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The mortality rate of many complex multicellular organisms

increases with age, which suggests that net ageing damage is

accumulative, despite remodelling processes. But how exactly

do these little mishaps in the cellular level accumulate and

spread to become a systemic catastrophe? To address this

question we present experiments with synthetic tissues, an

analytical model consistent with experiments, and a number of

implications that follow the analytical model. Our theoretical

framework describes how shape, curvature and density

influences the propagation of failure in a tissue subjected to

oxidative damage. We propose that ageing is an emergent

property governed by interaction between cells, and that

intercellular processes play a role that is at least as important

as intracellular ones.

1. Introduction
As an organism ages, its cells shrink or enlarge, increase their

lipid and pigment content, and lose their functionality and ability

to proliferate. Mechanical theories of ageing typically focus on

the biomolecular mechanisms governing metabolism, cell damage

and repair, such as oxidative stress, shortening telomeres and

various genetic factors [1–5].

However, ageing is a complex phenomenon that spans

multiple time and length scales. Organisms do not ultimately

die because they run out of cells, but because cellular damage

manifests as larger-scale problems in tissues and organs, through

a cascade of interactions. It remains unclear how failures

dynamically propagate and accumulate to lead to frailty, ageing-

related diseases, and ultimately, death [6–10].

The catastrophic end state, universality of survival statistics,

and the irreversible nature of failure can be understood in terms

of the dynamics of a network of interdependent components [6].

According to this interdependence network theory of ageing, if a

2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
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component fails, then any other component that crucially depends on it will also fail. As a result, in well-

connected interdependence networks, small failures will cascade into larger ones, and the probability of a

system-wide catastrophe will monotonically increase with time, consistent with experimentally observed

survival curves. The theory also predicts that the catastrophe is unavoidable even when repair rates far

exceed the damage rate.

Some experimental work has been done, especially in cancerous tissues, to determine the effects of

intercellular communication and stress [11–15]. These cooperative effects, our earlier experiments [9]

and novel experiments reported here motivate us to view a tissue as a simple interdependence network

where cells influence their neighbours’ response to damage via various diffusive factors.

Our aim here is to put forth a quantitative theory of tissue failure that is consistent with experimental

data. In order to bridge microscopic (cellular) damage and macroscopic (organismic) catastrophes,

we study the failure dynamics of an intermediate structure, the tissue. Specifically, we determine

the relationship between damage propagation in functioning healthy tissues and the global and local

properties, such as shape and density.

While the postulates of the quantitative model presented here are motivated by experiments on

mammalian cells, we might expect similar results to also hold for eukaryotic colonies and bacterial

biofilms where the survival of cells are linked to one other through a number of signaling and cooperative

factors [16]. Thus, our results can be interpreted more generally, as the spatial dynamics of a cooperative

population.

This paper is organized as follows: we first present experimental data on synthetic tissues that form

the basis of our quantitative model. We then present analytical and computational results describing how

failure propagates across a tissue.

2. Results

2.1. Motivating experiments

Rat fibroblasts were encapsulated within hydrogels of differing geometries, in particular, a triangular

prism with 30◦, 60◦ and 90◦ corners and a ‘flat’ cylinder. The distance between cells was measured

to be quite uniformly distributed at approximately 40 µm, much larger than the size of a fibroblast,

approximately 10 µm.

The cell-laden hydrogels were subjected to continuous oxidative stress through cell culture media

containing hydrogen peroxide (0.2 mM). Throughout the duration of the culture, live and dead cells

were stained and counted in order to measure the death rate at the edges, corners and bulk of the

cell-laden hydrogels. The hydrogel material, which is arginine-glycine-aspartic acid (RGD) conjugated

polyethylene glycol- 4-arm acrylate (PEG–RGD), was chosen to prohibit cells from migrating or

proliferating [17,18]. This way we ensured that the observed effects were not due to a loss or gain of

physical contact between cells, but due to intercellular cooperation via factors secreted by the cells that

diffuse through the hydrogel medium. Furthermore, when the cell density is sufficiently low, the ageing

effect disappears since the intercellular distance prohibits the interactions [9]. In this dilute limit the death

rate increases, further supporting our hypothesis that ageing is driven by intercellular interactions rather

than limitations in the externally provided resources.

We observed that cells located at smaller angles die faster than those at larger angles (figures 1 and 2).

We also observed that the cells encapsulated in a triangular geometry died faster than those encapsulated

in a disk geometry (figure 1a). In addition, cells started dying close to the edges and corners, and the dead

layer propagated inwards. Specifically, when we plot the dead layer thickness as a function of time for

the 30◦, 60◦, 90◦ and 180◦ cases, it was seen that the smaller angles experienced faster propagation than

the larger ones (figure 1b).

These observations are unlikely to be caused by a diffusion limitation since the nutrient and oxygen

diffusion penetration length is much larger than the height of the tissue, and thus oxygen and nutrients

are in excess. Furthermore, the geometry of the samples are effectively two-dimensional planes, allowing

every cell to receive equal amounts of external resources, which mostly diffuse from the top and bottom

inward. Note that if the transport of nutrients and waste were the primary problem, we would expect to

see the centre die first and propagate outwards, the opposite of what we observed.

The second, and perhaps more interesting reason that allows us to hypothesize that there is a

cooperative interaction between cells is the following: if cells died only due to oxidation, then we would

see a constant rate of death (e.g. 5% of the remaining live cells would die every day). However, we
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Figure 1. Dependence of population dynamics on geometry. (a) Images taken at time points 0, 8 and 16 h (top to bottom) after the

start of stress treatment which show the collapse of each region of the geometry. Live cells (shown in green, irst row) mark the initial

conditions and dead cells (shown in red, remaining rows) show decay at the speciied time points. A layer of dead cells forms and rapidly

thickens until tips are completely consumed and the population collapse propagates inwards. Plotted in (b) is the penetration depth, i.e.

the thickness of the dead cell layer, as a function of time for the 30◦, 60◦, 90◦ and 180◦ cases. We obtained the penetration depth by

quantifying the dead cell number density at time 8 and 16 h (c), delineating the region separating the dead cell layer from the live cells

(shown as thin white lines), and measuring the thickness of this layer from the tip. We used the dead cell number density as opposed

to light intensity because edges appear brighter in the microscope images due to swelling of the edges, and not an increased dead cell

population. The statistically signiicant diferences have been marked with an asterisk, where a two tailed t-test with unequal variance

gives p values of 1.6 × 10−4, 0.012, and 0.006 for blue versus green, blue versus yellow, and yellow versus green curves, respectively, at

the 16 h mark.

observe an accelerated rate of death (e.g. every day a larger percentage of the remaining live cells die).

This suggests that lack of cells contributes an extra death rate in addition to oxidation and other single-

cell-level causes of damage. This was also supported by our earlier experiments, where death rate was

not time-dependent when cells were separated far enough that they could not interact [9].

It should be noted that the increased fluorescence around the edges of the hydrogels is due to swelling

and induced edge curvature from the manufacturing process. Because of this, the fluorescence level was

not used to count cells. Instead, only individual points were counted and remapped to density-based

heat maps.

2.2. Analytical theory

To make sense of the geometry dependence of tissue lifetime and population dynamics we propose an

analytical model, the assumptions of which, stated qualitatively, are as follows. (i) There exist damaging

agents in the intercellular environment, and the cells counter this by secreting diffusive factors. Here we

refer to the latter as ‘cooperative factors’ (CFs). The effect of CFs may be either direct or indirect, for
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Figure 2. Agreement of experiment (points) and theory (solid curve). The survival of cells acclimated in hydrogen peroxide for two

days (a) and cells brought to Haylick limit (b). Parameters used for the equation areβ = 3.8, α = 1.5, k = 3 (a) andβ = 3.1, α =

1.5, k = 3 (b). For comparison purposes we have also included the behaviour of the null model where cells die independently of each

other at a constant rate (dashed curve). Since the physiological requirements and biochemistry in both experiments should be similar,

we have ixed k andα and obtained the its by varyingβ using MATHEMATICA’s in-builtχ 2 test. The p values for the its are 5 × 10−15 and

1 × 10−24. The moderate diference in theβ value could be due to a diference between young and old cells in their cooperative factor

secretion rates A, or their ability to receive/process cooperative factorsΦ0.

example neutralizing oxygen species by directly binding to them, catalyzing or promoting intermediate

byproducts that react with them, or participating in reactions or reaction cascades that activate higher

order cell repair mechanisms. (ii) The probability of death of a cell increases with the relative abundance

of the non-neutralized damaging agent, as given by first-order reaction kinetics. (iii) Cell lifetimes are

much larger than the time it takes for the CF to diffuse throughout the sample, and the decay time of the

molecule.

To be more precise, we assume that the concentration φi of CF at position r secreted by a single cell i

located at ri is approximately governed by the diffusion equation,

∂φi(r)

∂t
= D∇2φi(t) − γφi(r) + Aδ(r − ri), (2.1)

where γ and D are the decay rate and diffusion constant of the CF in the extracellular matrix. The total

concentration of CF experienced by cell i is then given by the sum of the secretions from all cells Φ(ri) =
∑

j φ(|ri − rj|).

Secondly, given a local concentration Φ(ri) near cell i, the probability of death per unit time is assumed

to have a Michaelis–Menten–Hill form,

Pi =
αΦk

0

Φ(ri)k + Φk
0

, (2.2)

where Φ0 is a constant that characterizes a threshold of cooperative factor concentration below which

the cell’s survival is compromised, and k ≥ 1 is the Hill constant, determined by the stoichiometry of

the reactions in which φ is consumed; α is a proportionality constant that connects the probability of

death to the concentration of cooperative factors or some unspecified molecule or structure that reacts

with it.

We will now analytically solve the survival characteristics of the tissue in the bulk under certain

reasonable approximations, and also simulate the system. The steady-state solution of (2.1), with

appropriate boundary conditions, gives the influence of all surrounding cells on cell i:

Φ(ri, t) =
A

4πD

∫
Ω

e−λ|r−ri|n(r, t)

|r − ri|
d3r, (2.3)

where n(r, t) is the cell density at a given position and time. Every cell experiences a different amount of

CF depending on the number of functional cells that surround it. In general, those near the boundary of

the tissue have lesser neighbours. To calculate the overall loss of population, we calculate the cooperative

factors received, averaged over position:

〈φ(ri, t)〉i =
1

N

∫
Ω

n(r, t)φ(r, t) d3r, (2.4)
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Figure 3. Dependence of population curves on difusion length 1/λ (a), Hill coeicient k (b), and required cooperative factor threshold

Φ0 (c). We compare simulations (dots) with analytical theory (solid line) for 1/λ = 1, 2, 5, 10, 100 (black, blue, orange, green, red)

units (a); and k = 1, 2, 3, 3.5 (black, blue, orange, green) (b), andΦ0 = 350, 300, 250, 200 (green, orange, blue, black) (c). Remaining

parameters are kept constant at N = 2000, L= 1,Φ0 = 300, k = 3 and 1/λ = 5 units.

where N is the total number of cells. In the limit λL � 1, this expression is analogous to the problem of

finding the electrostatic energy of a spherical charge distribution. In this limit, the result is well known,

〈φ(ri)〉i = (A/4π)6N/(5L). For an arbitrary λL ≡ d we obtain

〈φ(ri, t)〉i =
βΦ0N(t)

N0
(2.5)

and

β ≡
6AN0[6 − e−d(6 + 6d + 3d2 + d3 + d4/4)]

(πLd5DΦ0)
(2.6)

for a uniform cell density N ≡ 4πL3n(t)/3. As the cells die near the boundaries with higher likelihood,

the uniformity assumption will break down. However, the agreement between discrete simulations and

analytical theory indicates that the assumption of uniformity introduces a small overall error. We expect

this error to be proportional to the surface area to volume ratio of the tissue.

The population of the cells is determined by their rate of death, dN/dt = −PN, which can be rewritten

by substituting the approximation (2.5) into (2.2),

dN(t)

dt
=

−αN(t)

1 + (βN(t)/N0)k
. (2.7)

This equation can be solved exactly:

N(t) =
N0

β
[W(βk e−αkt+βkNk

0 )]1/k, (2.8)

where N0 is the initial population of the tissue, and W(x) is the Lambert function, recursively defined

by W(x) = log(x) − log(W(x)) and can be expanded further by resubstituting W(x) on the right hand side,

e.g. W(x) ∼ log(x) − log(log(x) − log W(x)) and so on.

In figure 2, we compare this theoretical result with experimental young and ‘old’ cell populations [9].

The former group was obtained by acclimating neonatal rat cells in oxidative media for two days,

whereas the latter group was obtained by repeated cell division of the neonatal cells until they reached

the Hayflick limit. The populations of both groups, encapsulated in a three-dimensional hyrogel, were

measured every day. In both cases, we see that the qualitative shape of the survival curves are governed

by the interdependence effect, although the old cells die quicker. The agreement between theory and

experiment is acceptable.

In figure 3, we directly simulate the population dynamics of a tissue consisting of cells with random

positions to compare it with our approximate analytical formula (2.8) and find good agreement.

To obtain the bulk lifespan τb of the tissue, we will first approximate the Lambert function by only

keeping the leading term in its recursive definition, W(x) ∼ log(x) (the accuracy of this approximation is

demonstrated in Fig. 4 with red dashed lines). This gives us,

N(t) ∼ N0(B − Ct)1/k, (2.9)

 on February 21, 2018http://rsos.royalsocietypublishing.org/Downloaded from 



6

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:171395
................................................

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1.0

time

fr
ac

ti
o
n

al
iv

e

0 5 10 15 20 25 30

0.005

0.010

0.050

0.100

0.500

1

time

ce
ll

d
ea

th
ra

te
0 5 10 15 20

0

100

200

300

400

ti
ss

u
e

li
fe

ti
m

e

2 4 6 8 10 12
1

2

3

4

5

6

7

8

fa
il

u
re

p
ro

p
ag

at
io

n

v
el

o
ci

ty
,

in
u
n
it

s 
a

/2
l

cell density, in units of F0l
2 D/Ab = An0/F0l

2D

(a) (b)

(c) (d)

Figure4. Populationdynamics of a strongly interacting tissuemodel. In all panels the solid black curves are the exact analytical solutions,

whereas the dashed curves are approximate solutions based on equation (2.9). In (a) and (b)we plot the fraction of surviving cells and cell

death rate as a function of time. The systemparameters are {α, k, N0} = {1, 2, 1000}, and the solid curves, from thick to thin, correspond

toβ = 2, 4, 6, 8, 10. In (c) and (d) we display the approximate formula for tissue lifetime as a function ofβ ≈ AN0/(Φ0λ
2D), where A

is the CF secretion rate, N0 the initial population,Φ0 the threshold CF level, 1/λ the CF decay length and D the difusion constant of the

CF in the medium. In (d) we plot failure propagation velocity from the surface to bulk as a function of cell density.

where B = 1 + k log(β)/βk and C = αk/βk (note that when β is large B ∼ 1 and N(0) ∼ N0, as it should be).

Then, from the approximate form (2.9), the lifetime τb can be estimated by setting n(τb) = 0,

τb =
βk + k log β

αk
. (2.10)

Under the same approximation, the cell mortality rate (probability of death per unit time) is

−
1

N(t)

dN(t)

dt
≡ µ(t) =

α

1 + βk + k log β − αkt
. (2.11)

These approximate and exact analytical results are plotted in figures 3 and 4. The former shows the

agreement between analytical theory and simulations.

Since the cells located on the surface of the tissue have less neighbours, and thus less cooperative

factors, we should expect failure to propagate from the surface towards the bulk, as observed in the

experiments we report. If the radius of curvature of the shape of the tissue is much larger than the

diffusion length 1/λ, a cell at the surface will be exposed to half of the cooperative factors relative to a

cell in the bulk. Thus the population density near the surface ns(t) can be found by simply letting β → β/2

in identities (2.8) and (2.10).

We will now estimate the velocity v = dx(t)/dt of failure propagation from the surface of a tissue

of thickness (or radius) L when L � 1/λ. At t = 0 the cells close to the surface have a lifetime of τs =

1/αk + log(β/2)/α(β/2)k. Once this initial layer dies, we have a new boundary and the same process

repeats itself with a new and lesser N0 = N(τs). This process can be iterated in continuous time, up until

time t at which the bulk collapses, or the implosion is complete. i.e. whichever is met first: t = τb or

x(t) = L. We obtain the death propagation velocity as v ≡ dx/dt ≈ (2λ)−1/τs(n). That is,

v(t) =
α

2λ

(

1

k
+

log(b(t)/2)

(b(t)/2)k

)−1

, (2.12)

where b(t) = An(t)/(Φ0λ
2D) ∼ AN0(B − Ct)1/k/(Φ0λ

2D) is defined analogously with β.
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Equation (2.12) can be integrated numerically to yield the failure depth x(t) =
∫t

0 v(t) dt as a function of

time. Unsurprisingly, the velocity is nonzero at all times; however inspecting (2.12) reveals a non-trivial

density dependence: at high cell densities the velocity is constant, independent of n. As n decreases v

decreases, and reaches a minimum value. As n continues to decrease, v increases again, and diverges at

some critical density that makes the parenthesis zero (figure 4). This is the critical density at which bulk

death dominates surface death.

Organs have different shapes, and parts of a given organ can have varying degrees of curvature.

In order to determine how the shape and curvature of a tissue affects its lifetime, we studied three

idealized geometries. A tetrahedron, a cube and a sphere were formed with the same initial cell density

and total cell number. The population dynamics of these three geometries were then simulated. The

survival curves for these geometries can be seen in figure 5.

Since sharp corners are more likely to decay due to the lack of neighbours, the ‘live surface’ becomes

progressively rounder as the failure propagates inwards. In the mean time, cells in the bulk also thin

down and, depending on the simulation parameters, may or may not reach the critical density before

boundaries collapse inward.

3. Discussion
Ageing is often attributed to microscopic mechanisms that cause failure at the cellular level. Our

analytical, computational and experimental results support the view that ageing is due to the failure

of intercellular processes as much as it is due to intracellular ones.

We have studied the details of how interactions between cells lead to the failure of the tissue. We have

observed, through experiments and simulations, that damage starts from the boundaries of the tissue,

and propagates inwards. At edges, external planes and points, cells have lesser neighbours compared

to the bulk, and thus receive less cooperative factors. Since the number of factors received by a cell is

proportional to its probability of survival, failure originates near the boundaries and propagates inwards.

In addition, we found that the inward collapse is the fastest for geometries with the largest curvature or

corners with the smallest angle. This trend was demonstrated experimentally and theoretically.

We have also seen that the larger death rate at the corners and edges causes the live cell surface

to round up. The rounder boundary, in turn, decelerates the curvature and, thus, the local death rate.

Experimentally a qualitative curvature/angle dependence of the collapse rate was demonstrated for the

three corners of a triangular prism.
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The most important factor determining the qualitative properties of the population collapse is the

Hill parameter k. A high value of k causes an abrupt failure, while a low value of k causes a gradual loss

of cells. The exact value of k should depend on the microscopic mechanism by which the cooperative

factors react with the damaging agent(s). Typically, large molecules are often secreted in low numbers

but have large impacts, while small molecules individually have a lesser impact, but can be synthesized

quickly. If, for example, a large molecule is secreted which helps reduce radicals or peroxides, which have

been shown to damage cells and their DNA [19], a single cooperative molecule may react with dozens

of hazardous agents. On the other hand, if the cooperative factor is a small molecule that chemically

binds to the cell, or a molecule within, which causes genetic expression or the activation of different

biochemical pathways, a large number of molecules would likely be needed to increase the cell’s chance

of survival. Therefore one should expect k and φ0 to not necessarily be independent of each other.

Our experiments involved synthetic mammalian tissues with only one cell type, and motivated

the assumptions that formed the basis of our theoretical analysis. However our conclusions may also

hold true for the ageing dynamics of a larger class of cooperative multicellular systems. Such systems

may potentially include tumours, biofilms, colonies and microbial consortia. Thus, we reiterate that

ageing is not a property of the individual components of a system, but an emergent characteristic of a

strongly interacting, interdependent ensemble of components [6]. However, we should expect important

qualitative differences in systems where a limiting cooperative factor is produced centrally and/or

transported by a non-diffusive mechanism.

We should caution that there may be multiple cooperative factors with different diffusion lengths

and different influences. Furthermore, the survival of cells may depend on non-trivial combinations of

cooperative factors.

We expect multiple cooperative factors with similar diffusion lengths and influence not to change the

mathematical structure of our theory, since they can be labelled as one, and summed into φ. If the cells

vitally depend on multiple cooperative factors with different diffusion lengths and production rates,

one might still get away with including in φ only the limiting one. However if there is a non-trivial

dependence on substitutable combinations, e.g. if survival depends on (1 AND 2) or (3 AND 4), then

equation (2.2) should be modified appropriately, as

Pi = α1θ (φ1)θ (φ2) + α1θ (φ3)θ (φ4), (3.1)

where the θs are Hill functions and concentrations of the four diffusive factors φ1, φ2, φ3, φ4 to be solved

from equation (2.1), with different D, γ and A constants, but should otherwise have the same functional

form (2.3) each. We have not studied the implications of such complications, since we have not seen any

experimental evidence for them. However, our approach can be adapted accordingly, if such a complex

arrangement of cooperative factors are observed to be a requirement for cell survival.

4. Material and methods

4.1. Isolation and maintenance of cardiac ibroblasts

Neonatal rat cardiac fibroblasts (CFs) were isolated from 2-day-old Sprague-Dawley rats (Charles

River Laboratories). The rats were sacrificed by decapitation after CO2 treatment, and the hearts were

immediately excised following the Institutional Animal Care and Use Committee (IACUC) guidelines

of the University of Notre Dame. The excised hearts were digested in trypsin (Life Technologies) at

4◦C for 16 h with gentle agitation. Next, the extracellular matrix of the hearts was further digested

using collagenase type II (Worthington-Biochem) at 37◦C with several cycles of agitation and subsequent

trituration. Then the mixture was filtered to separate the undigested tissue pieces and the filtrate which

contained cardiomyocytes and CFs was seeded into a flask. Using the differential attachment of the

two cell types, CFs were separated from cardiomyocytes at the end of a 2 h incubation. These CFs were

passage 1 (P1) and they were maintained by media changes every 3 days. CF cultures were passaged

at approximately 80% confluency using trypsin–EDTA (0.05%; Life Technologies) and maintained in

standard culture media (DMEM (Dulbecco’s modified Eagle’s media) supplemented with 10% fetal

bovine serum (Hyclone) and 1% penicillin/streptomycin (Corning)).

4.2. Preparation of cell-laden hydrogels and determining cell survival

Passage 4 CFs were trypsinized and 1 × 105 cells were mixed 1 : 1 with 20% (w/v) PEG (Jenkem)–

RGD (Bachem) conjugated PEG (PEG-RGD; PEG : PEG/RGD, 17 : 3) which contained 0.05% (w/v in
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phosphate buffered saline) final volume of photoinitiator (Irgacure 2959, BASF). Then, 10 µl of the

mixture was sandwiched between 125 µm thick spacers, and exposed to 6.9 mW cm−2 UV irradiation

for 20 s. Triangle-shaped photomasks were used during UV exposure to control the shape of the

hydrogels. These conditions allow us to model three-dimensional tissues where there exist no diffusion

limitations for nutrients. The hydrogels were exposed to stress by changing their media to standard

culture media supplemented with 0.2 mM H2O2. Cell survival was determined using a Live/Dead assay

(Life Technologies). The hydrogels were stained using ethidium homodimer-1 (stain for dead cells) every

24 h and imaged using an inverted epifluorescence microscope (Zeiss, Hamamatsu ORCA flash 4.0). For

experiments intended to investigate the propagation of the decay front, the samples were stained at 0, 8,

16, 24 and 48 h with both calcein-AM (stain for live cells) and ethidium homodimer-1 and imaged using

an inverted epifluorescence microscope (Zeiss, Hamamatsu ORCA flash 4.0). The number of dead cells

was determined using IMAGEJ software and the decay penetration was determined by constructing a

dead cell density heat map of contrast adjusted images in MATHEMATICA, where depth was measured

as the straight-line distance from the tip to the collapse of the decay wave front. As the propagation front

has a nonlinear dependence on curvature as a function of time, the straight line distance was used to

create a measurement that could be compared across samples and conditions.

We performed all cell culture experiments in triplicate. Data points represent the mean value, and

error bars represent the standard deviation.

Ethics. All animal experiments were performed using protocols approved by Institutional Animal Care and Use

Committee (IACUC) of University of Notre Dame, in accordance with the guidelines of National Institutes of Health,

Office of Laboratory Animal Welfare.
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