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Abstract— Performing a direct match between images from
different spectra (i.e., passive infrared and visible) is chal-
lenging because each spectrum contains different information
pertaining to the subject’s face. In this work, we investigate
the benefits and limitations of using synthesized visible face
images from thermal ones and vice versa in cross-spectral face
recognition systems. For this purpose, we propose utilizing
canonical correlation analysis (CCA) and manifold learning
dimensionality reduction (LLE). There are four primary con-
tributions of this work. First, we formulate the cross-spectral
heterogeneous face matching problem (visible to passive IR)
using an image synthesis framework. Second, a new processed
database composed of two datasets consistent of separate
controlled frontal face subsets (VIS-MWIR and VIS-LWIR) is
generated from the original, raw face datasets collected in three
different bands (visible, MWIR and LWIR). This multi-band
database is constructed using three different methods for pre-
processing face images before feature extraction methods are
applied. There are: (1) face detection, (2) CSU’s geometric nor-
malization, and (3) our recommended geometric normalization
method. Third, a post-synthesis image denoising methodology
is applied, which helps alleviate different noise patterns present
in synthesized images and improve baseline FR accuracy (i.e.
before image synthesis and denoising is applied) in practical
heterogeneous FR scenarios. Finally, an extensive experimental
study is performed to demonstrate the feasibility and benefits
of cross-spectral matching when using our image synthesis and
denoising approach. Our results are also compared to a baseline
commercial matcher and various academic matchers provided
by the CSU’s Face Identification Evaluation System.

I. INTRODUCTION

Face recognition (FR) has been an active and widely
explored area of research over the last few decades, with
a plethora of applications in military and law enforcement.
However, a majority of FR research focuses primarily on
visible band images (380-750 nm). Although visible band
FR systems are considered to be efficient when face images
are captured under controlled conditions, variation in pose,
expression, and illumination is still considered to be a chal-
lenging problem. Unfortunately, FR based solely on visible
band images may not be feasible in environmental conditions
that are characterized by adverse lighting and conspicuous
shadows (such as night-time environments [4], [28], [40]).
Consequently, FR in the infrared (IR) spectrum has become
an area of growing interest [31], [43], [41].

Differences in appearance arise between images sensed
in the visible and active IR bands, primarily due to the

properties of the object being imaged. The active IR spectrum
consists of the Near IR band (0.7 - 0.9µm) and the lower
range of the Short-Wave IR band (0.9 - 2.5µm). During data
acquisition in the active IR band, a subject’s face is usually
actively illuminated using an external light source that can be
detectable (i.e. in the case of the NIR band) or not (i.e. in the
case of the SWIR band). The passive IR spectrum consists
of the Mid-Wave IR (MWIR) (3 - 5µm), and Long-Wave
IR (LWIR)] (7 - 14µm) bands. IR radiation in the form of
heat is emitted from the target, in this particular case the
subject’s face, and detected by the camera sensor whenever
data is acquired in the passive IR band. Passive IR sensors
provide a significant capability of acquiring human biometric
signatures under obscure environments without allowing the
location of the sensor to be detected (as for example in the
case of NIR sensors and the usage of active illumination).
Combining the usage of passive IR sensors with other IR
sensors (e.g. SWIR) can result in better performance of
FR systems in environments that vary in illumination and
standoff distances.

A. Goals and Contributions

The contributions of this work are four-fold. First, we
propose and formulate a visible to passive infrared face
matching framework utilizing image synthesis. Second, two
datasets of frontal face images consistent of paired VIS-
MWIR and VIS-LWIR face images (using different methods
for pre-processing prior to synthesis), are assembled. The
datasets generated illustrate the challenges associated with
our proposed cross-spectral face matching approach. One
such challenge is the optimal placement of the synthesized
dataset prior to matching (i.e. better used as the gallery or
probe set?). Third, we propose a post-synthesis denoising
methodology, which helps eliminate noise present in synthe-
sized images and demonstrate face recognition accuracy is
thus improved. Finally, by conducting an extensive exper-
imental study we establish that images captured under the
passive infrared spectrum can be matched to visible images,
and vice-versa, with promising results; especially when our
proposed pre-processing approach is employed before feature
extraction and matching.An overview of the methodology
proposed in this work is illustrated in Fig.1.978-1-5090-4023-0/17/$31.00 c©2017 IEEE
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Fig. 1. Schematic of the proposed methodology for cross-spectral FR using image synthesis and denoising. The first step is face alignment using three
different pre-processing methods. Next, image synthesis is carried out on each pre-processed database. Using our newly synthesized database, we perform
image denoising and extract LBP DT features for FR.

B. Paper Organization

The rest of this paper is organized as follows. Sections 2,
3, 4, 5, and 6 describe related work, face-image synthesis,
denoising and denoising, datasets and methodological steps,
and experimental results. Conclusions and future work are
described in Section 7.

II. RELATED WORKS

A. Heterogeneous FR

Tang et al. pioneered the work in this heterogeneous
FR scenario with a number of approaches to synthesize
a sketch using a visible image (or vice-versa) [33], [19],
[37], [39]. A number of methods including, eigen-faces,
LLE inspired local geometry preserving algorithms, kernel
based nonlinear discriminant analysis (KNDA), Bayesian
MAP framework, and a multiscale Markov Random Fields
(MRF) model have been proposed in the literature to address
various challenges of heterogenous FR matching scenarios.
Aside from the generative transformation-based approaches,
recent research in heterogeneous FR utilize approaches that
are discriminative feature-based [44], [12], [14], [18], [16],
[13], and have shown good accuracies for face matching in
both the sketch-focused and NIR-based domains. Sarfraz et
al. [27] use deep learning methods to benchmark the Carl
thermal-visible dataset (NVESD) where there are changing
activity levels and variations in subject-to-camera distance,
and illumination. Kalka et al. [5] investigate the benefits
and shortcomings of matching SWIR face images to visible
images under controlled or uncontrolled conditions. study the
problem of cross spectral face recognition in heterogeneous
environments. Chen et al. [8] uses multiple sets of subspaces
generated by patches sampled from visible and thermal

face images and subjecting them to a series of transfor-
mations. Other implementations, on top of using non-linear
dimensionality reduction and manifold learning, also use
photometric normalization for optimal feature discrimination
based on the spectrum of operation, and image reconstruction
using the training data during the testing phase, in place of
inferred features. An example of how image synthesis works
is provided in Fig. 1. Please note that unlike other heteroge-
neous thermal-visible matching approaches, we use only the
facial information (after face detection and normalization) for
synthesis, denoising and matching. We do not use the entire
thermal head signature that includes more features that may
result in enhanced accuracy as for example in [29].

B. Image Synthesis

We review three types of approaches for image synthesis:
(i) face synthesis analysis; (ii) subspace methods; (iii) 3D-
based approaches.

• Face synthesis analysis: Li et al. [17] propose a
stereoscopic synthesis method that produces frontal
face images based on two different poses of face
images that are co-captured. In [38] face images are
transformed from one type to another using face
analogy software and then subsequently synthesized
query images are matched against gallery images.
Zhang et al. [45] developed a face synthesis approach
where corresponding sparse coefficients of visible and
NIR images are assumed to be alike through learning
pairs of an over-complete dictionary. Xu et al. present a
cross-spectral dictionary learning approach using joint
l0 minimization in order to learn a mapping function
between the VIS and NIR domain.

2
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Fig. 2. Flow chart of image synthesis.

• Subspace Methods: In [21] the authors augment a
challenging database consistent of just one sample per
subject by synthesizing new face samples of various
degrees using edge-based information. Yi et al. [42]
and Dou et al. [10] utilized canonical correlation
analysis (CCA) to learn the relationship between face
pairs using 9 out of 10 samples from each subject for
the training algorithm, and the remaining sample for
conversion. Recently, Lei and Li [15] suggested solving
the same problem via a low dimensional representation
for each face, using a discriminative graph embedding
method.

• 3D-based Methods: Video can be used to extract 3D
features instead of utilizing a 2D face image. Ansari et
al. [1] created a database of 3D textured face models
composed of 114 subjects using stereo images and a
generic face mesh model for 3D FR application. In
[20] a 3D generic face model is aligned with each
frontal face image.

III. FACE IMAGE SYNTHESIS

A. Canonical Correlation Analysis

Through the use of two random variables with zero-mean
x, a p × l vector, and y, a q × l vector, CCA finds the
1st pair of directions w1 and v1 that results in the greatest
correlation between the projections x = w1

Tx and y =
v1Ty,max ρ(w1

Tx, v1
Ty) , s.t. V ar((w1

Tx =
1) and V ar(v1

Ty = 1) , where the correlation coefficient
is ρ, the variables x and y are known as the first canonical
variates, and the w1andv1 represents the initial correlation
direction vector. CCA finds kth pair of directions wk and vk
which satisfies:(1) wk

Tx and vkTy are not correlated to
the previous k-1 canonical variates; (2) the correlation
between wk

Tx and vk
Ty is optimized under the constraints

V ar((w1
Tx = 1) and V ar(v1

Ty = 1). Then wk
Tx and vkTy

are called the kth canonical variates, and wk and vk are
the kth correlation direction vector, k ≤ min(p, q). The
solution for the correlation of coefficients and directions is
not different from the generalized eigenvalue problem seen
here,

(ΣxyΣyy
−1Σxy

T − ρ2Σxx)w = 0 , (1)

(Σxy
T Σxx

−1Σxy − ρ2Σyy)v = 0 , (2)

where Σxx and Σyy are the self-correlation while the Σxy
and Σyx are the co-correlation matrices respectively. Through
CCA, the correlation of the two data sets are prioritized,
unlike PCA, which is designed to minimize the reconstruc-
tion error. Generally speaking, a few projections (canonical
variates) are not adequate to recover the original data well
enough, so there is no guarantee that the directions discov-
ered through CCA cover the main variance of the paired data.
In addition to the recovery problem, the overfitting problem
should be accounted and taken care of as well. If a small
amount of noise is present in the data, CCA is so sensitive
it might produce a good result to maximize the correlations
between the extracted features, but the features may likely
model the noise rather than the relevant information in the
input data. In this work we use a method called regularized
CCA [22]. This approach has proven to overcome the over-
fitting problem by adding a multiple of the identity matrix
λI to the co-variance matrix Σxx and Σyy.

B. Feature Extraction using CCA

Local features are extracted, instead of features that are
holistic, because the latter features seem to fail capturing
localized characteristics and facial traits. The datasets used
in training CCA consists of paired VIS and IR images.
The images are divided into patches that overlap by the
same amount at each position, where there exists a set of
patch pairs for CCA learning. CCA locates directional pairs
W(i) = [w1,w2, . . . ,wk] and V(i) = [v1, v2, . . . , vk] for
VIS and IR patches respectively, where the superscript (i)
represents the index of the patch (or the location of the
patch within the face image). Each column of W or V is
a directionary vector, which is unitary, but between different
columns it is not orthogonal. For example, if we take a VIS
patch p (which can be vectorized as a column) at position i,
we are able to extract the CCA feature of the patch p, using
f = W(i)T p, where f is the feature vector belonging to the
patch. For each patch and each position at each patch, we
are able to acquire CCA projections using our preprocessed
training database face images. Projection onto the proper
directions is used to extract features, then at each patch
location i we get the VIS Ov

i = {fv,j i} and IR training
sets Oir

i = {fir,j i} respectively.

C. Reconstruction using Training Patches

In our reconstruction phase that occurs during testing,
we use explicitly learned LLE weights in conjunction with
our training data to reconstruct the patch and preserve the
global manifold structure. Reconstructing the original patch
p through the vectorized feature f is an arduous task. We are
unable to recover the patch by p = Wf as we do in PCA
because W is not orthogonal. However, the original patch
can be obtained by solving the least squares problem below,

3
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Fig. 3. Sample illustration of input VIS patch, and corresponding training
MWIR patches, for k=5 nearest neighbor. The reconstructed and synthesized
MWIR image using training patches and locally linear embedded weights.

p = argpmin||WT p− f||22, (3)

or to add an energy constraint,

p = argpmin||WT p− f||22 + ||p||22. (4)

The least squares problem can be solved effectively using
the scaled conjugate gradient method. In order for the above
reconstruction method to be feasible, the feature vector f has
to contain enough information about the original patch. The
original patch can be recovered using LLE [26] when fewer
features, represented as canonical variates, can be extracted.
The assumption that localized geometries pertaining to the
manifold of the feature space and that of the patch space
are similar, is taken into consideration (see [11]). The patch
from the image to be converted and its corresponding features
have similar reconstruction coefficients. If p1, p2, . . . , pk are
the patches whose features f1, f2, . . . , fk are f’s k nearest
neighbors, and f is able to be recovered using neighboring
features with f = Fw, where F = [f1, f2, . . . , fk] , w =
[w1,w2, . . . ,wk]T , we can reconstruct the original patch
using p = Pw, where P = [p1, p2, . . . , pk]. Using a probe
IR image, we partition it into small patches, and obtain
the feature vector fir of every patch. When we infer the
corresponding VIS feature vector fv , the VIS patch can
be obtained using p = Pw for reconstruction and then the
patches will be combined into a VIS facial image. A sample
illustration of the reconstruction process can be seen in Fig.
3 for K=5 nearest neighbors.

IV. FACE IMAGE DENOISING

Unwanted noise is introduced into the image through
the image synthesis process (see Fig. 2). Therefore, image
denoising [23] is considered as a meaningful post-synthesis
step that could help restore the structural and textural content

of the image. Simple image filtering is not ideal for restor-
ing useful image content because it can remove important
frequency components in the pipeline. To help alleviate the
challenge of effective removal of noise, linear denoising (e.g.
filtering), and nonlinear denoising (e.g. thresholding) can
be combined to account for both noise removal as well as
restoration of the most important image features so that the
matcher’s accuracy is then expected to be improved.

V. FACE RECOGNITION

A. Datasets

The VIS-MWIR dual-band face dataset consists of 308
images (154 for probe and 154 for gallery) with four images
in time per subject (77 subjects total). Visible images for
both the VIS and MWIR datasets are extracted from videos
captured in our laboratory, using a Canon EOS 5D Mark
II camera. This digital SLR camera produces ultra-high
resolution RGB color images or videos, with a resolution of
1920× 1080 pixels. MWIR face images, which counterpart
the visible dataset, are extracted from videos using a FLIR
SC8000 MWIR camera. The infrared camera produces high
definition thermal videos, with a resolution of 1024× 1024.

The (2) VIS-LWIR dual-band (156 for probe and 156 for
gallery) gains four images per subject (78 subjects total).
The LWIR images are extracted using a FLIR SC600 LWIR
camera. The science-grade infrared camera produces high-
resolution LWIR images or videos, with a resolution of
640× 480 pixels. The first 2 samples are utilized as gallery
images, while the remaining 2 samples are the probe images.
It is important to note that images between sensor pairs
are not captured simultaneously and thus they are not co-
registered (captured in both bands at the same time). Thus,
our database is more challenging to work with when using
our proposed patch-based synthesis and image denoising
approach. We capture data by focusing the camera on the
subject’s complete head and shoulders. It is noteworthy that
some of the subjects from both datasets do overlap, but
contain different subjects so it difficult to say which spectrum
of operation would be best for synthesis.

B. Methodological Steps

The salient stages of the proposed method are described
below:

1) Pre-Processing: Our proposed approach is patch-
based, therefore it is important that the correct cor-
responding patches overlap as precisely as possible in
both spectra. We experiment with three different face
image pre-processing techniques, all discussed in detail
below. The metric we use for performance evaluation
is rank-1 identification accuracy (CMC). The left and
right eye coordinates are manually annotated on the
raw images prior to pre-processing. Samples of the
face images after pre-processing can be seen in Fig.
4.

• Face Detection: For the visible spectrum of
our database, Viola & Jones face detection
algorithm [36] is used to localize the spatial

4



536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

FG 2017 FG 2017

Fig. 4. Example original, synthesized, synthesized and denoised and
ground truth images from two separate subjects. The subject on top row
(MWIR to VIS) was normalized using CSU normalization, while the subject
on the bottom row (VIS to MWIR) was normalized using our proposed
normalization technique.

extent of the face and determine its boundary.
This algorithm has been regarded to perform
efficiently on facial images captured in the visible
spectrum, but additional training is necessary for
the passive IR band. However, there were still
several limitations when Viola & Jones is applied
to the passive IR band of our database, due to
the lack of training data (not many available and
the operational cost to collect more with both our
cameras was prohibited). To compensate, blob
detection based approach is applied in our passive
infrared band images, resulting in 85% better
detection accurary than Viola & Jones (whose haar
cascades are trained specifically for visible data). .

• CSU Normalization: Colorado State University’s
(CSU) Face Identification Evaluation System [3]
FR software is first utilized for pre-processing. The
normalization is a spatial transformation, which
utilizes the left and right eyes as control points.
Shapes in the original image are unchanged,
but the image is distorted by a combination of
translation, rotation, and scaling. After geometric
normalization, the image is cropped using an
elliptical mask so that only the face from the
forehead to the chin and cheek to cheek can be
seen.

• Normalization (Proposed): A standard
interocular distance is set and the eye locations
are centered and aligned onto a single horizontal
plane and resized to fit the desired distance.
Each face image was geometrically normalized
based on the manually found locations to have an
interocular distance of 60 pixels with a resolution
of 111 × 121 pixels. There is no elliptical mask
applied in our approach, in contrast to the CSU
normalization software.

2) Image Synthesis: The methodology discussed in Sec-

tion 3 is used. We utilize the leave one out method
during synthesis, where the sample left out of the
training set is used for conversion from one spectrum
to another. By employing this algorithm, we process
the datasets described in Section 5.1 and create their
synthesized versions.

3) Image Denoising: The methodology detailed in [7] is
used. We restore the synthesized images from the pre-
vious step using a combination of linear denoising and
thresholding. Noniterative denoising methods (such
as filtering and wavelet denoising with thresholding)
allow for explicit numerical manipulation so that we
are able to solve the noise problem in a single step.
Ease of implementation and faster computation are the
major advantages of noniterative methods.

4) Face Recognition Matcher: Both commercial and
academic matchers, including the one provide by L1
systems and a set of matchers from the CSU face
evaluation system, is utilized. While these matchers
proved to be good, we also explored the usage of other
matchers and distance metrics to determine which
approach provides the best matching results after our
proposed image synthesis and denoising. We found
out that this is achieved if we utilize a variation of
the Local Binary Patterns (LBP) method [32] for FR
[5]. The LBP operator is an efficient, nonparametric,
and unifying approach to traditional divergent models
for analyzing texture that are statistical and structural
based. A binary code is produced by thresholding the
value of the center pixel with its value, for each pixel
in an image [25].

VI. EMPIRICAL EVALUATION

After optimizing our selected matcher for the given prob-
lem (e.g. LBP/LTP), the distance transform (DT) appears
to be a more consistent method in achieving higher FR
accuracy. When comparing selected matchers (e.g. LBP vs
LTP), LBP holds a slight edge over LTP in many scenarios.
For our selected texture based matcher (e.g., LBP DT), we
evaluate the challenge of image alignment using varied pre-
processing within our proposed synthesis approach during
experimentation. We trained our synthesis and classification
algorithms using a Leave-One-Out approach, i.e. take one
image sample out of the training dataset and use that sample
as test image for synthesis (the IR image as the input and
the VIS image as the ground truth, and vice-versa); the
remaining samples of the subject are used as the training
data.

A. Baseline Experiments

We employ a set of baseline experiments (cross-spectral
face matching) by using commercial and academic based
software: 1) Commercial software Identity Tools (G8) pro-
vided by L1 Systems; 2) standard training-based face recog-
nition methods provided by the CSU Face Identification
Evaluation System [3], including Principle Components

5
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TABLE I
BASELINE RANK-1 FR RESULTS (%) FOR VIS-MWIR AND VIS-LWIR

FACE MATCHING EXPERIMENTS.

Rank-1 Raw Baseline (CSU) FR Accuracy (%)
Methodology VIS-LWIR LWIR-VIS VIS-MWIR MWIR-VIS

L1 Systems (G8) 62.82 61.54 40.26 37.01
Bayesian MAP 11.54 11.54 7.69 5.13
Bayesian ML 11.54 10.26 7.69 5.13

LDA Euclidean 11.54 19.23 7.69 8.97
LDA IdaSoft 14.10 19.23 8.97 6.41

PCA Euclidean 8.97 5.13 7.69 6.41
PCA MahCosine 15.38 15.38 5.13 7.69

TABLE II
PROPOSED APPROACH RANK-1 FR RESULTS (%) FOR SYNTHESIZED

VIS-MWIR AND VIS-LWIR DATASETS USING SELECTED MATCHER

(LBP DT).

Synthesized Rank-1 FR Accuracy (%) LBP DT
Gallery Probe Face Detect Proposed CSU

VIS Synth. VIS (MWIR) 19.48 31.17 27.27
Synth. VIS (MWIR) VIS 68.18 76.62 72.73

MWIR Synth. MWIR 24.68 35.71 26.62
Synth. MWIR MWIR 58.44 85.06 76.62

VIS Synth. VIS (LWIR) 8.97 40.38 27.56
Synth. VIS (LWIR) VIS 53.85 85.26 66.67

LWIR Synth. LWIR 26.28 38.46 45.51
Synth. LWIR LWIR 56.41 79.49 77.56

Analysis (PCA) ([30],[35], [9]), a combined Principle Com-
ponents Analysis and Linear Discriminant Analysis algo-
rithm (PCA+LDA) [2], the Bayesian Intrapersonal/Extra-
personal Classifier (BIC) using either the Maximum likeli-
hood (ML) or the Maximum a posteriori (MAP) hypothesis
[34].

Using commercial matcher (G8), the rank-1 identification
rate achieved is 40.26% for the VIS-MWIR dataset and
62.82% for the VIS-LWIR dataset. For the CSU academic
matchers, the maximum rank-1 identification rate recorded
is 19.23% for VIS-LWIR and 8.97% for VIS-MWIR using
the LDA algorithm. These baseline results can be found in
Table I.

B. Image Synthesis Experiments

We trained our synthesis algorithm using a Leave-One-
Out approach, i.e. take one image sample out of the training
dataset and use that sample as test image for synthesis (the IR
image as the input and the VIS image as the ground truth, and
vice-versa); the remaining samples of the subject are used as

TABLE III
RANK-1 FR RESULTS (%) FOR DENOISED SYNTHESIZED VIS-MWIR

AND VIS-LWIR DATASETS USING SELECTED MATCHER (LBP DT).

Proposed Approach Restored Synthesized Rank-1 FR Accuracy (%) LBP DT
Gallery Probe Face Detect Proposed CSU

VIS Synth. VIS (MWIR) 21.43 30.52 31.17
Synth. VIS (MWIR) VIS 68.83 75.32 77.27

MWIR Synth. MWIR 27.27 42.86 51.30
Synth. MWIR MWIR 59.74 81.17 76.62

VIS Synth. VIS (LWIR) 5.13 37.82 23.72
Synth. VIS (LWIR) VIS 53.85 81.41 79.49

LWIR Synth. LWIR 25.00 43.59 57.69
Synth. LWIR LWIR 60.90 78.85 80.77

the training data. There are several parameters to be chosen in
our proposed synthesis algorithm, such as the size of patches,
the number of canonical variates k (the dimensionality of
feature vector) we take for every patch, and the number of
the neighbors we use to train the canonical directions. The
size of all the images in our database despite pre-processing
methodology is, 320×256 during the synthesis step, and we
choose a patch size of 9×9 with 3-px overlapping. Although
not practical, our matching experiments after synthesis are
tested using the synthesized images as both gallery and probe
set. This was explored for each spectrum.

We achieve a maximum rank-1 identification rate of
85.06% when using LBP (with the DT distance metric)
matcher after synthesis for VIS-MWIR and a maximum rank-
1 identification rate of 79.49% for the VIS-LWIR, using our
proposed preprocessing approach. The rank-1 identification
rates after image synthesis and denoising (pre-processed
datasets) results can be found in Table II for each of our
pre-processed IR datasets.

C. Image Denoising Experiments

In this experiment, we demonstrate that the combination
of filtering and TI-denoising is essential for significantly im-
proving FR accuracy of our datasets under practical scenarios
(e.g. gallery images are not synthesized). Both synthesized
and ground truth (gallery and/or probe) sets were low-pass
(LP) filtered and subsequently denoised. We optimize our
proposed image denoising parameters, LP filter type and
sigma value threshold used for TI-denosing, using CMC
rank-1 accuracy as a metric. First, we apply an LP Filter
to minimize distortion due to the subsampling. The type of
LP filter used is a boxcar filter with a fixed window size.
Through previous experimentation [6], we found a window
size of 3 to be optimal. After we are able to LP filter
the image, denoising is carried out using the TI-denosing
scheme. The sigma value chosen for TI-denoising appears
to be optimal depending on whether we are denoising syn-
thesized images or ground truth images. Synthesized images
received a sigma value of 3, while ground truth images were
only slightly denoised with a sigma value of .01.

We achieve a maximum rank-1 identification rate of
81.17% when using LBP (with the DT distance metric)
matcher after synthesis for VIS-MWIR and a rank-1 identi-
fication rate of 80.77% for VIS-LWIR, using our proposed
and CSU normalization respectively. The results after de-
noising can be seen in Table III for our synthesized datasets.
Identification rates (Rank-1 to Rank-5) can be seen for our
collected data and proposed methodology (after denoising)
when compared to classic academic matchers for practical
scenarios (e.g. visible gallery) in Fig. ??.

VII. DISCUSSIONS & CONCLUSIONS

In this paper we study the problem of image synthesis as a
means to bridge the informational gap between face images
pertaining to two different spectral bands. Our study shows
that image alignment is important in achieving higher FR
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Fig. 5. (a) Identification rates (Rank-1 to Rank-5) for VIS gallery and MWIR probe. (b) Identification rates (Rank-1 to Rank-5) for VIS gallery and
LWIR probe.

accuracy for the proposed approach. Utilizing our image syn-
thesis approach, we achieve a maximum rank-1 identification
rate of 85.06% when using LBP DT matcher after synthesis
for VIS-MWIR and a maximum rank-1 identification rate
of 79.49% for the VIS-LWIR spectrum, using our proposed
geometric normalization. After denoising, we achieve a max-
imum rank-1 identification rate of 81.17% when using LBP
DT matcher for VIS-MWIR and a rank-1 identification rate
of 80.77% for VIS-LWIR, using our proposed and CSU
normalization respectively. Experimental results show that
recognition accuracy is much higher when the synthesized
face image is used as a gallery set, as opposed to the probe
set. We believe there is so much difference in rank-1 scores
when the synthetic dataset is the gallery vs. the probe because
of the amount of information contained in the raw image.
When a synthesized face image is used as the gallery, all
information in the synthesized face image should be present
in the raw face image of the same subject. However, when
the raw face image is the gallery, the synthesized face probe
image is likely missing some information that is present in
the raw face gallery image. In practical applications, the use
of raw face images as the gallery set would be the more
realistic scenario. The image denoising step increases the
score where we use the slightly denoised raw images as the
gallery set, irrespective of the spectral band. However, rank-
1 accuracy is decreased when a denoised synthesized image
is used as the gallery image. The image denoising step was
particularly valuable on the datasets pre-processed using face
detection and CSU normalization, excluding matching using
VIS gallery and synthesized VIS probe.

The image denoising step decreases face recognition
accuracy for our proposed geometric normalization pre-
processing step. Since we do not measure an exact model of

noise, we are unable to come to any conclusions on noise in
the image after denoising. The proposed approach is feasible
given two large datasets that have a linear relationship, but is
limited with data involving nonlinear correlation. In recent
years it has been shown that using deep CNN-based fea-
tures, and state-of-the-art hand-crafted features may already
accommodate for cross-spectral variances during FR. When
combining CCA that is based on deep CNNs, nonlinear
correlation can be discovered, and distributions and functions
can be learned for image synthesis. However, CNNs do
have limitations as well, which includes high computational
cost and need for a large amount of training data. Per a
survey on HFR [24], CCA and LLE have also been used
in some form or fashion for other synthesis approaches
such as Sketch-Photo, VIS-NIR, and 2D-3D face. From our
experiments, we gather that the proposed approach is highly
dependent on the data available for training and requires a
good approximation of the underlying distribution of data.
Data restraints are present, particularly in IR to visible FR
where datasets are very limited in population. The collection
and organization of such data, particularly data that has been
co-registered, should be considered for the future. Also, the
use of techniques such as neural networks that may be able
to learn mappings by adjusting projection coefficients over
the training set should be taken into consideration as well.
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