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Abstract—We study the problem of predicting human 

biogeographical ancestry using genomic data. While continental 

level ancestry is relatively simple using genomic information, 

distinguishing between individuals from closely associated sub-

populations (e.g., from the same continent) is still a difficult 

challenge. In particular, we focus on the case where the analysis 

is constrained to using single nucleotide polymorphisms (SNPs) 

from just one chromosome. We thus propose methods to 

construct such ancestry informative SNP panels, and assess the 

performance of such SNP panels from just one chromosome, for 

both continental-level and sub-population level ancestry 

prediction. We present results on the performance of the 

proposed methods, including a comparison with other related 

methods.  
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I.  INTRODUCTION  

Using DNA information to infer the ancestral origin of an 
individual is useful for many purposes, for instance, in 
detecting stratification in biomedical studies (disease or trait 
association) [1, 2], estimating admixture between specific 
ancestral populations [3, 4], determining ancestry in forensic 
context [5, 6], and guiding criminal investigations [7]. Such 
studies on ancestry identification mainly aim to identify sets of 
ancestry informative markers (AIMs) through analyzing the 
DNA sequences of different chromosomes collected from the 
population samples under study. Most widely used AIMs are 
based on single nucleotide polymorphisms (SNPs) [8] which 
demonstrate superior ability in predicting geographic/ethnic 
origin of an unknown individual compared to other markers 
such as short tandem repeats (STRs) [9]. While very large 
number of SNPs can provide nearly accurate ancestry 
information for multiple geographic regions, small but robust 
sets of SNPs are especially useful [10]. There are many 
published SNP panels that focused on distinguishing ancestral 
origins from several continental regions, e.g., Europe, America, 
Africa and East Asia [11]. Studies have demonstrated that 
many globally distributed populations, mostly continental 
populations can be distinguished by examining differences in 
allele frequencies, using the fixation index, widely known as Fst 
[12]. Although a small set (typically few hundreds) of SNPs 
can distinguish continental differences between individuals 
using the Fst feature [13-14]; such panels of SNPs are less 
informative in detecting sub-continental differences in closely 
related populations [3, 15]. Apart from Fst-based ancestry 
inference, techniques based on principal component analysis 
(PCA) [16-17], like EIGENSTART [16], have widespread 
applications. These methods represent genetic variations by 
principal component vectors, however, they are not highly 
efficient due to the requirement of genotyping very large 
number of SNPs (thousands to millions) to calculate the 

principal component vectors.  For instance, Li et al [18] used 
2318 SNPs for continental-level classification. Besides, many 
studies were able to develop small panels of SNPs to analyze 
ancestral origins for people from a large number of 
populations, e.g., 73 populations in [19] and 119 populations in 
[10]. However, these have typically used unsupervised learning 
(clustering) methods, such as STRUCTURE [20], to show 
which populations cluster together, without explicit prediction 
of the sub-populations for the individuals. 

Thus, though significant progress has been made in the use 
of genomic data for continental-level ancestry detection, sub-
continental population detection using only a few marker SNPs 
is still a challenge. Not much has been done on identifying sets 
of ancestry informative SNPs (AISNPs) that can accurately 
distinguish closely related sub-populations, for instance, those 
from the same continent. Another challenge is that of 
computation, and the ever limited resources available in most 
labs, where such ancestry classification may be needed. Thus, 
we add a key constraint in addressing the problem: we require 
that only SNPs from only one chromosome can be used in the 
analysis. This is important, as it will mean that the required 
sequencing can focus only on the specified chromosome, thus 
saving time and sequencing cost.  Essentially, our challenge 
therefore is to answer the question: how much information 
regarding our human biological and geographical ancestry can 
we glean from just a single chromosome? 

In this paper, we address the problems of both continental 

and sub-continental ancestry identification using small SNP 

panels, with all SNPs in the panel coming from one single 

chromosome.  For this study, we will focus on Chromosome 1, 

since this is the largest chromosome, and thus might provide 

the best starting point for our exercise.  Thus, in this study, 

through analyzing the DNA information of Chromosome 1, 

we employed machine learning techniques and statistical 

approaches to identify small sets of SNPs for predicting an 

individual’s continental and sub-continental origin. We take a 

three-stage approach. Initially, we apply parameter-based SNP 

selection, and later refined the selection by using a clustering 

technique (namely, DBSCAN [21]) to choose an efficient 

panel of SNPs. The final SNP panel is selected by applying a 

statistical approach based on pairwise correlation of the SNPs 

to identify the important AISNPs for both continental and sub-

continental ancestry classification. Our continental 

classification is a five-class classification problem including 

the continents Europe, Latin America, Africa, East Asia and 

South Asia. Within each continent there are several closely 

related sub-populations and accurately distinguishing them is 

the challenging part. To address the sub-continental level 

classification problem, we focus on pairwise classification of 

sub-populations within each continent.  



II. METHODS 

A. Dataset and Pre-processing 

For this work, we used the 1000 Genome Project, Phase 3 

dataset [22] which contains information on 84.4 million 

variants (SNPs) from all 23 chromosomes for 2504 

individuals, from 26 different sub-populations, from five 

continents. Table I provides a summary of different 

populations in the dataset. We focused on analyzing the 

variants from Chromosome 1 which is nearly 20.1 million 

SNPs. After data pre-processing steps (e.g., data cleaning), we 

identified continental and sub-continental ancestry informative 

SNPs in several stages. The DNA information for the 20.1 

million variants (SNPs) from Chromosome 1 of each of the 

2504 subjects resulted in a large dataset of size 61.2 GB. At 

the beginning, we extracted data from this large dataset and 

stored them in several smaller tables to be able to conduct our 

analysis in a MATLAB environment. For each SNP, we 

extracted their position/loci number, rsID, reference allele, 

alternate allele (s), and allele information of all 2504 subjects 

(each person’s allele is dip-loid, containing two nucleotides, 

from different combinations of the four nucleotide bases (A, 

C, G, T)). Next, we performed data cleaning operations on the 

extracted data based on the following criteria: 

•   The SNP loci which contain more than one reference 
nucleotides have been removed. 

• If an alternate allele nucleotide also exists in the 
reference allele, corresponding SNP position is 
excluded from the analysis. 

•  SNP loci where each of the two nucleotides from all 
the individuals in the dataset both match with the 
reference allele’s nucleotide are excluded from the 
analysis. 

     The above steps resulted in the removal of around 13 

million SNPs in the cleaning stage. We then performed further 

analysis using the remaining SNPs. For the purpose of SNP 

selection, we removed a person’s allele information from a 

SNP position, if the person’s two nucleotides at the given 

position are the same as the reference allele’s nucleotide.  

Consequently, two different sets of SNPs have been observed 

in the analysis. In one set, each SNP contains the same allele 

information among all individuals, although this allele 

information is different from the reference nucleotide. We call 

this SNP set the ‘Similarity Set’. In contrast, in the other set, 

allele information is not the same among all individuals at the 

given SNP position. We call this set the ‘Dissimilarity Set’.  

Since, for ancestry identification, we need to distinguish 

among populations with respect to some attribute/feature(s), 

SNP loci which demonstrate greater variation in DNA 

information among individuals will lead to better 

identification performance. Thus, we have chosen only the 

‘Dissimilarity Set’ of SNPs for further analysis.  

B. SNP Selection 

Stage 1: Parameter-based SNP Selection:  

At the beginning, we aimed to identify important markers for 

each of the 26 populations from the ‘Dissimilarity Set’ of 

SNPs. Consequently, we generated a structure array where 

each row allocates information from one SNP position 

containing 26 different fields corresponding to the 26 different 

populations. 

TABLE I. 26 POPULATIONS IN THE DATASET 

Population Code Population Name Continent  Sample Size 

PUR  Puerto Rican America 104 

CLM Colombian America 94 

PEL Peruvian America 85 

MXL Mexican-American America 64 

GBR British Europe 91 

FIN Finnish Europe 99 

IBS  Spanish Europe 107 

CEU CEPH     Europe 99 

TSI Tuscan Europe 107 

CHS Southern Han Chinese East Asia 105 

CDX Dai Chinese East Asia 93 

KHV  Kinh Vietnamese East Asia 99 

CHB Han Chinese East Asia 103 

JPT Japanese East Asia 104 

PJL Punjabi South Asia 96 

BEB  Bengali South Asia 86 

STU  Sri Lankan South Asia 102 

ITU  Indian South Asia 102 

GIH Gujarati South Asia 103 

ACB  African-Caribbean Africa 96 

GWD  Gambian Africa 113 

ESN  Esan Africa 99 

MSL  Mende Africa 85 

YRI  Yoruba Africa 108 

LWK  Luhya Africa 99 

ASW  African-American SW Africa 61 

Each field associated with one population group contains 

relevant information regarding that group, such as, number of 

individuals of that group existing at that SNP position (since 

we removed individuals from a SNP position based on the 

similarity of their allele with reference nucleotide) and 

corresponding allele information of those individuals. Next, 

we calculate two parameters ‘α’ and ‘β’ at each dissimilar 

SNP position, for each of the 26 populations, viz: 
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where, p=1, 2, … ,26 
i

pn = No. of individuals of population type p existing at SNP i 

pn = Total no. of individuals of population p in training data 

i

pf = Frequency of occurrence of the allele that appears most 

in population p at SNP i 

       For any population p, a SNP position i is considered 
important if at that position the product α×β=1 (i.e., α=1 and 
β=1). Based on the values of parameters α and β, we identify 
the best distinguishing SNPs for each population. After we 
obtain the set of important SNPs for each population, we take 
the union of all the 26 sets. The result is a unique set of 38,532 
ancestry informative SNPs. From these 38K SNPs, we further 
removed the SNPs which contain the same allele information 
across all individuals from all 26 populations in the training 
set, since SNPs showing no variations between different 
population groups are not informative in distinguishing them. 
At the end of this stage, we have 34,631 ancestry informative 
SNPs in total, all from Chromosome 1.  

Stage 2: Outlier-Based SNP Selection:  

To further reduce the number of SNPs, we apply a cluster-
based approach on the results from Stage 1. In particular, we 
take a contrarian approach: we group the SNPs using a 
clustering technique. In doing so, we also indirectly identify 
those SNPs that could not be grouped comfortably into any 
particular cluster. These are the outlier SNPs that do not seem 



to be similar to other SNPs, and thus represent good 
candidates for use in discriminating between ancestries. Here, 
we use DBSCAN [35] as the basic clustering technique. Given 
a set of data points in some space, DBSCAN clustering 
method groups together points that are closely packed 
together, marking the points as outliers that lie alone in low-
density regions. In our problem, SNPs that contain similar 
ancestry information are clustered together, while some SNPs 
are identified as outliers with seemingly unique ancestry 
information. These outlier SNPs are considered good 
candidates for distinguishing among populations.  
     Here, we apply DBSCAN clustering on the 34K SNPs 
extracted in the previous stage of selection. The algorithm 
requires three inputs: data matrix D, radius parameter (ε) and 
neighborhood density threshold (MinPts). Data matrix D has 
34K number of rows associated with 34K SNPs and each SNP 
is considered as an object with l dimensions, where l denotes 
number of training individuals. Each dimension belongs to the 
allele information of a training subject represented by a 
number between 1-16, since four nucleotides {A, C, G, T} 
generate 16 possible allele symbols {AA, AC, …, TT}. The 
radius parameter ε is measured as the Euclidean distance 
between two l-dimensional SNP objects and the neighborhood 
density threshold MinPts defines the minimum number of 
points required to form a cluster. For this problem, we have 
empirically chosen MinPts=2 and ε=0.1. Using DBSCAN 
clustering technique, we have obtained 2378 clusters and 6404 
outliers. These 6404 outlier SNPs constitute our new set of 
candidate SNPs for ancestry identification.  

Stage 3: Correlation-based SNP Selection:  

As we obtain the set of 6404 SNPs from the clustering 
technique, we measure the overall 26-class ancestry prediction 
performance for each individual SNP marker. That is, we 
perform ancestry prediction using each of the 6404 SNPs, 
independent of the other SNPs. Of course, we do not expect to 
produce very good performance for a single SNP. However, 
the relative performance of the SNPs is a crucial piece of 
information for our approach.  Consequently, a performance 
matrix X is generated with m=6404 rows, where each row of 
the matrix is allocated for one SNP representing a six-
dimensional vector,  
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      The first element in the vector contains the accuracy in 26-
class classification using SNP i. The next five elements of the 
vector are related to the five continents, whereby each element 
records the percentage of test individuals correctly predicted 
for the given continent. Classification into 26 populations by 
each SNP has been conducted for 80%-20% train-test split, 
with n=2504 individuals. We have used an allele-context 
feature to represent each SNP during classification, where 
each SNP’s allele-context feature belongs to three possible 
values: 0, 1, 2. Here, ‘0’ means both nucleotides from an 
individual at a given SNP location (say i) are the same as the 
reference nucleotide; ‘1’ means that one of the two nucleotides 
is different from the reference nucleotide; and ‘2’ means that 
both nucleotides of the person are different from the reference 
nucleotide. Allele-context feature vector a and class-label 
vector b are denoted for both train and test sets as follows: 
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Here, l=number of training subjects 
n-l=number of test subjects  

      Thus, for i=1,2,…,m number of SNPs, the overall 
performance matrix is represented as, 
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Once the performance matrix X is created, we calculate the 
pairwise correlation between the SNPs, using the associated 
performance vectors. For example, correlation of SNP i and 
SNP k is calculated using the Pearson's correlation 
coefficient as follows: 
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Here, 
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x  for continent j (j=1,2,..,5) 
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Now, if the correlation coefficient C between SNP i and SNP 

k is above a certain threshold th, that is, they are highly 

correlated, one of them is kept in the analysis and the other 

one is removed. Here, the SNP that provides better 

classification accuracy in the performance matrix (represented 

by the first element of vector 
)(i

x ) is considered as “non-

redundant”, while the other SNP is assumed redundant. The 

proposed correlation method for SNP selection is described 

below using a pseudo code. 

Proposed Algorithm: Correlation-based SNP selection  

Flag each SNP as non-Redundant  

FOR i = 1 to total number of SNPs 

        IF SNP(i) is non-Redundant  

                FOR k = i+1 to total number of SNPs 

                        IF SNP(k) is non-Redundant  

                                Calculate correlation coefficient C between performance   

                                feature vectors of SNPs i and k 

                                IF C > threshold,   

                                        Flag SNP(k) as Redundant  

                                END IF 

                        END IF 

                END FOR 

        END IF 

END FOR 

Remove Redundant SNPs 

Having described the general procedure for selecting the 

SNPs, the final step will be to select those that are suitable for 

continental-level classification, and those that are suitable for 

more localized discrimination between sub-populations. 

a) SNP selection for continental-level classification 

To find the best candidate SNPs for continental level 
classification, the proposed correlation based SNP selection 
has been exploited. First, the 6404 SNPs are ranked from 
highest to lowest based on their classification accuracy in the 
performance matrix X and 6404×6 performance matrix is 
rearranged accordingly. Following this rank of the SNPs, we 
create the order of the SNPs for the initial ‘non-Redundant 
SNP set’ in the algorithm and the algorithm is initialized with 
the best performing SNP. For a certain correlation threshold 
th, the algorithm is executed to identify the final set of non-



Redundant SNPs from the 6404 SNPs. These candidate SNPs 
represented by the allele-context feature are subsequently used 
to perform the five-continent classification for 80/20 train-test 
split. We carried out empirical experiments for a range of 
values of correlation thresholds and the threshold which 
provides the best classification performance with the smallest 
set of SNPs has been finally selected.  

b) SNP selection for sub-population-level classification 

When an individual’s continental ancestry is known and the 

individual belongs to any of the two possible closely related 

sub-populations within that continent, the objective is to 

identify the accurate sub-population ancestry. In this work, we 

have selected candidate SNP sets for all possible pairwise 

classification of sub-populations within a continent exploiting 

the same correlation algorithm as used in the continental-level 

ancestry identification. Assume two sub-populations 1S  and 

2S  from the same continent j and the goal is to identify a 

powerful set of candidate SNPs which will be able to 

distinguish individuals from these two sub-populations. Now, 

the 6404 SNPs are ranked from highest to lowest based on the 

continent j elements (
)(i

jx ) in the performance matrix X and 

performance matrix is rearranged accordingly. Thus, the 

correlation algorithm is initialized with the best performing 

SNP for continent j and for a certain threshold the algorithm is 

executed to obtain the non-Redundant set of SNPs from the 

6404 SNPs. Next, using the allele-context feature of these 

SNPs, binary classification between the two sub-populations is 

performed for 80/20 train-test split. Similar to continental-

level classification, we tested for a range of values of 

correlation thresholds and chose the threshold that provides 

the best classification performance with a small set of SNPs.   

c)  Ancestry classification algorithm 

Having identified the best SNP subsets, any standard 

classification algorithm (e.g., SVM, Random Forest, etc.) can 

be used for ancestry classification. In this work, we have 

applied softmax neural network [23] for both continental and 

sub-continental classification problem. 

III. EXPERIMENTAL RESULTS 

We performed experiments using the identified 1000 Genome 

dataset, with 26 sub-populations, from 5 continents. We 

evaluated performance of the proposed approach on both 

continental-level and sub-population-level ancestry prediction/ 

classification, as described below.  

A. Continental Classification 

The five-class classification into five continents -- Europe, 
America, East Asia, South Asia and Africa has been performed 
for a range of values of correlation threshold th=0.1 to 0.99 
with an interval of 0.01. Fig. 1 depicts the overall performance 
in continental-level classification for th=0.4 to 0.99 with 0.01 
interval along with the corresponding number of SNPs. The 
highest performance achieved is 99.19% for th=0.98 with 614 
SNPs marked with a red square in the plot. But, since our goal 
is to rather use a smaller SNP panel for distinguishing 
continental populations, we searched for the threshold th that 
provides an optimum performance with less number of SNPs 
(e.g., 200 or less). From Fig. 1, we can observe the general 
trend in performance for the proposed approach. At th=0.4, the 

system suggests a panel of 10 SNPs, for an overall 
classification accuracy of about 80%. Performance generally 
increased with increasing correlation threshold, rising to about 
94% accuracy rate, at th=0.82, using 93 SNPs. The best 
classification result is considered the one for correlation 
threshold th=0.91, resulting in a classification accuracy of 
96.75% with 206 SNPs marked by the magenta square. These 
206 SNPs have been considered as our final candidate SNPs 
for continental-level classification. The confusion matrix for 
five-class continental classification problem with overall 
performance of 96.75%  is shown in Table II. Our continental 
classification performance has been compared with other 
related methods in TABLE III.  

TABLE II. CONFUSION MATRIX FOR CONTINENTAL-LEVEL ANCESTRY  

CLASSIFICATION (OVERALL ACCURACY OF 96.75%, 206 SNPS) 

Continents Europe America Africa East Asia South Asia 

Europe 94.06% 3.96% 0.00% 0.00% 1.98% 

America 10.94% 89.06% 0.00% 0.00% 0.00% 

Africa 0.00% 0.00% 100.00% 0.00% 0.00% 

East Asia 0.00% 0.00% 0.00% 100.00% 0.00% 

South Asia 1.02% 2.04% 0.00% 0.00% 96.94% 

B. Pairwise classification between sub-populations 

      Table IV shows the overall pairwise classification results 
between sub-populations in each of the five continents in our 
dataset.  The number of SNPs required for each classification 
has also been noted. From the table, it is evident that in all 
cases of pairwise classification of closely related populations, 
we can infer the ethnicity using a small panel of SNPs (less 
than 200) and for some instances, the accuracy is as high as 
100%. For a more detailed analysis, Fig. 2(a) and Fig. 2(b), 
show the performance of the proposed methods with 
increasing correlation thresholds, using sub-populations from 
the continent America. The best performance has been marked 
with a red square in the figures. As can be observed, it is 
relatively easy to distinguish between individuals from certain 
sub-populations, even within the same continent. For instance, 
Fig 2(a) shows that individuals from Puerto Rico (PUR) are 
relatively easy to distinguish from those from Peru (PEL), 
achieving a 100% accuracy rate, using 56 SNPs, under our 
approach. However, we can also see some challenging cases, 
such as Columbia (CLM) and Mexico (MXL) (Fig. 2(b)), 
where the highest accuracy is at  ~74%, using 37 SNPs. Even 
increasing the number of SNPs beyond 37 could not improve 
the result. We have shown comparative results of 
binary/pairwise classification of sub-populations with other 
studies in the literature in TABLE V.  The comparative results 
show the proposed methods are competitive with the state-of-
the-art methods, even when using information from just one 
chromosome. 

TABLE III: COMPARATIVE PERFORMANCE ON CONTINENTAL-LEVEL 

ANCESTRY CLASSIFICATION USING SNPS 

Basic Method Data Size Datasets Used Classification Rate % 

[24] 664 Multiple Datasets 96.1 

[5] 2689 1000 Genome, 

HGDP, NIST 

98.8 

[25] 6410 Multiple Datasets  81.4 

[6] 451 Own Collection 77.0 (+21.6 

thresholded out) 

Proposed 2504 1000 Genome 

Phase 3 

99.19 (614 SNPs) 

96.75 (206 SNPs) 

 



 

TABLE IV: RESULTS FOR PAIRWISE CLASSIFICATION BETWEEN  

SUB-POPULATIONS IN EACH CONTINENT 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continent Sub-

populations 

Number 

of SNPs 

Correlation 

Threshold 

Accuracy 

(80-20) 

  

 

America 

PUR-PEL 56 0.76 100.00% 

PUR-MXL 44 0.72 93.33% 

PUR-CLM 89 0.83 66.67% 

CLM-PEL 96 0.84 97.06% 

CLM-MXL 37 0.69 74.07% 

PEL-MXL 96 0.84 84.00% 

 

 

 

 

Europe 

GBR-FIN 15 0.47 78.38% 

GBR-IBS 63 0.80 66.67% 

GBR-CEU 30 0.64 67.57% 

GBR-TSI 24 0.61 76.92% 

FIN-IBS 82 0.83 83.33% 

FIN-CEU 130 0.88 80.00% 

FIN-TSI 75 0.82 90.48% 

IBS-CEU 47 0.75 71.43% 

IBS-TSI 82 0.83 77.27% 

CEU-TSI 31 0.67 73.81% 

 

 

 

 

East Asia 

CHS-CDX 44 0.73 64.10% 

CHS-KHV 12 0.41 68.29% 

CHS-CHB 30 0.66 64.29% 

CHS-JPT 83 0.84 73.81% 

CDX-KHV 30 0.66 68.42% 

CDX-CHB 120 0.87 76.92% 

CDX-JPT 120 0.87 87.18% 

KHV-CHB 62 0.79 75.61% 

KHV-JPT 92 0.85 82.93% 

CHB-JPT 83 0.84 71.43% 

 

 

 

 

South 

Asia 

PJL-BEB 29 0.65 74.29% 

PJL-STU 57 0.78 62.50% 

PJL-ITU 29 0.65 70.00% 

PJL-GIH 153 0.89 100.00% 

BEB-STU 42 0.72 72.97% 

BEB-ITU 139 0.88 70.27% 

BEB-GIH 113 0.86 100.00% 

STU-ITU 29 0.65 64.29% 

STU-GIH 79 0.82 100.00% 

ITU-GIH 79 0.82 100.00% 

 

 

 

 

 

 

 

 

 

 

Africa 

ACB-GWD 47 0.76 76.74% 

ACB-ESN 20 0.56 79.49% 

ACB-MSL 46 0.75 71.43% 

ACB-YRI 43 0.72 80.49% 

ACB-LWK 60 0.79 79.49% 

ACB-ASW 15 0.49 81.48% 

GWD-ESN 46 0.75 77.27% 

GWD-MSL 73 0.82 72.50% 

GWD-YRI 132 0.88 100.00% 

GWD-LWK 132 0.88 100.00% 

GWD-ASW 132 0.88 96.88% 

ESN-MSL 102 0.86 69.44% 

ESL-YRI 132 0.88 100.00% 

ESN-LWK 132 0.88 100.00% 

ESN-ASW 132 0.88 96.43% 

MSL-YRI 38 0.71 100.00% 

MSL-LWK 132 0.88 100.00% 

MSL-ASW 73 0.82 91.67% 

YRI-LWK 28 0.65 78.57% 

YRI-ASW 146 0.89 90.00% 

LWK-ASW 162 0.90 85.71% 

 

 

 

Fig 1. Continental classification performances with varying thresholds 

Fig 2 (a). Pairwise classification results (PUR vs. PEL) with varying thresholds 

Fig 2 (b). Pairwise classification results (CLM vs. MXL) with varying thresholds 
 



TABLE V.  COMPARATIVE PERFORMANCE IN  SUB-POPULATION-LEVEL ANCESTRY CLASSIFICATION 

Pairwise sub-

populations 

Continent Method Data 

size 

Datasets Classification 

rate (%) 

No. of 

attributes 
CEU-TSI EUROPE [26] 267 HAPMAP III 86.6±2.4 180 SNPS 

-- EUROPE PROPOSED 503 1000 GENOME PHASE 3 76.6* 58 SNPS** 

CHB-JPT EAST ASIA [26] 250 HAPMAP III 95.6± 3.9 877 SNPS 

JPT-CHB EAST ASIA [27] 9104 OWN COLLECTION 74.9( 77.2***) 15 STR LOCI 

JPT-KOR EAST ASIA [27] 731 OWN COLLECTION 67.9 (63.7***) 15 STR LOCI 

CHB-KOR EAST ASIA [27] 731 OWN COLLECTION 69.6 (62.4***) 15 STR LOCI 

-- EAST ASIA PROPOSED 504 1000 GENOME PHASE 3 73.3* 68 SNPS** 

LWK-MKK AFRICA [26] 294 HAPMAP III 95.9±1.5 341 SNPS 

-- AFRICA PROPOSED 661 1000 GENOME PHASE 3 87.02* 87 SNPS** 

*Average accuracy of all pairwise sub-population classifications within the given continent.  

**Average number of SNPs required in all pairwise sub-population classifications within the given continent 

*** Results obtained without normalization. 

 

IV. CONCLUSIONS 

       In this work, we have developed an ancestry 
identification system to predict continental origin of an 
unknown individual and also to distinguish between closely 
related sub-populations within a continent. Here, only SNPs 
from just one chromosome (namely, Chromosome 1) have 
been analyzed to identify different panels of ancestry 
informative SNPs. Both machine learning and statistical 
approaches have been employed for selecting candidate SNPs. 
Our results demonstrate that one single chromosome (in 
particular, Chromosome 1), if carefully analyzed, could hold 

enough information for accurate prediction of human 
biogeographical ancestry. This has a significant implication in 
terms of the computational resources required for analysis of 
ancestry, and in the applications of such analysis, such as in 
studies of genetic diseases, forensics, and biometrics. An 
interesting further work is to investigate the performance of 
other chromosomes, especially the smallest chromosomes, to 
see if we can construct equally high-performing panels of 
ancestry informative SNPs using even less information.  
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