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Abstract

Large-scale distributed systems must be built to anticipate

and mitigate a variety of hardware and software failures.

In order to build confidence that fault-tolerant systems are

correctly implemented, Netflix (and similar enterprises) reg-

ularly run failure drills in which faults are deliberately in-

jected in their production system. The combinatorial space

of failure scenarios is too large to explore exhaustively. Ex-

isting failure testing approaches either randomly explore the

space of potential failures randomly or exploit the “hunches”

of domain experts to guide the search. Random strate-

gies waste resources testing “uninteresting” faults, while

programmer-guided approaches are only as good as human

intuition and only scale with human effort.

In this paper, we describe how we adapted and imple-

mented a research prototype called lineage-driven fault in-

jection (LDFI) to automate failure testing at Netflix. Along

the way, we describe the challenges that arose adapting the

LDFI model to the complex and dynamic realities of the Net-

flix architecture. We show how we implemented the adapted

algorithm as a service atop the existing tracing and fault in-

jection infrastructure, and present early results.

Categories and Subject Descriptors D.4.5 Reliability

[Fault Tolerance]

Keywords Fault tolerance, fault injection, data lineage,

verification

1. Introduction

Netflix and similar enterprises operate at a scale at which

failures such as machine crashes and network partitions are
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the rule. In order to provide an “always on” experience to

customers, the software used by Internet companies must

be be written to anticipate and work around a variety of

error conditions, many of which are only present at large

scale. It is difficult to ensure that such fault-tolerant code

is adequately tested, because there are so many ways that a

Internet-scale distributed system can fail.

Chaos Engineering [10], or “experimenting on a dis-

tributed system in order to build confidence in the sys-

tem’s capability to withstand turbulent conditions in pro-

duction,” has is emerging as a discipline to tackle resilience

of these large-scale distributed systems [28, 35]. Engineers

create frameworks that automate failure injection, usually on

live traffic. Nascent workshops such as Chaos Community

Day [2]—in which top Internet companies share experience

designing and implementing fault injection frameworks to

improve the resilience of their systems at scale—underscore

the growth of this trend.

Chaos engineering reflects a cultural shift within the soft-

ware industry away from coordinated design and architec-

ture, monolithic applications, and top-down engineering to-

ward coordination of API boundaries, microservice archi-

tectures, and flattened engineering hierarchies. As the com-

plexity of these loosely coupled architectures increases, re-

liance on automated tooling to provide end-to-end tests for

business-critical assumptions about the system becomes un-

avoidable. Confidence in the end-to-end behavior of the sys-

tem is manufactured by experimenting with worst-case fail-

ure scenarios in the production, scaled-out system.

Building a production fault injection infrastructure is only

the first step towards maintaining fault-tolerant systems. The

space of distinct failure scenarios—combinations of faults

across a distributed system—that such an infrastructure can

test is exponential in the number of potential faults. Exhaus-

tive search is intractable; the fault injection infrastructure

must choose a search strategy to explore this massive space

of possible executions. To the best of our knowledge, all cur-

rent failure testing solutions use one or both of the following

strategies:



1. Random search, in which the fault injection infrastruc-

ture chooses failure scenarios arbitrarily. The principal

advantages of random search are its simplicity and gen-

erality. However, random strategies are unlikely to dis-

cover “deep” failures involving combinations of different

instances and kinds of faults. They also waste resources

and time by exploring failure scenarios that are redun-

dant, or that could be proven to be incapable of triggering

a user-visible error.

2. Programmer-guided search, which leverages the intuition

of domain experts to guide the search through failure sce-

narios. In a microservice architecture like that of Net-

flix, individual services are owned by small engineering

teams. Within each team, component-specific domain ex-

pertise can be exploited to generate local heuristics. This

approach has the advantage that by prioritizing certain

“deep” paths through the space of failures, it can drive the

search into unlikely but severe corner cases for the given

component. Unfortunately, programmer-guided search is

fundamentally unscalable, because every component re-

quires a domain expert to invest their time and encode

their expertise in a search heuristic.

Imagine if we had perfect information that allowed us

to understand exactly how systems like the Netflix backend

produce “good outcomes” (e.g., providing a satisfactory re-

sponse to user requests). We could then transform the very

open-ended question “could a bad thing ever happen?” into

a set of narrower and more targeted questions: “how did this

good thing happen (and what could have gone wrong along

the way)?” Because (by assumption) fault-tolerant systems

employ redundancy in various forms to guard against fail-

ures, the answer to this “how” question will often reveal a va-

riety of alternative computations that can produce the good

outcome. These in turn can help us to prune the space of

fault injection executions that we need to consider. This ap-

proach to automatically driving a fault injection infrastruc-

ture is called lineage-driven fault injection (LDFI) [7].

In this paper, we explain how we implemented LDFI as a

snap-in microservice in the Netflix infrastructure, leveraging

the existing tracing and fault injection services. We describe

the challenges that arose adapting the idealized model of the

research prototype to the rigid and imperfect realities of a

large-scale distributed system, and how we overcame them.

The paper is organized in the following way. Section 2

presents the LDFI approach and its embodiment in the ini-

tial research prototype. Section 3 describes the failure test-

ing infrastructure at Netflix as it existed when we began the

project. Section 4 details the challenges that arose imple-

menting a production version of LDFI; Section 5 takes each

problem in turn and shows how we solved it. We present

some preliminary results in Section 6, and close with a dis-

cussion of related work (Section 7), lessons learned (Sec-

tion 8) and conclusions (Section 9).

2. Lineage-driven fault injection

Lineage-driven fault injection (LDFI) is a technique for

guiding the search through possible fault injection scenar-

ios [7]. The LDFI prototype system (called Molly) takes as

input a distributed program written in an Dedalus [6] (an ex-

ecutable specification language based on Datalog), a correct-

ness specification, program inputs and bounds on execution

length, and simulates the program’s distributed executions

under a variety of faults. Execution of Molly terminates in

one of two cases:

1. A violation of the invariants described in the specification

is found. Molly then returns a trace visualization of the

execution, along with the faults that drove the system into

an invalid state. Programmers can use this visualization

to identify the root cause of the bug.

2. Molly exhausts the execution bounds without discovering

an invariant violation. In this case, the submitted program

is “certified” as free from fault-tolerance bugs given the

execution bounds and program inputs.

The LDFI approach is based on two key insights. The

first is that fault-tolerance is redundancy—a program or sys-

tem is fault-tolerant precisely if it provides enough alterna-

tive ways to obtain an expected outcome that it is resilient to

some pre-defined set of fault conditions. If we had perfect in-

formation about all of the alternative computations a system

provides, we could determine what faults it can tolerate—

or conversely, identify failure scenarios that could prevent it

from succeeding. The second insight is that instead of start-

ing from initial states and exhaustively searching the space

of possible executions, a better strategy for quickly identify-

ing fault-tolerance bugs is to start with successful outcomes

and reason backwards, from effects to causes, in order to

understand whether some combination of faults could have

prevented the outcome.

2.1 Lineage

LDFI uses data lineage [11, 14] to simultaneously exploit

both insights. It begins with a correct outcome, and asks

why the system produced it. This recursive process of asking

why questions (which we illustrate below) yields a lineage

graph that characterizes all of the computations and data

that contributed to the outcome. By doing so, it reveals

the system’s implicit redundancy by capturing the various

alternative computations that are sufficient to produce the

good result.

For example, a correctness property for a distributed stor-

age system might require that “all acknowledged writes are

durably stored.” Hence an execution in which a write is

durably stored is a witness to the correctness property. Work-

ing backwards from this good outcome, we ask why the write

was durable. Since the storage system used replication to

guard against node failure, there are multiple reasons why

the write is durable: namely, because it is stored on some







services” representing the minimum set of services required

to stream video.

4. Challenges

LDFI has been shown to be effective at discovering bugs

related to fault-tolerance in low-level, “classic” protocols

(e.g. three-phase commit) as well as modern infrastructure

(e.g. Kafka), using orders of magnitude fewer executions

than random fault injection [7]. This made it an attractive

alternative to the brute-force and engineer-driven methods

used to drive the failure testing infrastructure at Netflix.

Unfortunately, several limitations of the prototype made it

unsuitable for use in its current form.

In this section, we describe the assumptions and require-

ments of the LDFI prototype that were practical barriers to

its deployment. In the subsequent section, we detail how we

overcame these limitations in the production implementa-

tion.

4.1 Language

The Molly prototype requires that distributed systems be im-

plemented in the Dedalus language. The reasons for this re-

striction are largely historical. The research team that de-

veloped LDFI intended for it to provide tool support for

Bloom [5], whose semantics are based on Dedalus. Rule-

based languages such as Dedalus also make it trivial to col-

lect fine-grained data lineage during execution.

While it is not uncommon for verification systems to re-

quire that programs be specified in a custom language [22,

39], this requirement was not acceptable at Netflix. First,

there were simply too many applications to port to Dedalus.

Moreover, because Netflix executes sandboxed code pro-

vided by partners, the source code of applications is some-

times unavailable.

As a consequence, we had to look for another source of

lineage data beyond the program text.

4.2 Lineage: granularity and redundancy

Fortunately, the tracing service described in Section 3.2

records service interactions as call graphs. A call graph is

shown in Figure 4. At a high level (and at a glance), such

a trace resembles a lineage graph. It describes how the API

tier (the root of the graph) responded to a client request;

every service that was required to satisfy that request is rep-

resented as a node in the graph. To a first approximation,

call graphs differ from the rich lineage structures that could

be generated from Dedalus executions principally in their

granularity. That is to say, a call graph characterizes how

a collection of services contributed to a system outcome,

while LDFI’s data lineage characterized how individual data

elements and fine-grained computation steps contributed to

an outcome. Because we were willing to sacrifice some pre-

cision in order to improve the performance of automated

failure testing, it seemed that call graphs could stand in for

API Service

Ratings Service Playlist Service

Playlist EVCache

API

Hystrix_GetRatings Hystrix_GetPlaylist EVCache_Playlist

Ribbon_Ratings

Ratings

Ribbon_Playlist

Playlist

Playlist_Cache

Figure 4. A decorated call graph generated describing the

services that participated in servicing a user request. The

boxes represent Netflix services, while the oval nodes rep-

resent potential fault injection points identified by FIT.

lineage, freeing us from the dependency on Dedalus as an

implementation language.

Recall, however, that LDFI (as described in Section 2)

aggressively pruned the space of executions it needed to

explore using fault injection by considering explicit redun-

dancy, which was revealed in individual graphs like the one

shown in Figure 1. Call graphs such as the one shown in Fig-

ure 4 capture no redundancy. In fact, if we were to apply the

LDFI approach naively to that call graph, we would need to

explore the power set of

{API,Ratings,Playlist,Playlist Cache},

yielding the brute force search strategy described in Sec-

tion 3.

Of course, a site such as Netflix cannot provide high

availability and low latency for user requests without uti-

lizing redundancy in a variety of forms, including caching,

active replication, and automatic as well as operator-assisted

fail-over. These forms of implicit redundancy are not explic-

itly revealed in the call graph structure—hence our challenge

was to identify and reify them into our model.

4.3 Identifying successful outcomes

As we discussed in Section 2, LDFI works backwards from

a successful system outcome in order to explore the space

of faults that could have prevented it. In the prototype, a

successful outcome was merely a data item; a record in a

table.

The aforementioned heterogeneity of the applications

running in the Netflix ecosystem made it challenging to iden-

tify an appropriately general measure of success for individ-

ual service interactions. Because Netflix presents a REST

API to external clients, we explored the possibility of using

the HTTP response code as an indication of the success of

the overall interaction. Unfortunately, different applications

use the return code inconsistently. It was not uncommon for

API calls that produce a client-visible error to nevertheless

return a successful status code (“200 OK”).



4.4 Replayability

As Figure 1 indicates, LDFI requires individual interactions

with a distributed system to be replayable. This is unavoid-

able; not all hypotheses generated by the solver will produce

a user visible error, so to ensure that bug identification is

sound each hypothesis must be tested via fault injection.

Netflix does not have a production-scale testing environ-

ment in which to carry out speculative replay of service in-

teractions. As we described in Section 3, all failure testing is

carried out in production using real user traffic.

We explored the possibility of recording user-generated

interactions and their traces, and later replaying them to test

different failure hypotheses directly in the production envi-

ronment. Unfortunately, the dynamic nature of the microser-

vice architecture at Netflix made this approach impossible.

First, the internal state of individual services is constantly

changing as a consequence of both asynchronous updates

and user interactions. Worse still, due to software releases

the versions of various services can change at any time—

there is no notion of a “consistent cut” of system-wide soft-

ware versions, as each microservice evolves independently.

Finally, because user interactions with the services are not

necessarily idempotent, replay itself may effect the internal

state of services.

5. Solutions

In this section we address each of the challenges enumerated

in Section 4 in turn. While we sought to preserve the spirit

and simplicity of the LDFI approach as much as possible,

we had limited flexibility with respect to changing details of

the Netflix production infrastructure. As a consequence, we

often found ourselves adapting the idealized model of LDFI

to the “ugly” realities of the existing system, rather than

trying to “boil the ocean” by making the system more closely

resemble the model. Luckily, with a bit of creativity and a

good deal of flexibility we succeeded in overcoming each of

the challenges. We hope that the solutions we describe will

prove useful for future adaptations of LDFI to production

infrastructure.

5.1 Measuring Success

What does “success” mean in real life? In a production

system, it has a real and specific meaning: did the system

work correctly for the customer? For the typical customer

interaction with Netflix, this boils down to ensuring that the

user has the ability to browse the catalog, view video details,

and stream the video. These interactions occur both within

web browsers and on devices (such as the Xbox, Playstation,

etc). Netflix captures and report back metrics about these

(and other) key interactions in order to gain insight into the

customer experience. From these device-reported metrics we

are able to determine whether the customer saw an error or

had a successful interaction.

We tap into a stream of these device-reported metrics in

order to capture the error information related to customer re-

quests that were decorated with failure. We either store “suc-

cess”, or metadata about the error (which is useful for later

debugging). For each experiment run, we impact several re-

quests so that we can filter out potential false positives. We

only mark an experiment as finding a bug if greater than 75

(percent) of the requests result in a failure.

Lastly, we encountered some scenarios in which no data

would be captured from the device-reported metrics for a

given experiment. After some debugging, we found that

certain injected failures affected not only the request itself,

but the mechanism for reporting errors as well. Therefore

we treat a lack of device reported metrics as a failure. This

may not be a true failure (i.e. if someone pushes bad code

which prevents capturing device reported metrics, etc), but

we would rather investigate it as if it were a real failure than

ignore it.

5.2 Replay

The LDFI methodology requires that requests be replayed

in order to test different failure hypotheses, but the Netflix

infrastructure provided no practical replay capacity. To cir-

cumvent this obstacle, we simulate replay by treating all user

requests that cause the same back-end behavior as if they

were replays of a single, canonical request. This required us

to define a finite set of equivalence classes representing dis-

tinct interactions with the services provided by Netflix, and,

for each user request, to predict the class to which it belongs.

This section describes how we formulated and solved these

problems.

5.2.1 Request Classes

All user requests are unique, but intuitively there are only a

finite set of distinct service interactions that a request could

stimulate. Before we could tackle the problem of predicting

class membership for user requests, we had to enumerate

this set of abstract “interactions.” More formally, user traffic

provides an infinite set of requests R, and Netflix’s tracing

infrastructure provides a function trace : R → T , where T

is a (possibly infinite) set of concrete traces. We needed to

define an equivalence relation ∼ that gives rise to a set of

request classes

C ≡ { {x ∈ T |x ∼ t} |t ∈ T} (3)

We want to choose ∼ in such a way that the cardinality of C

is finite and manageable, but large enough that it captures the

variety of interactions that are possible for users of the sys-

tem. Critically, we had to ensure that for any two requests r

and r′, trace(r)∼ trace(r′) if and only if any combination

of failures that prevents r from returning a valid response

also prevents r′. Informally, two requests are similar if the

interactions they cause are sensitive to the same faults.

As we discussed in Section 4.2, call graphs can be eas-

ily generated from system traces. Call graphs provide a use-



ful abstraction over the “interactions” that occur as a conse-

quence of user requests: they record which services (drawn

from a finite set S) participated in providing a response

to the user. The structure of a call graph also records de-

pendency information (i.e., which services were clients and

which were servers in directed acyclic graph of API calls)

that wasn’t required for our purposes. As a trivial example,

the services {A,B,C} could participate in a variety of dif-

ferent graphs, but the distinctions between these graphs are

uninteresting because any faults that affect A,B or C could

affect the user-visible response generated by any of the in-

teractions. We write callgraph(r) to denote the call graph

produced by request r in a fault-free execution, which we

can ascertain directly from system traces because they record

both requests and the generated call graphs. Given a call

graph g = (V,E), we write nodes(g) to denote the set of

graph nodes V ⊆ S.

Define a function

interaction≡ nodes◦ callgraph◦ trace (4)

Note that interaction : R → 2S—that is, interaction is

a function from requests to sets of services. Then we define

∼ as

∀r,r′ ∈ R r ∼ r′ ⇐⇒

interaction(r) = interaction(r′) (5)

Intuitively, two requests belong in the same class if they

“light up” the same set of services. Note that we assumed

trace to be a deterministic function. This is not always

the case in practice: call graphs can record a number of

non-deterministic effects such as cache misses. We describe

below how we work around this difficulty.

5.2.2 Learning Mappings

Because the function trace is effectively implemented by

the Netflix production infrastructure, it is not available at

the time a request arrives at Zuul. Hence as a surrogate

for interaction (which depends upon trace) we must

learn a function f : R → 2S—that is, a function which, given

information known at the time a user request is admitted

into the system, predicts the unique set of services that will

participate in serving the request. Given a request r ∈ R,

we write attrs(r) to denote its set of attributes, such as

its URI, device type and query string parameters. Due to

the possible run-time nondeterminism of trace described

above, we model f as a partial function: it produces a defined

value only when the classifier predicts a request class with

high confidence.

To learn f , we pose a supervised learning problem. Our

training input is drawn from the set of production traces,

each entry of which associates a request r ∈ R with a trace

t ∈ T (essentially providing information about how the in-

frastructure implements trace via input/output examples).

The features are drawn from request attributes: F ⊆ attrs(r).

We explored two formulations of the classification prob-

lem. First, we canonicalized elements of 2S by sorting them

lexicographically and combining them into a large string,

and posing a single-label classification problem to predict

that string for each request. We also investigated posing a

multi-label classification problem [36], in which each ele-

ment e ∈ 2S is treated as a label and the classifier attempts

to predict sets of labels for each input. In the end, we used

the single-label classifier for the first release of the LDFI

service, but are continuing to investigate the multi-label for-

mulation.

5.3 Lineage

By definition, a fault tolerant system provides multiple alter-

native computations that can achieve its expected outcomes—

it is precisely by doing so that it can mask faults that occur

during execution. LDFI uses data lineage to reason explic-

itly about the redundancy provided by a system, in order

to aggressively prune the space of executions that it must

consider. However, as we saw in Section 4.2, the tracing

infrastructure used by Netflix does not directly expose this

redundancy in call graphs. Intuitively, however, we know

that redundancy exists in the Netflix backend; the challenge

was to make it explicit.

Our solution was to have LDFI learn about the various

alternative computations provided by the site for a particular

class of user requests over time. Recall that Section 5.2

described a mechanism for simulating the replay of user-

generated interactions by grouping requests into equivalence

classes and treating all requests that map into a particular

class as though they are replays of a single user interaction.

It occurred to us that we could take advantage of this replay

mechanism to incrementally build a model of the variety of

alternative ways that a particular request class can provide a

satisfactory response.

For example, Figure 4 (as we discussed in Section 4.2)

reveals no redundancy: it simply describes the interaction

between the services that were used to generate a response to

a particular user request that mapped into that class. Based

on an analysis of this callgraph alone, it might appear that

if the node hosting the ratings service were to crash, the

entire request might fail. A Netflix site reliability engineer,

on the other hand, might know that in such an event, the

API service would fail over to a RatingsFallback service

that provides (possibly state) ratings information in order to

allow the client response to be generated with acceptable

defaults. This alternative computation is missing from the

graph, for an obvious reason: the fallback code was not

executed servicing the original user request.

However, if our automated failure testing system were to

generate a hypothesis that failing RatingsService could

cause a user-visible error, and then tested that hypothesis

via fault injection, in a subsequent “replay” (i.e., the next

user request that maps to the same class) the system would

succeed and generate a slight different request graph (e.g.,



one in which the RatingsService node was replaced by a

RatingsFallback node). Collectively, these graphs explic-

itly capture the redundancy in this system, which (continuing

this process) will be incrementally revealed over time.

By maintaining long-lived models of these alternative

computations provided by each request class, we were able

to capture both the dependencies within individual computa-

tions and the redundancy across them. We used this structure

to stand in for the lineage graph described in Section 2.

6. Results

In this section, we begin by briefly describing the LDFI

service that we implemented at Netflix. We then present a

case study in which we describe details of how the LDFI

service explored a particular request class (called App Boot),

and the fault tolerance bugs it identified.

6.1 Implementation

Having addressed the challenges described in Section 4, we

implemented LDFI as a service that interposes between the

tracing service and FIT.

For each request class (as described in Section 5.2), the

LDFI service maintains a model of the alternative computa-

tions that are sufficient to produce a satisfactory response for

requests that fall within the class. This model—the substitute

for fine-grained lineage that we presented in Section 5.3—

is enriched over time as described below; at any given time,

the model can be thought of as the conjunction of the various

call graphs that were produced by experimenting with differ-

ent fault scenarios. Given such a model, LDFI can produce a

set of hypotheses by representing the known alternatives as

a Boolean formula and solving, as described in Section 2.

The LDFI service is driven by a daemon that periodically

spawns three types of jobs:

1. Training: the service collects production traces from the

tracing infrastructure and uses them to build a classifier

(as described in Section 5.2) that determines, given a user

request, to which request class it belongs. We found that

the most predictive features include service URI, device

type, and a variety of query string parameters including

parameters passed to the Falcor [16] data platform.

2. Model enrichment: the service also uses production

traces generated by experiments (fault injection exercises

that test prior hypotheses produced by LDFI) to update

its internal model of alternatives. Intuitively, if an exper-

iment failed to produce a user-visible error, then the call

graph generated by that execution is evidence of an alter-

native computation not yet represented in the model, so it

must be added. Doing so will effectively prune the space

of future hypotheses.

3. Experiments: finally, the service occasionally “installs” a

new set of experiments on Zuul. This requires providing

Zuul with an up-to-date classifier and the current set of

failure hypotheses for each active request class. Zuul will

then (for a small fraction of user requests) consult the

classifier and appropriately decorate user requests with

fault metadata.

At any time, administrators may query the LDFI service

to obtain information about user-visible failures that have

been uncovered, the current state of lineage models for the

active request classes, and the current failure hypotheses that

will be tested in the next experiment.

6.2 Case study: App Boot

Hypothesis:

EC_MAP_LT

APIPROXY

API

EC_AB EC_YELLOW2 ABCLOUD YELLOW2 EC_SUB

Figure 5. A simplified example of a failure-free run of App

Boot. Most of the data required to satisfy the request is ob-

tained from the EVCache tier (nodes with the prefix “EC ”).

A failure hypothesis (crash EC MAP LT) generated by LDFI

after processing the graph is highlighted.

In this section we focus on one of the most critical inter-

actions users have with the Netflix site: a particular request

class that Netflix developers colloquially refer to as “App

Boot.” This interaction loads the metadata needed to run the

Netflix application and load the initial list of videos for a

member. App Boot represents a moment of truth that, as a

company, we want to win by providing a reliable experience

from the very start.

It is also a very complex request, touching dozens of

internal services and hundreds of potential failure points. A

complete (but too dense to read) call graph for App Boot

is shown in Figure 6. Brute force exploration of this space

would require roughly 2100 experiments.

Figure 5 shows a simplified call graph produced by a

failure-free initial run of the App Boot request class. Note

that in order to make the graphs readable, we display them

at a coarser grain than the example graph we showed in

Figure 4. In Figures 5 and 7, services (boxes in Figure 4)

are shown as graph nodes (ovals), while individual fault

injection points (ovals in Figure 4) are not shown.

Figure 5 also highlights a failure hypothesis generated

by LDFI after processing the graph: causing a fault in the

EC MAP LT service could prevent the App Boot interaction

from providing a useful response to the user. At some future

time, the LDFI service propagated the details necessary to

test this hypothesis via FIT. Some time after that, a user re-

quest arrived that the classifier mapped into the App Boot

request class. Zuul decorated the user request with the ap-
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Figure 6. The App Boot call graph.

Consequence

MAPLOLOMO
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EC_MH2_GPS_PAGE_BASIS

APIPROXY

API

EC_AB EC_YELLOW2 EC_SUB YELLOW2

Figure 7. A simplified trace for the request class shown

in Figure 5, after injecting a crash failure in the EVCache

Map service (EC MAP LT cache service). In this execution,

the LOLOMO (List-of-lists-of movies) must be compiled

via a deeper subgraph involving calls to several services (e.g.

GROUP SERVICE, GPS SERVICE).

propriate failure scenario metadata, triggering the appropri-

ate downstream faults.

However, that experiment failed to produce a user-visible

error. Instead, it logged a new call graph, shown in Figure 7.

Note first that the EC MAP LT service does not appear as a

node in this call graph, because the service was crashed by

the FIT infrastructure. In its place, however, a new subgraph

has “grown” (shown in a box). The EC MAP LT cache service

materializes the results from a collection of service calls

that are required to compile the “LOLOMO” (or list-of-

lists-of-movies) that is presented to users after logging in to

the Netflix service. Because the cache was unavailable, the

API tier called the MAPLOLOMO service as a fallback. It, in

turn, called the services required to compile the LOLOMO,

including the GROUP SERVICE, GPS SERVICE and several

lower-level caches.

The EC MAP LT service and the subgraph that replaced it

in Figure 7 represent alternative computations provided by

the Netflix backend that are individually sufficient to pro-

duce a satisfactory user response for the App Boot request

class. Armed with this additional knowledge about fallbacks,

LDFI will never again explore scenarios in which faults are

injected in EC MAP LT without also injecting faults in some

node in the new subgraph (e.g. GPS FRONTEND). Every time

the service spends resources and time running a failure ex-

periment, the results of the experiment either uncover a bug

or prune the space of future experiments.

LDFI covered the space of failure scenarios for App Boot

after running just under 200 experiments—a miniscule sub-

set of the 2100 potential failure scenarios into which random

strategy would “stab.” Along the way, it discovered 11 new

critical failures that could prevent users from streaming con-

tent, several of which involved “deep” failure scenarios in-

volving a combination of service fault events.

7. Related Work

Fault injection is a relatively mature subject in the depend-

ability literature [1, 15, 21, 23]. “Failure testing as a ser-

vice” was first proposed by Gunawi et al [20]. More recently,

large-scale infrastructures supporting fault injection in pro-

duction systems have emerged [10, 18, 28, 35]. In this work,

we took advantage of an existing fault injection service and

focused on the problem of intelligently searching the combi-

natorial space of possible failures. To the best of our knowl-

edge, our system is the first large-scale failure testing service

to automate the search using techniques more sophisticated

than simple random fault injection.

Formal methods [17, 22, 24, 29, 30, 38, 39] have always

been available to programmers, but most require significant

expertise in a modeling or annotation language. Despite the

difficulty of mastering these tools, large scale Internet com-

panies have reported some recent success using formal meth-

ods [31]. In contrast to most of these approaches, our project

focused on finding bugs on unmodified (and indeed already

deployed) systems. Rather than exhaustively verifying the

behavior of individual components, as would a strategy such

model checking, FIT and LDFI test end-to-end properties of

complete systems.

LDFI uses data lineage to reason about the underlying

redundancy provided by a fault tolerant distributed system.

Lineage [12, 25, 27, 33, 37] is a mature research area in

the data management systems community. While the LDFI

prototype uses classic lineage collection and analysis tech-

niques, as we described in Section 4.2 fine-grained data lin-

eage was not available at Netflix. Our approximation—the



conjunction of the history of call graphs for a given request

class—resembles a (positive) lineage graph.

8. Lessons and Future Work

Our goal in this paper was to share our experience adapt-

ing LDFI from a research prototype into a production ser-

vice. Hence the design and implementation efforts described

in this paper are in some cases specific to the target archi-

tecture at Netflix. Nevertheless, we strongly believe that this

approach can be re-applied with a reasonable amount of inte-

gration effort. In this section, we sketch the work that would

be required to deploy a “bolt-on” LDFI service at an enter-

prise satisfying some basic infrastructure requirements. We

also outline some directions for future research and applied

work.

A minimal requirement for LDFI is a fault injection

framework. In addition to Netflix [10], Linkedin [35], Mi-

crosoft [28], Uber [32], Yahoo [3] and other major Internet

companies have developed large-scale fault injection infras-

tructures, while smaller enterprises are beginning to follow

their example [9]. Some of these frameworks are already

available to the general public; others will likely become

available soon, either as open source or commercial soft-

ware.

A fine-grained fault injection service like FIT that sim-

ulates faults at the level of individual requests (as opposed

to at the level of the host, process, etc.) was required in our

case to control the “blast radius” of our experiments. Be-

cause we performed all experiments on production traffic, it

could be difficult to predict and control the effect of coarse-

grained faults on other processes. If production fault injec-

tion is not necessary or desirable (for example, if a testing

or staging area is available for experiments), request-level

tracing (while powerful) is no longer a strict requirement.

It is important to note that LDFI’s ability to leverage

a fault injection system will depend on the quality of its

input data. It will not be possible to take advantage of a

rich experimentation framework if only coarse-grained trace

data is available. In light of this dependency, it may be

worthwhile to consider co-evolving future tracing and fault

injection infrastructures; for example, by using software-

defined networking as a common substrate for monitoring

and fault injection, or by using the annotation propagation

capabilities of OpenTracing [4] to decorate requests with

failure metadata, much as Zuul did in our implementation.

Call graph tracing systems similar to the one we used at

Netflix are already in use at Google [34], Twitter [8], Face-

book [13] and a growing list of other sites. Tracing sys-

tems are increasingly following the emerging OpenTracing

API [4], allowing systems like LDFI to avoid lock-in and

achieve better reuse. In this paper, we showed how rich mod-

els of system redundancy could be built from this relatively

“shallow” source of lineage by accumulating and merging

call graphs over long timescales. There is always room for

improvement here—between the two extremes of the record-

level data lineage used by the Molly prototype and call graph

tracing lie a broad space of interesting lineage representa-

tions. Higher quality lineage can mean more effective prun-

ing of the space of executions, fewer false positives and bet-

ter utilization of site resources. We are actively researching

ways of improving trace collection infrastructures without

incurring unacceptable overheads.

While the idea of grouping requests together into equiv-

alence classes seems like a useful abstraction for any de-

ployment, the work described in Section 5.2 was yet another

example of accommodations for the local requirement that

fault injection be performed on the production system. When

staging areas are available to perform replays of site interac-

tions, the problem becomes much easier. In this paper, we

showed that it is possible to simulate replay even in infras-

tructures that do not support the capability directly.

At a glance, it might appear that a production-scale stag-

ing environment can sidestep many of the integration diffi-

culties described in this report. It is our opinion, however,

that production failure testing may be the right choice even

when a high-quality staging area is available. As we de-

scribed in Section 5.1, performing our tests in production

allowed us to measure success as perceived by real system

users in a way that would have been difficult or impossi-

ble using synthetic inputs or replay of old interactions. The

tradeoff between quality of success measurements and im-

pact on production systems and customers is nuanced; the

right choice is likely to differ from company to company.

When the lineage representation is coarse-grained, as it

was at Netflix, the space of solutions to the constructed

boolean formulae can themselves be very large. While all

of the solutions correspond to potentially interesting failure

scenarios, in practice we have limited resources and time

at our disposal. At any given point, we would like to use

the injection infrastructure to test the most likely failure

scenario that our solver has identified as one that could cause

a user-visible error. We are actively researching efficient

transformations of the decision problem (i.e., is there a set

of faults that could invalidate this successful outcome?) into

an optimization problem (i.e., what is the most likely such

set of faults?) that takes advantage of historic and vendor-

supplied mean time between failures statistics for hardware,

topology information, and software version metadata.

9. Conclusions

The results presented in Section 6 are preliminary, as LDFI

has been running in production at Netflix for a short time.

As it continues to run on a fraction of our production user

traffic, we expect that it will continue to uncover both “fresh”

bugs in new software releases and existing deep bugs lurking

within new request classes that we have not yet explored.

We also anticipate that as the Chaos Engineering discipline



proliferates among Internet companies, approaches such as

LDFI will become increasingly relevant.

As we saw, the challenges in applying the research to a

“real-world” system largely arose from an impedance mis-

match between the idealized model of reality of the research

prototype and the rigid and often messy realities of produc-

tion systems. It was impractical to modify the existing sys-

tems to more closely resemble the model—in addition to the

bare complexity of such a task, there are too many live pro-

cesses dependent on them to make such changes safe. At the

same time, it was undesirable to complicate the models to

make them resemble reality—after all, the strength of mod-

els is in their simplicity and abstraction.

In the end, the solutions that we devised all involved a

principled mapping between concrete systems and structures

and the idealized model. We were able to preserve the funda-

mental facets of the LDFI approach—successful outcomes,

lineage and replay—by approximating them as “views” over

existing services and data structures.

We hope that lessons have emerged from our experiences

on two levels. First, we showed how to implement LDFI as

a microservice that “snaps in” to existing tracing and fault

injection infrastructures. We hope that this experience can be

a guide for future integrations efforts. Second, and perhaps

more importantly, we share important evidence that it is

possible (and indeed, profitable!) to push distributed system

research prototypes into production usage.
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