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Abstract

Aim: Terrestrial ecosystems have sequestered, on average, the equivalent of 30% of anthropo-

genic carbon (C) emissions during the past decades, but annual sequestration varies from year to

year. For effective C management, it is imperative to develop a predictive understanding of the

interannual variability (IAV) of terrestrial net ecosystem C exchange (NEE).

Location: Global terrestrial ecosystems.

Methods: We conducted a comprehensive review to examine the IAV of NEE at global, regional

and ecosystem scales. Then we outlined a conceptual framework for understanding how anoma-

lies in climate factors impact ecological processes of C cycling and thus influence the IAV of NEE

through biogeochemical regulation.

Results: The phenomenon of IAV in land NEE has been ubiquitously observed at global, regional

and ecosystem scales. Global IAV is often attributable to either tropical or semi-arid regions, or to

some combination thereof, which is still under debate. Previous studies focus on identifying cli-

mate factors as driving forces of IAV, whereas biological mechanisms underlying the IAV of

ecosystem NEE are less clear. We found that climate anomalies affect the IAV of NEE primarily

through their differential impacts on ecosystem C uptake and respiration. Moreover, recent studies

suggest that the carbon uptake period makes less contribution than the carbon uptake amplitude

to IAV in NEE. Although land models incorporate most processes underlying IAV, their efficacy to

predict the IAV in NEE remains low.

Main conclusions: To improve our ability to predict future IAV of the terrestrial C cycle, we have

to understand biological mechanisms through which anomalies in climate factors cause the IAV of

NEE. Future research needs to pay more attention not only to the differential effects of climate
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anomalies on photosynthesis and respiration but also to the relative importance of the C uptake

period and amplitude in causing the IAV of NEE. Ultimately, we need multiple independent

approaches, such as benchmark analysis, data assimilation and time-series statistics, to integrate

data, modelling frameworks and theory to improve our ability to predict future IAV in the terres-

trial C cycle.
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1 | INTRODUCTION

Terrestrial ecosystems have sequestered an average of nearly 30%

of anthropogenic CO2 emissions since the 1960s (Ballantyne,

Alden, Miller, Tans, & White, 2012; Le Qu!er!e et al., 2014). How-

ever, the magnitude of this terrestrial carbon (C) sequestration

varies from year to year (Le Qu!er!e et al., 2013), changing from a

c. 0.5 Gt C/year C source in 1987 to a 4.0 Gt C/year C sink in

2011. The large interannual variability (IAV) of land C uptake,

rather than oceanic C uptake, primarily contributes to the yearly

variation in atmospheric CO2 concentration (Figure 1; Bousquet

et al., 2000; Houghton, 2000; Knorr et al., 2007). Thus, understand-

ing the causes of the interannual variability (IAV) in land C seques-

tration is essential for future projections of the coupled C cycle

and climate system. At ecosystem scales, many studies have also

found that the IAV of net ecosystem CO2 exchange (NEE) with the

atmosphere is a ubiquitous phenomenon across almost all sites of

eddy-flux measurements (Baldocchi, Chu, & Reichstein, 2017; Bal-

docchi, Falge, Gu, et al., 2001; Baldocchi, Ryu, & Keenan, 2016;

Yuan et al., 2009). However, the mechanisms underlying the IAV in

NEE across scales from the ecosystem to the globe have not been

fully understood to an extent that can help improve our predictive

capability of the C cycle. If the IAV of NEE is caused purely by cli-

matic variability, we can extrapolate measurements from one year

to another year as long as we have realistic climatic data and sce-

narios. If climate variability induces indirect effects on ecosystem

processes via biogeochemical regulation, we need long-term obser-

vations to develop sound understanding of relationships between

NEE and climatic variables before we can reasonably predict C

fluxes. In these circumstances, ecological models that do not

include appropriate mechanisms often successfully simulate NEE in

one year but fail in others (Griffis & Rouse, 2001; Keenan, Baker,

et al., 2012).

This paper comprehensively assesses the current status of our

understanding of the IAV of the land C sink. We first review literature

on the phenomena of the IAV of the land C sink at global, regional and

ecosystem scales, and then identify regional contributions to the global

IAV of NEE and the driving climate factors and biological mechanisms

underlying the IAV of NEE at the ecosystem scale. We then evaluate

model efficacy in predicting IAV and explore causes for the mismatches

between models and data. Finally, we offer recommendations for

future studies to measure and model IAV better in order to improve

our predictive understanding of the global C cycle. This review sug-

gests that the IAV in NEE results from anomalies in climatic variables,

such as temperature, precipitation and radiation, which differentially

influence photosynthetic C uptake and respiratory C release processes

through biological regulation.

CO
2 f

lu
x 

(G
t C

/y
ea

r)

FIGURE 1 (a) The interannual variability of atmospheric CO2

growth rate, land and ocean carbon sinks from 1958 to 2015. (b)
Conceptual diagram linking the terms and processes used in this
review. Atmospheric CO2 is taken up by the land and the ocean. In
terrestrial ecosystems, plants take up CO2 to form gross primary
productivity (GPP). Some of the photosynthetic carbohydrate is
released into the atmosphere via autotrophic respiration (Ra). The
remaining carbohydrate forms net primary productivity (NPP). Soil
organic matter is decomposed by microbes via heterotrophic
respiration (Rh) to release CO2 into the atmosphere. The balance
of carbon uptake and release at the ecosystem level forms net
ecosystem exchange (NEE). At the regional or global scale, the land
carbon (c) sink is formed by excluding non-biotic C release or
removal caused by fire, harvest or other disturbances
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2 | OBSERVED PHENOMENA OF
INTERANNUAL VARIATION IN LAND
CARBON SINK AT GLOBAL AND
ECOSYSTEM SCALES

The phenomenon of the IAV of the C cycle was first reported from

long-term measurements of the atmospheric CO2 mixing ratio at the

South Pole (Keeling, Adams, et al., 1976) and Mauna Loa observato-

ries (Keeling, Bacastow, et al., 1976). At those observatories, the

long-term change in the atmospheric CO2 growth rate was found to

be highly variable; it could double or halve from one year to the

next. This fluctuation was first considered to be associated with the

Southern Oscillation and primarily oceanic events (Bacastow, 1976).

The phenomenon of IAV of atmospheric CO2 concentration was

then detected again from the measurement of 2,419 samples of air

collected in the North Pacific Ocean during 1959–1981 (Keeling,

Whorf, Wong, & Bellagay, 1985). The data record of atmospheric

CO2 observations is now more than five decades long, and the

annual growth rate continues to exhibit high variability, with rates

spanning an order of magnitude from as low as 0.29 ppmv in 1964

to as high as 3.15 ppmv in 2015 (esrl.noaa.gov).

The anomaly in the annual growth rate of atmospheric CO2 con-

centration is now primarily attributed to the IAV in the land C sink

(Figure 1; Houghton, 2000; Le Qu!er!e et al., 2013). Houghton (2000)

reviewed the four components that determine the atmospheric CO2

growth rate: C emissions from fossil fuel burning, net C emissions

from land use changes, ocean uptake, and the residual land sink. His

review concluded that the most important contributor to the IAV of

atmospheric CO2 growth rate is the changes in land sink as induced

by anomalies in climate variables. The IAV in ocean CO2 uptake is

thought to be too small to explain the anomaly in atmospheric CO2

growth rate (Le Qu!er!e, Orr, Monfray, Aumont, & Madec, 2000). In

comparison, the land C sink can strongly regulate the atmospheric

CO2 growth rate to the extent of no increase between 2002 and

2012 despite increasing anthropogenic emissions (Keenan et al.,

2016).

Both atmospheric inversions and ground-based observations show

that the land C sink varies greatly from year to year. Estimates of NEE

at the global scale from atmospheric inversion approaches showed that

the detrended global NEE ranged from an anomaly of 1.78 Pg C/year

in 1983 to 21.66 Pg C/year in 1992 in comparison with the mean

value of NEE of 21.52 Pg C/year over the 35 years (Figure 2a). At

regional scales, some tropical regions had the largest IAV, with SD in

annual gross primary production (GPP) of the order of 200–250 g C/

m2 (Xiao et al., 2016). Relative to the long-term mean, GPP over

Europe decreased by 30% in 2002 because of drought when compar-

ing the period between 1998 and 2002, resulting in a strong anoma-

lous net source of NEE (0.5 Pg C/year) to the atmosphere, which is a

net C sink during normal years (Ciais et al., 2005).

The IAVs of the land C sink at global and regional scales are in

agreement with observations at ecosystem scales. For example, the

observed NEE by the eddy covariance towers changed from 74 to

930 g C/m2/year at the site US-Blo (Blodgett Forest in the Sierra

Mountains of California) and from 2158 to 240 g C/m2/year at the

site Be-Bra (De Inslag Forest in Brasschaat, Belgium) during the period

from 1997 to 2007 (Fu, Stoy, et al., 2017). Across the 24 sites that

have>8 years of continuous measurement, the SD of NEE on average

accounts for 50% of annual NEE (Figure 2b). Besides eddy covariance-

measured NEE at the ecosystem scale, other observations, such as

tree-ring chronologies, showed large IAV in wood production in

response to climate variability (Carrer & Urbinati, 2006). Results from

long-term ecological research (LTER) programmes have also demon-

strated strong IAV in aboveground net primary productivity (NPP),

which is associated with precipitation changes, at 11 LTER sites across

North America (Knapp & Smith, 2001).

Overall, scientists have used different approaches to quantify the

IAV of land NEE at different spatial scales. The top-down atmospheric

method using CO2 inversions is effective to illustrate the global scale

IAV, whereas the flux-tower observations have the advantage of pro-

viding process understanding of the IAV of NEE at the ecosystem scale.

Nonetheless, inferences from both atmospheric inversions and obser-

vations at the ecosystem scale indicate that the IAV of ecosystem C

exchange is a ubiquitous phenomenon.
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FIGURE 2 Interannual variability of terrestrial ecosystem carbon
fluxes at (a) global and (b) ecosystem scales. (a) The detrended
yearly anomaly of atmospheric inversed net ecosystem exchange
(NEE) at the global scale from 1978 to 2013. (b) The SD of eddy
covariance (EC) measured NEE versus its average annual values at
24 sites with measurements > 8 years. See the Supporting
Information for detailed methods
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3 | REGIONAL CONTRIBUTIONS TO THE
INTERANNUAL VARIATION OF GLOBAL
LAND CARBON SINK

The IAV of the global land C sink is attributable to different regions; for

example, tropical areas are reported to play an important role in influ-

encing the IAV of terrestrial NEE (W. Wang et al., 2013; X. Wang et al.,

2014). Specifically, the IAV of the tropical land C sink is significantly

correlated with tropical land-surface air temperature during 1959–

2011, with an interannual temperature sensitivity of 3.560.6 Pg C/

year/K. The relationship between interannual changes in NEE and tem-

perature in tropical areas appears to be stronger than corresponding

relationships with precipitation and radiation (W. Wang et al., 2013).

Moreover, X. Wang et al. (2014) found that the sensitivity of land C

sink variability to tropical temperature IAV varies with time and has

increased by a factor of 1.960.3 over the past five decades. Across

coupled climate–carbon cycle models, the sensitivity of tropical land C

sink to climate anomaly over the 21st century is constrained to be

53617 Pg C/K (Cox et al., 2013).

Recent studies have also shown that semi-arid areas lead to a

larger contribution to the IAV of the land C sink than other regions

(Ahlstr€om et al., 2015; Poulter et al., 2014). Specifically, semi-arid sys-

tems contributed c. 39% of the IAV in global net biome production,

compared with tropical ecosystems (19%), extratropical forests (30%)

and grasslands and croplands (17%) (Ahlstr€om et al., 2015). Semi-arid

regions contributed 57% of the global IAV of global GPP, which was

controlled by the IAV of precipitation in these regions (Y. Zhang et al.,

2016). In semi-arid regions, vegetation is sparse and productivity is typ-

ically low compared with tropical and boreal systems given strong

water deficits in semi-arid regions (Avitabile et al., 2016; Beer et al.,

2010). However, ecosystem C fluxes can respond quickly to precipita-

tion events (e.g. Huxman et al., 2004), leading to a unique land C sink

signature. It is important also to note that transient CO2 release attrib-

utable to the ‘Birch’ effect in response to precipitation pulses is a nota-

ble property of arid and semi-arid ecosystems (Birch, 1958; Unger,

M!aguas, Pereira, David, & Werner, 2010). Whereas the Birch effect

operates at shorter temporal scales (hours to weeks), associated respi-

ratory pulses can add up to impact the IAV of NEE (Jarvis et al., 2007).

The sensitivity of semi-arid systems to an increasing frequency of pre-

cipitation extremes is noticeable in global land C uptake dynamics

(Ahlstr€om et al., 2015; Frank et al., 2015), further demonstrating the

central role of semi-arid ecosystems in the IAV of terrestrial CO2

fluxes.

The debate regarding the role of temperature in tropical regions

and precipitation in semi-arid regions on the IAV of global land C

uptake is proposed to be resolved by a recent study, which simultane-

ously evaluated the IAV of land C uptake to the fluctuations in both

temperature and water availability at local to global scales (Jung et al.,

2017). Jung et al. (2017) revealed that water availability and tempera-

ture are the dominant drivers of IAV of NEE at local areas, whereas

temperature is the main driver for the global IAV of NEE because of

the compensation amongst the responses of different regions to water

availability (Figure 3). In other words, the controlling factors and

mechanisms underlying the IAV of NEE varied at different spatial scales

(Table 1), and the importance of IAV at the ecosystem or local scales

would be cancelled out when aggregating to a regional or global scale.

Therefore, to gain a better understanding of the IAV of land C uptake,

it is necessary to understand ecosystem-level NEE variability and the

mechanisms that control it.

4 | THE IMPORTANCE OF CLIMATE AND
OTHER FORCING FACTORS TO THE
INTERANNUAL VARIATION OF ECOSYSTEM
NET ECOSYSTEM CO2 EXCHANGE

Studies on the causes of the IAV of ecosystem NEE usually examine

the relationship between the yearly anomalies of NEE and the anoma-

lies of climate factors. Variations in temperature, precipitation and solar

radiation have been reported as the most important climate factors

controlling IAV in NEE in different ecosystems. Below, we discuss how

those climate and other forcing factors impact IAV of NEE, with a focus

on the mechanisms and process understanding.

4.1 | Drought and precipitation regimes

The timing and magnitude of precipitation regimes influences GPP and

ecosystem respiration (ER), thus causing variability of NEE (see the

concepts in Figure 1b). Water availability is the overall dominant driver

of the IAV in NEE at local scales (Jung et al., 2017). Drought causes

IAV of NEE in most ecosystems, even those not commonly associated

with drought, such as tropical forests (Keppel-Aleks et al., 2014; Ma

et al., 2012; Xiao et al., 2014; L. Zhang et al., 2014). Amazon basin-

wide net ecosystem productivity (NEP, the inverse of NEE) was

reduced in drought years (Gatti et al., 2014). In wet tropical forests,

drought considerably reduces respiration, but tends to impact GPP
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FIGURE 3 The relative importance of temperature versus water
availability in causing the interannual variability of land net
ecosystem exchange (NEE) at different spatial scales. The relative
dominance of temperature on NEE (NEETEMP) increases, whereas
the relative dominance of water availability on NEE (NEEWAI)
decreases, with increasing spatial scales (adopted from Jung et al.,
2017)
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less, as a consequence of increased light availability (Bonal et al., 2008;

Saleska et al., 2003). In temperate ecosystems, however, eddy covari-

ance observations indicate that drought-induced reductions in GPP

often exceed those of ER, leading to a reduction in ecosystem carbon

uptake (Schwalm et al., 2010; Shi et al., 2014). Drought-induced IAV of

GPP (Cai et al., 2014; Zscheischler et al., 2014) is primarily attributable

to the associated decrease in stomatal conductance (Novick et al.,

2016; Zeng, Mariotti, & Wetzel, 2005) and increases in vegetation mor-

tality, dry woody material and wildfire occurrence (X. Zhang et al.,

2013). The magnitude of changes in those biogeochemical processes

are related to drought intensity and duration, the plant functional type

(Welp, Randerson, & Liu, 2007), soil characteristics (Pinter, Balogh, &

Nagy, 2010) and topography (Kljun et al., 2006).

Besides the amount of precipitation, other attributes of precipita-

tion regimes (e.g., the magnitude, frequency, interval and seasonal dis-

tribution of precipitation events) are also responsible for the IAV of

NEE (Guo et al., 2012). For some ecosystems, significant differences in

the timing and magnitude of precipitation events are more important

than annual precipitation itself for determining the IAV of NEE. For

example, C sequestration often occurs after heavy precipitation in arid

and semi-arid regions, including temperate regions with high evapora-

tive demand (Novick et al., 2004), whereas smaller precipitation events

often only stimulate respiratory responses of microorganisms (Huxman

et al., 2004; Reynolds, Kemp, Ogle, & Fern!andez, 2004).

Precipitation can affect C cycling through its effects on soil water

content (SWC) (Knapp et al., 2008), temperature (Guo et al., 2015) and

incident radiation (Nijp et al., 2015) and also through its regulation of

soil nutrient availability and species composition (Sala & Lauenroth,

1982). The effects of precipitation regimes on the IAV of the C cycle

are often ecosystem specific. Studies have found that precipitation

regimes with larger but fewer precipitation events may have opposite

effects on productivity in semi-arid ecosystems (Heisler-White, Knapp,

& Kelly, 2008; Thomey et al., 2011) versus meadows or relatively

humid ecosystems (Fay, Carlisle, Knapp, Blair, & Collins, 2003; Harper,

Blair, Fay, Knapp, & Carlisle, 2005; Heisler-White, Blair, Kelly, Harmo-

ney, & Knapp, 2009; Knapp et al., 2008). Therefore, biological mecha-

nisms modify C cycling in response to precipitation regimes (Figure 4).

Lengthening of growing seasons can partly offset the effects of

drought (Wolf et al., 2016) on annual NEE, further emphasizing the

importance of multiple factors in controlling the IAV of NEE.

TABLE 1 Scales of phenomena, driving factors, biological mechanisms and future research recommendations for understanding the interan-
nual variability of net ecosystem carbon dioxide exchange

Global Regional Ecosystem

Phenomena Variation in yearly growth rate of
atmospheric CO2 concentration

Yearly anomalies of regional NEE
under heat waves, large-scale
drought and fires

Yearly variation in NEE observed by
eddy-flux towers, NPP from long-
term ecological research sites, tree
rings

Driving factors Primarily anomalies of temperature Anomalies of both temperature and
precipitation, with varying roles in
different regions

Temperature, precipitation, radiation
and disturbances play different
roles in different ecosystems

Biological mechanism
or attributes

Attributable to different regions,
among which tropical and semi-
arid areas contribute most

Not yet well examined Differential climate sensitivity of
photosynthesis versus respiration.
Carbon uptake amplitude plays
more important role than carbon
uptake period

Model predictive skill No mechanistic models yet tested
except some statistical models

Land models used to examine IAV in
different regions

Models perform poorly, mainly be-
cause of a lack of model calibra-
tion of phenological and
physiological responses, and lag
mechanisms

Recommendation for
future research

Explore which regions contribute
most to the global IAV and how
these contributions are changing
in a changing climate

Reveal the drivers and causes of IAV
of NEE in different regions

Promote long-term observations,
especially in less-studied areas.
Better understand biological me-
chanisms. Use data–model fusion
approaches to improve model
prediction

Abbreviations: IAV5 interannual variability; NEE5net ecosystem carbon dioxide exchange; NPP5net primary productivity.

FIGURE 4 Schematic diagram for the conceptual relationships
between climate anomalies, biogeochemical regulation and the
interannual variability of carbon fluxes. Interannual variability (IAV) in
net ecosystem exchange (NEE) is ultimately caused by anomaly in
climate variables, which influence a variety of biogeochemical
processes, resulting in differential changes in photosynthesis (gross
primary productivity, GPP) and respiration (ecosystem respiration, ER)
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4.2 | Temperature

Temperature affects all aspects of ecosystem C processes, including

photosynthesis and respiration. Increasing temperature can directly

stimulate enzyme activity and accelerate both photosynthesis and res-

piration rates, or reduce them through enzyme denaturation if temper-

ature becomes too high. If the photosynthesis and respiration of plants

and ecosystems are significantly different in response to temperature

changes, the IAV of NEE will have a statistical correlation with annual

average temperature (Rocha & Goulden, 2008; Wen, Wang, Wang, Yu,

& Sun, 2010). Field experiments suggest that climate warming also

tends to extend growing seasons, enhance nutrient availability, shift

species composition and alter ecosystem water dynamics (Luo, 2007),

which further affects the IAV of NEE.

Even if the IAV of NEE may not have a significant relationship

with the anomalies of mean annual temperature for a given ecosystem,

it is often correlated with the anomalies of growing season tempera-

ture. For example, spring temperature helps to determine forest leaf

onset and affects the length of the growing season, thus leading to the

IAV of NEE (Richardson et al., 2013; Wu et al., 2012). Many studies

have found that annual ecosystem C fluxes are closely correlated with

spring temperature across years (Keenan et al., 2014; Krishnan et al.,

2008). In addition, autumn temperature changes are significantly corre-

lated with changes in GPP and NEE (J. Zhang et al., 2011). Autumn and

winter temperature anomalies may affect respiration more than photo-

synthesis given the negligible or minor contribution of photosynthesis

to NEE during those seasons (Piao et al., 2008; Yuan et al., 2009) and

can result in lagged effects to subsequent growing seasons (Barford

et al., 2001). Thus, besides the direct effects of temperature on the

physiological activities of photosynthesis and respiration, temperature

change may also cause the IAV of C fluxes by changing plant phenol-

ogy and growing season, as illustrated in the conceptual Figure 4.

4.3 | Radiation

Radiation has a more important role than climate factors at local scales,

although it is a smaller driver of IAV of fluxes at the global scale, which

experiences little year-to-year variability in solar radiation (Jung et al.,

2017). Light-sensitive ecosystems respond to interannual changes in

light availability, and in fact, minor drought can increase the photosyn-

thesis of tropical forests if it results in more light (Oliphant et al., 2011).

Radiation causes the IAV of terrestrial GPP not only via its magnitude

but also via light quality (Ichii, Hashimoto, Nemani, & White, 2005;

Nemani et al., 2003). Diffuse radiation has a large influence on the IAV

of NEE (Cox et al., 2013; Reichenau & Esser, 2003). For instance, Gu

et al. (2003) described the effects of the Pinatubo volcano eruption in

1991, which produced a large number of volcanic aerosols, resulting in

the worldwide increase of diffuse radiation in the following 2 years on

temperate forest NEE. The increase in diffuse radiation enhanced

noontime photosynthesis at Harvard Forest in cloudless conditions by

23% in 1992 and 8% in 1993, respectively. Another study by Mercado

et al. (2009) suggested that the increasing fraction of diffuse radition

resulted in a 23.7% increase in global terrestrial C sink between 1960

and 1999.

In general, diffuse radiation influences the IAV of NEE at least in

four ways. First, the increasing clouds and aerosols change the compo-

sition of the radiation spectrum (Gatebe, Kuznetsov, & Melnikova,

2014; Navr!atil, #Spunda, Markov!a, & Janou#s, 2007) and increase the

proportion of blue light (van Gorsel et al., 2013). Second, increasing

clouds and aerosols decrease direct radiation, reducing the frequency

of light saturation of canopy photosynthesis and making the canopy

more responsive to changes in radiation (Farquhar & Roderick, 2003;

Knohl & Baldocchi, 2008). Third, the increasing clouds and aerosols, to

a certain extent, simultaneously reduce temperature, which decreases

ecosystem respiration (M. Zhang et al., 2010, 2011). Fourth, diffuse

radiation penetrates the plant canopy more effectively, which can

increase total canopy photosynthesis (Cheng et al., 2015; Roderick,

Farquhar, Berry, & Noble, 2001). Combined, these factors influence

both photosynthesis and radiation and demonstrate the need to

include diffuse radiation measurements at tower measurements world-

wide to understand the relationship between solar radiation and the

IAV of ecosystem NEE.

4.4 | Other driving factors

Fires and other disturbances, such as pests and disease, can induce C

release from ecosystems to the atmosphere. Approximately 70% of

global fire CO2 emissions are from savanna and grassland systems,

where regrowth occurs rapidly after a fire and absorbs a significant

fraction of CO2, which is often of similar magnitude to the original

emissions. The C loss triggered by the fire event in one area can be

compensated by C gain during recovery in other areas. Thus, on aver-

age, fire plays a minor role in the IAV of land C uptake at global scales

(Van der Werf et al., 2010), but is often an important contributing fac-

tor to regional C fluxes, especially in relationship to drought (Poulter

et al., 2014). A synthesis of multiple data sources of atmospheric CO2

growth rate, land use change, fire emission and land carbon fluxes

showed a significant correlation between atmospheric CO2 growth

rate and fire emission, but the magnitude in variation attributable to

fire emission was too small to explain the IAV of CO2 growth rate (S. L.

Piao, unpublished result). Global emission of C from human disturbance

(i.e. deforestation, shifting cultivation, wood harvest and regrowth) or

pests or diseases also has a small contribution to the IAV of global land

C uptake (Houghton, 2010).

5 | BIOLOGICAL MECHANISMS
UNDERLYING INTERANNUAL VARIATION
IN ECOSYSTEM NET ECOSYSTEM CO2

EXCHANGE

The apparent relationships between climate anomalies and the IAV of

ecosystem NEE suggest underlying ecological mechanisms, which are

essential for explaining the impacts of climate anomalies on ecosystem

C cycling. Here, we synthesize studies on biological mechanisms into

three categories: statistical inference, differential changes in GPP and

6 | NIU ET AL.



ER, and relative contributions of ecosystem C uptake phenology and

physiology to the IAV of ecosystem NEE.

5.1 | Statistical inference of biotic controls on
interannual variation of ecosystem net ecosystem
CO2 exchange

Variability in climate drivers may directly affect fluxes, but may also

indirectly affect fluxes by altering the response of biota to climate (Fig-

ure 4). To isolate direct effects of climatic anomalies on ecosystem

metabolic processes (e.g., photosynthesis and respiration) from their

indirect effects, Hui, Luo, and Katul (2003) proposed a homogeneity-

of-slopes model to identify the functional change contributing to IAV

in NEE. The model uses multiple regression analysis to partition the

observed variation in NEE to four components, namely, the functional

change, the direct effect of interannual climatic variability, the direct

effect of seasonal climatic variation, and random error. The results

showed that functional change provided slightly larger explanation

than interannual climatic variability for the observed variation in NEE

and ecosystem respiration (RE) at the Duke Forest AmeriFlux site from

1997 to 2001 (Hui et al., 2003). Using the same statistical method,

Shao et al. (2015) evaluated the relative contributions of climate effect

and biotic effect to the IAV in C fluxes for the 65 sites in the Northern

Hemisphere. They found that overall, the relative contribution of biotic

effect and climate effect to the IAV in NEE was 57 6 14 and

43 6 14%, respectively. Similar results were documented by Richard-

son, Hollinger, Aber, Ollinger, and Braswell (2007), who suggested that

40% of the variance in modelled ecosystem NEE can be attributed to

variation in environmental drivers, and 55% to variation in the biotic

response to this forcing at the annual time step. Polley, Frank, Sanabria,

and Phillips (2008) also used the regression analysis proposed by Hui

et al. (2003) to distinguish direct effects of IAV in climate on fluxes

from biotic effect (functional change) and found that functional change

accounted for more than twice the variance in fluxes of direct effects

of climatic variability. These studies highlight how the IAV of NEE is

strongly regulated by the response of ecological processes, such as

plant photosynthesis and respiration, as well as phenology and physiol-

ogy, to climate variability (Figure 4).

5.2 | Differential changes in photosynthesis
and respiration

Observed NEE reflects a fine balance between canopy photosynthetic

C influx into and respiratory efflux out of an ecosystem (Figure 1b).

Differential changes in the relative magnitude of these two opposite

fluxes determine the IAV of NEE (Figure 4). Carbon fluxes attributable

to photosynthesis and respiration are large relative to the difference

between them (i.e. NEE), which means that small differences in the rel-

ative changes in photosynthesis or respiration can lead to large IAV of

NEE. For the climate sensitivity of photosynthesis and respiration,

some studies reported that ecosystem respiration is more variable than

photosynthesis between years (Valentini et al., 2000), whereas other

studies have indicated that IAV of NEE is most often associated with

variations in GPP and NPP rather than C release (i.e., ecosystem respi-

ration (Re) and heterotrophic respiration (Rh)) (Ahlstr€om et al., 2015;

Ciais et al., 2005; Novick et al., 2015; Stoy et al., 2008).

For the relative sensitivity of photosynthesis versus respiration in

response to variability in controlling factors, it was found that GPP was

more sensitive to drought stress than ER in most ecosystems, espe-

cially in semi-arid and mediterranean climates, which experience large

variability in the amount of rainfall in the growing season (Allard, Our-

cival, Rambal, Joffre, & Rocheteau, 2008; Pereira et al., 2007). Never-

theless, temperature anomalies tend to change ER more than GPP

(Yvon-Durocher, Jones, Trimmer, Woodward, & Montoya, 2010). For

example, based on a 9-year eddy covariance measurement record,

years with autumnal warming reduced the annual CO2 sink because of

the stimulation of ER in a black spruce forest (Ueyama, Iwata, & Hara-

zono, 2014). Moreover, nitrogen deposition tends to favour GPP more

than ER at the ecosystem scale (Fern!andez-Martínez et al., 2014). Dis-

turbance events (e.g., clear-cuts and fires), likewise change GPP as well

as ER (Beringer, Hutley, Tapper, & Cernusak, 2007). Despite decades

of research on the GPP and ER, our ability to produce an estimate of

global photosynthesis and respiration with a high accuracy confidence

still remains elusive, needless to mention the mechanisms underlying

their IAV. Future research on mechanisms underlying the IAV of eco-

system NEE has to provide fundamental explanations for the IAV of

GPP and ER.

5.3 | Relative contributions of carbon uptake
phenology and physiology

Climate change influences the terrestrial C cycle by modifying the C

uptake rate and C uptake period, which primarily correspond to plant

physiology and phenology, respectively. It has been demonstrated that

spatial and temporal variations in GPP are jointly controlled by changes

in plant phenology and physiology (Xia et al., 2015). NEE is also

strongly correlated with growing season length and regulated by plant

phenology (Baldocchi, Falge, & Wilson, 2001). Using NEE estimated

through atmospheric inversion, the IAV of land C uptake was deter-

mined by the IAV of the C uptake period and the C uptake amplitude

(the maximal C uptake rate), of which C uptake amplitude played much

stronger role than C uptake period (Fu, Dong, et al., 2017). Likewise,

analysis of regional GPP data products generated by a vegetation pho-

tosynthesis model also showed a dominant role of plant physiology in

IAV of GPP in North America (Zhou et al., 2017).

As illustrated in the conceptual Figure 5, C uptake period or ampli-

tude may change differently in various ecosystem types in response to

climate change, resulting in different impacts on IAV of NEE (Fu, Stoy,

et al., 2017). For example, in boreal or temperate ecosystems, warmer

spring or autumn periods may lengthen the C uptake period by advanc-

ing C uptake activity in spring or by delaying C uptake activity in

autumn (Figure 5a,b). In subtropical forests or arid and semi-arid grass-

lands, summer drought may depress C uptake amplitude during the

mid-growing season (Figure 5c,d).

The attribution of IAV of NEE to C uptake period and amplitude

provides mechanistic explanations on how climate factors control the
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IAV of the terrestrial C cycle. Given that C uptake period and amplitude

are two processes that occur in different seasons, they may have dif-

ferent controlling climatic factors (Fu, Stoy, et al., 2017). Climate fac-

tors may have compensatory effects on C uptake period and

amplitude, leading to negligible impacts on annual NEP. For example, a

longer growing season caused by spring warming may result in higher

GPP or NEE, whereas warmer and drier summers may suppress

summer production, potentially offsetting the increase in ecosystem C

uptake (Angert et al., 2005; Cleland, Chuine, Menzel, Mooney, &

Schwartz, 2007). The C uptake period/amplitude framework provides a

simple mechanism for understanding how ecosystem physiology and

phenology interact with climate variables to influence the IAV of NEE

and GPP.

6 | CHALLENGES IN PREDICTING THE
INTERANNUAL VARIATION OF THE
LAND CARBON CYCLE

The efficacy of land surface models for reproducing the observed IAV

of the terrestrial carbon cycle depends on the scale of interest. At the

global scale, the IAV of NEE is primarily determined by changes in trop-

ical temperatures and precipitation (W. Wang et al., 2013), with large

contributions in some years from semi-arid regions (Poulter et al.,

2014) and high-latitude ecosystems (Ahlstr€om et al., 2015). Such large-

scale global signals are driven by large-scale events, such as the El Nino

Southern Oscillation, which itself remains difficult to predict (Kleeman

& Moore, 1997), as are the impacts of climate variability on IAV at the

ecosystem scale.

Observations of IAV at the ecosystem scale provide an excellent

opportunity to test land surface models, given that many anomalous

climate events (such as summer heat waves and extreme droughts)

often occur at specific sites. When tested against such site-scale obser-

vations, however, land surface models typically perform very poorly.

For example, Keenan, Baker, et al. (2012) tested 16 land surface mod-

els and three remote sensing products against observed IAV at 11

long-term observation sites and found that none of the models repro-

duced the observations. A lack of lagged responses to anomalous cli-

matic events (Keenan, Baker, et al., 2012), a poor representation of

phenological signals (Richardson et al., 2013) and model formulation

(Dietze et al., 2011; Schwalm et al., 2010) have been highlighted as

potential causes of model–data mismatch for IAV at the site scale. Inte-

grating models with observations through data assimilation has proved

useful in diagnosing the exogenous and endogenous causes of such

model–data mismatch (Keenan, Davidson, et al., 2012). For example,

Desai (2010) found that the ability of a land surface model to replicate

IAV was significantly improved when observations were used to mini-

mize parameter error through model–data fusion. Such approaches of

better integrating models, data and theory (Luo, Keenan, & Smith,

2015; Williams et al., 2009) should guide future efforts for improving

our ability to model the IAV of NEE.

The mismatch between models and observations is often an issue

of scale and initialization. Models tend to be parameterized using

observations at the finest possible time-scale, either the half-hourly or

hourly resolution that aligns with the native resolution of eddy covari-

ance observations, or the sub-daily, daily or monthly time step of the

model itself. This approach of conditioning models that are tuned to

fine-scale data then aggregated to coarser scales in time often success-

fully matches NEE observations at diurnal to seasonal time-scales

(Braswell, Sacks, Linder, & Schimel, 2005; Stoy et al., 2013), but simu-

lating annual NEE and its IAV remains stubbornly elusive (Figure 6).

Despite extensive research using a number of advanced analytical tech-

niques, including wavelet decomposition (Stoy et al., 2005), and techni-

ques from model–data fusion, including scale-dependent parameter

estimation (Mahecha et al., 2010), it is difficult to identify causal fea-

tures in climate time series that correspond to ecosystem-scale fluxes

at interannual time-scales (Stoy et al., 2009). A promising approach

FIGURE 5 Conceptual figures for the attributions of carbon uptake period (carbon sink days) and carbon uptake amplitude (the maximal
carbon uptake rate, CUA) to the interannual variability of ecosystem net carbon uptake. The black curve means the average year and the
red curve indicates any specific year that changes in carbon uptake period and/or amplitude following Fu, Stoy, et al. (2017). DOY means
day of the year
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that has been applied at the ecosystem level to understand connec-

tions between climate variables and ecosystem responses, including

relationships among the coupled processes of GPP and ER, is spectral

Granger causality (Detto et al., 2012). Spectral Grainger causality quan-

tifies relationships amongst signals at different frequencies and thereby

also IAV, but has not been used to help disentangle ecosystem

responses to climatic variability at interannual time-scales to date. In

brief, expanding our analytical toolbox may improve our ability to quan-

tify nonlinear, lagged and multiscale relationships amongst climate and

carbon cycling for the purpose of improving model representation of

these dynamics.

7 | CONCLUDING REMARKS AND FUTURE
RESEARCH

Interannual variability in terrestrial C fluxes is a ubiquitous phenom-

enon at global, regional and ecosystem scales. The IAV in global land C

fluxes is primarily responsible for the anomaly in atmospheric CO2

growth rate. However, linking the IAV of C fluxes across scales is still

challenging. In particular, the regions that contribute most to the global

IAV are still under debate, as are the contributions of these regions to

global IAV in a changing climate. Tropical regions have been considered

responsible for global IAV mainly because of their large climate variabil-

ity related to El Ni~no/Southern Oscillation, and the arid and semi-arid

regions also exhibit strong IAV signals.

Regardless of spatial scales, the IAVs in land C fluxes are ultimately

attributable to climate variables, either directly or indirectly through

biological responses to climate or via extreme events. It has been iden-

tified that anomalies in temperature, precipitation and radiation are key

causes for IAV in ecosystem C fluxes. Radiation plays a key role locally

but contributes less at the global scale. Precipitation anomalies are

important to the IAV of NEE at local and regional scales but tend to be

compensated globally, whereas the control of temperature over the

IAV of NEE occurs at scales from the ecosystem to the globe. The

anomalies in climate variables differentially influence photosynthetic C

uptake and respiratory C release to generate IAV in NEE. As photosyn-

thesis and respiration are two opposite fluxes determining NEE, slightly

differential effects of anomalous temperature, precipitation and radia-

tion on photosynthesis and respiration could generate strong IAV in

NEE. Although a few studies have explored this issue, how anomalies

in temperature, precipitation and radiation cause differential impacts

on photosynthesis and respiration is largely unclear. Moreover, recent

methodological advances improve our ability to understand relative

contributions of the C uptake period and amplitude.

The present generation of ecosystem models has low predictive

skills for IAV in NEE, although most of the key C processes have been

integrated into models. Our understanding of the differential changes

in photosynthesis and respiration in anomalous climate conditions has

not yet been converted into improving model predictive skills. To

develop our ability to predict IAV of NEE in the future, we have to

understand the biological mechanisms underlying IAV of C fluxes and

evaluate their relative importance so that various mechanisms can be

incorporated appropriately into models. Research efforts are also

needed to benchmark land model performance against observations of

IAV of ecosystem C fluxes (Luo et al., 2012). Data assimilation is an

effective approach to minimizing model–observation mismatches and

diagnosing model uncertainty, and new techniques from time-series

analysis and statistics can further improve our ability to understand

how climate and carbon interact. Better integration of models, data

and theory should guide future efforts for improving our ability to pre-

dict the IAV of surface–atmosphere C exchange at scales from the eco-

system to the globe.
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