grid point searched by the aircraft,

Jsearch - Z Jg(k)a Vg el (5)
g

where I is the union of grid points that lie within the vehicles
sensing radius, ry = /(24 — )% + (yg — Yu)? < rs.

IV. JOINT OPTIMIZATION WITH VARIABLE HORIZON
RECEDING HORIZON CONTROLLER

To allow vehicles to seek out information gains that may
take time to realize a RHC is employed with NV look ahead
steps. The RHC prevents vehicles from only seeking the
closest reward when long term benefits may direct the vehicle
into a different direction.

The RHC is implemented by projecting the vehicles and
environment forward through a series of potential control
commands until it reaches its event horizon N. At every step,
k, the application of all allowable control commands divide
the number of path options, increasing the total number
of possible routes. Each route is evaluated to determine
which one maximizes the combined search and track reward
functions. Then the process is repeated. For this work the
control decision is a discrete set of roll commands that
translate to a change in vehicle heading as described by the
equation for a coordinated turn.

A key drawback of this method is the computational
cost inherent in evaluating all the routes. Since, the number
of routes increases as a power to the number of decision
options. A vehicle with d discrete decision options must
evaluate "V~ potential routes for each time iteration. To put
this in perspective, a vehicle with an N = 5 event horizon
and a d = 5 decision space would need to evaluate 625
potential routes. But if a longer event horizon of N = 15
is needed, then more than 6 billion evaluations would be
necessary. This complexity is further compounded under
joint optimization when all the paths of all the vehicles must
be evaluated in combination. The sub-sections that follow
present a new algorithm for joint optimization which reduces
the computational complexity inherent in the process.

A. Joint Reward

In this section the effect of peer vehicle paths on the total
reward gained is considered. For target tracking a covariance
intersection algorithm [15] is used to ensure that vehicles will
not be over rewarded for tracking identical targets.

To determine the combined contribution of vehicle mea-
surements the improved fast covariance intersection algo-
rithm [16] is employed. In this approach the weights as-
sociated with vth vehicle at a given time are determined by
(replicated from [16] for convenience)

_ | =T = 1| + 1|
- 14
VI + 3oy (o] = [T = 1)

where I is the sum of all information gathered from V' sen-
sors simultaneously, I = Z:,/ﬂ I,,. And the final information

v

across all sensors (detections) is given by I tot = Zgzl I
The target tracking reward for each RHC path incorporates
the weighted sum of information across all sensors. The joint
tracking reward for all vehicles at time step k is [9]

M
Tornger = > (108 Teor (kIR)| = Tog | I(K[E = 1)) . (6)
m=1
Note that these equations reduce to Equation (3) if only one
vehicle views the target at that time step.
Information gained by vehicles searching in the same area
is accounted for by a joint-search reward function [9]

Js‘/c:arch = Z Jg(k)a Vg € FV (7)
g

where I'V = {Ul‘)/(rq < 1)} is the set of grid points that lie
within every vehicle’s sensing radius. Reward for searching
a grid point is given if it is contained within the field of
regard of any vehicle. The simultaneous viewing by multiple
vehicles provides no additional reward.

Fig. 1. Sampling points used to estimate the potential information gain
for look-ahead step k = 4.

B. Variable Event Horizon

At every time step each vehicle calculates its desired RHC
event horizon. The event horizon is upper bounded and will
be shortened if the vehicle determines it can still make a
judicious decision given a more restricted world view. This
can significantly reduce the computational complexity of the
joint action. To calculate the desired event horizon a potential
reward value is predicted for each look-ahead step, then a
balance is found between information gain and the number
of look-ahead steps.

The potential reward is calculated using random samples
drawn uniformly from the footprint of locations a vehicle
might travel for that look-ahead step. The footprint is defined
by a ring, as seen in Figure 1, which is lower bounded
by the furthest distance the aircraft could travel for the
prior look-ahead step and upper bounded by the maximum
distance it could reach for the current look-ahead step. As a
simplification it is assumed that the vehicle travels radially
outward. The effect due to its initial heading is disregarded
(i.e. turning constraints are not considered).

Figure 1 illustrates a sampling event where the reward for
a k = 4 time step is determined. The environment (target
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Fig. 2. Numerical simulations showing the calculation of the desired event horizon.

and search states) are predicted forward to that step and
random samples (represented by the green z values) are
drawn uniformly from the region bounded by the two dashed
green circles. This region is the furthest distance a vehicle
could travel by time step £ = 3 (inner ring) and k = 4 (outer
ring). The samples represent possible future vehicle positions
and are given by v, = (2s,ys), where s =[1,2,...,5] is a
sampling index. Also shown in the figure are the vehicle’s
position and heading (green circle and arrow) and the target’s
initial position and final location, for the k = 4 time step (red
diamonds and arrows).

To ensure diversity, a minimum number of samples
Smin are required for each step. However, the total num-
ber of samples increases beyond the minimum propor-
tionally to the increased sampling space volume S =
max(Smin, Smin(An/As)), where A; is the vehicle’s sens-
ing area and Ay defines the area of the sampling ring. The
sampling area will increase with increased radial distance
from the vehicle’s current position.

At each sample position, vg, the vehicle estimates the
potential reward given its knowledge of the inferred envi-
ronment. The look-ahead reward for step k is calculated by
summing the reward values of all the samples for that time
step,

s
J = Z(Jtarget(vs) + Jsearch(vs))- ®

s=1

Note that these calculation are for a single vehicle and
therefore use the reward functions defined by equations (3)

and (5).
The reward value, J; is computed for k =
Nuins - - -, Nmaz and the resulting set of discrete values are

fit to a spline curve and smoothed with a low pass filter to
give function f(t), where ¢ is now a continuous value of
time. The first and second derivatives of the spline function
are used to define the curvature of the function as [17]

f@®)"

KO =05 e

The desired event horizon, N, = round(min(K)), is set
to be the location of minimum curvature, or the time step
where the reward decreases the most.

Figure 2 shows two examples of a vehicle determining
its ideal event horizon. In the figures the solid green circles
show the vehicle with its initial heading direction. The boxes
mark the search grid and the shading (white to dark gray)
indicate the length of time since it has been searched. The
red diamonds are the target initial and end (darker red)
positions. The green dashed circles show the minimum and
maximum sensing area for the look-ahead spaces under
consideration. The blue dashed circle shows the approximate
sensing boundary that a vehicle may travel for its chosen
event horizon. In Figure 2(a) the chosen event horizon
encompasses the cluster of vehicles close to the boundary,
but does not extend beyond that point. This ensures that the
reward of detecting those vehicles will be considered when
optimizing the routes. The second example in Figure 2(b)
shows a reward that will not increase significantly beyond
the first step. In this case a more conservative event horizon
is chosen.

Monte Carlo runs were used to compare the decisions
chosen when using the ideal and maximum event horizons.
In 100 simulations the final decision agreed between the two
methods 84% of the time.

C. Vehicle Grouping for Joint Optimization

A second method for reducing complexity is employed to
eliminate unnecessary cooperation between vehicles. Vehi-
cles that may impact each other are grouped together and
jointly optimize their paths. Vehicles outside of the group
are not accounted for in the groups optimization process.

Groups are formed among vehicles who have intersecting
decision spaces. The vehicle’s decision space is the portion
of the environment a vehicle may sense given its ideal
event horizon, N,. Therefore it is the area contained in the
circle with radius r4 = r, + N, V,At, and center location
(zy,yy). Given two vehicles centered at (x,1,%,1) and
(Zy2, Yv2) with decision radii 741 and rgo. If (rg1 + 742) <
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V(@1 — 52)% + (Yu1 — Yu2)? then the vehicle’s decision
space will intersect and they are grouped together.

Vehicles need only intersect with one other vehicle in the
group to be clustered together. All vehicles not belonging to
a group optimize their paths individually. Groups adopt the
maximum lookahead step of the members to jointly optimize
their paths.
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Fig. 3. Application of grouping algorithm to connect vehicles with
intersecting decision spaces.

Figure 3 shows a simulation example of the grouping
algorithm. In this example five vehicles and seven targets are
initialized with random positions and headings and placed in
an unsearched operational area. The vehicles each compute
their desired event horizons, N, and use them to determine
their decision space, a circle with radius r4 (shown with the
blue-dashed circle). Vehicles are grouped with peers whose
decision spaces overlap. The dashed green lines connect
vehicles that belong in the same group.

D. Vehicle Routing

The algorithm is implemented in a discrete simulation with
the main components shown in Figure 4. In the simulation
each vehicle (sensor) garners the information in its sensing
radius and incorporated it into its target state estimates. The
new information is also shared with neighboring vehicles and
every vehicle updates their operating picture. The vehicle’s
estimated environment (target states and grid cell values) and
peer state information (position and velocity) is input into the
routing algorithm which proceeds as follows:

1) Each vehicle determines its ideal event horizon, IV, by

the process described in Section IV-B.

2) Vehicles are grouped together when their decision space
intersects. The decision space is estimated using the
vehicles variable event horizon. (Section IV-C)

3) For each group a RHC is used to determine the best
routes for all vehicles based off the joint reward func-
tions defined in equations (6) and (7).

4) The vehicles are commanded to the roll angle necessary
to follow their optimal route.

5) Each vehicle moves forward through the discrete sim-
ulation (Figure 4) by one time step and the process is

repeated the next time the routing block is called.

V. SIMULATION RESULTS

This section presents results that are obtained using a sim-
ulation structure outlined by Figure 4. These results illustrate
the concepts of cooperatively searching and tracking.

Figure 5 shows the results of two vehicles tracking three
targets at time step k£ = 100 seconds. The targets and vehicles
were initialized with random position and heading directions.
The green lines show the UAV vehicle paths. The red dotted
lines indicate target tracks, with the current position given
by the diamond and heading arrow. The current state of the
searched area is shown in gray. Darker gray indicates that
it has been longer since that area was searched. The figure
shows that at the current time a significant percentage of the
operational area has been searched. It is also evident from
the figure that the vehicles maintain paths which follow the
targets.

This simulation was run for a total of 300 seconds and the
tracking and search results are compared for four different
routing algorithms. The first implementation is the grouping
algorithm as presented in Section IV-D. The second is a
joint implementation where all vehicles mutually decide their
next decision step using the maximum allowed event horizon
and an exhaustive search of all the RHC paths. Third is an
individual optimization where each vehicle optimizes its path
regardless of other vehicle behavior. And the fourth is a non-
optimized implementation, used for comparison, where the
control decisions are made randomly.

TABLE I
AVERAGE ERROR AND STANDARD DEVIATION OF THE TARGET POSITION
(M) FOR THREE TARGETS WITH TWO SENSORS.

| Target 1 | Target 2 | Target 3 | Mean
Random 81.4+/-952m | 57+/-40.2m 262+/-202m | 134m
Individual | 12.94/-14.2m | 168.3+/-188m | 16.4+/-33m 65.9m
Grouped 13.4+/-142m | 13.34/-23.6m 40+/-39.6m 22.2m
Joint 12.5+/-143m | 12.64/-23.7m 22+/-32.4m 15.7m

Table I shows the tracking error of all three targets for
each routing implementation. As expected all optimization
algorithms outperform randomly chosen directions. Also on
average the joint implementation provides the best results
by tracking all three targets with an average of 15.7m while
the grouping algorithm does slightly worse at 22.2m. The
individually optimization tracks target one and three well at
the expense of losing target two. The grouping algorithm
does the best at searching the operational space. It maintains
an average of 67.2% searched with the joint optimization
at 64.2%, individual optimization at 60.1%, and random at
53.7%. Though the joint optimization tracking results are
slightly better, the grouping algorithm was able to achieve
its results with an 86% increase in speed.

VI. CONCLUSION

This paper presented an improved method for cooper-
atively searching for and tracking ground targets using a
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Fig. 5. Simulation of two vehicles and three targets and their tracks after
100 seconds.

combined RHC with variable event horizon. The vehicles
were routed to positions of maximum reward for both
reducing uncertainty in target estimates and exploring new
areas. A grouping algorithm was presented which reduced
the computation time without significantly decreasing the
algorithm’s effectiveness.
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