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RESEARCH HIGHLIGHTS

e Motor exploration is a critical part of motor learning—yet develop-
mental differences in motor exploration are not well understood.

e We used a novel paradigm to examine motor learning and explora-
tion in three age groups: 9-year-olds, 12-year-olds and young
adults (18-35 years).

e Children showed lower task performance compared to young
adults even when the task was designed to minimize biomechanical
constraints.

e Lower task performance was associated with limited exploration of
movement repertoire during learning.

1 | INTRODUCTION

Despite the popular belief that children are better at learning motor
skills compared to adults, there is a large body of evidence document-
ing poorer performance and learning in children relative to adults
(Lukacs & Kemeny, 2015; K.M. Thomas et al., 2004; Wade, 1976).
Movements in children are generally slower, less smooth and show
increased variability (Bo, Bastian, Contreras-Vidal, Kagerer, & Clark,
2008; Yan, Thomas, Stelmach, & Thomas, 2000). These age-related
differences have been mainly attributed to the fact that the nervous
system of children is still developing both structurally and functionally,

Examining age differences in motor learning using real-world tasks is often problem-
atic due to task novelty and biomechanical confounds. Here, we investigated how
children and adults acquire a novel motor skill in a virtual environment. Participants of
three different age groups (9-year-olds, 12-year-olds, and adults) learned to use their
upper body movements to control a cursor on a computer screen. Results showed that
9-year-old and 12-year-old children showed poorer ability to control the cursor at the
end of practice. Critically, when we investigated the movement coordination, we
found that the lower task performance of children was associated with limited explo-
ration of their movement repertoire. These results reveal the critical role of motor

exploration in understanding developmental differences in motor learning.

and therefore impacts critical learning mechanisms such as informa-
tion processing (Sullivan, Kantak, & Burtner, 2008; J.R. Thomas, 1980),
and memory (Karmiloff-Smith, 1995; K.M. Thomas et al., 2004).
However, two important factors need to be considered when ex-
amining differences between children and adults in motor learning.
The first issue is task novelty—typical motor learning tasks used for in-
vestigating developmental differences (such as key pressing or reach-
ing paradigms) can be classified as scaling tasks in that they involve the
adaptation or re-parameterization of already well-learned coordination
patterns (Newell, 1991). Using these tasks potentially creates a bias
in favor of adults simply because of their extensive prior experience
with these coordination patterns. To overcome this confound, recent
studies have used tasks which require the acquisition of a novel spa-
tiotemporal coordination pattern—such as juggling (Voelcker-Rehage
& Willimezik, 2006) or split-belt walking (Vasudevan, Torres-Oviedo,
Morton, Yang, & Bastian, 2011). However, even in these novel tasks,
there is a second issue that could potentially confound results—de-
velopment results in changes not only to the nervous system but also
in biomechanical factors such as body mass, size, and strength. For
example, although children show increased movement variability com-
pared to adults when adapting the same force field, the higher vari-
ability may simply be a consequence of children operating at a higher
percentage of their maximum force production capability (Takahashi
et al., 2003). Although attempts have been made to account for some
of these differences by adapting the task for children—for example, by
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using lower walking speeds during split-belt walking (Vasudevan et al.,

2011), it becomes difficult to directly compare adults and children in
real-world physical tasks especially if they require movements of large
body segments because biomechanical factors play a larger role in
performance. Therefore in order to characterize developmental differ-
ences in motor learning, it is critical to use a paradigm that minimizes
confounds due to task novelty and biomechanics.

Inview of these two confounds, we used a novel virtual task based
on the body-machine interface paradigm (Casadio, Ranganathan, &
Mussa-lvaldi, 2012; Mosier, Scheidt, Acosta, & Mussa-lvaldi, 2005;
Ranganathan, Adewuyi, & Mussa-Ivaldi, 2013). In simple terms, a
body-machine interface transforms body movements into com-
mands for the control of a device—for example, the position of a
screen cursor (Figure 1). This paradigm allows for a more accurate
comparison of learning between children and adults because: (i) the
task can be made equally novel to children and adults since the ex-
perimenter is in control of how the movements map to the device
commands; and (ii) the task can be used to minimize differences in
motor performance due to biomechanical factors since it is com-
pletely virtual and can be customized to each individual (to account
for differences in body size, range of motion, etc.). Finally, an im-
portant feature is that the dimensionality of the body space can be
made higher than the dimensionality of the task space, meaning
that there is “redundancy” or multiple solutions to achieve the goal
(Bernstein, 1967). This allows greater insight into age-related differ-
ences in motor learning because in addition to quantifying learning
in terms of improvement in the task outcome, we can also examine
how the task was achieved in terms of the coordination between the
degrees of freedom in the body.

In this study, we used this novel paradigm to address the issue
of motor exploration—a topic that has received very little attention
especially with respect to development. Motor exploration is the abil-
ity to generate different movement patterns during learning, and this
variability has been considered critical to learning both from dynamical
systems theory (Davids, Bennett, & Newell, 2006) and reinforcement
learning (Sutton & Barto, 1998). In both views, motor exploration is
considered essential to being able to move out of existing solutions
and find new solutions (Thelen, 1995). Studies on infants have demon-
strated exploratory activity when transitioning to a new behavior like
reaching (Thelen & Corbetta, 1994), where exploratory movements
such as spontaneous arm flapping are gradually sculpted into smooth
goal-directed reaching movements. In adults, increased movement
variability during learning has been associated with faster learning (Wu,
Miyamoto, Gonzalez Castro, Olveczky, & Smith, 2014), and higher task
performance (Teo, Swayne, Cheeran, Greenwood, & Rothwell, 2011),
and it has been shown that this variability during learning can also
be modulated by reward (Pekny, Izawa, & Shadmehr, 2015). However,
there is also evidence that too much variability can also affect learn-
ing adversely (He et al., 2016; Ranganathan & Newell, 2013; Therrien,
Wolpert, & Bastian, 2015), suggesting that not all movement variabil-
ity may be related to exploration. Therefore, while motor exploration
plays a central role in motor learning, there is currently limited under-

standing of how motor exploration impacts learning in children.

Here, we examined how children and adults learned a novel
motor task, where we could quantify both task performance and
motor exploration. Based on previous research, we hypothesized
that children would show lower task performance at the end of
practice compared to adults. and we examined whether the these
differences in task performance could be attributed to differences
in motor exploration.

2 | METHODS

2.1 | Participants

A total of 45 participants volunteered for the study. We tested three
age groups: 9-year-olds (M = 9.57 years, SD = 0.94 years,n = 13, 5
females), 12-year-olds (M = 12.17 years, SD = 0.68 years, n = 12, 2
females), and adults (M = 24.94 years, SD = 5.36 years, n = 20, 10
females). Our choice of the age groups was based on prior studies on
learning across the lifespan (Lukacs & Kemeny, 2015; Voelcker-Rehage
& Willimezik, 2006) that show that task performance increases with
age from about 9 years, and reaches adult-like performance around 15
years. Moreover, because this is a virtual task, we had a concern that
very young children (< 6 years old) may not be able to sufficiently un-
derstand the task instructions to perform the task. Informed consent
(including parental consent when needed) was obtained and proce-
dures were approved by Michigan State University Human Research
Protection Program.

2.2 | Experimental set-up and design

Participants sat in front a 23" (58.4 cm) computer monitor and were
instructed to move their upper body to control a cursor on the com-
puter monitor. A customized vest was put on the participant with
Velcro loops around the shoulder area. Four wireless inertial meas-
urement units (IMUs) (3-space, YEI Technology, Ohio, USA) were at-
tached to the vest using Velcro hooks (Figure 1) and captured scapular
retraction, protraction, elevation and depression (Farshchiansadegh
et al., 2014). The four sensors were attached to the anterior and pos-
terior end of the acromioclavicular joint on both the left and right
sides of the body (Figure 1). We only used the signals corresponding
to the roll and pitch angles from each IMU sensor since the yaw angles
were relatively noisy. This resulted in an 8-D signal (4 IMU sensors x 2

signals/sensor) which constituted the “body space”.

2.3 | Mapping body motions to cursor position

We used linear mapping to convert the 8-dimensional body space (h)
into the 2-D task space, which was the cursor position (p). The map-
ping used was given by p = A h + p,, where A refers to the map and p,
is an offset term. (Farshchiansadegh et al., 2014). To determine the
map A, we used a calibration procedure similar to previous studies
(Farshchiansadegh et al., 2014; Ranganathan et al., 2013). During the
calibration, participants performed free exploratory movements for

60 s where they were asked to explore different motions that they
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FIGURE 1 Schematic of a body-machine interface. (a) Inertial measurement units (IMUs) are attached to the upper body (near the shoulder)
of a participant which provide orientation information. (b) The interface uses a map A that transforms the IMU signals h into the position of

a screen cursor p using a linear mapping as shown. (c) The x-y position of the cursor is displayed to the participant on a screen. During the
experiment, the goal of the participants is to move the cursor to different targets displayed on the screen. The lower panel shows how the x-y
positions of the cursor vary with time as the IMU signals change their values. (d) Experimental protocol showing the “test” blocks (pre-test, mid-
test and post-test) which required reaches to eight targets on the screen, and the eight “training” blocks which required reaching for four targets

on the screen

could perform with the upper body, while maintaining a comfortable
range of motion. We then performed principal component analysis
(PCA) on the calibration data and extracted the first two components.
These two vectors of component coefficients were scaled by a gain
factor (which was equal to the reciprocal of the square root of the re-
spective eigen value) to make the movements along both axes compa-
rable in difficulty (having equal variance). The two scaled vectors were
then used to form the matrix A. The offset p, was set so that the aver-
age posture during calibration (which was close to the resting posture)
resulted in the cursor being in the center of the computer screen.

It is critical to note two important features of the task—(i) the
signals from the IMUs captured only angles in the upper body (i.e.,
shoulder and torso), and therefore the task was not influenced by
developmental differences in the length of body segments (such as
arm length), (i) calibration was done at an individual level so that each
participant could successfully perform the task—this meant that dif-
ferences in range of motion and sensor placement also did not affect
participants’ ability to perform the task. This approach to scaling the
task based on the participant’s own movement repertoire is similar to
the approach of scaling the task differently for children—for example,
by changing walking speed (Vasudevan et al., 2011), or in force pro-
duction experiments where targets are scaled to the maximum force
production ability (Deutsch & Newell, 2001).

2.4 | Cursor control task

Participants had to move their shoulders and torso (where the sen-
sors were placed) in order to control a cursor on the computer screen

to perform a virtual center-out reaching task. Participants moved the
cursor from the home target (r = 2.2 cm, in the center) to one of a
number of peripheral targets presented at a distance of 11.5 cm, and
then returned back to the home target. The peripheral targets were
presented in a random sequence. Each trial started when the home
target showed up for 500ms followed by the presentation of a pe-
ripheral target. Participants were instructed to move the cursor to the
target as fast and as close to the center of the target as possible. The
task also required the participant to keep the cursor inside the target
circle for 500ms before they returned to the home target.
Participants performed two types of blocks: there were eight
“training” blocks in which they reached for 4 peripheral targets in the
cardinal directions five times each (for a total of 20 trials), and three
“test” blocks (pre-, mid- and post-test) in which they reached for eight
peripheral targets three times (for a total of 24 trials). Direct compar-
isons between groups were focused on the test blocks, and the addi-
tional targets placed along diagonal directions in the test blocks were
designed to test whether the learning in the training sessions general-
ized to unpracticed directions. The experimental set-up and protocol

is shown in Figure 1.

3 | DATA ANALYSIS

All analyses were performed only on the outward movements—that
is, when the participant moved from the home target toward the pe-
ripheral targets. We selected only the outward movements because
the return movement to the home target involved coming back to the
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same initial posture, which was generally easier to do (and therefore

required less exploration than the outward movements). We divided
the data analysis metrics into two categories: task performance and

coordination.

3.1 | Task performance

We quantified task performance using the movement time, and the
normalized path length (which measured the straightness of the path
taken). The cursor control task was designed so that each trial stopped
only when the target was reached, at which point the subsequent tar-
get was presented. Because all targets were at a fixed distance from
the home target, we used movement time as the primary measure
of task performance (spatial accuracy was controlled for because
all reaches eventually reached the target). In addition, even though
this was not an explicit instruction to the participants, we used the
straightness of the path (normalized path length) as a secondary meas-
ure of task performance to measure the degree of control they had
over the cursor. The rationale for this metric is that there is a ten-
dency for participants to move in straight lines when learning novel
reaching tasks (Mosier et al., 2005; Shadmehr & Mussa-Ivaldi, 1994).
Moreover, because the targets were arranged in a circle around the
home position, moving the cursor in straighter paths would indicate
that participants are able to control the x- and y- motion of the cursor
both independently (when the targets were in the cardinal directions)
and simultaneously (when the targets were in the diagonal directions).
As a result, the normalized path length also allowed us to understand
differences in movement time better—longer movement times could
be due to convoluted cursor trajectories indicating poor control of
the cursor (high normalized path length), or making slow but straight
movements (low normalized path length).

Movement time was calculated from the time that the cursor left
the home target to the time that it reached and stayed inside the tar-
get for the subsequent 500 ms. Normalized path length between two
targets was defined as the actual distance traveled by the cursor di-
vided by the straight line distance between the targets (i.e., reaching to
a target in a straight line without any movement reversals would result
in a normalized path length of 1). In addition to these two metrics used
to measure learning, we also computed the peak speed of the cursor
during the movement to examine whether differences in movement

time were due to differences in the ability to move at high velocity.

3.2 | Coordination

For assessing the coordination of the upper body, we used principal
components analysis PCA (Daffertshofer, Lamoth, Meijer, & Beek,
2004). Even though a single reach required movement along only one
direction, the cursor control task over an entire training or test block
required the participant to control the cursor in a 2-D space, requiring
at least two distinct coordination patterns. We therefore analyzed the
time series of the eight signals in each block using PCA and computed
the percent of variance accounted for (VAF) by the first two principal

components to investigate the degree of exploration in participants’

body movements when learning the task. We used the covariance ma-
trix to perform the PCA (which preserves the amplitude information
in the signals).

To analyze the degree of motor exploration, we used the relative
distribution of variance along the first two PCs (rather than the total
movement variability) as an index of motor exploration because we
were interested in how participants explored between different co-
ordination patterns (and not the variation within a single coordination
pattern). We quantified this exploration using the variance aspect
ratio—that is, the ratio of variance along PC2 to that along PC1—a
larger variance ratio indicates greater exploration along both coordi-
nation patterns. The ratio along two orthogonal directions has been
used as a measure of motor coordination in the uncontrolled manifold
hypothesis (Scholz & Schoner, 1999), and has also recently been used
to quantify exploration (Ranganathan, Wieser, Mosier, Mussa-Ivaldi, &
Scheidt, 2014).

For example, if the two PCs both had almost similar amount of
VAF (say 40% in PC1 and 30% in PC2, variance aspect ratio = 0.75),
that indicates that participants were able to successfully explore along
two coordination patterns. On the other hand, if the distribution of
VAF was skewed highly toward PC1 (say 60% in PC1 and 10% in PC2,
variance aspect ratio = 0.16), this indicated that participants were rel-
atively “stuck” in one coordination pattern and only showed limited

exploration of the second.

4 | STATISTICAL ANALYSIS

To examine changes with learning, we analyzed only the pre-test, mid-
test and post-test (i.e., the training blocks were not included for sta-
tistical analysis). The dependent variables were analyzed usinga 3 x 3
(Block x Group) repeated measures ANOVA. Block (Pre-test, mid-test,
post-test) was the within-subjects factor, whereas Group (9 years,12
years, adult) was the between-subjects factor. Violations of sphericity
were corrected using the Greenhouse-Geisser factor when applicable.
To minimize the number of comparisons, post-hoc comparisons for
group were examined using the Sidak correction only at the pre-test
and post-test. Significance levels were set at p < .05.

5 | RESULTS

5.1 | Task performance

A sample of cursor paths in the pre-test and post-test from a repre-
sentative participant in each of the age groups is shown in Figure 2.
All groups decreased movement time with practice as indicated by
a significant main effect of block, F(1.04, 43.85) = 91.20, p < .001
(Figure 3a). There was also an age-related effect indicated by a sig-
nificant main effect of group, F(2, 42) =15.92, p < .001, which was
mediated by a significant Block x Group interaction, F(2.09, 43.85)
=472, p = .013. Post-hoc analysis of this interaction effect showed
that at the pre-test, adults had significantly shorter movement times

than 9-year-olds, and at the post-test, adults had shorter movement
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FIGURE 2 Cursor paths before and after learning from a typical participant in the three age groups. There is a clear effect of age, with
straighter paths with increasing age, which were also associated with shorter movement times

times than both the 9-year-olds and the 12-year-olds (all ps <. 001).
In addition, the 12-year-olds had shorter movement times than the
9-year-olds only at the post-test (p = .046).

Results were similar for analysis of the normalized path length
(Figure 3b). All age groups showed smaller path lengths (i.e., straighter
cursor paths) with practice—main effect of block, F(1.03, 43.42) =
44,29, p < .001. There was also a significant age-related effect indi-
cated by a significant main effect of group, F(2, 42) = 9.60, p < .001,
which was mediated by a significant Block x Group interaction, F(2.07,
43.42) = 4.25, p = .02. Post-hoc analysis of this interaction effect
showed an ordinal interaction where both at the pre-test and post-
test, adults showed significantly straighter paths than the 9-year-olds,
but the magnitude of this difference decreased with practice (pre-test
p = .004, post-test p < .001). The difference between 12-year-olds
and adults and between 9- and 12-year-olds was not significant.

In addition, to rule out the possibility that the shorter move-
ment times in adults were simply a consequence of adults being
able to move with higher velocities, we also examined the peak
speed of the cursor during the movement. Surprisingly, peak speed
actually decreased with practice as indicated by a significant main
effect of block, F(1.36, 57.05) = 35.06, p < .001. There was also
an age-related difference indicated by a main effect of group, F(2,
42) = 5.94, p = .005, which was mediated by a significant Block x

Group interaction, F(2.72, 57.05) = 3.11, p = .038. Analysis of the
interaction indicated that at the pre-test, adults in fact had lower
peak speeds than both 9-year-olds and 12-year-olds (p = .011 and p
=.045), and this difference between the adults and the 9-year-olds
was smaller but persisted at the post-test (p = .04). The peak speeds
of the 12-year-olds were not significantly different from either the
adults or the 9-year-olds at the post-test. These lower peak speeds
seen in adults (along with the shorter path lengths) show that the
shorter movement times were due to a better ability to control the
cursor, and not due to a biomechanical advantage of being able to
move faster.

5.2 | Coordination

There were also age-related and practice-related changes in coordi-
nation strategies. For the VAF-PC1, there was main effect of block,
F(2, 84) = 7.36, p = .001 (Figure 3c). There was also a significant main
effect of group, F(2, 42) = 6.19, p = .004, which was mediated by a
significant Block x Group interaction, F(4, 84) = 2.57, p = .043. Post-
hoc analysis of the main effect of group indicated that adults had
lower VAF- PC1 than the 9- and 12-year-olds (ps < .01)—however,
the interaction was due to the fact that trends with practice in the
groups were different: 12-year-olds and adults showed an increase in
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(d) PC2 as a function of practice in the three age groups. Children tend to have much greater variance along PC1 relative to PC2, indicating a
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VAF-PC1 with training from pre-test to post-test (p = .014 for adults,
p =.005 for 12-year-olds), whereas 9-year-olds tended to show a con-
sistently high value that did not change much with practice (p > .05). For
VAF-PC2, there was only a significant main effect of Group, F(2, 42) =
5.00, p = .011 (Figure 3d). Post-hoc analysis revealed that adults had
higher VAF-PC2 than 9-year-olds (p =.019).

To rule out the possibility that these differences in VAF-PC1 and
VAF-PC2 were either due to intrinsic biomechanical differences in the
movement repertoire of the upper body (i.e., the ability to make dif-
ferent types of movements) or an artifact of how children and adults
moved during the calibration (which would affect the mapping), we
compared the VAF-PC1 and VAF-PC2 during the calibration phase
(where participants explored moving their upper body but there was
no cursor to control). We found no statistical differences between the
age groups (VAF-PC1: F(2, 42) = .845, p = .437; VAF-PC2: F(2, 42) =
.335, p =.718), which indicates that the differences we found during
the task were specifically related to learning how to control the cursor.

Finally, to further examine the hypothesis that the restricted ex-
ploration of the movement repertoire led to lower task performance,
we computed a correlation between the aspect ratio (defined as the
square root of the ratio of variance in PC2 to PC1) against the move-
ment time during the post-test (Figure 4). The analysis showed a sig-
nificant correlation r = -0.42, p = .004, Cl = [-0.64, -0.12]. To examine
if the correlation was influenced by outliers, we also computed a ro-
bust correlation measure—the 20% bend-correlation (Pernet, Wilcox,
& Rousselet, 2013), which was also significant, r = -0.33, p = .025, CI
=[-0.62, -0.04].

6 | DISCUSSION
One of the key issues in the study of developmental science is to
understand the nature of developmental change (Adolph, Robinson,

Young, & Gill-Alvarez, 2008). Here, we utilized a novel task paradigm
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to address the issue of how the ability to learn a novel motor skill
changes during early development (Lukacs & Kemeny, 2015;
Voelcker-Rehage & Willimczik, 2006). In spite of minimizing con-
founds due to task familiarity and biomechanics, the analysis of task
performance showed that the children did not perform as well as the
adults at the end of practice. Children showed longer movement times
that were also associated with longer path lengths (and higher peak
velocities), indicating that these differences were due to a poorer
ability to control the cursor, and were unlikely to be biomechanical
in nature. Critically, when we examined the coordination underlying
performance, we found evidence of age-related differences in motor
exploration—younger children restricted exploration mostly along the
first principal component (i.e., they were “stuck” in one coordination
pattern), indicating reduced exploration of the movement repertoire.
These age differences in exploration were not only evident at the
group level, but we also found that overall, individuals with reduced
exploration tended to show worse task performance (longer move-
ment times). Although there is an argument that the change scores in
the movement time (i.e., the difference from pre-test to post-test) was
in fact greater in children, this was primarily due to children having sig-
nificantly longer movement times at the pre-test, and our focus in the
current study was to relate the degree of motor exploration directly to
the task performance after learning (i.e., on the post-test).

Variability and exploration has been widely acknowledged as a
critical feature of motor control and development (Davids et al., 2006;
Hadders-Algra, 2010; Stergiou, Harbourne, & Cavanaugh, 2006).
Although several theoretical perspectives such as dynamical systems
theory (Kelso, 1995) and reinforcement learning (Sutton & Barto,
1998; Wu et al., 2014) highlight the key role of variability and explo-
ration in learning, the trajectory of how this exploration evolves with
development has been difficult to study experimentally in multiple de-
grees of freedom tasks. While several studies have documented higher

Developmental Science

variability in children (Deutsch & Newell, 2001; Yan et al., 2000), here
we found that, perhaps counterintuitively, children show limited
movement repertoire when learning a novel motor task. Importantly,
the reduced motor exploration in children did not seem to be biome-
chanical in nature since the calibration phase (where participants did
not have to control a cursor) indicated no age-related differences.
Therefore, this might be a strategy adopted by the children when
learning this novel task involving the coordination of multiple degrees
of freedom—analogous to the “freezing of degrees of freedom” stage
(Bernstein, 1967). This stage posits that learners simplify the degrees
of freedom problem by “freezing” certain degrees of freedom initially
during learning. Although the original interpretation of freezing as a
reduction in the amplitude of movement in certain joints been de-
bated (Konczak, Vander Velden, & Jaeger, 2009; Newell & Vaillancourt,
2001), a broader interpretation that the learner can simplify coordina-
tion by limiting motor exploration is consistent with the results seen
here. Interestingly, given that children have been shown to have faster
motor memory stabilization (Adi-Japha, Badir, Dorfberger, & Karni,
2014), a longer time scale of learning may be required to examine
whether this initial inflexibility is consolidated and persistent, or is ul-
timately replaced by greater exploration of the movement repertoire.
However, the fact that children can be more variable (as observed in
the trajectories) and yet show limited exploration of the movement
repertoire highlights the fact that variability cannot be treated as a sin-
gle construct, and has multiple distinct roles in learning (Ranganathan
& Newell, 2013).

These results showing that performance in children is worse than
adults support similar studies on motor learning in other contexts such
as sequence learning (K.M. Thomas et al., 2004) and locomotor adap-
tation (Vasudevan et al., 2011). However, an important contribution
of the current study was to use a novel task that minimizes confounds
due to task familiarity and biomechanical differences between chil-
dren and adults. Specifically, the paradigm used here more closely re-
sembles motor learning (as opposed to adaptation) in that participants
had to learn a relatively novel movement pattern which could be used
be brought up and used in the appropriate context (Bastian, 2008).
Although studies of motor adaptation have quantified differences
between children and adults (Takahashi et al., 2003; Vasudevan et al.,
2011), a critical difference is that in adaptation paradigms, in addition
to using already well-learned movements (such as reaching or walk-
ing), there are typically no explicit task instructions regarding the main
dependent variable used to measure adaptation. For example, partic-
ipants are not explicitly instructed to reduce asymmetry during split-
belt walking, or to move their hand in a straight path when reaching
in force fields. This distinction is important because it means that age-
related differences seen in adaptation tasks are not only attributable
to differences in the ability to adapt, but may also reflect differences in
sensitivity to deviations from the normal movement pattern (for e.g.,
children walking on a split-belt treadmill with different speeds may not
be as sensitive to deviations from the symmetric walking coordination
pattern as much as adults). On the other hand, in the current paradigm,
participants were explicitly asked to reduce movement time (which is

the primary dependent variable), and therefore the results are more
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likely to be representative of real-world learning tasks where the goal
is to improve performance.

The current work highlights the role of age-related differences in
motor exploration in learning a novel motor skill, and has implications
for practice schedules. Although there is a long history of examining
variable practice in both adults and children (for a review, see Van
Rossum, 1990), recent studies have specifically examined the role of
variability in terms of modifying exploration in motor learning both
in adults (Ranganathan et al., 2014; Teo et al., 2011; Wu et al., 2014)
as well as infants (Lee & Newell, 2013). The current results suggest
that practice schedules that increase exploration of the movement
repertoire (i.e., getting them to perform different coordination pat-
terns) should facilitate performance on the task in children, rather
than simply increasing variability within the same coordination pat-
tern (Ranganathan & Newell, 2013). Testing these predictions in fu-
ture experiments will provide greater insight into the causal role of
exploration in learning and development, and how it may eventually

translate to movement rehabilitation both in children and adults.
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