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Abstract

Aim: Terrestrial ecosystems have sequestered, on average, the equivalent of 30% of anthropo-
genic carbon (C) emissions during the past decades, but annual sequestration varies from year to
year. For effective C management, it is imperative to develop a predictive understanding of the

interannual variability (IAV) of terrestrial net ecosystem C exchange (NEE).
Location: Global terrestrial ecosystems.

Methods: We conducted a comprehensive review to examine the IAV of NEE at global, regional
and ecosystem scales. Then we outlined a conceptual framework for understanding how anoma-
lies in climate factors impact ecological processes of C cycling and thus influence the IAV of NEE
through biogeochemical regulation.

Results: The phenomenon of IAV in land NEE has been ubiquitously observed at global, regional
and ecosystem scales. Global IAV is often attributable to either tropical or semi-arid regions, or to
some combination thereof, which is still under debate. Previous studies focus on identifying cli-
mate factors as driving forces of IAV, whereas biological mechanisms underlying the IAV of
ecosystem NEE are less clear. We found that climate anomalies affect the IAV of NEE primarily
through their differential impacts on ecosystem C uptake and respiration. Moreover, recent studies
suggest that the carbon uptake period makes less contribution than the carbon uptake amplitude
to IAV in NEE. Although land models incorporate most processes underlying 1AV, their efficacy to
predict the IAV in NEE remains low.

Main conclusions: To improve our ability to predict future IAV of the terrestrial C cycle, we have
to understand biological mechanisms through which anomalies in climate factors cause the IAV of
NEE. Future research needs to pay more attention not only to the differential effects of climate
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1 | INTRODUCTION

Terrestrial ecosystems have sequestered an average of nearly 30%
of anthropogenic CO, emissions since the 1960s (Ballantyne,
Alden, Miller, Tans, & White, 2012; Le Quéré et al., 2014). How-
ever, the magnitude of this terrestrial carbon (C) sequestration
varies from year to year (Le Quéré et al., 2013), changing from a
c. 0.5 Gt C/year C source in 1987 to a 4.0 Gt C/year C sink in
2011. The large interannual variability (IAV) of land C uptake,
rather than oceanic C uptake, primarily contributes to the yearly
variation in atmospheric CO, concentration (Figure 1; Bousquet
et al., 2000; Houghton, 2000; Knorr et al., 2007). Thus, understand-
ing the causes of the interannual variability (IAV) in land C seques-
tration is essential for future projections of the coupled C cycle
and climate system. At ecosystem scales, many studies have also
found that the IAV of net ecosystem CO, exchange (NEE) with the
atmosphere is a ubiquitous phenomenon across almost all sites of
eddy-flux measurements (Baldocchi, Chu, & Reichstein, 2017; Bal-
docchi, Falge, Gu, et al., 2001; Baldocchi, Ryu, & Keenan, 2016;
Yuan et al., 2009). However, the mechanisms underlying the IAV in
NEE across scales from the ecosystem to the globe have not been
fully understood to an extent that can help improve our predictive
capability of the C cycle. If the IAV of NEE is caused purely by cli-
matic variability, we can extrapolate measurements from one year
to another year as long as we have realistic climatic data and sce-
narios. If climate variability induces indirect effects on ecosystem
processes via biogeochemical regulation, we need long-term obser-
vations to develop sound understanding of relationships between
NEE and climatic variables before we can reasonably predict C
fluxes. In these circumstances, ecological models that do not
include appropriate mechanisms often successfully simulate NEE in
one year but fail in others (Griffis & Rouse, 2001; Keenan, Baker,
etal, 2012).

This paper comprehensively assesses the current status of our
understanding of the IAV of the land C sink. We first review literature
on the phenomena of the IAV of the land C sink at global, regional and
ecosystem scales, and then identify regional contributions to the global
IAV of NEE and the driving climate factors and biological mechanisms
underlying the IAV of NEE at the ecosystem scale. We then evaluate
model efficacy in predicting IAV and explore causes for the mismatches
between models and data. Finally, we offer recommendations for

future studies to measure and model IAV better in order to improve
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anomalies on photosynthesis and respiration but also to the relative importance of the C uptake
period and amplitude in causing the IAV of NEE. Ultimately, we need multiple independent
approaches, such as benchmark analysis, data assimilation and time-series statistics, to integrate
data, modelling frameworks and theory to improve our ability to predict future IAV in the terres-

climate change, interannual variability, net ecosystem exchange, photosynthesis, respiration

our predictive understanding of the global C cycle. This review sug-
gests that the IAV in NEE results from anomalies in climatic variables,
such as temperature, precipitation and radiation, which differentially
influence photosynthetic C uptake and respiratory C release processes

through biological regulation.
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FIGURE 1 (a) The interannual variability of atmospheric CO,
growth rate, land and ocean carbon sinks from 1958 to 2015. (b)
Conceptual diagram linking the terms and processes used in this
review. Atmospheric CO, is taken up by the land and the ocean. In
terrestrial ecosystems, plants take up CO, to form gross primary
productivity (GPP). Some of the photosynthetic carbohydrate is
released into the atmosphere via autotrophic respiration (Ra). The
remaining carbohydrate forms net primary productivity (NPP). Soil
organic matter is decomposed by microbes via heterotrophic
respiration (Rh) to release CO, into the atmosphere. The balance
of carbon uptake and release at the ecosystem level forms net
ecosystem exchange (NEE). At the regional or global scale, the land
carbon (c) sink is formed by excluding non-biotic C release or
removal caused by fire, harvest or other disturbances
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ECOSYSTEM SCALES o
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The phenomenon of the IAV of the C cycle was first reported from uwj 0.0
long-term measurements of the atmospheric CO, mixing ratio at the 4 05}
South Pole (Keeling, Adams, et al., 1976) and Mauna Loa observato- g 40!t
ries (Keeling, Bacastow, et al., 1976). At those observatories, the ‘3 '
long-term change in the atmospheric CO, growth rate was found to Q 157
be highly variable; it could double or halve from one year to the -2-019.80 19‘85 19'90 19'95 20'00 20'05 20'10
next. This fluctuation was first considered to be associated with the Years
Southern Oscillation and primarily oceanic events (Bacastow, 1976). 300
The phenomenon of IAV of atmospheric CO, concentration was % b ° y =0.14x + 62.12
then detected again from the measurement of 2,419 samples of air S 2501 R?*= .22, p<.05
collected in the North Pacific Ocean during 1959-1981 (Keeling, ‘E 200 |
Whorf, Wong, & Bellagay, 1985). The data record of atmospheric %
CO, observations is now more than five decades long, and the w 150 |
annual growth rate continues to exhibit high variability, with rates %
spanning an order of magnitude from as low as 0.29 ppmv in 1964 &J’ 100 f
to as high as 3.15 ppmv in 2015 (esrl.noaa.gov). e 50 |

The anomaly in the annual growth rate of atmospheric CO, con- 8

centration is now primarily attributed to the IAV in the land C sink
(Figure 1; Houghton, 2000; Le Quéré et al., 2013). Houghton (2000)
reviewed the four components that determine the atmospheric CO,
growth rate: C emissions from fossil fuel burning, net C emissions
from land use changes, ocean uptake, and the residual land sink. His
review concluded that the most important contributor to the IAV of
atmospheric CO, growth rate is the changes in land sink as induced
by anomalies in climate variables. The IAV in ocean CO, uptake is
thought to be too small to explain the anomaly in atmospheric CO,
growth rate (Le Quéré, Orr, Monfray, Aumont, & Madec, 2000). In
comparison, the land C sink can strongly regulate the atmospheric
CO, growth rate to the extent of no increase between 2002 and
2012 despite increasing anthropogenic emissions (Keenan et al,,
2016).

Both atmospheric inversions and ground-based observations show
that the land C sink varies greatly from year to year. Estimates of NEE
at the global scale from atmospheric inversion approaches showed that
the detrended global NEE ranged from an anomaly of 1.78 Pg C/year
in 1983 to —1.66 Pg C/year in 1992 in comparison with the mean
value of NEE of —1.52 Pg C/year over the 35 years (Figure 2a). At
regional scales, some tropical regions had the largest IAV, with SD in
annual gross primary production (GPP) of the order of 200-250 g C/
m? (Xiao et al, 2016). Relative to the long-term mean, GPP over
Europe decreased by 30% in 2002 because of drought when compar-
ing the period between 1998 and 2002, resulting in a strong anoma-
lous net source of NEE (0.5 Pg C/year) to the atmosphere, which is a
net C sink during normal years (Ciais et al., 2005).

The 1AVs of the land C sink at global and regional scales are in
agreement with observations at ecosystem scales. For example, the
observed NEE by the eddy covariance towers changed from 74 to
930 g C/m?/year at the site US-Blo (Blodgett Forest in the Sierra

0 I I I I I
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EC NEE (g C/m?/year)

FIGURE 2 Interannual variability of terrestrial ecosystem carbon
fluxes at (a) global and (b) ecosystem scales. (a) The detrended
yearly anomaly of atmospheric inversed net ecosystem exchange
(NEE) at the global scale from 1978 to 2013. (b) The SD of eddy
covariance (EC) measured NEE versus its average annual values at
24 sites with measurements > 8 years. See the Supporting
Information for detailed methods

Mountains of California) and from —158 to 240 g C/m?/year at the
site Be-Bra (De Inslag Forest in Brasschaat, Belgium) during the period
from 1997 to 2007 (Fu, Stoy, et al.,, 2017). Across the 24 sites that
have > 8 years of continuous measurement, the SD of NEE on average
accounts for 50% of annual NEE (Figure 2b). Besides eddy covariance-
measured NEE at the ecosystem scale, other observations, such as
tree-ring chronologies, showed large IAV in wood production in
response to climate variability (Carrer & Urbinati, 2006). Results from
long-term ecological research (LTER) programmes have also demon-
strated strong IAV in aboveground net primary productivity (NPP),
which is associated with precipitation changes, at 11 LTER sites across
North America (Knapp & Smith, 2001).

Overall, scientists have used different approaches to quantify the
IAV of land NEE at different spatial scales. The top-down atmospheric
method using CO, inversions is effective to illustrate the global scale
IAV, whereas the flux-tower observations have the advantage of pro-
viding process understanding of the IAV of NEE at the ecosystem scale.
Nonetheless, inferences from both atmospheric inversions and obser-
vations at the ecosystem scale indicate that the IAV of ecosystem C

exchange is a ubiquitous phenomenon.
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3 | REGIONAL CONTRIBUTIONS TO THE

INTERANNUAL VARIATION OF GLOBAL
LAND CARBON SINK

The IAV of the global land C sink is attributable to different regions; for
example, tropical areas are reported to play an important role in influ-
encing the IAV of terrestrial NEE (W. Wang et al., 2013; X. Wang et al.,
2014). Specifically, the IAV of the tropical land C sink is significantly
correlated with tropical land-surface air temperature during 1959-
2011, with an interannual temperature sensitivity of 3.5+ 0.6 Pg C/
year/K. The relationship between interannual changes in NEE and tem-
perature in tropical areas appears to be stronger than corresponding
relationships with precipitation and radiation (W. Wang et al., 2013).
Moreover, X. Wang et al. (2014) found that the sensitivity of land C
sink variability to tropical temperature IAV varies with time and has
increased by a factor of 1.9 = 0.3 over the past five decades. Across
coupled climate-carbon cycle models, the sensitivity of tropical land C
sink to climate anomaly over the 21st century is constrained to be
53+ 17 Pg C/K (Cox et al., 2013).

Recent studies have also shown that semi-arid areas lead to a
larger contribution to the IAV of the land C sink than other regions
(Ahlstrom et al., 2015; Poulter et al., 2014). Specifically, semi-arid sys-
tems contributed c. 39% of the IAV in global net biome production,
compared with tropical ecosystems (19%), extratropical forests (30%)
and grasslands and croplands (17%) (Ahlstrom et al., 2015). Semi-arid
regions contributed 57% of the global IAV of global GPP, which was
controlled by the IAV of precipitation in these regions (Y. Zhang et al.,
2016). In semi-arid regions, vegetation is sparse and productivity is typ-
ically low compared with tropical and boreal systems given strong
water deficits in semi-arid regions (Avitabile et al., 2016; Beer et al.,
2010). However, ecosystem C fluxes can respond quickly to precipita-
tion events (e.g. Huxman et al., 2004), leading to a unique land C sink
signature. It is important also to note that transient CO, release attrib-
utable to the ‘Birch’ effect in response to precipitation pulses is a nota-
ble property of arid and semi-arid ecosystems (Birch, 1958; Unger,
Maguas, Pereira, David, & Werner, 2010). Whereas the Birch effect
operates at shorter temporal scales (hours to weeks), associated respi-
ratory pulses can add up to impact the IAV of NEE (Jarvis et al., 2007).
The sensitivity of semi-arid systems to an increasing frequency of pre-
cipitation extremes is noticeable in global land C uptake dynamics
(Ahlstrom et al., 2015; Frank et al., 2015), further demonstrating the
central role of semi-arid ecosystems in the IAV of terrestrial CO,
fluxes.

The debate regarding the role of temperature in tropical regions
and precipitation in semi-arid regions on the IAV of global land C
uptake is proposed to be resolved by a recent study, which simultane-
ously evaluated the 1AV of land C uptake to the fluctuations in both
temperature and water availability at local to global scales (Jung et al.,
2017). Jung et al. (2017) revealed that water availability and tempera-
ture are the dominant drivers of 1AV of NEE at local areas, whereas
temperature is the main driver for the global IAV of NEE because of
the compensation amongst the responses of different regions to water

availability (Figure 3). In other words, the controlling factors and
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FIGURE 3 The relative importance of temperature versus water
availability in causing the interannual variability of land net
ecosystem exchange (NEE) at different spatial scales. The relative
dominance of temperature on NEE (NEETEMP) increases, whereas
the relative dominance of water availability on NEE (NEEWA)
decreases, with increasing spatial scales (adopted from Jung et al.,
2017)

mechanisms underlying the IAV of NEE varied at different spatial scales
(Table 1), and the importance of IAV at the ecosystem or local scales
would be cancelled out when aggregating to a regional or global scale.
Therefore, to gain a better understanding of the IAV of land C uptake,
it is necessary to understand ecosystem-level NEE variability and the

mechanisms that control it.

4 | THE IMPORTANCE OF CLIMATE AND
OTHER FORCING FACTORS TO THE
INTERANNUAL VARIATION OF ECOSYSTEM
NET ECOSYSTEM CO, EXCHANGE

Studies on the causes of the IAV of ecosystem NEE usually examine
the relationship between the yearly anomalies of NEE and the anoma-
lies of climate factors. Variations in temperature, precipitation and solar
radiation have been reported as the most important climate factors
controlling IAV in NEE in different ecosystems. Below, we discuss how
those climate and other forcing factors impact IAV of NEE, with a focus

on the mechanisms and process understanding.

4.1 | Drought and precipitation regimes

The timing and magnitude of precipitation regimes influences GPP and
ecosystem respiration (ER), thus causing variability of NEE (see the
concepts in Figure 1b). Water availability is the overall dominant driver
of the IAV in NEE at local scales (Jung et al., 2017). Drought causes
IAV of NEE in most ecosystems, even those not commonly associated
with drought, such as tropical forests (Keppel-Aleks et al., 2014; Ma
et al,, 2012; Xiao et al., 2014; L. Zhang et al., 2014). Amazon basin-
wide net ecosystem productivity (NEP, the inverse of NEE) was
reduced in drought years (Gatti et al., 2014). In wet tropical forests,

drought considerably reduces respiration, but tends to impact GPP
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TABLE 1 Scales of phenomena, driving factors, biological mechanisms and future research recommendations for understanding the interan-
nual variability of net ecosystem carbon dioxide exchange

Phenomena

Driving factors

Biological mechanism
or attributes

Global

Variation in yearly growth rate of
atmospheric CO, concentration

Primarily anomalies of temperature

Attributable to different regions,
among which tropical and semi-

Regional

Yearly anomalies of regional NEE
under heat waves, large-scale
drought and fires

Anomalies of both temperature and
precipitation, with varying roles in
different regions

Not yet well examined

Ecosystem

Yearly variation in NEE observed by
eddy-flux towers, NPP from long-
term ecological research sites, tree
rings

Temperature, precipitation, radiation
and disturbances play different
roles in different ecosystems

Differential climate sensitivity of
photosynthesis versus respiration.

arid areas contribute most

No mechanistic models yet tested
except some statistical models

Model predictive skill

Recommendation for
future research

Explore which regions contribute
most to the global IAV and how
these contributions are changing
in a changing climate

Land models used to examine IAV in
different regions

Reveal the drivers and causes of IAV
of NEE in different regions

Carbon uptake amplitude plays
more important role than carbon
uptake period

Models perform poorly, mainly be-
cause of a lack of model calibra-
tion of phenological and
physiological responses, and lag
mechanisms

Promote long-term observations,
especially in less-studied areas.
Better understand biological me-
chanisms. Use data-model fusion
approaches to improve model
prediction

Abbreviations: IAV = interannual variability; NEE = net ecosystem carbon dioxide exchange; NPP = net primary productivity.

less, as a consequence of increased light availability (Bonal et al., 2008;
Saleska et al., 2003). In temperate ecosystems, however, eddy covari-
ance observations indicate that drought-induced reductions in GPP
often exceed those of ER, leading to a reduction in ecosystem carbon
uptake (Schwalm et al., 2010; Shi et al., 2014). Drought-induced IAV of
GPP (Cai et al., 2014; Zscheischler et al., 2014) is primarily attributable
to the associated decrease in stomatal conductance (Novick et al.,
2016; Zeng, Mariotti, & Wetzel, 2005) and increases in vegetation mor-
tality, dry woody material and wildfire occurrence (X. Zhang et al,
2013). The magnitude of changes in those biogeochemical processes
are related to drought intensity and duration, the plant functional type
(Welp, Randerson, & Liu, 2007), soil characteristics (Pinter, Balogh, &
Nagy, 2010) and topography (Kljun et al., 2006).

Besides the amount of precipitation, other attributes of precipita-
tion regimes (e.g., the magnitude, frequency, interval and seasonal dis-
tribution of precipitation events) are also responsible for the IAV of
NEE (Guo et al., 2012). For some ecosystems, significant differences in
the timing and magnitude of precipitation events are more important
than annual precipitation itself for determining the IAV of NEE. For
example, C sequestration often occurs after heavy precipitation in arid
and semi-arid regions, including temperate regions with high evapora-
tive demand (Novick et al., 2004), whereas smaller precipitation events
often only stimulate respiratory responses of microorganisms (Huxman
et al., 2004; Reynolds, Kemp, Ogle, & Fernandez, 2004).

Precipitation can affect C cycling through its effects on soil water
content (SWC) (Knapp et al., 2008), temperature (Guo et al., 2015) and
incident radiation (Nijp et al., 2015) and also through its regulation of
soil nutrient availability and species composition (Sala & Lauenroth,

1982). The effects of precipitation regimes on the IAV of the C cycle

are often ecosystem specific. Studies have found that precipitation
regimes with larger but fewer precipitation events may have opposite
effects on productivity in semi-arid ecosystems (Heisler-White, Knapp,
& Kelly, 2008; Thomey et al., 2011) versus meadows or relatively
humid ecosystems (Fay, Carlisle, Knapp, Blair, & Collins, 2003; Harper,
Blair, Fay, Knapp, & Carlisle, 2005; Heisler-White, Blair, Kelly, Harmo-
ney, & Knapp, 2009; Knapp et al., 2008). Therefore, biological mecha-
nisms modify C cycling in response to precipitation regimes (Figure 4).
Lengthening of growing seasons can partly offset the effects of
drought (Wolf et al., 2016) on annual NEE, further emphasizing the
importance of multiple factors in controlling the IAV of NEE.

Radiation

AL \ -
Temperature

S AN N
Precipitation /

Y

LARVA

FIGURE 4 Schematic diagram for the conceptual relationships
between climate anomalies, biogeochemical regulation and the
interannual variability of carbon fluxes. Interannual variability (IAV) in
net ecosystem exchange (NEE) is ultimately caused by anomaly in
climate variables, which influence a variety of biogeochemical
processes, resulting in differential changes in photosynthesis (gross
primary productivity, GPP) and respiration (ecosystem respiration, ER)

Biogeochemical
Processes:
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Physiology,

Vegetation change,

Nitrogen regulation,
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4.2 | Temperature

Temperature affects all aspects of ecosystem C processes, including
photosynthesis and respiration. Increasing temperature can directly
stimulate enzyme activity and accelerate both photosynthesis and res-
piration rates, or reduce them through enzyme denaturation if temper-
ature becomes too high. If the photosynthesis and respiration of plants
and ecosystems are significantly different in response to temperature
changes, the 1AV of NEE will have a statistical correlation with annual
average temperature (Rocha & Goulden, 2008; Wen, Wang, Wang, Yu,
& Sun, 2010). Field experiments suggest that climate warming also
tends to extend growing seasons, enhance nutrient availability, shift
species composition and alter ecosystem water dynamics (Luo, 2007),
which further affects the IAV of NEE.

Even if the IAV of NEE may not have a significant relationship
with the anomalies of mean annual temperature for a given ecosystem,
it is often correlated with the anomalies of growing season tempera-
ture. For example, spring temperature helps to determine forest leaf
onset and affects the length of the growing season, thus leading to the
IAV of NEE (Richardson et al., 2013; Wu et al., 2012). Many studies
have found that annual ecosystem C fluxes are closely correlated with
spring temperature across years (Keenan et al., 2014; Krishnan et al,
2008). In addition, autumn temperature changes are significantly corre-
lated with changes in GPP and NEE (J. Zhang et al., 2011). Autumn and
winter temperature anomalies may affect respiration more than photo-
synthesis given the negligible or minor contribution of photosynthesis
to NEE during those seasons (Piao et al., 2008; Yuan et al., 2009) and
can result in lagged effects to subsequent growing seasons (Barford
et al.,, 2001). Thus, besides the direct effects of temperature on the
physiological activities of photosynthesis and respiration, temperature
change may also cause the IAV of C fluxes by changing plant phenol-
ogy and growing season, as illustrated in the conceptual Figure 4.

4.3 | Radiation

Radiation has a more important role than climate factors at local scales,
although it is a smaller driver of IAV of fluxes at the global scale, which
experiences little year-to-year variability in solar radiation (Jung et al.,
2017). Light-sensitive ecosystems respond to interannual changes in
light availability, and in fact, minor drought can increase the photosyn-
thesis of tropical forests if it results in more light (Oliphant et al., 2011).
Radiation causes the IAV of terrestrial GPP not only via its magnitude
but also via light quality (Ichii, Hashimoto, Nemani, & White, 2005;
Nemani et al., 2003). Diffuse radiation has a large influence on the IAV
of NEE (Cox et al., 2013; Reichenau & Esser, 2003). For instance, Gu
et al. (2003) described the effects of the Pinatubo volcano eruption in
1991, which produced a large number of volcanic aerosols, resulting in
the worldwide increase of diffuse radiation in the following 2 years on
temperate forest NEE. The increase in diffuse radiation enhanced
noontime photosynthesis at Harvard Forest in cloudless conditions by
23% in 1992 and 8% in 1993, respectively. Another study by Mercado
et al. (2009) suggested that the increasing fraction of diffuse radition
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resulted in a 23.7% increase in global terrestrial C sink between 1960
and 1999.

In general, diffuse radiation influences the IAV of NEE at least in
four ways. First, the increasing clouds and aerosols change the compo-
sition of the radiation spectrum (Gatebe, Kuznetsov, & Melnikova,
2014; Navrétil, Spunda, Markova, & Janous, 2007) and increase the
proportion of blue light (van Gorsel et al., 2013). Second, increasing
clouds and aerosols decrease direct radiation, reducing the frequency
of light saturation of canopy photosynthesis and making the canopy
more responsive to changes in radiation (Farquhar & Roderick, 2003;
Knohl & Baldocchi, 2008). Third, the increasing clouds and aerosols, to
a certain extent, simultaneously reduce temperature, which decreases
ecosystem respiration (M. Zhang et al., 2010, 2011). Fourth, diffuse
radiation penetrates the plant canopy more effectively, which can
increase total canopy photosynthesis (Cheng et al., 2015; Roderick,
Farquhar, Berry, & Noble, 2001). Combined, these factors influence
both photosynthesis and radiation and demonstrate the need to
include diffuse radiation measurements at tower measurements world-
wide to understand the relationship between solar radiation and the
AV of ecosystem NEE.

4.4 | Other driving factors

Fires and other disturbances, such as pests and disease, can induce C
release from ecosystems to the atmosphere. Approximately 70% of
global fire CO, emissions are from savanna and grassland systems,
where regrowth occurs rapidly after a fire and absorbs a significant
fraction of CO,, which is often of similar magnitude to the original
emissions. The C loss triggered by the fire event in one area can be
compensated by C gain during recovery in other areas. Thus, on aver-
age, fire plays a minor role in the IAV of land C uptake at global scales
(Van der Werf et al., 2010), but is often an important contributing fac-
tor to regional C fluxes, especially in relationship to drought (Poulter
et al., 2014). A synthesis of multiple data sources of atmospheric CO,
growth rate, land use change, fire emission and land carbon fluxes
showed a significant correlation between atmospheric CO, growth
rate and fire emission, but the magnitude in variation attributable to
fire emission was too small to explain the IAV of CO, growth rate (S. L.
Piao, unpublished result). Global emission of C from human disturbance
(i.e. deforestation, shifting cultivation, wood harvest and regrowth) or
pests or diseases also has a small contribution to the IAV of global land
C uptake (Houghton, 2010).

5 | BIOLOGICAL MECHANISMS
UNDERLYING INTERANNUAL VARIATION
IN ECOSYSTEM NET ECOSYSTEM CO,
EXCHANGE

The apparent relationships between climate anomalies and the IAV of
ecosystem NEE suggest underlying ecological mechanisms, which are
essential for explaining the impacts of climate anomalies on ecosystem
C cycling. Here, we synthesize studies on biological mechanisms into

three categories: statistical inference, differential changes in GPP and
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ER, and relative contributions of ecosystem C uptake phenology and
physiology to the IAV of ecosystem NEE.

5.1 | Statistical inference of biotic controls on
interannual variation of ecosystem net ecosystem
CO, exchange

Variability in climate drivers may directly affect fluxes, but may also
indirectly affect fluxes by altering the response of biota to climate (Fig-
ure 4). To isolate direct effects of climatic anomalies on ecosystem
metabolic processes (e.g., photosynthesis and respiration) from their
indirect effects, Hui, Luo, and Katul (2003) proposed a homogeneity-
of-slopes model to identify the functional change contributing to 1AV
in NEE. The model uses multiple regression analysis to partition the
observed variation in NEE to four components, namely, the functional
change, the direct effect of interannual climatic variability, the direct
effect of seasonal climatic variation, and random error. The results
showed that functional change provided slightly larger explanation
than interannual climatic variability for the observed variation in NEE
and ecosystem respiration (RE) at the Duke Forest AmeriFlux site from
1997 to 2001 (Hui et al., 2003). Using the same statistical method,
Shao et al. (2015) evaluated the relative contributions of climate effect
and biotic effect to the IAV in C fluxes for the 65 sites in the Northern
Hemisphere. They found that overall, the relative contribution of biotic
effect and climate effect to the IAV in NEE was 57 = 14 and
43 * 14%, respectively. Similar results were documented by Richard-
son, Hollinger, Aber, Ollinger, and Braswell (2007), who suggested that
40% of the variance in modelled ecosystem NEE can be attributed to
variation in environmental drivers, and 55% to variation in the biotic
response to this forcing at the annual time step. Polley, Frank, Sanabria,
and Phillips (2008) also used the regression analysis proposed by Hui
et al. (2003) to distinguish direct effects of IAV in climate on fluxes
from biotic effect (functional change) and found that functional change
accounted for more than twice the variance in fluxes of direct effects
of climatic variability. These studies highlight how the IAV of NEE is
strongly regulated by the response of ecological processes, such as
plant photosynthesis and respiration, as well as phenology and physiol-

ogy, to climate variability (Figure 4).

5.2 | Differential changes in photosynthesis
and respiration

Observed NEE reflects a fine balance between canopy photosynthetic
C influx into and respiratory efflux out of an ecosystem (Figure 1b).
Differential changes in the relative magnitude of these two opposite
fluxes determine the IAV of NEE (Figure 4). Carbon fluxes attributable
to photosynthesis and respiration are large relative to the difference
between them (i.e. NEE), which means that small differences in the rel-
ative changes in photosynthesis or respiration can lead to large IAV of
NEE. For the climate sensitivity of photosynthesis and respiration,
some studies reported that ecosystem respiration is more variable than
photosynthesis between years (Valentini et al., 2000), whereas other

studies have indicated that IAV of NEE is most often associated with
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variations in GPP and NPP rather than C release (i.e., ecosystem respi-
ration (Re) and heterotrophic respiration (Rh)) (Ahlstrom et al., 2015;
Ciais et al., 2005; Novick et al., 2015; Stoy et al., 2008).

For the relative sensitivity of photosynthesis versus respiration in
response to variability in controlling factors, it was found that GPP was
more sensitive to drought stress than ER in most ecosystems, espe-
cially in semi-arid and mediterranean climates, which experience large
variability in the amount of rainfall in the growing season (Allard, Our-
cival, Rambal, Joffre, & Rocheteau, 2008; Pereira et al., 2007). Never-
theless, temperature anomalies tend to change ER more than GPP
(Yvon-Durocher, Jones, Trimmer, Woodward, & Montoya, 2010). For
example, based on a 9-year eddy covariance measurement record,
years with autumnal warming reduced the annual CO, sink because of
the stimulation of ER in a black spruce forest (Ueyama, Iwata, & Hara-
zono, 2014). Moreover, nitrogen deposition tends to favour GPP more
than ER at the ecosystem scale (Fernandez-Martinez et al., 2014). Dis-
turbance events (e.g., clear-cuts and fires), likewise change GPP as well
as ER (Beringer, Hutley, Tapper, & Cernusak, 2007). Despite decades
of research on the GPP and ER, our ability to produce an estimate of
global photosynthesis and respiration with a high accuracy confidence
still remains elusive, needless to mention the mechanisms underlying
their IAV. Future research on mechanisms underlying the IAV of eco-
system NEE has to provide fundamental explanations for the IAV of
GPP and ER.

5.3 | Relative contributions of carbon uptake
phenology and physiology

Climate change influences the terrestrial C cycle by modifying the C
uptake rate and C uptake period, which primarily correspond to plant
physiology and phenology, respectively. It has been demonstrated that
spatial and temporal variations in GPP are jointly controlled by changes
in plant phenology and physiology (Xia et al., 2015). NEE is also
strongly correlated with growing season length and regulated by plant
phenology (Baldocchi, Falge, & Wilson, 2001). Using NEE estimated
through atmospheric inversion, the IAV of land C uptake was deter-
mined by the IAV of the C uptake period and the C uptake amplitude
(the maximal C uptake rate), of which C uptake amplitude played much
stronger role than C uptake period (Fu, Dong, et al., 2017). Likewise,
analysis of regional GPP data products generated by a vegetation pho-
tosynthesis model also showed a dominant role of plant physiology in
IAV of GPP in North America (Zhou et al., 2017).

As illustrated in the conceptual Figure 5, C uptake period or ampli-
tude may change differently in various ecosystem types in response to
climate change, resulting in different impacts on IAV of NEE (Fu, Stoy,
et al,, 2017). For example, in boreal or temperate ecosystems, warmer
spring or autumn periods may lengthen the C uptake period by advanc-
ing C uptake activity in spring or by delaying C uptake activity in
autumn (Figure 5a,b). In subtropical forests or arid and semi-arid grass-
lands, summer drought may depress C uptake amplitude during the
mid-growing season (Figure 5c,d).

The attribution of IAV of NEE to C uptake period and amplitude

provides mechanistic explanations on how climate factors control the
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IAV of the terrestrial C cycle. Given that C uptake period and amplitude
are two processes that occur in different seasons, they may have dif-
ferent controlling climatic factors (Fu, Stoy, et al., 2017). Climate fac-
tors may have compensatory effects on C uptake period and
amplitude, leading to negligible impacts on annual NEP. For example, a
longer growing season caused by spring warming may result in higher
GPP or NEE, whereas warmer and drier summers may suppress
summer production, potentially offsetting the increase in ecosystem C
uptake (Angert et al., 2005; Cleland, Chuine, Menzel, Mooney, &
Schwartz, 2007). The C uptake period/amplitude framework provides a
simple mechanism for understanding how ecosystem physiology and
phenology interact with climate variables to influence the IAV of NEE
and GPP.

6 | CHALLENGES IN PREDICTING THE
INTERANNUAL VARIATION OF THE
LAND CARBON CYCLE

The efficacy of land surface models for reproducing the observed IAV
of the terrestrial carbon cycle depends on the scale of interest. At the
global scale, the IAV of NEE is primarily determined by changes in trop-
ical temperatures and precipitation (W. Wang et al., 2013), with large
contributions in some years from semi-arid regions (Poulter et al.,
2014) and high-latitude ecosystems (Ahlstrom et al., 2015). Such large-
scale global signals are driven by large-scale events, such as the El Nino
Southern Oscillation, which itself remains difficult to predict (Kleeman
& Moore, 1997), as are the impacts of climate variability on IAV at the
ecosystem scale.

Observations of IAV at the ecosystem scale provide an excellent
opportunity to test land surface models, given that many anomalous
climate events (such as summer heat waves and extreme droughts)
often occur at specific sites. When tested against such site-scale obser-

vations, however, land surface models typically perform very poorly.

For example, Keenan, Baker, et al. (2012) tested 16 land surface mod-
els and three remote sensing products against observed IAV at 11
long-term observation sites and found that none of the models repro-
duced the observations. A lack of lagged responses to anomalous cli-
matic events (Keenan, Baker, et al, 2012), a poor representation of
phenological signals (Richardson et al., 2013) and model formulation
(Dietze et al., 2011; Schwalm et al., 2010) have been highlighted as
potential causes of model-data mismatch for IAV at the site scale. Inte-
grating models with observations through data assimilation has proved
useful in diagnosing the exogenous and endogenous causes of such
model-data mismatch (Keenan, Davidson, et al., 2012). For example,
Desai (2010) found that the ability of a land surface model to replicate
IAV was significantly improved when observations were used to mini-
mize parameter error through model-data fusion. Such approaches of
better integrating models, data and theory (Luo, Keenan, & Smith,
2015; Williams et al., 2009) should guide future efforts for improving
our ability to model the IAV of NEE.

The mismatch between models and observations is often an issue
of scale and initialization. Models tend to be parameterized using
observations at the finest possible time-scale, either the half-hourly or
hourly resolution that aligns with the native resolution of eddy covari-
ance observations, or the sub-daily, daily or monthly time step of the
model itself. This approach of conditioning models that are tuned to
fine-scale data then aggregated to coarser scales in time often success-
fully matches NEE observations at diurnal to seasonal time-scales
(Braswell, Sacks, Linder, & Schimel, 2005; Stoy et al., 2013), but simu-
lating annual NEE and its IAV remains stubbornly elusive (Figure 6).
Despite extensive research using a number of advanced analytical tech-
niques, including wavelet decomposition (Stoy et al., 2005), and techni-
ques from model-data fusion, including scale-dependent parameter
estimation (Mahecha et al., 2010), it is difficult to identify causal fea-
tures in climate time series that correspond to ecosystem-scale fluxes
at interannual time-scales (Stoy et al, 2009). A promising approach
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FIGURE 6 The percentage of time, at time-scales from days to
multiple years, in which there is a significant relationship between
eddy covariance measurements of net ecosystem exchange (NEE)
at Harvard Forest and four different ecosystem models (including a
multi-model mean) using the wavelet coherence approach of
Grinsted, Moore, and Jevrejeva (2004) following Stoy et al. (2013)

that has been applied at the ecosystem level to understand connec-
tions between climate variables and ecosystem responses, including
relationships among the coupled processes of GPP and ER, is spectral
Granger causality (Detto et al., 2012). Spectral Grainger causality quan-
tifies relationships amongst signals at different frequencies and thereby
also 1AV, but has not been used to help disentangle ecosystem
responses to climatic variability at interannual time-scales to date. In
brief, expanding our analytical toolbox may improve our ability to quan-
tify nonlinear, lagged and multiscale relationships amongst climate and
carbon cycling for the purpose of improving model representation of

these dynamics.

7 | CONCLUDING REMARKS AND FUTURE
RESEARCH

Interannual variability in terrestrial C fluxes is a ubiquitous phenom-
enon at global, regional and ecosystem scales. The IAV in global land C
fluxes is primarily responsible for the anomaly in atmospheric CO,
growth rate. However, linking the 1AV of C fluxes across scales is still
challenging. In particular, the regions that contribute most to the global
IAV are still under debate, as are the contributions of these regions to
global IAV in a changing climate. Tropical regions have been considered
responsible for global IAV mainly because of their large climate variabil-
ity related to El Nino/Southern Oscillation, and the arid and semi-arid
regions also exhibit strong IAV signals.

Regardless of spatial scales, the IAVs in land C fluxes are ultimately
attributable to climate variables, either directly or indirectly through
biological responses to climate or via extreme events. It has been iden-
tified that anomalies in temperature, precipitation and radiation are key
causes for IAV in ecosystem C fluxes. Radiation plays a key role locally
but contributes less at the global scale. Precipitation anomalies are
important to the IAV of NEE at local and regional scales but tend to be

The present generation of ecosystem models has low predictive
skills for IAV in NEE, although most of the key C processes have been
integrated into models. Our understanding of the differential changes
in photosynthesis and respiration in anomalous climate conditions has
not yet been converted into improving model predictive skills. To
develop our ability to predict IAV of NEE in the future, we have to
understand the biological mechanisms underlying IAV of C fluxes and
evaluate their relative importance so that various mechanisms can be
incorporated appropriately into models. Research efforts are also
needed to benchmark land model performance against observations of
IAV of ecosystem C fluxes (Luo et al., 2012). Data assimilation is an
effective approach to minimizing model-observation mismatches and
diagnosing model uncertainty, and new techniques from time-series
analysis and statistics can further improve our ability to understand
how climate and carbon interact. Better integration of models, data
and theory should guide future efforts for improving our ability to pre-
dict the AV of surface-atmosphere C exchange at scales from the eco-
system to the globe.
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