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Abstract— Performing a direct match between images from
different spectra (i.e., passive infrared and visible) is chal-
lenging because each spectrum contains different information
pertaining to the subject’s face. In this work, we investigate
the benefits and limitations of using synthesized visible face
images from thermal ones and vice versa in cross-spectral face
recognition systems. For this purpose, we propose utilizing
canonical correlation analysis (CCA) and manifold learning
dimensionality reduction (LLE). There are four primary con-
tributions of this work. First, we formulate the cross-spectral
heterogeneous face matching problem (visible to passive IR)
using an image synthesis framework. Second, a new processed
database composed of two datasets consistent of separate
controlled frontal face subsets (VIS-MWIR and VIS-LWIR) is
generated from the original, raw face datasets collected in three
different bands (visible, MWIR and LWIR). This multi-band
database is constructed using three different methods for pre-
processing face images before feature extraction methods are
applied. There are: (1) face detection, (2) CSU’s geometric nor-
malization, and (3) our recommended geometric normalization
method. Third, a post-synthesis image denoising methodology
is applied, which helps alleviate different noise patterns present
in synthesized images and improve baseline FR accuracy (i.e.
before image synthesis and denoising is applied) in practical
heterogeneous FR scenarios. Finally, an extensive experimental
study is performed to demonstrate the feasibility and benefits
of cross-spectral matching when using our image synthesis and
denoising approach. Our results are also compared to a baseline
commercial matcher and various academic matchers provided
by the CSU’s Face Identification Evaluation System.

I. INTRODUCTION

Face recognition (FR) has been an active and widely
explored area of research over the last few decades, with
a plethora of applications in military and law enforcement.
However, a majority of FR research focuses primarily on
visible band images (380-750 nm). Although visible band
FR systems are considered to be efficient when face images
are captured under controlled conditions, variation in pose,
expression, and illumination is still considered to be a chal-
lenging problem. Unfortunately, FR based solely on visible
band images may not be feasible in environmental conditions
that are characterized by adverse lighting and conspicuous
shadows (such as night-time environments [4], [28], [40]).
Consequently, FR in the infrared (IR) spectrum has become
an area of growing interest [31], [43], [41].

Differences in appearance arise between images sensed
in the visible and active IR bands, primarily due to the
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properties of the object being imaged. The active IR spectrum
consists of the Near IR band (0.7 - 0.9um) and the lower
range of the Short-Wave IR band (0.9 - 2.54m). During data
acquisition in the active IR band, a subject’s face is usually
actively illuminated using an external light source that can be
detectable (i.e. in the case of the NIR band) or not (i.e. in the
case of the SWIR band). The passive IR spectrum consists
of the Mid-Wave IR (MWIR) (3 - 5um), and Long-Wave
IR (LWIR)] (7 - 14um) bands. IR radiation in the form of
heat is emitted from the target, in this particular case the
subject’s face, and detected by the camera sensor whenever
data is acquired in the passive IR band. Passive IR sensors
provide a significant capability of acquiring human biometric
signatures under obscure environments without allowing the
location of the sensor to be detected (as for example in the
case of NIR sensors and the usage of active illumination).
Combining the usage of passive IR sensors with other IR
sensors (e.g. SWIR) can result in better performance of
FR systems in environments that vary in illumination and
standoff distances.

A. Goals and Contributions

The contributions of this work are four-fold. First, we
propose and formulate a visible to passive infrared face
matching framework utilizing image synthesis. Second, two
datasets of frontal face images consistent of paired VIS-
MWIR and VIS-LWIR face images (using different methods
for pre-processing prior to synthesis), are assembled. The
datasets generated illustrate the challenges associated with
our proposed cross-spectral face matching approach. One
such challenge is the optimal placement of the synthesized
dataset prior to matching (i.e. better used as the gallery or
probe set?). Third, we propose a post-synthesis denoising
methodology, which helps eliminate noise present in synthe-
sized images and demonstrate face recognition accuracy is
thus improved. Finally, by conducting an extensive exper-
imental study we establish that images captured under the
passive infrared spectrum can be matched to visible images,
and vice-versa, with promising results; especially when our
proposed pre-processing approach is employed before feature
extraction and matching.An overview of the methodology
proposed in this work is illustrated in Fig.1.
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Fig. 1. Schematic of the proposed methodology for cross-spectral FR using image synthesis and denoising. The first step is face alignment using three 222
different pre-processing methods. Next, image synthesis is carried out on each pre-processed database. Using our newly synthesized database, we perform 293
image denoising and extract LBP DT features for FR. oon
225
B. Paper Organization face images and subjecting them to a series of transfor- 226
The rest of this paper is organized as follows. Sections 2, Elr.latlons.. Otll.ler 1m§)lerpentat1(()1ns, oqftolz (1f usmg no? linear 298
3, 4, 5, and 6 describe related work, face-image synthesis, 1men51on?1 ity re gctlgn an mgm o eaml?‘g’ .a _SO gse 229
denoising and denoising, datasets and methodological steps photometric normalization for optimal feature discrimination
b b . . . 230
and experimental results. Conclusions and future work are ba§ed 0}? the §pectr;1m ogoperan}cl)n, anq 1maigle recgnstiuctwr; 231
described in Section 7. using the training data during the test.mg phase, in place o S
inferred features. An example of how image synthesis works
II. RELATED WORKS is provided in Fig. 1. Please note that unlike other heteroge- 233
neous thermal-visible matching approaches, we use only the 234
A. Heterogeneous FR facial information (after face detection and normalization) for 235
Tang et al. pioneered the work in this heterogeneous synthesis, denoising and matching. We do not use the entire 236
FR scenario with a number of approaches to synthesize thermal head signature that includes more features that may 237
a sketch using a visible image (or vice-versa) [33], [19], result in enhanced accuracy as for example in [29]. 238
[37], [39]. A number of methods including, eigen-faces, . 239
L . . B. Image Synthesis 240
LLE inspired local geometry preserving algorithms, kernel
based nonlinear discriminant analysis (KNDA), Bayesian We review three types of a}pproaches for image Syl}th‘?SlS: 241
MAP framework, and a multiscale Markov Random Fields (i) face synthesis analysis; (ii) subspace methods; (iii) 3D- 242
(MRF) model have been proposed in the literature to address based approaches. ;22
various challenges of heterogenous FR matching scenarios. o Face synthesis analysis: Li et al. [17] propose a
Aside from the generative transformation-based approaches, stereoscopic synthesis method that produces frontal 242
recent research in heterogeneous FR utilize approaches that face images based on two different poses of face 24
are discriminative feature-based [44], [12], [14], [18], [16], images that are co-captured. In [38] face images are 2:;
[13], and have shown good accuracies for face matching in transformed from one type to another using face 210
both the sketch-focused and NIR-based domains. Sarfraz et analogy software and then subsequently synthesized 5
al. [27] use deep learning methods to benchmark the Carl query images are matched against gallery images. 250
thermal-visible dataset (NVESD) where there are changing Zhang et al. [45] developed a face synthesis approach 25;
activity levels and variations in subject-to-camera distance, where corresponding sparse coefficients of visible and 253
and illumination. Kalka et al. [5] investigate the benefits NIR images are assumed to be alike through learning 2:4
and shortcomings of matching SWIR face images to visible pairs of an over-complete dictionary. Xu et al. present a )
images under controlled or uncontrolled conditions. study the cross-spectral dictionary learning approach using joint o5
problem of cross spectral face recognition in heterogeneous lp minimization in order to learn a mapping function 256
environments. Chen et al. [8] uses multiple sets of subspaces between the VIS and NIR domain. 25;
generated by patches sampled from visible and thermal 2:9
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Fig. 2. Flow chart of image synthesis.

o Subspace Methods: In [21] the authors augment a
challenging database consistent of just one sample per
subject by synthesizing new face samples of various
degrees using edge-based information. Yi et al. [42]
and Dou et al. [10] utilized canonical correlation
analysis (CCA) to learn the relationship between face
pairs using 9 out of 10 samples from each subject for
the training algorithm, and the remaining sample for
conversion. Recently, Lei and Li [15] suggested solving
the same problem via a low dimensional representation
for each face, using a discriminative graph embedding
method.

e 3D-based Methods: Video can be used to extract 3D
features instead of utilizing a 2D face image. Ansari et
al. [1] created a database of 3D textured face models
composed of 114 subjects using stereo images and a
generic face mesh model for 3D FR application. In
[20] a 3D generic face model is aligned with each
frontal face image.

ITII. FACE IMAGE SYNTHESIS
A. Canonical Correlation Analysis

Through the use of two random variables with zero-mean
X, a p X | vector, and y, a ¢ x [ vector, CCA finds the
Ist pair of directions w; and vy that results in the greatest
correlation between the projections x = w;'x and y =
viTy, max p(w;Tx, viTy) , 8.t Var((w;Tx =
1) and Var(viTy = 1) , where the correlation coefficient
is p, the variables x and y are known as the first canonical
variates, and the wjandv; represents the initial correlation
direction vector. CCA finds kth pair of directions wy, and vy
which satisfies:(1) w;Tx and v,Ty are not correlated to
the previous k-I canonical variates; (2) the correlation
between w;,Tx and v, Ty is optimized under the constraints
Var((w;™x = 1) and Var(v;Ty = 1). Then w;Tx and v; Ty
are called the k" canonical variates, and wy and v, are
the K" correlation direction vector, k < min(p, g). The
solution for the correlation of coefficients and directions is
not different from the generalized eigenvalue problem seen
here,
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336
(Cu Sy ST = T )w =0, m
338
339
(B T By = pPEy )V =0, (2) 340
where X,x and Xy, are the self-correlation while the X, 22;
and Yy are the co-correlation matrices respectively. Through .
CCA, the correlation of the two data sets are prioritized, 344
unlike PCA, which is designed to minimize the reconstruc- 345
tion error. Generally speaking, a few projections (canonical .
variates) are not adequate to recover the original data well -
enough, so there is no guarantee that the directions discov-  ,,o
ered through CCA cover the main variance of the paired data.
In addition to the recovery problem, the overfitting problem .,
should be accounted and taken care of as well. If a small .,
amount of noise is present in the data, CCA 1is so sensitive 352
it might produce a good result to maximize the correlations .,
between the extracted features, but the features may likely ..,
model the noise rather than the relevant information in the 355
input data. In this work we use a method called regularized ..
CCA [22]. This approach has proven to overcome the over- ...
fitting problem by adding a multiple of the identity matrix 358
Al to the co-variance matrix 3, and Y. 359
B. Feature Extraction using CCA 360
Local features are extracted, instead of features that are 22;
holistic, because the latter features seem to fail capturing
. .. . . 363
localized characteristics and facial traits. The datasets used 64
in training CCA consists of paired VIS and IR images.
. .. . 365
The images are divided into patches that overlap by the 366
same amount at each position, where there exists a set of 367
patch pairs for CCA learning. CCA locates directional pairs
(0 — @ — 368
WY = [wy,wa,...,wg] and V¥ = [vy,va,...,vi] for 260
VIS and IR patches respectively, where the superscript (i) 470
represents the index of the patch (or the location of the 571
patch within the face image). Each column of W or V is 372
a directionary vector, which is unitary, but between different 578
columns it is not orthogonal. For example, if we take a VIS 574
patch p (which can be vectorized as a column) at position i,
. 375
we are able to extract the CCA feature of the patch p, using
f= W(i)Tp, where f is the feature vector belonging to the g;s
patch. For each patch and each position at each patch, we 578
are able to acquire CCA projections using our preprocessed 379
training database face images. Projection onto the proper 250
directions is used to extract fgatures, then at each patch 281
location i we get the VIS O," = {f, ;'} and IR training 280
sets O;,.* = {f;, ;*} respectively. -
C. Reconstruction using Training Patches 384
In our reconstruction phase that occurs during testing, 389
we use explicitly learned LLE weights in conjunction with 386
our training data to reconstruct the patch and preserve the 387
global manifold structure. Reconstructing the original patch 388
p through the vectorized feature f is an arduous task. We are 389
unable to recover the patch by p = Wf as we do in PCA 390
because W is not orthogonal. However, the original patch 391
can be obtained by solving the least squares problem below, 222
394
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401



FG 2017

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
a7
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

VIS
TEST

k=l k=2 k=3 k=4

el NEE |

W=18.9 W,=153 W;=37.7 W,=23.29

r

Synth
MWIR

k=5
K

Ws=4.5

Fig. 3. Sample illustration of input VIS patch, and corresponding training
MWIR patches, for k=5 nearest neighbor. The reconstructed and synthesized
MWIR image using training patches and locally linear embedded weights.

p= argpmin||WTp — )52, 3)
or to add an energy constraint,
p = arg,min|[W'p — fl[>* + [|p[|>*. )

The least squares problem can be solved effectively using
the scaled conjugate gradient method. In order for the above
reconstruction method to be feasible, the feature vector f has
to contain enough information about the original patch. The
original patch can be recovered using LLE [26] when fewer
features, represented as canonical variates, can be extracted.
The assumption that localized geometries pertaining to the
manifold of the feature space and that of the patch space
are similar, is taken into consideration (see [11]). The patch
from the image to be converted and its corresponding features
have similar reconstruction coefficients. If p;, p,, ..., p, are
the patches whose features fy,fs, ... fr are f’s k nearest
neighbors, and f is able to be recovered using neighboring
features with f = Fw, where F = [fi,fo,... ;] , w =
[Wi,Wa,...,wi]T , we can reconstruct the original patch
using p = Pw, where P = [py,ps,...,p;]- Using a probe
IR image, we partition it into small patches, and obtain
the feature vector f;. of every patch. When we infer the
corresponding VIS feature vector f,, the VIS patch can
be obtained using p = Pw for reconstruction and then the
patches will be combined into a VIS facial image. A sample
illustration of the reconstruction process can be seen in Fig.
3 for K=5 nearest neighbors.

IV. FACE IMAGE DENOISING

Unwanted noise is introduced into the image through
the image synthesis process (see Fig. 2). Therefore, image
denoising [23] is considered as a meaningful post-synthesis
step that could help restore the structural and textural content
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469
of the image. Simple image filtering is not ideal for restor- 470
ing useful image content because it can remove important ar
frequency components in the pipeline. To help alleviate the arz
challenge of effective removal of noise, linear denoising (e.g. ars
filtering), and nonlinear denoising (e.g. thresholding) can ara
be combined to account for both noise removal as well as
restoration of the most important image features so that the 476
matcher’s accuracy is then expected to be improved. :Z
V. FACE RECOGNITION 479
A. Datasets 480
The VIS-MWIR dual-band face dataset consists of 308 *°'
images (154 for probe and 154 for gallery) with four images as2
in time per subject (77 subjects total). Visible images for 483
both the VIS and MWIR datasets are extracted from videos
captured in our laboratory, using a Canon EOS 5D Mark 485
II camera. This digital SLR camera produces ultra-high 486
resolution RGB color images or videos, with a resolution of a8t
1920 x 1080 pixels. MWIR face images, which counterpart 488
the visible dataset, are extracted from videos using a FLIR 489
SC8000 MWIR camera. The infrared camera produces high 490
definition thermal videos, with a resolution of 1024 x 1024. 41
The (2) VIS-LWIR dual-band (156 for probe and 156 for *°°
gallery) gains four images per subject (78 subjects total). 493
The LWIR images are extracted using a FLIR SC600 LWIR 494
camera. The science-grade infrared camera produces high- 495
resolution LWIR images or videos, with a resolution of 496
640 x 480 pixels. The first 2 samples are utilized as gallery a7
images, while the remaining 2 samples are the probe images. 498
It is important to note that images between sensor pairs 499
are not captured simultaneously and thus they are not co- 500
registered (captured in both bands at the same time). Thus, S0l
our database is more challenging to work with when using 502
our proposed patch-based synthesis and image denoising 203
approach. We capture data by focusing the camera on the 504
subject’s complete head and shoulders. It is noteworthy that 505
some of the subjects from both datasets do overlap, but 506
contain different subjects so it difficult to say which spectrum 507
of operation would be best for synthesis. 232
B. Methodological Steps 510
The salient stages of the proposed method are described 511
below: 512
1) Pre-Processing: Our proposed approach is patch- 212
based, therefore it is important that the correct cor- 514
responding patches overlap as precisely as possible in ~ °'°
both spectra. We experiment with three different face 16
image pre-processing techniques, all discussed in detail 217
below. The metric we use for performance evaluation 218
is rank-1 identification accuracy (CMC). The left and 519
right eye coordinates are manually annotated on the 920
raw images prior to pre-processing. Samples of the 92!
face images after pre-processing can be seen in Fig. 22;

4.
o Face Detection: For the visible spectrum of 524
our database, Viola & Jones face detection 525
algorithm [36] is used to localize the spatial 223
528
529
530
531
532
533
534
535
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Fig. 4. Example original, synthesized, synthesized and denoised and
ground truth images from two separate subjects. The subject on top row
(MWIR to VIS) was normalized using CSU normalization, while the subject
on the bottom row (VIS to MWIR) was normalized using our proposed
normalization technique.

extent of the face and determine its boundary.
This algorithm has been regarded to perform
efficiently on facial images captured in the visible
spectrum, but additional training is necessary for
the passive IR band. However, there were still
several limitations when Viola & Jones is applied
to the passive IR band of our database, due to
the lack of training data (not many available and
the operational cost to collect more with both our
cameras was prohibited). To compensate, blob
detection based approach is applied in our passive
infrared band images, resulting in 85% better
detection accurary than Viola & Jones (whose haar
cascades are trained specifically for visible data). .

« CSU Normalization: Colorado State University’s
(CSU) Face Identification Evaluation System [3]
FR software is first utilized for pre-processing. The
normalization is a spatial transformation, which
utilizes the left and right eyes as control points.
Shapes in the original image are unchanged,
but the image is distorted by a combination of
translation, rotation, and scaling. After geometric
normalization, the image is cropped using an
elliptical mask so that only the face from the
forehead to the chin and cheek to cheek can be
seen.

« Normalization (Proposed): A standard
interocular distance is set and the eye locations
are centered and aligned onto a single horizontal
plane and resized to fit the desired distance.
Each face image was geometrically normalized
based on the manually found locations to have an
interocular distance of 60 pixels with a resolution
of 111 x 121 pixels. There is no elliptical mask
applied in our approach, in contrast to the CSU
normalization software.

2) Image Synthesis: The methodology discussed in Sec-
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603

tion 3 is used. We utilize the leave one out method °°*
during synthesis, where the sample left out of the 603
training set is used for conversion from one spectrum 606

to another. By employing this algorithm, we process 6o7

the datasets described in Section 5.1 and create their °°°
synthesized versions. 609

3) Image Denoising: The methodology detailed in [7] is 610
used. We restore the synthesized images from the pre- ot
vious step using a combination of linear denoising and 612
thresholding. Noniterative denoising methods (such 613

as filtering and wavelet denoising with thresholding) o14
allow for explicit numerical manipulation so that we o1%

are able to solve the noise problem in a single step. 616

Ease of implementation and faster computation are the o7
major advantages of noniterative methods. e18

4) Face Recognition Matcher: Both commercial and 619
academic matchers, including the one provide by L1 620
systems and a set of matchers from the CSU face 621
evaluation system, is utilized. While these matchers 622
proved to be good, we also explored the usage of other 623
matchers and distance metrics to determine which °
approach provides the best matching results after our 625
proposed image synthesis and denoising. We found 626

out that this is achieved if we utilize a variation of °2’

the Local Binary Patterns (LBP) method [32] for FR 628

[5]. The LBP operator is an efficient, nonparametric, 629

and unifying approach to traditional divergent models 630

for analyzing texture that are statistical and structural 631
based. A binary code is produced by thresholding the 632
value of the center pixel with its value, for each pixel 222

in an image [25]. 635

VI. EMPIRICAL EVALUATION ggs

After optimizing our selected matcher for the given prob- 638
lem (e.g. LBP/LTP), the distance transform (DT) appears 639
to be a more consistent method in achieving higher FR 640
accuracy. When comparing selected matchers (e.g. LBP vs 641
LTP), LBP holds a slight edge over LTP in many scenarios. 642
For our selected texture based matcher (e.g., LBP DT), we 643
evaluate the challenge of image alignment using varied pre- 644
processing within our proposed synthesis approach during 645
experimentation. We trained our synthesis and classification 646
algorithms using a Leave-One-Out approach, i.e. take one 647
image sample out of the training dataset and use that sample 648
as test image for synthesis (the IR image as the input and 649
the VIS image as the ground truth, and vice-versa); the 650
remaining samples of the subject are used as the training 651
data. 652
653

A. Baseline Experiments 654
We employ a set of baseline experiments (cross-spectral 655
face matching) by using commercial and academic based 656
software: 1) Commercial software Identity Tools (G8) pro- 657
vided by L1 Systems; 2) standard training-based face recog- 658
nition methods provided by the CSU Face Identification 659
Evaluation System [3], including Principle Components 22?
662

663
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TABLE I
BASELINE RANK-1 FR RESULTS (%) FOR VIS-MWIR AND VIS-LWIR
FACE MATCHING EXPERIMENTS.

Rank-1 Raw Baseline (CSU) FR Accuracy (%)
Methodology VIS-LWIR | LWIR-VIS | VIS-MWIR | MWIR-VIS
L1 Systems (G8) 62.82 61.54 40.26 37.01
Bayesian MAP 11.54 11.54 7.69 5.13
Bayesian ML 11.54 10.26 7.69 5.13
LDA Euclidean 11.54 19.23 7.69 8.97
LDA IdaSoft 14.10 19.23 8.97 6.41
PCA Euclidean 8.97 5.13 7.69 6.41
PCA MahCosine 15.38 15.38 5.13 7.69
TABLE 11

PROPOSED APPROACH RANK-1 FR RESULTS (%) FOR SYNTHESIZED
VIS-MWIR AND VIS-LWIR DATASETS USING SELECTED MATCHER
(LBP DT).

Synthesized Rank-1 FR Accuracy (%) LBP DT
Gallery Probe Face Detect | Proposed | CSU
VIS Synth. VIS (MWIR) 19.48 31.17 27.27
Synth. VIS (MWIR) VIS 68.18 76.62 72.73
MWIR Synth. MWIR 24.68 35.71 26.62
Synth. MWIR MWIR 58.44 85.06 76.62
VIS Synth. VIS (LWIR) 8.97 40.38 27.56
Synth. VIS (LWIR) VIS 53.85 85.26 66.67
LWIR Synth. LWIR 26.28 38.46 45.51
Synth. LWIR LWIR 56.41 79.49 77.56

Analysis (PCA) ([30],[35]1, [9]), a combined Principle Com-
ponents Analysis and Linear Discriminant Analysis algo-
rithm (PCA+LDA) [2], the Bayesian Intrapersonal/Extra-
personal Classifier (BIC) using either the Maximum likeli-
hood (ML) or the Maximum a posteriori (MAP) hypothesis
[34].

Using commercial matcher (G8), the rank-1 identification
rate achieved is 40.26% for the VIS-MWIR dataset and
62.82% for the VIS-LWIR dataset. For the CSU academic
matchers, the maximum rank-1 identification rate recorded
is 19.23% for VIS-LWIR and 8.97% for VIS-MWIR using
the LDA algorithm. These baseline results can be found in
Table I.

B. Image Synthesis Experiments

We trained our synthesis algorithm using a Leave-One-
Out approach, i.e. take one image sample out of the training
dataset and use that sample as test image for synthesis (the IR
image as the input and the VIS image as the ground truth, and
vice-versa); the remaining samples of the subject are used as

TABLE III
RANK-1 FR RESULTS (%) FOR DENOISED SYNTHESIZED VIS-MWIR
AND VIS-LWIR DATASETS USING SELECTED MATCHER (LBP DT).

Proposed Approach Restored Synthesized Rank-1 FR Accuracy (%) LBP DT
Gallery Probe Face Detect | Proposed | CSU
VIS Synth. VIS (MWIR) 21.43 30.52 31.17
Synth. VIS (MWIR) VIS 68.83 75.32 77.27
MWIR Synth. MWIR 27.27 42.86 51.30
Synth. MWIR MWIR 59.74 81.17 76.62
VIS Synth. VIS (LWIR) 5.13 37.82 23.72
Synth. VIS (LWIR) VIS 53.85 81.41 79.49
LWIR Synth. LWIR 25.00 43.59 57.69
Synth. LWIR LWIR 60.90 78.85 80.77
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the training data. There are several parameters to be chosen in 738
our proposed synthesis algorithm, such as the size of patches, 739
the number of canonical variates k (the dimensionality of 740
feature vector) we take for every patch, and the number of i
the neighbors we use to train the canonical directions. The 4z
size of all the images in our database despite pre-processing a3
methodology is, 320 x 256 during the synthesis step, and we ras
choose a patch size of 9 x 9 with 3-px overlapping. Although s
not practical, our matching experiments after synthesis are 746
tested using the synthesized images as both gallery and probe rar
set. This was explored for each spectrum. 748
We achieve a maximum rank-1 identification rate of ;:ﬁ
85.06% when using LBP (with the DT distance metric) 751
matcher after synthesis for VIS-MWIR and a maximum rank- 250
1 identification rate of 79.49% for the VIS-LWIR, using our
proposed preprocessing approach. The rank-1 identification 793
rates after image synthesis and denoising (pre-processed ;::
datasets) results can be found in Table II for each of our
pre-processed IR datasets. 796
757
C. Image Denoising Experiments ;:2
In this experiment, we demonstrate that the combination 760
of filtering and TI-denoising is essential for significantly im- 761
proving FR accuracy of our datasets under practical scenarios 762
(e.g. gallery images are not synthesized). Both synthesized 7g3
and ground truth (gallery and/or probe) sets were low-pass 764
(LP) filtered and subsequently denoised. We optimize our 765
proposed image denoising parameters, LP filter type and 766
sigma value threshold used for TI-denosing, using CMC 757
rank-1 accuracy as a metric. First, we apply an LP Filter 7g8
to minimize distortion due to the subsampling. The type of 7g9
LP filter used is a boxcar filter with a fixed window size. 779
Through previous experimentation [6], we found a window 771
size of 3 to be optimal. After we are able to LP filter 772
the image, denoising is carried out using the TI-denosing 773
scheme. The sigma value chosen for TI-denoising appears 774
to be optimal depending on whether we are denoising syn- 775
thesized images or ground truth images. Synthesized images 776
received a sigma value of 3, while ground truth images were 777
only slightly denoised with a sigma value of .01. 778
We achieve a maximum rank-1 identification rate of 779
81.17% when using LBP (with the DT distance metric) 7s0
matcher after synthesis for VIS-MWIR and a rank-1 identi- 781
fication rate of 80.77% for VIS-LWIR, using our proposed 752
and CSU normalization respectively. The results after de- 783
noising can be seen in Table III for our synthesized datasets. 784
Identification rates (Rank-1 to Rank-5) can be seen for our 735
collected data and proposed methodology (after denoising) 786
when compared to classic academic matchers for practical 787
scenarios (e.g. visible gallery) in Fig. ??. 788
789
VII. DISCUSSIONS & CONCLUSIONS 790
In this paper we study the problem of image synthesis as a 791
means to bridge the informational gap between face images o2
pertaining to two different spectral bands. Our study shows 793
that image alignment is important in achieving higher FR ;Z:
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Fig. 5. (a) Identification rates (Rank-1 to Rank-5) for VIS gallery and MWIR probe. (b) Identification rates (Rank-1 to Rank-5) for VIS gallery and 892
LWIR probe. 893
894
e . . . . 895
accuracy for the proposed approach. Utilizing our image syn-  noise, we are unable to come to any conclusions on noise in 896
thesis approach, we achieve a maximum rank-1 identification  the image after denoising. The proposed approach is feasible 897
rate of 85.06% when using LBP DT matcher after synthesis  given two large datasets that have a linear relationship, but is 298
for VIS-MWIR and a maximum rank-1 identification rate  limited with data involving nonlinear correlation. In recent 899
of 79.49% for the VIS-LWIR spectrum, using our proposed  years it has been shown that using deep CNN-based fea- 900
geometric normalization. After denoising, we achieve a max-  tures, and state-of-the-art hand-crafted features may already 901
imum rank-1 identification rate of 81.17% when using LBP  accommodate for cross-spectral variances during FR. When 902
DT matcher for VIS-MWIR and a rank-1 identification rate  combining CCA that is based on deep CNNs, nonlinear 903
of 80.77% for VIS-LWIR, using our proposed and CSU correlation can be discovered, and distributions and functions 904
normalization respectively. Experimental results show that can be learned for image synthesis. However, CNNs do 905
recognition accuracy is much higher when the synthesized have limitations as well, which includes high computational 906
face image is used as a gallery set, as opposed to the probe  cost and need for a large amount of training data. Per a 907
set. We believe there is so much difference in rank-1 scores  survey on HFR [24], CCA and LLE have also been used 908
when the synthetic dataset is the gallery vs. the probe because  in some form or fashion for other synthesis approaches 909
of the amount of information contained in the raw image. such as Sketch-Photo, VIS-NIR, and 2D-3D face. From our 910
When a synthesized face image is used as the gallery, all  experiments, we gather that the proposed approach is highly 911
information in the synthesized face image should be present  dependent on the data available for training and requires a 912
in the raw face image of the same subject. However, when  good approximation of the underlying distribution of data. 913
the raw face image is the gallery, the synthesized face probe  Data restraints are present, particularly in IR to visible FR 914
image is likely missing some information that is present in  where datasets are very limited in population. The collection 915
the raw face gallery image. In practical applications, the use  and organization of such data, particularly data that has been
- . . 916
of raw face images as the gallery set would be the more co-registered, should be considered for the future. Also, the 917
realistic scenario. The image denoising step increases the use of techniques such as neural networks that may be able 918
score where we use the slightly denoised raw images as the  to learn mappings by adjusting projection coefficients over 919
gallery set, irrespective of the spectral band. However, rank-  the training set should be taken into consideration as well. 920
} acctlracyt;ls decliease'd when ;hd§n01sed dsynthe':mze(z image ACKNOWLEDGMENTS 921
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