
Adversarial Machine Learning in Malware Detection: Arms
Race between Evasion Attack and Defense

Lingwei Chen, Yanfang Ye∗, Thirimachos Bourlai
Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506, USA
lgchen@mix.wvu.edu, yanfang.ye@mail.wvu.edu, thirimachos.bourlai@mail.wvu.edu

Abstract—Since malware has caused serious damages and
evolving threats to computer and Internet users, its detection is
of great interest to both anti-malware industry and researchers.
In recent years, machine learning-based systems have been
successfully deployed in malware detection, in which different
kinds of classifiers are built based on the training samples using
different feature representations. Unfortunately, as classifiers
become more widely deployed, the incentive for defeating them
increases. In this paper, we explore the adversarial machine
learning in malware detection. In particular, on the basis of a
learning-based classifier with the input of Windows Application
Programming Interface (API) calls extracted from the Portable
Executable (PE) files, we present an effective evasion attack model
(named EvnAttack) by considering different contributions of the
features to the classification problem. To be resilient against the
evasion attack, we further propose a secure-learning paradigm
for malware detection (named SecDefender), which not only
adopts classifier retraining technique but also introduces the
security regularization term which considers the evasion cost
of feature manipulations by attackers to enhance the system
security. Comprehensive experimental results on the real sample
collections from Comodo Cloud Security Center demonstrate the
effectiveness of our proposed methods.

I. INTRODUCTION

Malware (e.g., viruses, worms, trojans, ransomware) is
malicious software that is disseminated by attackers to launch
a wide range of security attacks, such as stealing user’s private
information, hijacking devices remotely to deliver massive
spam emails, and infiltrating user’ online account credentials.
Malware has caused serious damages and significant financial
loss to many computer and Internet users. A recent study
[17] showed that nearly half of Internet users encountered
malicious software, in which 80% malware attacks caused
problems for users and almost 30% resulted in money loss.
In order to protect the legitimate users against the evolving
threats malware poses, its detection is of utmost concern to
both anti-malware industry and researchers. Recently, systems
using machine learning techniques have been increasingly
applied and successfully deployed in malware detection [34],
[20], [1], [23], [33]. In these systems, based on different
feature representations, various kinds of classification meth-
ods are used for model construction to detect malware. The
effectiveness of machine learning techniques relies on the
assumption that training data and testing data follow the
same distribution. However, this hypothesis is likely to be

∗Corresponding author.

violated by an adversary who may carefully manipulate the
input data to exploit specific vulnerabilities of a classifier
and thus to compromise its security. In other words, machine
learning itself may open the possibility for an adversary who
maliciously “mis-trains” a classifier in a malware detection
system by simply changing the data distribution or feature
importance [3], [4]. When the machine learning system is
deployed in a real-world environment, it is of a great interest
for malware attackers to actively manipulate the data to make
the classifier produce errors (i.e., minimum true positive or
minimum true negative).

If we look at the evolution of malware detection techniques
[10], [16], [27], [9], [35], [11], attackers and defenders are
actually engaged in a never-ending arms race where both of
them continually come up with their own optimal strategies
of variability and sophistication to overcome the opponents
[7], [13]. For example, when defenders widely used signature-
based methods for malware detection, attackers adopted code
obfuscation or polymorphism to evade the detection and defeat
attempts to analyze their inner mechanisms [18]. Currently,
the issues of understanding machine learning security in ad-
versarial settings [36] are starting to be leveraged, from either
adversarial [22], [13], [28], [7], [5] or defensive [36], [29],
[14], [4], [6] perspectives. However, most existing researches
for adversarial machine learning rarely conduct practical inves-
tigations into malware detection domain. As machine learning
based detections become more widely deployed, the adversary
incentive for defeating them increases.

In this paper, we go further insight into the arms race
between evasion attack and defense and explore the adversarial
machine learning in malware detection. In particular, on the
basis of a learning-based classifier with the input of Windows
API calls extracted from the PE files, we first present an
effective evasion attack model (named EvnAttack) to thor-
oughly assess the security of the classifier by considering
different contributions of the API calls to the classification
problem. To effectively counter such kind of evasion attack,
we further propose a resilient yet elegant secure-learning
paradigm for malware detection (named SecDefender). The
major contributions of our work can be summarized as follows:
• An effective evasion attack model on machine learning-

based classifier: In a machine learning-based detection
system, features can differently contribute to the classifi-
cation problem, which can be automatically weighed by

the learning algorithm based on the training data (either
benign or malicious). Considering attackers’ different
skills and capabilities, we first thoroughly investigate
the property of the feature set observed from the real
sample collection and their different contributions; then
we present an effective evasion attack model (named
EvnAttack) to assess the security of the classifier.

• A secure-learning paradigm against evasion attack in
malware detection: To improve the system security and
be resilient against the evasion attack, we propose a
secure-learning paradigm in malware detection (named
SecDefender). In the secure-learning model, we not only
adopt classifier retraining technique, but also introduce
the security regularization term based on the evasion
cost of feature manipulations by attackers to enhance the
security of the classifier.

• Comprehensive experimental study on a real sample
collection from an anti-malware industry company: We
obtain the dataset from Comodo Cloud Security Center,
containing 10, 000 file samples (half benign and half
malicious). We then build a practical solution for evasion
attack and its detection based on this real sample col-
lection. Comprehensive experimental results demonstrate
the effectiveness of our proposed methods.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III defines the problem
of machine learning-based malware detection. Section IV
describes the implementation of an effective evasion attack
model. Section V introduces a secure-learning model against
the evasion attack in malware detection. In Section VI, we sys-
tematically evaluate the effectiveness of the proposed methods.
Finally, Section VII concludes.

II. RELATED WORK

Machine learning techniques offer unparalleled flexibility in
automatic malware detection [34], [1], [23], [33], [20], [15],
[26]. However, machine learning itself can be a target of attack
by a malicious adversary [22], [28], [7], [5], [29], [14], [4],
[6]. In some cybersecurity domains, there are ample evidences
that show adversaries can actively manipulate the data to
evade the detection [13], [36], [22], [8], [7]. For example,
in the domain of spam email detection, Dalvi et al. [13]
examined the cost for measuring each feature of the dataset
using Naı̈ve Bayes classifier, and proposed an optimal strategy
for the adversary to play against the classifier. Zhang et al.
[36] took gradient steps to find the closest evasion point x′

to the malicious sample x. The Adversarial Classifier Reverse
Engineering (ACRE) framework [22] was introduced to study
how an adversary can learn sufficient information to construct
adversarial attacks using minimal adversarial cost. Brückner
et al. [8] presented the interaction between the learner and the
data generator as a static game, and explored the adversarial
conditions and properties to find the equilibrial prediction
model in the context of spam email filtering. To combat the
evasion attacks, increasing research efforts have been devoted
to the security of machine learning [29], [36], [14], [12]. Wu

et al. [30] and Wang et al. [29] manipulated the training data
distribution so that its distribution could be matched to the
test data. Kolcz et al. [19] applied averaging method resting
on random subsets of reweighted features to produce a linear
ensemble classifier. Debarr et al. [14] explored randomization
to generalize learning model by randomly choosing dataset
or features, and estimated some parameters that fit data best.
However, the application of adversarial machine learning into
malware detection domain has been scarce with the exception
that Šrndic et al. [28] and Xu et al. [31] both exploited PDF
malware as a case study to evaluate the security of learning-
based classifiers (e.g., PDFrate and Hidost).

Different from the existing works, in this paper, we explore
the security of machine learning in malware detection by
developing the theory and approaches to learn the behavioral
models for both attackers and defenders, with respect to an
effective evasion attack model and a secure-learning paradigm.
The proposed methods can be readily applied in other malware
detection tasks.

III. MACHINE LEARNING-BASED MALWARE DETECTION

A malware detection system using machine learning tech-
niques attempts to identify those “zero-day” malware or vari-
ants of known malware through building a classification model
based on the labeled training sample set and predefined feature
representations. In this section, we introduce a learning-based
classifier based on a feature representation approach for mal-
ware detection.

A. Feature Representation

PE is designed as a common file format for all flavors of
Windows operating system, and malicious PE files are in the
majority of the malware in recent years [34]. Since Windows
API calls can effectively reflect the behaviors of PE program
codes [34] (e.g., the API “GetFileType” in “KERNEL32.DLL”
can be used to retrieve the file type of the specified file, while
the API “GetDlgItemText” in “USER32.DLL” can be utilized
to obtain the title or text associated with a control in a dialog
box), we extract Windows API calls from the PE files to
represent them. If a PE file is previously compressed by a third
party binary compress tool such as UPX and ASPack Shell or
embedded a homemade packer, it will be decompressed at
first using CMDsm developed by Comodo Anti-malware Lab
before feature extraction. Note that API calls are exploited here
as a case study, while other feature representations, such as
binary n-gram and dynamic system calls, are also applicable in
our investigation. We further convert the features into a vector
space so that it can be fed into the classifier for training or
testing.

Based on the extracted features, we denote our dataset D to
be of the form D = {xi, yi}ni=1 of n file samples, where xi is
the set of Windows API calls extracted from file i, and yi is
the class label of file i, where yi ∈ {+1,−1, 0} (+1 denotes
malicious, −1 denotes benign, and 0 denotes unknown). Let
d be the number of all extracted Windows API calls in the

dataset D. Each of the PE file can be represented by a binary
feature vector:

xi =< xi1, xi2, xi3, ..., xid >, (1)

where xi ∈ Rd, and xij = {0, 1} (i.e., if file i includes APIj ,
then xij = 1; otherwise, xij = 0). Table I shows a sample
data set.

TABLE I
AN EXAMPLE DATASET IN MALWARE DETECTION

File Extracted API Calls Feature Vector Label

1 API3, API5 < 0, 0, 1, 0, 1 > +1

2 API1, API2, API4 < 1, 1, 0, 1, 0 > −1
3 API2, API3, API5 < 0, 1, 1, 0, 1 > 0

B. Learning-based Classifier for Malware Detection
The malware detection problem can be stated in the form

of: f : X → Y which assigns a label y ∈ Y (i.e., −1 or +1)
to an input file x ∈ X through the learning function f . A
general linear classification model for malware detection can
be thus denoted as:

f = sign(f(X)) = sign(XTw + b), (2)

where f is a vector, each of whose elements is the label (i.e.,
malicious or benign) of a file sample to be predicted, each
column of matrix X is the feature vector of a PE file, w is
the weight vector and b is the biases. More specifically, the
linear-based classifier can be formalized as an optimization
problem [35]:

argmin
f ,w,b;ξ

1

2
||y− f ||2+ 1

2β
wTw+

1

2γ
bTb+ξT (f −XTw−b)

(3)
where y is the labeled information vector, and ξ is Lagrange
multiplier which is a strategy for finding the local minima
of 1

2 ||y − f ||2 subject to f − XTw − h = 0, β and γ are
the regularization parameters. Note that Equation 3 is a linear
classifier (denoted as OrgDefender throughout the paper) that
consists of specific loss function and regularization terms.
Without loss of generality, the equation can be transformed
into different linear models depending on the choices of loss
function and regularization terms.

IV. EVASION ATTACK MODEL

In malware detection, there are two types of security
violation in the adversarial settings [3], [4]: (1) Integrity
attack which allows malware being classified as benign; (2)
Availability attack that creates a denial of service in which
benign files are disable to be normally executed. In this paper,
we focus on the former attack since it’s the most prevalent
type of attacks that may be encountered in adversarial settings
during system operation. The integrity attack is also called
evasion attack, in which malicious samples are modified at
test time to evade detection. Given an original malicious file
x ∈ X+, the evasion attack attempts to manipulate it to be
detected as negative (i.e., x′ ∈ X−) with certain evasion cost.
In this section, we present how attackers can achieve such
attack.

A. Evasion Cost

Considering each file is represented by a binary feature
vector (as stated in Section III-A), a typical feature manipula-
tion can be the addition or elimination of each binary. Then,
the evasion cost for an attacker to perform an attack can be
determined by the number of binaries that are changed from
x to x′, which can be defined as [22]:

C(x′,x) =
d∑
i=1

ci|x′i − xi|. (4)

where ci denotes the corresponding cost of changing a feature.
The manipulation cost ci for each feature is different. For
example, some specific Windows API calls may affect the
structure for intrusive functionality, which are more expensive
to be modified (i.e., ci for changing those features should be
higher). In the real operation, it’s impractical for an attacker
to modify a malware into benign at any cost. For instance, it’s
infeasible to manipulate a large number of features to evade
the detection while its malicious functionalities still being
reserved. Accordingly, there is an upper limit of the maximum
manipulations that can be made to the original malware x. That
is, the manipulation function A(x) can be formulated as

A(x) =

{
x′ f(x′) < 0 and C(x′,x) ≤ δmax

x otherwise
, (5)

where the malware is manipulated to be misclassified as
negative only if the evasion cost is less than a maximum
manipulations δmax.

Let f ′ = sign(f(A(X))), then the main idea for an evasion
attack is to maximize the total loss of classification (i.e.,
argmax 1

2 ||y−f
′||2), which means that the more malware are

misclassified as benign files, the more effective the evasion
attack could be. An ideal evasion attack modifies a small
but optimal portion of features of the malware with minimal
evasion cost, which thus makes the classifier achieve lowest
true positive rate. To achieve such adversary goal, it’s the
most important for the attackers to choose a relevant subset
of features applied for addition and elimination. Therefore,
to well implement the attack, we take deep insight into the
property of the feature set.

B. Property of the Feature Set

As different features (i.e., API calls in our application)
differently contribute to the classification of malware and
benign files, it’s worth to investigate the importance of each
feature. We analyze the sample set obtained from Comodo
Cloud Security Center, which contains 10,000 labeled files
with 3, 503 extracted API calls. Given x representing an API
call, and class label y, we use Max-Relevance algorithm
(I(x, y)) [24] to weigh the importance (i.e., contribution)
of each API call in classifying malware and benign files;
that is, we calculate the relevance score of each API call
for malware and benign file classification respectively. Those
API calls with extremely low relevance scores (e.g., about
85% of the extracted API calls with relevance scores lower

than 0.0005) have limited or no contributions in malware
detection, thus they won’t be considered for the further design
of the evasion attack. Table II shows the top ranked API
calls related to malware and benign files respectively based
on our sample collection, from which we can observe that for
those API calls with high relevance scores, some are explicitly
relevant to malware, while some have high influence on the
classification of benign files. With further analysis, we find
that the most important activity in malware is file management
[2], which enables them to create, or copy files (themselves
or other files) multiple times to spread malware distribution,
control the targeted computers, and destroy the integrity of the
system (e.g., CreateFileW in KERNEL32.DLL, DestroyIcon in
USER32.DLL, CreatePopupMenu in USER32.DLL, Destroy-
Window in USER32.DLL, etc.). To achieve the malicious goals,
they also have their own methods to deal with process and
registry, which heavily use VirtualQuery in KERNEL32.DLL to
get the virtual address space of the calling process that is intent
to hide from or affect. Compared with malware, benign files
act normally in file, memory, process, and registry operations.

TABLE II
LIST OF THE TOP RANKED API CALLS

ID API Contributing to Malware Classification Rel. Score

178 KERNEL32.DLL,VirtualQuery; 0.0568
124 KERNEL32.DLL,ExitProcess; 0.0459
615 KERNEL32.DLL,CreateFileW; 0.0406
607 KERNEL32.DLL,CompareStringA; 0.0381
8 USER32.DLL,RegisterClassA; 0.0355
1637 USER32.DLL,DestroyIcon; 0.0318
1606 USER32.DLL,TrackPopupMenu; 0.0317
207 KERNEL32.DLL,IsBadCodePtr; 0.0235
1601 USER32.DLL,CreatePopupMenu; 0.0213
235 USER32.DLL,DestroyWindow; 0.0205

ID API Contributing to Benign File Classification Rel. Score

80 KERNEL32.DLL,FreeLibrary; 0.1035
57 ADVAPI32.DLL,RegCloseKey; 0.0972
578 ADVAPI32.DLL,RegOpenKeyExW; 0.0964
20 KERNEL32.DLL,lstrlenW; 0.0846
111 KERNEL32.DLL,GetCurrentThreadId; 0.0825
22 KERNEL32.DLL,Sleep; 0.0756
37 KERNEL32.DLL,LocalFree; 0.0756
102 KERNEL32.DLL,GetTickCount; 0.0673
36 KERNEL32.DLL,GetLastError; 0.0538
506 KERNEL32.DLL,SetEvent; 0.0532

Based on the above observed property from the real sam-
ple collection, intuitively, to evade the detection with lower
evasion cost, attackers may manipulate the API calls by the
way of injecting the ones most relevant to benign files while
removing the ones with higher relevance scores to malware. To
simulate the evasion attack, we rank each API call and group
them into two sets:M (those highly relevant to malware) and
B (those highly relevant to benign files) in the descent order
of I(x,+1) and I(x,−1) respectively, where M is utilized
for elimination, while B is applied for addition.

C. Evasion Attack Model

To implement the evasion attack, we further define a func-
tion g(A(X)) to represent the capability of an attacker:

g(A(X)) = ||y − f ′||2, (6)

g(A(X)) implies the number of malware misclassified as
benign files. The underlying idea is thus to manipulate a
subset of features with minimum evasion cost while maximize
the total loss of classification (as specified in Equation 6).
In principle, a brute-force method can be applied to select
features for manipulation. However, search by exhaustion is
extremely expensive for the large-dimensional feature set. To
achieve the optimal attack, here we adopt the wrapper method
[36] which greedily selects features based on the capability of
the attack. Different from the work in [36], we conduct bi-
directional feature selection, that is, forward feature addition
performed on B and backward feature elimination performed
on M. At each iteration, an API call will be selected for
addition or elimination depending on the fact how it influences
the value of g(A(X)). The evasion attack θ = {θ+,θ−} will
be drawn from the iterations, where θ+ ∈ {0, 1}d (if APIi is
selected for elimination, then θ+i = 1; otherwise, θ+i = 0),
and θ− ∈ {0, 1}d (if APIi is selected for addition, then
θ−i = 1; otherwise, θ−i = 0). The iterations will terminate
at the point where the evasion cost reaches to maximum
(δmax) or the features available for addition and elimination are
all manipulated. The implementation of the proposed evasion
attack (EvnAttack) is given in Algorithm 1.

Algorithm 1: EvnAttack - An effective evasion attack
model for the attackers with different skills and capabilities
Input: Training set D = {xi, yi}ni=1, testing set

Dt = {xi, yi}nt
i=1; af : cost of changing feature f ;

c+, c−: cost of eliminating and adding features in
a file; S+, S−: features selected; µ+, µ−: number
of features selected for elimination and addition.

Output: Evasion attack θ = {θ+,θ−}.
Train a classifier f(X) using n training file samples;
S+ ← ∅, S− ← ∅, θ+i = 0, θ−j = 0, (i, j ∈ (0, 1, ..., d));
while (c+ + c− ≤ δmax) and (µ+ < d or µ− < d) do

X← X/S+, X← X
⋃
S−;

for each feature x+i ∈M do
Xx+ ← X/{x+i }: eliminate x+i from nt testing
file samples; Calculate g(Xx+);

end
for each feature x−j ∈ B do

Xx− ← X
⋃
{x−j }: add x−j to nt testing file

samples; Calculate g(Xx−);
end
xmax = argmax {g(Xx+), g(Xx−)};
if xmax ∈M and µ+ < d then
S+ ← S+

⋃
{x+i }, c+ = c++ax+

i
, µ+ = µ++1;

end
if xmax ∈ B and µ− < d then
S− ← S−

⋃
{x−j },c− = c− + ax−j

,µ− = µ− + 1;
end

end
Set θ+i = 1 for x+i ∈ S+, θ−j = 1 for x−j ∈ S−;
return θ = {θ+,θ−};

The proposed EvnAttack enables the adversary to fully take
advantage of the property of the feature set, and get a better
chance of evading the targeted classifier. M and B signif-
icantly decrease the number of searches, and thereby reduce
the computational complexity. Given m = max(|M|, |B|), the
proposed attack EvnAttack requires O(ntm(µ++µ−)) queries,
in which nt is the number of testing malware samples, µ+ and
µ− are the numbers of selected features for elimination and
addition respectively. Note that, this algorithm is applicable to
the attackers of different skills and capabilities resting on the
feature space, the training data set, and the learning algorithm
either surrogate or originally used by the targeted system.

V. A SECURE-LEARNING PARADIGM AGAINST EVASION
ATTACK

A defender usually reacts to the evasion attacks by analyzing
the attack and retraining the classifier on the new collected
file samples, or modifying features of the training dataset
to counter the adversary’s strategy [25]. However, retraining
with adversarial data typically suffers from a limitation: the
retrained model modifies the training data distribution approx-
imate to the testing space through the attack model. After
modifying a large number of features and malicious files, the
model tends to produce a distribution that is very close to that
of the benign files. In this case, the retrained model may not
be able to differentiate benign and malicious files accurately.
In this paper, we provide a systematic model to formalize the
impact of the evasion attack with respect to system security
and accuracy in malware detection. To this end, we perform
our security analysis of the learning-based classifier resting on
the application setting that the defender draws the well-crafted
EvnAttack from the observed sample space, since the attack
is modeled as optimization under generic framework in which
the attackers try to (1) maximize the number of malware being
classified as benign, and (2) minimizes the evasion cost for
optimal attacks over the learning-based classifier [21]. There-
fore, in our proposed secure-learning model (SecDefender), we
exploit the EvnAttack θ to retrain the classifier in a progressive
way and apply evasion cost c to regularize the optimization
problem.

Classifier Retraining. Incorporating the evasion attack
θ into the learning algorithm can enables us to provide a
significant connection between training and the adversarial
action. Instead of manipulating the feature spaces for all the
malicious training dataset, we start with the original training
data X and iteratively computing a classifier by injecting the
adversarial samples tainted by θ into the training data that
evade the previously computed classifier [21]. The new dataset
X′ can be formalized as follows:

X′ = X

nm⋃
i=1

(xi + θ), (7)

s.t. f(xi + θ) < 0, (8)

where nm is the total number of malware samples added
during the retraining iteration. The iterations converge when

there are no new evasion samples generated through the re-
trained classifier or the specified number of iterations reaches.
Compared to updating all the malicious training dataset, this
progressive classifier retraining method effectively increases
the importance of malware in training process, and can there-
fore significantly keep the detection system in a more accurate
level.

Security Regularization. Resting on the retrained classifier,
in our proposed model, we further enhance the security of
the classifier by using a security regularization term over
the evasion cost. Our empirical studies demonstrate that even
retrained by the updated training dataset, the classifiers are still
degraded to some extent. It’s recalled that an optimal evasion
attack aims to manipulate a subset of features with minimum
evasion cost while maximize the total loss of classification.
In contrast, to secure the classifier in malware detection, we
would like to maximize the evasion cost for the attacks [36]:
from the analysis of the adversary problem [5], [19], we can
find that the larger the evasion cost, the more manipulations
need to be performed, and the more difficult the attack is.
If a larger number of features has to be manipulated to
evade detection, it may be infeasible to perform such attack.
Therefore, to be more resilient against the evasion attack, an
ideal secure-learning model is to maximize the evasion cost
for the attackers. Accordingly, the security of the learning
classifier can be defined as:

S(A(x),x) = 1

C(A(x),x)
, (9)

subject to Equation 4. If A(xi) = xi which represents that the
file is not manipulated by the adversary, S(A(xi),xi) = 0. We
then define a diagonal matrix for the adversary action denoted
as S ∈ Rn×n, where the diagonal element Sii = s(A(xi),xi)
and the remaining elements in the matrix are 0. Based on
the concept of label smoothness [32], we can secure the
classifier with the constraint as f ′TSy. Since the learning-
based malware detection can be formalized as an optimization
problem denoted by Equation 3, we can then bring a regular-
ization term to enhance its security. This constraint penalizes
parameter choices, smooths the effects the attack may cause,
and in turn helps to promote the optimal solution for the local
minima in the optimization problem. Therefore, to minimize
classifier sensitivity to feature manipulation, we can minimize
the security regularization term. Based on Equation 3, we can
formulate a secure-learning model against the evasion attack
as:

argmin
f ′,w,b;ξ

L(f ′,w,b; ξ) = argmin
f ′,w,b;ξ

1

2
||y − f ′||2 + α

2
f ′TSy+

1

2β
wTw +

1

2γ
bTb+ ξT (f ′ −X′Tw − b). (10)

where α is the regularization parameter for the security
constraint. As the substitution and derivation from ∂L

∂w = 0,
∂L
∂b = 0, ∂L∂ξ = 0, ∂L∂f ′ = 0, we can get the final secure-learning
problem as:

((βX′TX′ + γI) + I)f ′ = (I− α

2
S)(βX′TX′ + γI)y. (11)

Since the size of X′ is d×n, the computational complexity for
Equation 11 is O(n3). To solve the secure-learning problem
(Equation 11), we use conjugate gradient descent method and
the implementation of SecDefender is shown in Algorithm 2.

Algorithm 2: SecDefender - A secure-learning model
against the evasion attack
Input: Training data set D = {xi, yi}ni=1 and testing set

Dt = {xi, yi}nt
i=1; Evasion attack θ.

Output: f ′: the labels of the input files.
Iteratively train classifier f(X

⋃
i(xi + θ)) to get X′;

f ′0 = 0;
A = (βX′TX′ + γI) + I;
r0 = (I− α

2S)(βX
′TX′ + γI)y −Af ′0;

p0 = r0;
k = 0;
while ||rk|| > ε do

λk = (rTk rk)/(p
T
kApk);

f ′k+1 = f ′k + λkpk;
rk+1 = rk − λkApk;
ζk = (rTk+1rk+1)/(r

T
k rk);

pk+1 = rk+1 + ζkpk;
k = k + 1;

end
return f ′k;

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, to empirically validate the proposed meth-
ods, we present four sets of experiments: (1) In the first set of
experiments, we evaluate the proposed evasion attack model
EvnAttack with different evasion costs; (2) In the second set
of experiments, we then compare EvnAttack with other feature
manipulation methods; (3) In the third set of experiments,
we further evaluate the effectiveness of our proposed secure-
learning model SecDefender against the evasion attack; (4) In
the last set of experiments, we compare the performance of
SecDefender against the evasion attack with other widely used
anti-malware products.

A. Experimental Setup

The sample set obtained from Comodo Cloud Security
Center contains 10, 000 file samples with 3, 503 extracted API
calls, where 5, 000 are malware, and 5, 000 are benign files.
In our experiments, we randomly select 90% of the samples
for training, while the remaining 10% is used for testing.
To quantitatively validate the effectiveness of the proposed
methods, we use the performance measures shown in Table III.

B. Evaluation of EvnAttack with Different Costs

In this set of experiments, we evaluate how different settings
of the maximum evasion cost δmax may influence the perfor-
mance of the proposed evasion attack model EvnAttack. Since
not all of the API calls will contribute to the classification
problem as analyzed in Section IV-B, those with extremely low
relevance scores (0.0005 in our application) will be excluded

TABLE III
PERFORMANCE MEASURES IN MALWARE DETECTION

Measure Description

TP Number of files correctly classified as malicious
TN Number of files correctly classified as benign
FP Number of files mistakenly classified as malicious
FN Number of files mistakenly classified as benign
FNR FN/(TP + FN)
TPR/Recall TP/(TP + FN)
Precision TP/(TP + FP)
ACC (TP + TN)/(TP + TN + FP + FN)
F1 2× Precision× Recall/(Precision + Recall)

for feature manipulations. Therefore, M = 810, and B =
1, 183. Considering different manipulation costs for API calls,
we optimize ci for each feature by applying its normalized
relevance score for the classification (ci ∈ [0, 1]). Based on the
Cumulative Distribution Function (CDF) of the number of API
calls the file samples include, we exploit the average number
of API calls that each file possesses, which is 109, to define
δmax. We run our evaluation of EvnAttack on the 1, 000 testing
file samples with δmax varies in {5%, 10%, 15%, 20%, 50%}
of the average number of API calls that each file possesses,
which is {5, 11, 16, 22, 55}.

We conduct EvnAttack on the testing sample set. From
Table IV, we can see that the attack performances are different
when the evasion costs vary. Since we just manipulate the
features on the testing malicious files (i.e., benign files remain
unchanged), all FPs and TNs after attacks in the experiments
keep the same as before attack (i.e., FP is 21, and TN is 423).
The experimental results demonstrate that the performance of
the evasion attack with δmax = 22 is superior to other attacks
with the lower values of δmax (i.e., 5, 11, 16), since it’s more
likely that the attack may better evade the detection if more
features can be manipulated. To further validate this, we extend
the evasion cost δmax and show that the attackers can achieve
perfect attack (i.e., FNR almost reaches to 1, which means
almost malware samples are misclassified) when the maximum
evasion cost is set to the value of 55 of the average number
of API calls.

TABLE IV
EVALUATION OF EvnAttack WITH DIFFERENT COSTS

ID Method Avg TP FN ACC FNR

0 OrgDefender 0 534 22 95.70% 0.0396
1 δmax = 5 3 391 165 81.40% 0.2968
2 δmax = 11 7 275 281 69.80% 0.5054
3 δmax = 16 10 213 343 63.60% 0.6169
4 δmax = 22 12 168 388 59.10% 0.6978
5 δmax = 55 25 13 543 43.60% 0.9766
Remark: Avg denotes the average feature manipulation for all 556 testing
malware.

As stated above, an ideal evasion attack is to manipulate a
subset of features with minimum evasion cost while maximize
the total loss of classification. It can be observed from Table IV
that when we set δmax = 22, the average feature manipulation
of each file is about 10% of its extracted API calls, which

could be empirically considered as a reasonable trade-off to
conduct an evasion attack considering the feature number and
manipulation cost. Therefore, in the following experiments, we
will set δmax = 22.

C. Comparisons of EvnAttack and Other Evasion Attacks

Based on the same dataset described in Section VI-A, in this
section, as discussed above, given δmax = 22, we compare
our proposed evasion attack EvnAttack with other feature
manipulation methods including: (1) only manipulating API
calls from B for addition (Method 1); (2) only manipulating
API calls fromM for elimination (Method 2); (3) sequentially
selecting (1/2 × δmax) API calls from B for addition and
(1/2×δmax) API calls fromM for elimination (Method 3); (4)
randomly manipulating API calls for addition and elimination
(Method 4); (5) EvnAttack.

(a) False negative rates (b) F1 measures

Fig. 1. Comparisons of EvnAttack and other evasion attacks: OrgDefender
(0), different evasion attacks (Method 1 - 4) and EvnAttack (5).

The experimental results shown in Figure 1 illustrate that
the attack performances rely on different feature manipulation
methods with certain evasion cost δmax: (1) The manipulation
of only feature elimination (Method 2) performs worst with
lowest FNR of 0.2842 (i.e., only 28.42% of the testing malware
are misclassified); (2) The manipulation which sequentially
selecting features for addition and elimination (Method 3)
performs better than i) only using feature addition (Method 1)
or elimination (Method 2), and ii) the random attack (Method
4); (3) Our proposed evasion attack EvnAttack (Method 5) can
greatly improve the FNR to 0.6978 and degrade the detection
F1 measure of the classifier to 0.4384, which outperforms
other four feature manipulation methods, due to its well-
crafted attack strategy.

D. Evaluation of SecDefender against Evasion Attack

In this section, we further assess the effectiveness of
SecDefender against the evasion attack. We use EvnAttack to
taint the malware in the testing sample set, and validate the
classification performance in different ways, including: (1) the
baseline before attack (OrgDefender); (2) the OrgDefender
under attack (ODUnderAtt); (3) the OrgDefender retrained
using the updated training dataset (i.e., x + θ) (Retraining);
(4) SecDefender.

The comparisons of the effectiveness of these classifiers
are shown in Figure 2. It can be observed that the retrained
classifier only applying the evasion attack θ to transform

the malware in the training dataset from x to x + θ can
somehow be resilient to the evasion attacks, but the FNR and
F1 still remain unsatisfied. In contrast, our secure-learning
model SecDefender proposed in Section V can well decrease
FNR while improve F1, and bring the malware detection
system back up to the desired performance level, the detection
F1 measure of which is 0.9561, approaching the detection
results before the attack (i.e., 0.9613). It may also be interested
to know how robust that our learning system can combat
the random attacks. We conduct this attack by randomly
selecting the features for addition or elimination as described
in Experiment VI-C (Method 4). Under the random attack,
the defender has zero knowledge of what the attack is, while
we assume the attacker has perfect knowledge of the learning
system (i.e., the feature space, the training data set, and the
learning algorithm). Even in such case, SecDefender can still
improve the detection F1 measure from 0.7304 to 0.8830.
Based on these properties, SecDefender can be a resilient
solution in malware detection even the attackers have perfect
knowledge of the learning system while defenders have zero
information regarding the attack.

(a) Detection performances (b) ROC Curves for the classifiers

Fig. 2. Comparisons of SecDefender and other classification models.

E. Comparisons with Different Anti-malware Scanners

In this set of experiments, we evaluate the performance of
SecDefender against the evasion attack in comparison with
some other popular commercial anti-malware scanners such as
Kaspersky (K), McAfee (M), Symantec (S), and TrendMicro
(T). For the comparisons, we use all the latest versions of
the security products. We use 556 malware samples from
the testing dataset described in Section VI-A for evaluation.
The testing malware are first tainted by EvnAttack, and then
scanned by these anti-malware products. The detection results
are illustrated in Table V. Compared with these typical anti-
malware scanners, SecDefender can effectively sustain the
TPR to 0.9335, and performs the most accurate detection.

VII. CONCLUSION

In this paper, we explore the arms race between evasion
attack and defense to better understand the adversarial machine
learning in malware detection. We first define and implement
an effective evasion attack model EvnAttack which manip-
ulates an optimal portion of the features in a bi-directional
way to evade the detection, based on the observation that the

TABLE V
COMPARISONS OF DIFFERENT ANTI-MALWARE SCANNERS

Malware K M S T SecDefender

1 ×
√

× ×
√

2
√

×
√

× ×
3 × × × ×

√

4 ×
√

× ×
√

5 × × × ×
√

6 × × ×
√ √

7 × × × ×
√

8 × × × × ×
9

√
×

√
×

√

10
√

× × ×
√

...
...

...
...

...
...

556 ×
√ √ √ √

TP 508 503 511 498 519
TPR 0.9136 0.9046 0.9190 0.8957 0.9335

API calls differently contribute to the classification of mal-
ware and benign files. Accordingly, a secure-learning model
SecDefender, composed of classifier retraining technique and
the security regularization term considering the evasion cost
of feature manipulations by attackers, is presented against the
evasion attack. Four sets of experiments based on the real sam-
ple collection obtained from Comodo Cloud Security Center
are conducted to empirically validate the proposed methods.
The experimental results demonstrate that the evasion attack
model EvnAttack with reasonable cost can greatly degrade the
detection accuracy of the classifier. To stay resilient against
the evasion attack, SecDefender can be a robust solution in
malware detection even the attackers have perfect knowledge
of the learning system. The proposed method can also be
readily applied to other malware detection tasks.

ACKNOWLEDGMENTS

The authors would also like to thank the anti-malware
experts of Comodo Security Lab for the data collection, as well
as the helpful discussions and supports. This work is supported
by the U.S. National Science Foundation under grant CNS-
1618629.

REFERENCES

[1] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated classification and analysis of internet malware,”
in RAID ’07, 2007, pp. 178–197.

[2] U. Baldangombo, N. Jambaljav, and S.-J. Horng, “A static malware
detection system using data mining methods,” CoRR Journal, 2013.

[3] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security of
machine learning,” Machine Learning, 2010.

[4] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can
machine learning be secure?” in ASIACCS ’06, 2006, pp. 16–25.

[5] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning at
test time,” in ECML PKDD ’13, 2013, pp. 387–402.

[6] B. Biggio, G. Fumera, and F. Roli, “Design of robust classifiers for
adversarial environments,” in SMC ’11, 2011, pp. 977–982.

[7] B. Biggio, F. Roli, and G. Fumera, “Security evaluation of pattern
classifiers under attack,” IEEE TKDE, vol. 26, no. 4, pp. 984–996, 2014.

[8] M. Bruckner, C. Kanzow, and T. Scheffer, “Static prediction games for
adversarial learning problems,” JMLR, vol. 13, no. 1, 2012.

[9] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos,
“Polonium: Tera-scale graph mining for malware detection,” in SDM
’11, 2011, pp. 131–142.

[10] L. Chen, W. Hardy, Y. Ye, and T. Li, “Analyzing file-to-file relation
network in malware detection,” in WISE ’15, 2015, pp. 415–430.

[11] L. Chen, T. Li, M. Abdulhayoglu, and Y. Ye, “Intelligent malware
detection based on file relation graphs,” in ICSC ’15, 2015, pp. 85–92.

[12] D. Chinavle, P. Kolari, T. Oates, and T. Finin, “Ensembles in adversarial
classification for spam,” in CIKM ’09, 2009, pp. 2015–2018.

[13] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Adversarial
classification,” in KDD ’04, 2004, pp. 99–108.

[14] D. Debarr, H. Sun, and H. Wechsler, “Adversarial spam detection using
the randomized hough transform-support vector machine,” in ICMLA
’13, 2013, pp. 299–304.

[15] R. A. Dunne, A Statistical Approach to Neural Networks for Pattern
Recognition. Wiley-Interscience, 1st edition, 2007.

[16] E. Filiol, G. Jacob, and M. Liard, “Evaluation methodology and theo-
retical model for antiviral behavioural detection strategies,” Journal in
Computer Virology, vol. 3, no. 1, pp. 23–37, 2007.

[17] KasperskyLab, “4 in 5 malware attacks cause problems for users and 1
in 3 result in money loss,” in http://www.kaspersky.com/about/news/
virus/2015/4-in-5-Malware-Attacks-Cause-Problems-for-Users-and-1-
in-3-Result-in-Money-Loss, 2015.

[18] C. Kolbitsch, E. Kirda, and C. Kruegel, “The power of procrastination:
detection and mitigation of execution-stalling malicious code,” in CCS
’11, 2011, pp. 285–296.

[19] A. Kolcz and C. H. Teo, “Feature weighting for improved classifier
robustness,” in CEAS ’09, 2009.

[20] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables
in the wild,” in KDD ’04, 2004, pp. 470–478.

[21] B. Li, Y. Vorobeychik, and X. Chen, “A general retraining framework
for scalable adversarial classification,” in NIPS 2016 Workshop on
Adversarial Training, 2016.

[22] D. Lowd and C. Meek, “Adversarial learning,” in KDD ’05, 2005.
[23] M. M. Masud, T. M. Al-Khateeb, K. W. Hamlen, J. Gao, L. Khan, J. Han,

and B. Thuraisingham, “Cloud-based malware detection for evolving
data streams,” ACM TMIS, vol. 2, no. 3, pp. 16:1–16:27, 2011.

[24] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information: Criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[25] F. Roli, B. Biggio, and G. Fumera, “Pattern recognition systems under
attack,” in CIARP ’13, 2013, pp. 1–8.

[26] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data mining
methods for detection of new malicious executables,” in SP ’01, 2001.

[27] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static analyzer of
vicious executables (save),” in ACSAC ’04, 2004, pp. 326–334.

[28] N. Šrndic and P. Laskov, “Practical evasion of a learning-based classifier:
A case study,” in SP ’14, 2014, pp. 197–211.

[29] F. Wang, W. Liu, and S. Chawla, “On sparse feature attacks in adversarial
learning,” in ICDM ’14, 2014, pp. 1013–1018.

[30] Y. Wu, T. Ren, and L. Mu, “Importance reweighting using adversarial-
collaborative training,” in NIPS ’16, 2016.

[31] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers a case
study on pdf malware classifiers,” in NDSS ’16, 2016.

[32] P. Yang and P. Zhao, “A min-max optimization framework for online
graph classification,” in CIKM ’15, 2015, pp. 643–652.

[33] Y. Ye, D. Wang, T. Li, and D. Ye, “Imds: Intelligent malware detection
system,” in KDD ’07, 2007, pp. 1043–1047.

[34] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, “An intelligent pe-malware
detection system based on association mining,” Journal in Computer
Virology, vol. 4, no. 4, pp. 323–334, 2008.

[35] Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta, and M. Abdulhayoglu,
“Combining file content and file relations for cloud based malware
detection,” in KDD ’11, 2011, pp. 222–230.

[36] F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung, and F. Roli, “Adver-
sarial feature selection against evasion attacks,” IEEE Transactions on
Cybernetics, vol. 46, no. 3, pp. 766–777, 2015.

